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Prompt Photons in Photoproduction at HERA
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Abstract

The production of prompt photons is measured in the photoproduction regime of electron-
proton scattering at HERA. The analysis is based on a data sample corresponding to a total
integrated luminosity of 340 pb−1 collected by the H1 experiment. Cross sections are mea-
sured for photons with transverse momentum and pseudorapidity in the range 6 < E

γ
T <

15 GeV and −1.0 < ηγ < 2.4, respectively. Cross sections for events with an additional
jet are measured as a function of the transverse energy and pseudorapidity of the jet, and
as a function of the fractional momenta xγ and xp carried by the partons entering the hard
scattering process. The correlation between the photon and the jet is also studied. The re-
sults are compared with QCD predictions based on the collinear and on the kT factorisation
approaches.
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23 Departamento de Fisica, CINVESTAV, Méxicoj
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1 Introduction

Isolated photons emerging from the hard subprocess ep → eγX , so called prompt photons, are
a powerful probe of the underlying dynamics, complementary to jets. Production of isolated
photons with high transverse momentum can be calculated in perturbation theory. High energy
electron-proton scattering is dominated by so-called photoproduction processes, in which a
beam lepton emits a quasi-real photon which either interacts directly with the proton (direct
process) or fluctuates into partons which then participate in the hard scattering process (resolved
process). In prompt photon production, the direct process is sensitive to the quark content of
the proton through the Compton scattering of the exchanged photon with a quark (γq → γq) as
depicted in figure 1a). The resolved process (qg → γq) is sensitive to the partonic structure of
both the photon and the proton. A typical diagram is shown in figure 1b). Figure 1c) and 1d)
show typical higher order diagrams.
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Figure 1: Examples of diagrams for the production of prompt photons in photoproduction: a)
direct and b) resolved interaction with a parton from the proton, c) box diagram and d) radiation
of a photon from an outgoing quark.

The H1 collaboration has previously measured prompt photon cross sections in photopro-
duction [1] and in deep inelastic scattering (DIS) [2]. The ZEUS collaboration has also reported
measurements of prompt photon production [3–5]. Both experiments found that in photopro-
duction the inclusive prompt photon cross section is underestimated by next-to-leading order
(NLO) QCD calculations [6–8], while there is reasonable agreement for events with a prompt
photon and a jet (photon plus jet). In DIS, a leading order QCD calculation [9] significantly un-
derestimates the production of isolated photons and of photons plus jets. NLO predictions [10]
are only available for the latter and also underestimate the cross section.

This paper presents results of a measurement of prompt photons in photoproduction. The
data used for the measurement were collected with the H1 detector in the period from 2004 to
2007 and correspond to a total integrated luminosity of 340 pb−1. This amounts to an increase
in statistics by a factor of three compared to the previous measurement [1]. During this data
taking period HERA collided positrons or electrons1 of energy Ee = 27.6 GeV with protons of
energy Ep = 920 GeV corresponding to a centre-of-mass energy of

√
s = 319 GeV.

Isolated photons with transverse energy 6 < Eγ
T < 15 GeV and pseudorapidity −1.0 <

ηγ < 2.4 are measured in events with the inelasticity y in the range 0.1 < y < 0.7. This
1Unless otherwise stated, the term electron refers to both the electron and the positron.
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extends the phase space of previous measurements at HERA towards larger pseudorapidities of
the photon and to smaller event inelasticities.

The main background is due to photons produced in hadron decays. For its discrimination
from prompt photons, various shower shape variables are used. Differential cross sections are
presented as a function of the transverse energy and pseudorapidity of the photon. For the
photon plus jet sample, differential cross sections are measured as a function of transverse
energy and pseudorapidity of the photon and the jet and the momentum fractions xγ and xp

carried by the participating parton in the photon and the proton, respectively. Azimuthal angle
and transverse momentum correlations between the photon and the jet are also studied. The
cross sections are compared to QCD calculations based on collinear factorisation in NLO [6,7]
and to calculations based on the kT factorisation approach [11].

2 Theoretical Predictions

The calculation by Fontannaz, Guillet and Heinrich (FGH) [6, 7] based on the collinear factori-
sation approach includes the leading order direct and resolved processes γq → γq and their
NLO corrections. Besides the production of a prompt photon in the hard interaction, photons
may originate from the fragmentation of a high momentum quark or gluon in the final state.
The fragmentation process, described by a fragmentation function, is included in the calcula-
tion as well as the direct box diagram as shown in figure 1c). The contribution from quark to
photon fragmentation to the total cross section of isolated photons is at the level of 4%. The
contribution from the box diagram amounts to about 10% on average. The calculation uses the
parton density functions (PDFs) CTEQ6L [12] for the proton and AFG04 [13] for the photon.
The scales for renormalisation µR and factorisation µF , are chosen to be µR = µF = Eγ

T . The
NLO corrections to the LO cross section are significant for the inclusive sample. They increase
the predicted cross section by a factor 1.15 − 1.42, the corrections being largest at low Eγ

T and
large ηγ . For the photon plus jet sample the corrections are much smaller and below 10% on
average.

