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Outline of this talk

e W'hy diffraction?
e Diffractive DIS at low Q?
e Jets in diffraction
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Why study diffractive deep inelastic scattering ?

Deep inelastic scattering (DIS):

v , i

Leading twist DIS = sum of scatterings on free quarks in the proton:

F,=x Z erq(:r;) + QCD evolution
q

Diffractive deep inelastic scattering (DDIS):

10% of DIS events exhibit a large rapidity gap in the final state.

ol . q

q
Y p QY

New coherent phenomena?  Higher twist?  Multiple exchanges?
Confinement? Scattering on an extended object?

— DDIS gives us an opportunity to expand our understanding of QCD.
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Diffractive phenomena and the pomeron
s R R N S R L R R R B R s ST R s

Soft hadron scattering is described by Regge phenomenology:

a a o
IR
P
IR, IP
/I\ | >
ab
dog _ Z [5]82(%@)—1) ar(t) =0.54+1¢
dt ap(t) =1.08+0.25 - ¢

k=IR,IP
e clastic and total cross sections are related by the optical theorem
e also single and double dissociation can be described in terms of
reggeon and pomeron exchange

At high energies, the pomeron dominates the cross section. However,
no fundamental understanding of the pomeron exists in terms of QCD!

Why study diffraction at the HERA ep collider?

e small Bjorken-z — long hadronic lifetime of the photon
e ‘“transverse size” of the photon varies with Q2
e possibility to attack the pomeron with a hard scale

Questions:

e How can we understand the pomeron in terms of QCD?
e Does the pomeron have a partonic structure?
e |[s it universal or is there a transition from the soft to hard regime?

e Do we need the pomeron at all?
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Classification of diffractive processes

At HERA:

Y +p—= VM+p

(elastic)

v'+p— VM+Y (proton dissociation)

Y +p— X+p
Y4+p— X+4+Y

e this talk: mostly about (3)

At Tevatron:

P+p— D+p
p+p— X+p
p+p— Dp+Y
p+p— X+Y

e this talk: mostly about (7)

(single dissociation)

(double dissociation)

(elastic)
(single dissociation)
(single dissociation)

(double dissociation)

—~
\l
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Kinematics of diffractive ep scattering

e'(k')

}X(X)

p'(P).Y (Y)

p(P)
Q= —q¢"=—(k— k')
2
r — Q
2P - q
_P-q
YT Pk
W? = (P + q)°
/2
t=(P— P’

. q- (P — P')
P = . P
_ Q°

5_2q-(P—P’)

17/

photon virtuality

Bjorken scaling variable

inelasticity

~*p centre-of-mass energy

4-momentum transfer squared

invariant masses of X and Y

fraction of » momentum transferred
to IP

fraction of the IP momentum

transferred to quark coupling to
*

Y
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Measurement of the inclusive cross section
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— QCD factorization allows interpretation in terms of pdf’s.

2
— oy % FPO(B, Q% zp)
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Regge-like parametrisation of the cross section

Regge factorisation:

X X

A4

FP®8,Q2 zp) fp/p(zp) FF B, Q%

— xp dependence is universal at all 8 and Q? (~ $

This works, but data show deviations from this simple Regge model at
large xp and small 8.

Regge-fits to FZD(S):

With the addition of a subleading exchange, good fits to FQD(?’) ar

obtained througout the kinematic range.

e

FP® = fp), (zp) FF (6’ Q2) + frpp (2r) By (5’ Q2)

Regge theory allows to parametrise The short distance physics
the long distance physics at the at the virtual photon vertex

proton vertex: is contained in pomeron and

1\2ep®-1 , reggeon “structure functions”.
f]p/p:/ — e Pdt

P P R -
(and similar for fr/,) F,  and F," are free fit

ap (0) and o (0) are obtained ~Parameters in this model.

from a fit.
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The partonic pomeron
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Can we think of the pomeron as a partonic object with single partons
entering the hard interaction?

Investigation of the deep-inelastic structure of the pomeron:

The Regge fits to the xp dependence can be extended with a QCD
motivated model for the (3, @?) dependence.

® assume a 7 structure function for IR
o take Q? evolution from NLO DGLAP equations

e extract parton density functions p, p(z, ) (directly) and
Py P(%, ©?) (through scaling violations)

& (2=4.5 GeV?
il l'! a=" ) -I'
N 1 L e—— .‘l. :.

