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Options and implications of ep experiments at HERA 

 

and beyond

 

•

 

HERA luminosity upgrade

 

•

 

upgrades of the ZEUS and H1 detectors

 

•

 

future options for ep (eA)
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Lepton-Hadron Scattering

Resolving the Structure of Matter
with Deep Inelastic Scattering (DIS)

 

Fixed target experiments

- polarized, unpolarized and semi-
   polarized:

 

•

 

e-p, e-A (SLAC/DESY)

 

•

 

µ

 

-p, 

 

µ

 

-A (CERN/FNAL)

 

•

 

ν

 

-p, 

 

ν

 

-A (FNAL)

Collider experiments

- so far only unpolarized

 

•

 

e-p  (H1&ZEUS @ DESY)

 

  

 

⇐



 

C. Niebuhr, DESY 3                  INSTR02, Novosibirsk

 
HERA at DESY

       Protons Electrons/Positrons

Source 20 keV Source 150 keV

RFQ 750 keV Linac II 450 MeV

Linac III 50 MeV Pia 450 MeV

DESY III 8 GeV DESY II 7 GeV

PETRA 40 GeV PETRA 12 GeV

HERA-p 920 GeV HERA-e 27.5 GeV

H1

ZEUS

Hermes
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The Colliding Beam Experiments

ZEUS

• multi-purpose detectors
• almost 4π acceptance
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HERA Performance until 2000

Design
value

• ever increasing 
performance 
since 1992

• some saturation 
reached 2000

1999 2000
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Kinematic Range and Highlights from HERA I

 

Significant increase in kinematic range 
beyond the fixed target experiments

Highlights from HERA I (1992-2000)

 

•

 

proton structure & QCD

 

rise of F2, role of gluons, jet physics, 

 

α

 

s

 

 determination, electroweak physics

 

•

 

low x physics

 

high parton densities, diffractive physics

 

•

 

photon structure

 

•

 

physics beyond the Standard Model

 

lepto-quarks, contact interactions, exited 
leptons, isolated leptons

 

HERA II

 

•

 

Luminosity upgrade

 

•

 

Spin rotators for ZEUS and H1

 

⇒

 

 longitudinally polarized electrons/
positrons (

 

→

 

see talk by Ken Long 5.3.)

 

•

 

H1 and ZEUS detector upgrades

e p
e�

 jet
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Options for Luminosity Upgrade

 

Constraints for the Luminosity at HERA   

 

1. Proton beam brightness 

 

⇑

 

: (space charge effects in injector chain)

increasing  

 

→

 

 larger  

 

⇒

 

 no large increase factor possible at HERA except with electron 
cooling

2. Electron Current 

 

⇑

 

:
no fundamental limitations, but costs. Points to consider:

� RF power (12 MW now)
� vacuum system
� feedback system designed for ≤60 mA
� beam-beam force on protons ?

3. Reduce beam size at interaction point by stronger focusing 

 

⇓

 

:
move proton final focus quadrupoles closer to IP: 26m 

 

→

 

 11m
   � need early seperation of protons and lepton beam

L
γp

4πe
---------

N p

εN
------- Ie

1

β*
p y, β*

p x,⋅
------------------------------------⋅ ⋅ ⋅=

N p εN⁄

N p εN⁄ β*

Ie

β*

 

chosen because
safest method
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New Interaction Region

Parameters before Upgrade after Upgrade

e-ring p-ring e-ring p-ring

E [GeV] 27.5 920 27.5 920

I [mA] 50 100 58 140

Nppb [1010] 3.5 7.3 4.0 10.3

nbunch 174 174 174 174

β*x  [m] 0.90 7.0 0.63 2.45

β*y  [m] 0.60 0.5 0.26 0.18

εx [nm] 41 5000/γ 22 5000/γ

εy /εx 10% 1 18% 1

σx ; σy [µm] 190 ; 50 190 ; 50 120 ; 30 120; 30

σz [mm] 12 130 12 130

∆νx 0.012 0.0013 0.027 0.002

∆νy 0.03 0.00035 0.041 0.0005

L [cm-2s-1]         1.5 x 1031            7 x 1031

• 448 m new vacuum beam pipe
• 4 superconducting magnets
• 54 new normal conducting 

magnets (Efremov Institute 
St. Petersburg)