The leading order predictions of Lipatov and Zotov (LZ) [11] are based on the kT fac-
torisation approach. The calculation uses the unintegrated quark and gluon densities of the
photon and the proton using the Kimber-Martin-Ryskin (KMR) prescription [14] with the GRV
parameterisations for the collinear quark and gluon densities [15, 16]. The kT factorisation
approach is expected to account for the main part of the collinear higher order QCD correc-
tions [11]. Direct and resolved processes are considered in the calculation, but contributions
from fragmentation and from the box diagram are neglected.

To ensure isolation of the photon, the total transverse energy within a cone of radius one in
the pseudorapidity - azimuthal angle plane surrounding the prompt photon, excluding its own
energy, is required to be below 10% of Eγ

T in both calculations. This requirement slightly differs
from the one used in the data analysis as described in section 4.1.

The theoretical predictions are compared to the data after a correction for multiple interac-
tions, for hadronisation effects and for the different definition of the isolation of the photon. The
total correction factors fcorr are determined with the signal MC described below as the ratios
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of the cross sections on hadron level with multiple interactions and the data isolation criteria,
to the cross sections on parton level without multiple interactions and using the cone cut for
the isolation of the photon. The correction factors are calculated for each bin using the event
generators PYTHIA [17] and HERWIG [18] which have a different model for hadronisation.
The arithmetic means of the two correction factors are used, while half of the difference be-
tween the two models is taken as the error. The correction factors for the total inclusive cross
section range from 0.84 to 0.99 with an average of 0.9. They are largest for low Eγ

T and in the
forward direction, where the photon isolation is most sensitive to hadronisation and to multiple
interactions. The uncertainty of the corrections is typically 8%.

The leading order MC generator PYTHIA 6.2 [17] is used in this analysis for the prediction
of the signal. The simulation of multiple interactions [19, 20] is included. The hard partonic
interaction is calculated in LO QCD and higher order QCD radiation is modelled using initial
and final state parton showers in the leading log approximation [21]. The fragmentation into
hadrons is simulated in PYTHIA by the Lund string model [22]. The simulated signal contains
contributions from direct (figure 1a) and resolved (figure 1b) production of prompt photons in-
cluding QED radiation. In addition, processes with two hard partons in the final state (figure 1d)
are simulated. The simulations use the parton densities CTEQ6L [12] for the proton and SASG-
1D [23] for the photon. Different parton density functions for the proton (CTEQ5L [24] and
MRST04 [25]) and the photon (GRV [15] and AFG04) are used to estimate the influence of
the parton densities on the predicted cross section, which varies by at most 10%, mainly due
to changes of the proton PDF. The multiple interactions reduce the total inclusive cross section
by 6% on average. The uncertainty of the correction for multiple interactions is estimated by
changing the default parameter for the effective minimum transverse momentum for multiple
interactions in PYTHIA (PARP(81)) from 1.9 GeV to 1.6 GeV and 2.2 GeV, respectively.

To estimate the uncertainty of the hadronisation correction, the HERWIG [18] generator
is also used to model the prompt photon signal. HERWIG simulates the fragmentation into
hadrons through the decay of colourless parton clusters.

Background to the analysis of prompt photons mainly arises from energetic photons from
the decay of hadrons like π0 and η in photoproduction events, which constitute more than 90%
of the total background prediction. Direct and resolved photoproduction of di-jet events used to
study the background is simulated with PYTHIA.

All generated events are passed through a GEANT [26] based simulation of the H1 de-
tector which takes into account the different data taking periods, and are subject to the same
reconstruction and analysis chain as the data.

3 H1 Detector

A detailed description of the H1 detector can be found in [27]. In the following, only detec-
tor components relevant to this analysis are briefly discussed. The origin of the H1 coordinate
system is the nominal ep interaction point, with the direction of the proton beam defining the
positive z-axis (forward direction). Transverse momenta are measured in the x-y plane. Polar
(θ) and azimuthal (φ) angles are measured with respect to this reference system. The pseudora-
pidity is defined to be η = − ln tan(θ/2).
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In the central region (15◦<θ<165◦) the interaction point is surrounded by the central track-
ing system (CTD) , which consists of a silicon vertex detector [28] and drift chambers all op-
erated within a solenoidal magnetic field of 1.16 T. The forward tracking detector and the
backward proportional chamber measure tracks of charged particles at smaller (7◦<θ<25◦)
and larger (155◦<θ<175◦) polar angles than the central tracker, respectively. In each event
the ep interaction vertex is reconstructed from the charged tracks. In the polar angular region
(11◦ < θ < 169◦) an additional track signature is obtained from a set of five cylindrical multi-
wire proportional chambers (CIP2k) [29].