~— et D == :
= -

S ok '\‘3
O s =12 GeV? Singlet
: —— Gluon
1
0
1
0

— IP dominated by “hard” gluons
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Photon fluctuation models (1)

At low z, the photon can fluctuate in gq/qqg partonic configurations
long before the actual interaction with the proton.

y* 1

&

* p p
: TS s

Decomposition into leading / higher twist contributions, longitudinal /
transverse photon interactions and qg / qqg states

BEKW —— total
----- (qa);
B dependence fixed by dipole wave _  zEUS 1994 —
function from perturbation theory: o o5 [0 =GV 0= 14 GV’
2 2
thq X Q—gln Q2 ,6’3(1 - Qﬁ)2
Q 4Q55
T
Fz o< B(1—=p)
2
T @ 3
Fo., o< asln @ (1 —p5) 3
0 TR T TR T TR Dt T o

8 1

ol depanr Lo W g L L iheeasr
0 02 04 06 08 1 0.2 0. 0. 0

— clear prediction for the partonic composition of the final state X
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Photon fluctuation models (2)

Photon fluctuation models differ in the way they treat the dipole cross
section:

e Saturation model (Golec-Biernat, Wiisthoff) :
Attempt to desribe saturation of the inclusive cross section at low
Q?, low x leads to an alternative model for the dipole cross section:

o(x, 7“2) = o0y l:l — exp (—%)J

1 T A/2
Ro(@) = &y (;0)

e Semiclassical model (Buchmiiller, McDermott, Gehrmann,
Hebecker) :
qq/qqg scatters off a superposition of target colour fields, averaged
using an approximation for very large hadrons.

e 2-gluon exchange model (Bartels, Jung, Wiisthoff) :
Elastic scattering of ¢q/qqg off the proton through the exchange
of two gluons in a net colour-singlet configuration.
Full pQCD calculation that requires high transverse momentum for
all outgoing partons and zp < 0.01 to avoid valence quark region
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Experimental techniques
N e R R L I e e 1 A e R s T e e R

Selection of diffraction events by H1 and ZEUS:

e Mx subtraction method (ZEUS):

ZEUS 1993
My(GeV) 1] 3 7.15 1|5 5(I) 10[0
:g Q@ = 14 GeV* wm*
dN D_|_ (bl M2 ) 10 — +++
— = c-ex n —
dIn M P * of it *g
? ‘ TW
— DD background < 30% | HHHJ{H
2 o0 2714 6 's"n('M;)o
e large rapidity gap selection (H1 & ZEUS):
Mmax =  pseudorapidity of most ‘.a
forward energy deposit "l pory T e’ ' X
4,4t
S
— DD background < 10% ft

e leading proton spectrometer (H1 & ZEUS):

ZEUS 19%4

o b f
Df ;ﬂfoo;—
— 75 £
LTL = _ 150 £
Ip'bl s ©
100 £
— DD background < 3% "
50 f

25
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Study of the hadronic final state

Many final state observables have been measured by H1 and ZEUS:

e event shapes
e energy flow and particle spectra
e charged particle multiplicities and correlations

These observables are expected to be sensitive to the partonic structure
of the final state:

® in terms of the partonic pomeron we can distinguish between quark
or gluon initiated processes

e in terms of photon fluctuation models, we can investigate the
decomposition into gq and gqg final states.

*

~
q *
~
/o 4] q
* q
Y g g
q P 9]
/i 4]
quarkonic IP gluonic P
e dominantly gq e dominantly qqg

e QPM and QCD-Compton e boson-gluon fusion

e low pr, aligned to v*p axis e high pr, non-aligned
e few jets ® many jets

e fragmentation of 3.3, e fragmentation of 8.8,
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Event shapes
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e (T') becomes larger as M x increases
e (T') is smaller and (not shown) thrust-Pr is larger in diffractive
DIS than in eTe™ at /s = My
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Charged particle rapidity spectra
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e diffractive data exhibit higher density in central rapidity plateau

— Final state provides qualitative support for gluon dominated P
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Diffractive high- E+ jet production

Hard jets are an ideal test of the dynamics of diffraction:

e the large Er provides a hard scale for perturbative calculations
e the production mechanism is sensitive to the gluon content

e S
v*)(q)
remnant
(w) .
Jet
jet
(v)
remnant
p(P)

Experimental measurement:

e jets are identified as collimated energy depositions in 1-¢ space
within a cone of radius R = /An2 + A¢2 =1

e 1’% and pgft are defined relative to the v in the rest frame of X

e the fractions of the 7(*) and IP momentum transferred to the
system X (i.e. entering the hard scattering) are defined as:

P-u
€T —
Y Pq
q-v
- _
d q-(P—P)
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High- Er jets in diffractive photoproduction

ZEUS 1994 ZEUS 1994
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e experimental definition of ., and zp:
ZjetS(E B pz) ,BOBS . Zjets(E + pz)

T > (E—p.) T > (E+p.)