• 2 spin rotators
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Concept of new Interaction Regions

e

p

e
p

 

GM: new septum quadru- 
pole for protons with 
 thin  mirror plate (Brett 
Parker)

 

Stronger focusing of protons by moving proton quadrupoles closer to IR : 26m 

 

→

 

11m  

 

⇒

 

 

 

•

 

early beam separation by superconducting magnets in the detectors

 

•

 

reduced e-bending radius: 1200 m  

 

→

 

  400 m

 

•

 

increased synchrotron radiation power: P

 

tot

 

 = 28 kW @ 58mA , E

 

crit 

 

≤ 150keV

 

•

 

radiation has to pass the detector and will be absorbed at 11, 19 and 25 m behind the 
experiments

red magnets are new
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New Superconducting Magnets in the Experiments

 

•

 

combined function magnets including  dipole, 
quadrupole, skew dipole, skew quads, sextupole

 

•

 

very tight space requirements (ø <180 mm)

 

•

 

⇒ 

 

super conducting magnets

 

• designed and constructed at BNL
• complicated movable supports needed inside 

detectors (forces on LAr cryostat)
end can with
He supply lines

superconductor
positioning precision
0.01mm
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Challenge: Synchrotron Radiation

e-beamp-beam

synrad fan e�

Need rather complicated beampipe (steel)
to accomodate 3 different beamsConcept:

• synchrotron radiation may hit detector or beampipe only 
after at least two scatters

• central beampipe made from Al/Be-alloy (.38/.62)
elliptical shape (64mm x 129mm, d=2mm ≈ 0.8 X0)

• combination of downstream absorbers and tight 
collimators integrated in beampipe to shield against 
backscattered radiation

28kW @ 58 mA

H1

m

cm
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Where do we stand with the Upgrade ?

Lumiscan in November

∆x / µm∆y /  µm

2.Nov.:  Lspec = 1.68 x 1030/cm2 s1 mA2

⇒  agrees within 10 % with design value of  
             Lspec = 1.88 x 1030/cm2 s1 mA2 

7.10. first ep collisions in HERA II

Increased rate in the H1 photon 
detector of the new luminosity 
system when horizontal bump was 
driven for the e+ beam

Protons:    28.7. first injection
                 10.8.  ramp up to 920 GeV

Positrons:  16.8.  first injection
                   5.9.  ramp up to 27.5 GeV
                  18.9.  switch on solenoids
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Remaining Problems
• Jan/Feb repair work in cold drift section of HERA-p
• Sofar it was only possible to store ≤2mA of positrons 

in the machine without risking damage of the silicon 
detectors

• A lot of effort was spent in determining the 
positions of beam elements and detectors using 
survey techniques and beam based alignment

• The present understanding is that the tight 
requirements in positioning precision of better than 
0.3mm  have not yet been met everywhere in the new machine  (± 60m around IPs !)

• As a consequence of this mis-alignment the synchrotron radiation fan produced in front 
of the experiments is too wide for the present configuration in the vertical direction and 
backscatters into experiments ⇒  

Measures taken right now:
� installation of additional collimators at -66m (hor.) and -6m (ver.) 
in front of the experiments
� increase vertical aperture of 2 emergency collimators (+3.5m, 
+5.9m) which protect the steel  beam pipe behind the detectors
� installation of active protection for beam pipe
� try modified optics with reduced divergence

Notabsorber 1, 2 und 3 Hauptabsorber 4

Vertical collimators/absorbers

Absorber 1  @ z=3.5m
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Detector Upgrades

Many upgrade projects

with emphasis on enhanced capabilities for
• tracking  (in forward direction) 
• triggering (data taking rate ≈ constant)

Mandatory: luminosity detector upgrade
•  need radiation hard γ detector
• cope with bunch to bunch pile up