The liquid argon (LAr) sampling calorimeter [30] surrounds the tracking chambers. It has
a polar angle coverage of 4◦<θ<154◦ and full azimuthal acceptance. It consists of an inner
electromagnetic section with lead absorbers and an outer hadronic section with steel absorbers.
The calorimeter is divided into eight wheels along the beam axis. The electromagnetic and the
hadronic sections are highly segmented in the transverse and the longitudinal directions. Elec-
tromagnetic shower energies are measured with a precision of σ(E)/E = 12%/

√

E/ GeV⊕1%

and hadronic energies with σ(E)/E = 50%/
√

E/ GeV ⊕ 2%, as determined in test beam ex-
periments [31,32]. In the backward region (153◦<θ<178◦), particle energies are measured by
a lead-scintillating fibre spaghetti calorimeter (SpaCal) [33].

The luminosity is determined from the rate of the Bethe-Heitler process ep→epγ, measured
using a photon detector located close to the beam pipe at z = −103 m.

The LAr calorimeter provides the trigger [34] for the events in this analysis. The hardware
trigger is complemented by a software trigger requiring an electromagnetic cluster in the LAr
calorimeter with a transverse energy Eγ

T > 5 GeV. The combined trigger efficiency is about
85% at Eγ

T of 6 GeV rising to above 95% for Eγ
T > 7 GeV.

4 Experimental Method

4.1 Event Selection and Reconstruction

Events are selected with a photon candidate in the LAr calorimeter of transverse energy 6 <
Eγ

T < 15 GeV and pseudorapidity −1.0 < ηγ < 2.4. Photon candidates are defined as compact
clusters in the electromagnetic section of the LAr calorimeter with no matching signals in the
CIP2k. The CIP2k veto rejects candidates, if there is a signal in at least two layers of the CIP2k
close to the expected hit position. In addition, a track veto is applied for θ > 45◦. It rejects
candidates, if a track in the CTD extrapolated to the LAr calorimeter front face matches the
electromagnetic cluster with a distance of closest approach to the cluster’s barycentre of less
than 15 cm. Photon candidates are also rejected if they are close to inactive regions between
calorimeter modules.

Neutral current (NC) deep-inelastic scattering (DIS) events are suppressed by rejecting
events with an electron candidate not previously identified as photon candidate. Electron candi-
dates are defined as compact electromagnetic clusters in the SpaCal or in the LAr calorimeter.
In the LAr calorimeter the candidates are required to have an associated track with a distance of
closest approach of less than 12 cm. The electron suppression restricts the sample to NC events
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where the scattered electron escapes along the beam pipe in the negative z direction. The low
electron scattering angle of such events corresponds to virtualities of the exchanged photon in
the range Q2 < 4 GeV2. In photoproduction the inelasticity y is expressed as y = W 2/s, where
W is the γp centre of mass energy. In this analysis y is evaluated as yh = Σ(E−pz)/2Ee, where
the sum runs over all measured final state particles with energy E and longitudinal momentum
pz. The inelasticity is restricted to 0.1 < yh < 0.7. The cut at low yh removes residual beam
gas background and the higher cut on yh removes background from DIS events including events
with the scattered electron misidentified as a photon. The DIS background is below 1.5% in the
final sample.

In order to remove background events from non-ep sources, at least two tracks are required
in the central tracker, assuring a good reconstruction of the longitudinal event vertex position
which is required to be within 40 cm around the nominal interaction point. In addition, topologi-
cal filters and timing vetoes are applied to remove cosmic muons and beam induced background.

The shape of the photon cluster candidate is used to further reduce the background. The
transverse2 radius RT of the photon candidate is defined as the square root of the second central
transverse moment RT =

√
µ2, where the k’th central transverse moment of the calorimeter

cells distribution is given by µk = 〈|~r − 〈~r〉|k〉. Here, ~r is the transverse projection of a cell
position and 〈~r〉 = (

∑

Ei~ri)/
∑

Ei is the energy weighted average of the cell positions ~ri in
the plane transverse to the photon direction. The requirement RT < 6 cm reduces background
from neutral hadrons that decay into multiple photons. In most cases such decay photons are
merged into one electromagnetic cluster, which tends to have a wider transverse spread than
that of a single photon.