ZCOBS
Y

® both direct (x, = 1) and resolved (x, < 1) contributions are

observed (— rapidity gap survival probability!)

e a combined DGLAP fit to F2D and photoproduction dijets requires
the pomeron to be dominated by “hard” gluons (70% — 90% of

the pomeron momentum is carried by gluons)
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Dijet events in diffraction at the Tevatron
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3] o,
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10" 10" 10 Ol L
X(antiproton) B

leading antiproton tagged with Roman pot spectrometer

ratio of dijet to inclusive SD event rates is independent of ¢
Efpet distribution is slightly steeper for SD than for ND events
ratio of SD to ND rates increases with decreasing x p;

the CDF Fﬁ, is steeper than and severely suppressed relative to the
predictions based on extrapolations of H1 fits

— breakdown of QCD factorization!
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High- Er jets in diffractive DIS

¢y  Run 163023 Event 90665 Class: 3 4 11 15 16 17 18 20 27 Date 29/07/1999

Hl Event Display 1.17/04 E=-27.6 x 821.5 GeV B=11.6 kG
DSN=[hldst. h1] CDST2_96_LYQN. I NDEX
AST(DMIS)= 0 0

0 221B
RST (DMIS)= 28100 4000 20300 22DB

E[GeV] (DCLU)

0 Event Display 1.17/04
D8NS hldll.hrlﬂsﬂji_li\;'nlm

H1 measurement:

e based on L;,; = 18 pb™" (2500 dijet events)
e ‘“rapidity gap selection” (excluding activity in 3.2 < n'® < 7.5)
e cross sections are measured in the kinematic region defined by:
- 4<Q*<80Gev? 0.1<y<0.7
— zp < 0.05, My < 1.6 GeV, |t| < 1 GeV?
— pl* > 4GeV, -3 < <0
Q2 + Mj2j
Q? + M3

— experimental definition of zp: zp =
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Comparison to partonic pomeron model
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50
0

0 (H1 1994)

P e |

| — res. IP £H1 fit 2;

e H1 Data

res. IP (H1 fit 3
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e H1 Data

25 -2 15 -1 -05
IogmB

— res. IP (dir.+res.y*)
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]

= 3
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<

x?-

©

a 2

g 10
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i‘l‘\lléll‘ |

02 04 06 08 1

(jets)
xv

applying results of FQD(?’) QCD fits to jets works very well (although

dijet events cover a very different range in 3)

with data

the contribution from resolved photons improves the agreement

the contribution from a subleading exchange is small
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Regge factorisation and scale dependence

zp in bins of zp zp in bins of ,u2

H1 Diffractive Dijets

= Q° +pr
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S 100 b ["hee T 3 200 '+"T'L~1%
o : o i
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200 |
150 -~
100 o |
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75 [ pes
50 M‘T """""""
25 T L]
0 fl 11 | 11| | 111 ( L1 1 L1 1
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150 60 [ 1P
100 40 F o
.................. 20
0 IIIIIIIIIIII- O_II+|[!IIIIIIIIIIIII
0 02 04 06 08 1 0 02 04 06 08 1
2 (iets) 2 (iets)
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e data are compatible with Regge factorisation:
o (-’L‘JP, ZJP) = fr (QBJ:P) " Pi/p (ZJP)

e “fit 2" (flat gluon) agrees well with data
“fit 3" (peaked gluon) is too high at high zp
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Comparison to soft colour neutralisation models
T B R R e R R T B R T e e R L R R S R U s S i

H1 Diffractive Dijets
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1-2.5 -225 -2 -1.75 -1.5 0 0 02 04 06 08 1
(jets)
l0g,,X;p Z .

e old SCI and semiclassical model roughly agree, but are too low by
factor two when compared to the data

e new SCI (generalised area law) has good normalisation, but the
shape does not agree with data
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Comparison to 2-gluon exchange models
T T R R T R B T R S e S e A S e T e G S s v e 2 e AR

H1 Diffractive Dijets - X< 0.01
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e cut on xp to avoid valence region and subleading exchanges
e saturation model is too low

e Bartels et al. model:
— the gq contribution is very small
— the model roughly describes the data

XXI Physics in Collision Conference — Seoul, Korea — June 28-30, 2001 P. Van Mechelen



3-jet production in diffractive DIS

Preliminary ZEUS measurement:

e based on L;,; = 8 pb™" (680 3-jet events)
e ‘“rapidity gap” selection (e = 2.8 GeV)
e uncorrected distribution are presented for:

- Q% > 5 GeV? 200 < W < 250 GeV
— Mx > 23 GeV, zp < 0.025

— jets are found with a k7 clustering algorithm (ycu: = 0.05)
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3-jet event observed topologies (1)

The observed 3-jet events are represented in the plane of X versus
(X2 — X3)/ X7 with jets sorted in energy and X; defined as:

2.Ejet
X =2
Mx

X1 > X2 > Xs, X1+ Xo+ X3=2

2<X <l1
9 3 (2

Different regions in this plane define different topologies in the 3-jet
final state.