... details not covered here 
→ see talks this afternoon by:
• Ulrich Koetz for ZEUS
• Arndt Specka for H1
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Forward Tracking

Problems for track finding in forward direction
• large background close to beam pipe
• high track densities from showers or jets

originally TRDs in H1 and ZEUS

⇒  increase redundancy by replacing TRDs with robust
    and well understood tracking devices

ZEUS
replace TRD with 
new straw tube 
tracker

H1
replace TRD and Radial 
drift chambers with
5 planar drift chambers 
(8 wires each)
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Straw Tube Tracker for ZEUS

• 2 gaps left free 
from original TRD 
each 208mm in z

• cover polar angle 
6û to 24û and full 
azimuth

• 4 super layers per 
gap

Concept:

straws: 2 layers 50µm Kapton foil
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ZEUS Micro Vertex Detector

Design goals
• three spatial measurements per track in two projections
• polar angle coverage 10û-170û
• <20µm intrinsic hit resolution for normal incidence
• impact parameter resolution ≈100 µm for p>2GeV
• high efficiency (>97%)

Constraints
• elliptical beam pipe
• CTD inner diameter 320mm
• 96 ns bunch crossing time

4 double layer wheels

3 double layers in barrel

wheel

barrel

7û
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MVD Sensors

BMVD sensors

125mm

64
m

m

(in total 600)

• n-doped silicon wafers (300µm, 3-6kΩcm) with p+ 
implantations (12 or 14 µm wide) (Hamamatsu Photon.)

• analog readout of every 6th strip 
HELIX 3.0 ,  0.8µm CMOS AMS

• by using capacitive charge sharing good resolution 
despite 120µm r/o pitch 

• 512 (barrel) 480 (wheel) readout channels per sensor 
⇒   207000 readout channels in total

FMVD sensors
(112 wedges)

120 µm
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MVD Details

Two half modulesTwo half modules
are then glued togetherare then glued together
to form a full moduleto form a full module

material budget: 3% X0 per ladder
Five full modules areFive full modules are
disposed over adisposed over a
carbon fiber supportcarbon fiber support
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One MVD half assembled
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H1 Silicon Detector Upgrade

H1 successfully operates CST and BST since 1997

Upgrade
• adapt to new beampipe geometry
• backward region BST

� rearrange existing BST: 6 u/v planes
� add 4 planes with pad detectors for triggering

• central region CST
� radiation damage observed
� radiation hard readout electronics for CST

• forward region FST
� add 5 u/v planes 
� add 2 r planes

FST BSTCST

H1 Collaboration: Abstract 979, submitted to the 30th 
InternationalConference on High Energy Physics, 
ICHEP 2000, Osaka, Japan, July 2000.

protonselectrons
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CST Upgrade

CST sensors
� 5.9cmx3.4cmx300µm
� double sided, DC coupled
� 3 sensors bonded together to form one ladder

• p side: 25µm pitch, 50µm r/o pitch, 3x9 pF/strip
• n side: 88µm pitch, 3x19pF, double metal

Readout
• readout at the end of the ladder: 

⇒  only 2 x 0.75% X0 dead material
• Analog Pipeline Chip APC128 (SACMOS-1µ)

� 32 stage analog pipeline
� radiation damage seen in inner layer after ≈250Gy 
� problem: internal leakage current in chip (latch-capacitors CL)
⇒  transfer ASIC design from SACMOS to radiation hard 
    DMILL technology 
    (Durci Mixte sur Isolant Logico-Lineaire [CEA])

• DMILL
� bipolar CMOS, 0.8µm, silicon on insulator
� radiation hard up to 10Mrad

direction of r/o
full r/o time ≈1ms

Inner layer of CST

APC 128
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CST for HERA II

Re-use old silicon

⇒  remove 1280 bonds for each hybrid
1. break hybrid from silicon
2. glue bonds to chip on hybrid
3. tear off hybrid: 95% of bond wires go off

New ladder arrangement
� two layers
� sensors perpendicular to rays from the IP
� overlaps in rφ for internal alignment

IP
SynRad
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BST and FST Sensors

r strips ϕ strips (u/v)