For events where a second electromagnetic cluster is found, the invariant mass Mγγ of the
photon candidate cluster, combined with the closest neighbouring electromagnetic cluster with
an energy above 80 MeV, is reconstructed. Photon candidates from π0 decays where the two
decay photons are reconstructed in separate clusters are rejected requiring Mγγ > 300 MeV.

Tracks and calorimeter energy deposits not previously identified as photon candidate are
used to form combined cluster-track objects. The photon candidate and the cluster-track objects
are combined into massless jets using the inclusive kT algorithm [35] with the separation pa-
rameter R0 set to 1. Jets are reconstructed in the pseudorapidity range −2.0 < η jet < 3.0 with a
transverse momentum of E jet

T > 4 GeV. Due to the harder kinematical cuts for the photon can-
didate there is always a jet containing the photon candidate called the photon-jet. All other jets
are classified as hadronic jets. To ensure isolation of the photon, the fraction z = Eγ

T /E γ−jet
T

of the transverse energy of the photon-jet carried by the photon candidate has to be larger than
0.9. Here, E γ−jet

T is the transverse energy of the photon-jet. This isolation requirement largely
suppresses background from photons produced in the hadron decay cascade. Only events with
exactly one isolated photon candidate are accepted.

For the photon plus jet sample, events are selected with a photon candidate and at least one
hadronic jet with −1.3 < ηjet < 2.3. If more than one hadronic jet is selected, the one with the
highest Ejet

T is used.
Four additional observables are defined for the photon plus jet sample which are sensitive

to the underlying partonic process:
2In the context of the cluster shape analysis the transverse plane is defined as perpendicular to the direction of

the photon candidate.
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• The estimators xLO
γ and xLO

p , which in the LO approximation correspond to the longitu-
dinal momentum fractions of the partons in the photon and the proton, respectively, are
defined as

xLO
γ =

Eγ
T (e−ηjet

+ e−ηγ

)

(2yhEe)
and xLO

p =
Eγ

T (eηjet

+ eηγ

)

(2Ep)
.

These definitions [36,37] reduce infrared sensitivity for xγ → 1 compared to the conven-
tional definition of xγ = (Eγ

T e−ηγ

+ Ejet
T e−ηjet

)/(2yEe). The above definitions make use
of the energy of the photon only, which has a better resolution than the energy of the jet.
However, xLO

γ and xLO
p may become larger than unity.

• Two observables p⊥ and ∆Φ describe the transverse correlation between the photon and
the jet, ∆Φ is the azimuthal difference between the photon and the jet, and p⊥ is the
photon momentum component perpendicular to the jet direction in the transverse plane

p⊥ ≡ | ~p γ
T × ~p jet

T |
| ~p jet

T |
= Eγ

T · sin ∆Φ.

At leading order the prompt photon and the jet are back-to-back and p⊥ equals zero for
direct processes. The observable ∆Φ is strongly correlated with p⊥, but is less sensitive
to the energies of the photon and the jet.

The yh, Eγ
T , z and ηjet distributions of events with an isolated photon candidate are shown

in figure 2 together with the MC predictions from PYTHIA for the signal and the background.
The signal (background) prediction is scaled by a factor 1.45 (1.7) on average. The scaling
factors vary as a function of η as suggested by the cross section measurement (section 5). In
all distributions the data are described within errors by the scaled MC predictions. At this stage
of the analysis there is still a significant contribution of background from the decay products of
neutral mesons.

4.2 Photon Signal Extraction

The photon signal is extracted from the sample with photon candidates by means of a shower
shape analysis based on the method described in [2, 38]. It uses the following six shower shape
variables calculated from the measurements of the individual cells composing the cluster:

• The transverse radius of the cluster, RT .

• The transverse symmetry, which is the ratio of the spread of the transverse cell distri-
butions along the two principal axes. Single photon clusters are expected to be more
symmetric than multi-photon clusters.

• The transverse kurtosis, defined as KT = µ4/(µ2)
2 − 3, with µ2 and µ4 the second and

the fourth moment of the transverse energy distribution.
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• The first layer fraction, defined as the fraction of the cluster’s energy detected in the first
calorimeter layer.

• The hot core fraction, being the fraction of the energy of the electromagnetic cluster
contained in the hot core of the cluster. It is defined as the energy fraction in four to
twelve contiguous cells in the first two calorimeter layers, depending on the polar angle.
The cells include the most energetic cell and are chosen to maximise the energy.