ZEUS Preliminary
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1 g %
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g
- F o °
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IIIIIIIII|III1|IIIIIIIII|II]IJIIII|IIII]IIII

O 01 02 03 04 05 0.6 0.7 0.8 09
(Xz_xs) X1

e all the possible configurations for a three-body final state are present
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3-jet event observed topologies (2)
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e the 2-gluon exchange model (with ggg) provides a good description
of how the plane is populated
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3-jet production in diffractive DIS

ZEUS Preliminary
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diffractive events are selected by requiring a large rapidity gap,
Mx > 23 GeV and jets are reconstructed with exclusive kr

algorithm

energy flow is measured vs. ¢, the azimuthal angle in the plane

defined by the two most energetic jets

differential jet shape p(¢) is calculated from the energy deposition
in an annulus between ¢ — 6¢/2 and ¢ + d¢p/2

jet in pomeron (forward) hemisphere is “fatter” — support for gqg
states where the gluon is aligned with the “pomeron remnant”
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Energy flow between jets (1)

e J—
Y

remnant

jet
P
jet
p
remnant

Experimental measurement:

e tagged photoproduction:
Q% < 0.01 GeV?, 165 < W < 233 GeV

e jet finding with kr algorithm — every object part of a (mini)jet:
P > 6 GeV, pi¥? > 5GeV, nth? < 2.8 An > 2.5

e other variables:
jets zgets(E + pZ) jets Zjets(E - pZ)
X — €T —

p 2E, T Zau(E )

e a “gap event” is an event with transverse energy flow between the
two hardest jets less than E*

2n
P remnant | 3

.

0 e o
GAP I: [ 2N J
: Y remnant
O 1
n—-
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Energy flow between jets (2)

Towards an completely perturbative colour singlet exchange?

e hard scale at both ends of the exchange
e LLA BFKL (high momentum exchange ¢ !):

> exp(2woy)

t?2 (TasCaC(3)y)3

do(g9q — qq)
dt

~ (CFOzs)

e purely perturbative (up to parton densities) calculation is possible if
E{™ > Agep (Oderda, Sterman)

But:

e complications due to rapidity gap survival probability and/or
underlying events

e unique place to study interplay between long and short distance
physics
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Inclusive gap fractions
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e the data show a large excess over the non colour-singlet exchange
models PYTHIA and HERWIG

e predictions are very sensitive to the treatment of underlying events

e predictions are not not very sensitive to differences in the colour
singlet models
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Gap fraction differential in An
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® no sensitivity to the underlying dynamics of the colour singlet
exchange

e LO BFKL + HERWIG + JIMMY (for m.i.) describes the data in
normalisation and in shape
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Gap fraction differential in =,
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e non colour-singlet “background” is largely at high

e direct events are more likely to produce gaps
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e the /¢ distribution is sensitive to

p

Gap fraction differential in x,,
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colour singlet exchange!

e difference beteen PYTHIA high-t ~

0.05 0.1
jets
mP

the underlying dynamics of the

exchange and BFKL is visible!

XXI Physics in Collision Conference — Seoul, Korea — June 28-30, 2001

P. Van Mechelen



Summary

B e B B e S e e T s

Diffraction is a very active and rich field of study:

e Theoretical models are rapidly evolving. Both perturbative QCD
calculations and semiclassical models are attempting to provide
a deeper understanding of the phenomenological QCD-Regge
parametrisations.

e A first generation of analyses of the hadronic final state in diffraction
resulted in the qualitative indication that the dynamics of colour
singlet exchange is dominated by gluons.

e New analyses are focussing on specific processes (high-Er jets,
open charm, etc.) and attempt to test theoretical models in a
quantitative way. This results in a rich interplay between theory

and experiment.

e (not mentioned here) Studies of exclusive vector meson production
attack the pomeron from a different angle. Transition from “soft”

to “hard” diffraction, . . . )

e Some measurements are still limited by large statistic and/or
systematic uncertainties. The upcoming HERA luminosity upgrade
and VFPS project promise an interesting and bright future for
diffraction at HERA!
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