• AC coupled
• 280 µm thick
• p+ doped strips
• 640 active strips

• double metal
• 1 intermediate strip
• r/o pitch 96 µm

• single metal
• 2 intermediate strip
• r/o pitch 75 µm
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FST 
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single wheel

full detector
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BST-Pad Detector

Purpose
• trigger on backwards 

going particles 
(scattered electron)

• reject upstream 
proton background
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Triggering at HERA II

HERA Upgrade:
• higher background from synchrotron radiation
• larger event rates, but output rate ≈ constant

⇒  Need also improvements for trigger:
• higher redundancy → better background rejection

H1: replace central inner proportional chamber CIP by new one with 5 instead of 2 layers
      optical readout of of 8500 pads for L1 (2.3µs) decision

• higher selectivity
ZEUS General Track Trigger (GTT): new second level  trigger including based on PC farm
input from: 
� micro vertex detector MVD
� central track detector CTD
� straw tube tracker STT

H1 Fast Track Trigger
� input from Central Jet Chamber 
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Fast Track Trigger FTT
• Level 1: 2.3 µs

� signal digitization
� finding track segments from hits
� coarse track linking for L1 trigger signal

• Level 2: 22 µs
� track segment linking
� fitting track parameters (3D)
� trigger decision based on basic event properties

• Level 3: ≈100 µs (processor board farm)
� identification of particle decays

• makes extensive use of content addressable memories (CAM) 
• only possible with new generation of programmable electronics 

 � high density FPGAs
 � DSPs

• performance approaches offline reconstruction in precision
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Future of HERA
• Anticipated luminosity profile of HERA II:

• 2007: Due to increasing demands there is a 
strong need for a dedicated source for hard 
synchrotron radiation. Two options are 
presently evaluated
  1) build new additional PETRA ring for synchrotron 
      radiation in the same tunnel
     would allow for a HERA III program beyond 2006
      � ed (polarized), eA → Durham Workshop Dec.01
  2) conversion of the existing PETRA into a
      dedicated synchrotron radiation source
      incompatible with using PETRA as injector 
      for  HERA

• Highest priority of DESY is TESLA
⇒  any extention of HERA running beyond 2006 
needs very convincing physics case which has to 
be laid down until end of 2003

2002:    120 pb-1  (?)
2003:    180 pb-1

2004:    240 pb-1

2005:    240 pb-1

2006:    240 pb-1

Total    >1000pb-1

two possibilities for an additional
machine in PETRA tunnel
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Future Lepton-Hadron Colliders: Technologies
• Basically two options:
 1.  Ring-Ring

� proven technology eg HERA
� electron polarization by Sokolov-Ternov effect

� luminosity in the range of >1033cm-2s-1 seems feasible
 2.  Linac-Ring

� easier spin manipulations (spin flip), high polarization
� far less synchrotron radiation in experiment
� for competative luminosity need energy recovery

• Energy Recovery Linac (ERL)
� required rf power nearly independent of energy
� overall system efficiency increased
� less energy to be dissipated in e-beam dump
� promising results at JLAB IR FEL (low energy)

• Proton/Ion Ring
�  limiting factor for intensity: intra beam scattering IBS
     ⇒  can be improved by electron cooling
� mandatory for ions if want to reach LA≈Lp/A, helps also for protons (Lp → 2xLp)

Sources  of information:

  – Series of workshops at DESY

  – EIC white report

  – Snowmass WG M5

  – Recent Durham Workshop
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Polarization at Lepton-Hadron Colliders
Polarization for Electrons, Protons, Deuterons

a) Acceleration and Storage of Polarized Protons
�  promising: recent success @ RHIC,  25.Jan.02: 
store, accelerate to 100 GeV and collide polarized 
protons (& measure their polarization)

b) Acceleration and Storage of Polarized Deuterons
recently attracted very much attention:
deuteron has small gyromagnetic moment 