• The hottest cell fraction, which is the fraction of the energy of the electromagnetic cluster
contained in the cell with the largest energy deposit.

The distributions of the shower shape variables are shown in figure 3 for the prompt photon
candidates with the kinematic cuts as defined above. The shaded band shows the systematic
uncertainty assigned to the description of the shower shapes as described in section 4.4. The
data are compared with the sum of the background and the signal MC distributions, which
describe the data within the systematic error.

In order to discriminate between signal and background, probability density functions pi
γ

for the signal and pi
bg for the background are defined for each of the six shower shape variables

i. Simulated events for the signal and the background are used to determine pi
γ and pi

bg. The
photon and background probability densities are taken as the product of the respective shower
shape densities with the method described in [39]. For each event a discriminator D is formed.
It is defined as the photon probability density divided by the sum of the probability densities
for photons and background. Figure 4 shows an example of the discriminator distribution for
the range 0.94 < ηγ < 1.42 and four different bins in Eγ

T . The discriminator has in general
larger values for prompt photons than for the decay photons. The separation power is decreasing
with increasing Eγ

T . The sum of the MC predictions describes the data within the systematic
uncertainty of the shower shapes.

Additional event samples are used for the determination of systematic errors related to the
cluster shapes. The first sample, containing Bethe Heitler events, ep → eγp, consists of events
with an electron reconstructed in the LAr calorimeter, a photon in the SpaCal and nothing
else in the detector. The second, complementary sample, in addition containing deeply-virtual
Compton scattering [45] events, is selected by requiring an electron in the SpaCal, a photon in
the LAr calorimeter and no other particle in the detector. These independent event selections,
denoted BH and DVCS respectively, provide a clean sample of electromagnetic clusters at low
transverse energies in the LAr calorimeter and are used to study the description of the shower
shapes of the photons. A third sample is used to monitor the description of the shower shapes
of clusters initiated by the decay of neutral hadrons. This sample, denoted BG, is background
enhanced by selecting events with the inverted isolation criteria z = Eγ

T /E γ−jet
T < 0.9 and no

cut on the transverse radius of the photon candidate.

4.3 Cross Section Determination

A regularised unfolding procedure [40–44] is used to relate distributions ~yrec of reconstructed
variables (input bins) to distributions ~xtrue of variables on hadron level (output bins), to deter-
mine the fractions of signal and background and to correct the data for the detector acceptance.
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The unfolding matrix A relates the two vectors, A~xtrue = ~yrec. Further details on the method
can be found in in [44] and are summarised in appendix A.

The input is binned in three dimensions in the reconstructed quantities Eγ
T , ηγ and D; the

latter allows the discrimination of signal and background. The output of the unfolding procedure
contains the number of signal events Nsig in Eγ

T -ηγ bins on hadron level and the amount of
background events in any of the input bins. Additional underflow and overflow bins are defined
for each output variable. Therefore the unfolding matrix A also includes migrations into or out
of the phase space of the measurement. It is computed using signal and background PYTHIA
simulation. For measurements including jet-related variables, both the input and the output is
additionally binned in some variable u, where u is E jet

T , ηjet, xγ , xp, ∆Φ or p⊥.

The stability of the unfolding procedure is checked by varying the number of input bins
and changing the bin boundaries. The results from the unfolding procedure are compared to a
bin-by-bin correction method. Agreement is seen within errors for most of the analysis bins.

Cross sections are presented for Q2 < 1 GeV2. The extracted number of signal events in
each bin Nsig is corrected for the contribution of DIS events with a virtuality 1 < Q2 < 4 GeV2,
where the scattered electron escapes detection. The correction factor fDIS is determined with
the PYTHIA signal MC and is above 0.98. The bin-averaged double differential cross section
on hadron level is obtained as

d2σ

dEγ
T dηγ

=
Nsig · fDIS

(L · ∆Eγ
T ∆ηγ)

,

where L is the luminosity, ∆Eγ
T (∆ηγ) is the bin width in Eγ

T (ηγ) and Nsig corresponds to the
number of signal events in the bin Eγ

T -ηγ . Single differential cross sections as a function of
Eγ

T (ηγ) are then obtained by summing bins of the double differential cross sections in ηγ (Eγ
T ),

taking into account the respective bin widths. The total inclusive cross section is obtained by
summing the measured double differential cross section over all analysis bins. The differential
cross sections in bins of some jet-related variable u is obtained by unfolding triple-differential
cross sections in Eγ

T , ηγ and u, which then are summed over the bins in Eγ
T and ηγ . For the

calculation of cross section uncertainties, correlations between bins are taken into account.

4.4 Systematic Uncertainties

The following experimental uncertainties are considered:

• The measured shower shape variables in the DVCS and BH event samples defined in
section 4.2 are compared to MC simulations. The uncertainty on the shower shape sim-
ulation for the photon is estimated by varying the discriminating variables within the
limits deduced from the differences between data and simulation. The uncertainty of the
description of the background composition and the shower shapes of neutral hadrons is
obtained accordingly by comparing the shower shapes of the BG event sample with the
background MC from PYTHIA. The resulting variation of the total inclusive cross sec-
tion is 11%. The uncertainty varies between 10% and 25% for the single differential cross
sections increasing towards large ηγ .
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• An uncertainty of 1% is attributed to the energy of the photon [45] and an uncertainty
of 3 mrad to the measurement of the scattering angle [2] for events with ηγ < 1.4. For
ηγ > 1.4 the uncertainty is 4% on the energy scale and 4 mrad on the scattering angle.
The resulting error on the total inclusive cross section is ±1.5%.

• A 2% uncertainty is attributed to the measurement of the hadronic energy [44]. The
corresponding uncertainty of the total cross section ±1%.

• An uncertainty of ±3% is attributed to the determination of the trigger efficiency.

• The uncertainty on the CIP2k and track veto efficiency results in an error of ±2.5% on
the total inclusive cross section.

• An uncertainty in the description of the dead material in the simulation is accounted for
by varying the probability of photon conversion before the calorimeter by ±10%. For
polar angles θ < 20◦ it is varied by ±30% because of more dead material in the forward
region. This results in a 1% uncertainty for the cross section measurements in the central
region and 3% in the most forward ηγ bin.

• The ratio of resolved to direct photoproduction events in the MC simulation is changed
within limits deduced from the measured xγ distribution [44], leading to ±1% systematic
error due to a different acceptance.

• The luminosity measurement has an error of 3.4%.

The effects of each systematic error on the cross sections are determined by evaluating an
alternative unfolding matrix A′ using the MC prediction made with the corresponding system-
atic variation applied. The differences to the default unfolding matrix A′-A are used to evaluate
the contributions to the error matrices of the results using standard error propagation. The final
error matrix is split into fully correlated and fully uncorrelated parts which are listed in tables 2
to 7. The systematic uncertainty obtained on the total inclusive cross section is ±13%. The
largest contribution to this uncertainty arises from the systematic uncertainties attributed to the
description of the shower shapes.

5 Results

The prompt photon cross sections presented below are given for the phase space defined in
table 1.

Bin averaged differential cross sections are presented in figures 5 to 9 and in tables 2 to 7.
For all measurements the total uncertainty is dominated by the systematic errors. The figures
also show the ratio of the NLO QCD prediction (FGH) [6, 7] to the measured cross section
R = σFGH/σmeas with the uncertainty of the NLO calculation. The factors fcorr (see section 2)
for the correction of the theoretical calculations for hadronisation, multiple interaction and the
definition of the isolation are given in the cross section tables with their errors.
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H1 Prompt Photon Phase Space

Inclusive
cross section

6 < Eγ
T < 15 GeV

−1.0 < ηγ < 2.4

z = Eγ
T /Eγ−jet

T > 0.9

Q2 < 1 GeV2

0.1 < y < 0.7

Jet definition Ejet
T > 4.5 GeV

−1.3 < ηjet < 2.3

Table 1: Phase space for the measurement of prompt photon cross sections. Kinematics are
defined in the H1 laboratory frame.

The measured inclusive prompt photon cross section in the phase space defined in table 1 is

σ(ep → eγX) = 66.9 ± 1.8 (stat) ± 8.7 (syst) pb.

Both calculations predict lower cross sections of 52.1 +5.3
− 3.4 pb (FGH) and 56.7+2.3

− 3.1 pb (LZ),
while the MC expectation from PYTHIA is 46.4 pb. Theoretical uncertainties due to missing
higher orders are estimated by simultaneously varying µR and µF by a factor of 0.5 to 2.0. In
addition, the errors on the theoretical predictions include uncertainties due to the error of fcorr

and due to the PDFs. All these error sources are added in quadrature.

Differential inclusive prompt photon cross sections dσ/dEγ
T and dσ/dηγ are presented in

table 2 and in figure 5. The results are compared to a QCD calculation based on the collinear
factorisation in NLO (FGH) [6, 7], to a calculation based on the kT factorisation approach
(LZ) [11]. Both calculations are below the data, most significantly at low Eγ

T . The LZ cal-
culation gives a reasonable description of the shape of ηγ , whereas the FGH calculation is
significantly below the data for central and backward photons (ηγ < 0.9).