 ( ) ⇒  siberian snakes don�t work

new approach (Ya.S. Derbenev, V.A. Anferov physics/0003104): 
achieve spin flip by horiz. rf field
additonal advantage:  for deuterons 
depolarising resonances are
  - 25 times weaker and fewer
  - 12.5 times farther apart  
⇒ acceleration should be much easier
needs to be proven experimentally
c) Polarimetry for Protons and Deuterons
d) Polarized proton or deuteron sources
e) Electron Polarization Buildup

Gd 0.14–= Gp 1.79=
Siberian snake

RHIC
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Future Lepton-Hadron Colliders under Consideration
• THERA, the TESLA on HERA collider

    � 250 GeV electrons on 920 GeV protons: ECM = 960 GeV

    � L≈0.5-2x1031 cm-2s-1 
• eRHIC, Electron-Hadron Collisions with RHIC

a) Linac-Ring Version
    � 10 GeV electrons on 250 GeV protons (Au): ECM = 100 GeV

    � L≈1.1x1033 cm-2s-1 
b) Ring-Ring Version
    � 10 GeV electrons on 250 (100) GeV protons (Au): ECM = 100 GeV

    � L≈0.6-2x1033 cm-2s-1 
• EPIC, the High Luminosity Electron (Polarized) Ion Collider

a) Linac-Ring Version
    � 5 GeV electrons on 50 GeV protons: ECM = 32 GeV

    � L≈0.6-2x1033 cm-2s-1 
b) Ring-Ring version
    � 7 GeV electrons on 32 GeV protons:  ECM = 30 GeV

    � L≈1.1x1033 cm-2s-1 eRHIC Ring-Ring 

TESLA

HERA
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Electron Ion Collider

Electron Ion Collider (EIC) Project

recent idea (white paper in March 2001): merge eRHIC and EPIC initiatives
• ep or eA collider 
• variable CMS energy 15 GeV to 100 GeV for protons (63 GeV/A for ions)

• high luminosity (>1033 cm-2 s-1)
• polarization of electrons and protons
• options

� ring-ring 
� linac-ring 
� recirculator-ring: mixture of the two
     store a few hundred revolutions
     advantages of linac: high polarization
                                     high Luminosity at all energies

• need electron cooling
� operation in a collider not yet done

possible layout for Energy Recovery
Linac (ERL) in the EIC cooler
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Electron Ion Collider Workshop

1. The ring-ring collider scheme working group 
(RR Group)

2. The linac-ring collider scheme working group 
(LR Group)

3. Interaction region working group (IR Group)

Goals: 
• form collaboration this spring and 

formulate detailed construction proposal 
by 2005

• start R&D program ⇒  
• start construction ≈2010-12 ?

26.-27.2

28.2.-2.3.
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Even further in the Future
• eLHC, Electron-Proton Collisions with LHC

� 60 GeV leptons on 7 TeV protons: ECM = 1296 GeV

� L≈2.5x1032 cm-2s-1

• epVLHC, Electron-Proton Collisions with VLHC
� electron ring in the VLHC booster tunnel parallel to construction of VLHC
� 80 GeV electron on 3 TeV proton: ECM = 980 GeV 

� L≈2.6x1032 cm-2s-1

• R&D Issues for Future Lepton-Hadron Colliders
� High-current energy-recovery linacs
� High-energy electron cooling
� Polarized electron sources
� High-energy deuteron and proton polarization
� Proton polarimetry
� Integration of the detectors and colliders
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Toy Model for Detector Configurations at THERA

two different setups for different phases 
of the experiment
• low Luminosity &  low x

• high Luminosity &  high Q2 

Ep=920 GeV: proton energy unchanged 
→ detector resembles H1 + ZEUS

pe
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Prototype Detector for EIC
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Summary and Conclusion
• HERA luminosity upgrade completed

source of synchrotron background identified and being worked on
• ep and eA physics is very active field also beyond HERA II
• options exist for: 

� higher luminosity
� higher ECM 
� polarization (deuterons)

• R&D needed mainly for accelerator issues

EIC

3

THERA

CM Energy (GeV)

Lu
m

in
os

ity

Electron Ion Collider

x

Q2

kinematic plane