Double differential cross sections d2σ/dEγ
T dηγ are shown in figure 6 and table 3 for all five

bins in ηγ . The ηγ bins correspond to the wheel structure of the LAr calorimeter. LZ provides
a reasonable description of the data with the exception of the lowest Eγ

T bin in the central ηγ

(0.2 < ηγ < 0.9) region. The FGH calculation underestimates the cross section in the central
(0.2 < ηγ < 0.9) and backward (ηγ < −0.6) region. Here, it is significantly below the data.
The prediction from PYTHIA is also shown. It underestimates the measured cross section by
roughly 45%, most significantly at low Eγ

T .

The prompt photon plus jet cross section is

σ(ep → eγ jet X) = 50.1 ± 1.7 (stat) ± 6.5 (syst) pb.

It is similar to the inclusive cross section, since the prompt photon recoils most of the time
against a prominent hadronic jet. The theoretical calculations predict cross sections of 40.6 +5.3

− 1.9 pb
(FGH) and 45.7+4.7

− 2.1 pb (LZ). Both are compatible with the measurement within the errors. The
PYTHIA expectation of 33.9 pb is again too low.
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Cross sections for the production of a prompt photon plus jet are presented in figure 7
and tables 4, 5 as a function of the variables Eγ

T , ηγ , Ejet
T and ηjet. Both calculations give a

reasonable description of the Eγ
T and Ejet

T cross sections but show deficits in the description of
the ηjet shape. Here, the LZ prediction is too high for jets with ηjet < 0.5, and both calculations
underestimate the rate of events with forward jets. As in the inclusive case, the FGH prediction
is too low for ηγ < 0.2.

Photon plus jet cross section as a function of the estimators xLO
γ and xLO

p are shown in
figure 8 and table 4. Both distributions are described by the calculations within errors.

Cross sections for the two observables describing the transverse correlation between the
photon and the jet, p⊥ and ∆Φ, are shown in figure 9 and tables 6, 7. Both variables are
expected to be sensitive to higher order gluon emission. The phase-space is divided into two
parts: one with xLO

γ > 0.8 where the direct interaction of a photon with the proton dominates
and one with xLO

γ < 0.8, including significant contributions from events with a resolved photon.
For xLO

γ > 0.8 both predictions underestimate the tails of the distributions suggesting that there
is more decorrelation in the data than predicted. For xLO

γ < 0.8 the p⊥ distribution is harder
than for xLO

γ > 0.8, which reflects the increased contributions from events with a resolved
photon and from photons radiated from quarks in di-jet events. The FGH calculation poorly
describes the p⊥ distribution but gives a reasonable description of the measurement in ∆Φ for
xLO

γ < 0.8, except for the highest bin in ∆Φ. The regions ∆Φ → 180◦ and p⊥ → 0 are sensitive
to multiple soft gluon radiation which limits the validity of fixed order calculations [46]. The
LZ calculation includes multiple gluon radiation in the initial state before the hard subprocess
and describes ∆Φ > 170◦ and p⊥ < 2 GeV, but predicts a significantly lower contribution of
events in the tails of both distributions as compared to the data.

The present measurement is compared to the published results of H1 [1] and ZEUS [5] in
the restricted phase space 0.2 < yh < 0.7. For the comparison with the inclusive measurement
of H1 the ηγ range is restricted to −1.0 < ηγ < 0.9. For the comparison with the ZEUS
results for isolated photons with a jet, the kinematic range is changed to 7 < Eγ

T < 15 GeV,
6 < Ejet

T < 17 GeV and −1.6 < ηjet < 2.4. The results of this analysis are found in agreement
with the previous measurements [44].

6 Conclusions

The photoproduction of prompt photons is measured in ep collisions at a centre-of-mass energy
of 319 GeV with the H1 detector at HERA using a data sample corresponding to an integrated
luminosity of 340 pb−1. Photons with a transverse energy in the range 6 < Eγ

T < 15 GeV and
with pseudorapidity −1.0 < ηγ < 2.4 are measured in the kinematic region Q2 < 1 GeV2 and
0.1 < y < 0.7. Compared to previous measurements, the range of ηγ is significantly extended,
and the luminosity of the measurement is increased by a factor three.

Single differential and double differential cross sections are measured. The data are com-
pared to a QCD calculation based on the collinear factorisation in NLO (FGH) [6,7], to a QCD
calculation based on the kT factorisation approach (LZ) [11], and to the MC prediction from
PYTHIA. The predicted total cross section is lower than the measurement by around 20%. Both
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theoretical calculations underestimate the data at low Eγ
T . While the LZ prediction describes

the shape of dσ/dηγ reasonably well, the FGH prediction is significantly below the data for
backward photons (ηγ < −0.6). PYTHIA underestimates the data by roughly 45%, most sig-
nificantly at low Eγ

T .

Differential cross sections for photon plus jet are measured as a function of the observables
Eγ

T , ηγ , ηjet, Ejet
T , xLO

γ , and xLO
p . The measured cross sections as a function of the transverse

energy of the photon and the jet as well as xLO
γ and xLO

p are described within errors by the
calculations. However, neither of the predictions is able to describe the measured shape as a
function of ηjet.

Correlations in the transverse plane between the jet and the photon are investigated by mea-
surements of the difference in azimuthal angle ∆Φ and of the photon’s momentum perpendic-
ular to the jet direction, p⊥. A significant fraction of events shows a topology which is not
back-to-back. Neither calculation is able to describe the measured correlations in the transverse
plane.

Prompt photon cross section in photoproduction are now measured at a precision of about
10%, with hadronisation corrections known at the level of 5%. The challenge remains to further
improve the theoretical calculations and arrive at a deeper understanding of the underlying QCD
dynamics in this interesting channel.
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A Unfolding procedure

The photon signal is extracted using an unfolding procedure to relate distributions ~yrec of re-
constructed variables to distributions ~xtrue of true variables on hadron level, to determine the
fractions of signal and background and to correct the data for the detector efficiency. The
unfolding matrix A which reflects the acceptance of the H1 detector relates the two vectors,
A~xtrue = ~yrec. Each matrix element Aij is the probability for an event originating from bin j of
~xtrue to be measured in bin i of ~yrec. The matrix A is computed using the PYTHIA simulation
for the signal and the background, interfaced to the GEANT simulation of the H1 detector.

A schematic view of the simplified unfolding matrix A is shown in figure 10. Each row of
the matrix corresponds to one element of the vector ~xtrue. The elements of ~xtrue are: signal,
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Figure 10: Schematic sketch of the unfolding matrix for 2 × 2 signal bins and 3 × 2 × 5
reconstructed bins. Two generator cuts (z and y) and the background are taken into account.
The size of the boxes reflects the number of entries in a bin.

migration and background bins. Each column of the matrix corresponds to one element of
the vector ~yrec. The elements of ~yrec are: reconstructed bins and side bins. When solving the
equation for ~xtrue the number of efficiency corrected signal, migration and background events
is determined in one step.

The input ~yrec is binned in three dimensions in the reconstructed quantities E1,2,3
T , η1,2 and

D. The binning in D is required for the discrimination of signal and background. Figure 10
shows 3×2×5 “Reconstructed Bins”. The signal is binned in the hadron-level quantities EA,B

T

and ηA,B. Figure 10 shows 2 × 2 “Signal” bins in these variables.

In addition, ~xtrue includes “background” bins in E1,2,3
T and η1,2, in parallel to the recon-

structed quantities. These bins give the amount of background in each reconstructed bin. The
background is determined in the unfolding together with the signal contribution.
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The final unfolding matrix A also takes into account migrations into or out of the phase
space of the measurement. For each cut on hadron level, used to define the measurement phase
space (table 1), a migration bin is added, containing events generated outside of the phase space
but reconstructed in any of the input bins. In figure 10, two such “Migr.” bins are shown. In
order to minimise possible biases introduced by the signal MC simulation outside the phase
space, each migration bin is subdivided into Eγ

T and ηγ bins (not shown in the figure).

The amount of migration from outside of the generated phase space is controlled by includ-
ing “Side” bins on detector level for each of the “Migration” bins on hadron level. A side bin is
defined as a narrow slice outside the nominal cut value of the reconstructed variable. The side
bins are also subdivided into Eγ

T and ηγ bins.

Using matrix A the unfolded distribution ~xtrue is obtained from the observed distribution
~yrec by minimising a χ2 function given by

χ2 = χ2
A + τ 2χ2

L,

where
χ2

A = 1/2 · (~yrec − A~xtrue)
T V−1(~yrec − A~xtrue)

measures the deviation of A~xtrue from the data bins ~yrec. Here, V = Cov(yi, yj) is the covari-
ance matrix of the data, initially approximated by the observed statistical errors. In order to
avoid a known bias of this procedure [47], the unfolding is iterated using an updated covariance
matrix [44], constructed from the expected statistical uncertainties. For a given regularisation
parameter τ the regularisation term is defined as χ2

L = (~xtrue)
2. The minimum χ2 can be calcu-

lated analytically and is found as

~xtrue = ((AT V−1A) + 1τ)−1AT V−1~yrec.

The size of the regularisation parameter τ is chosen using the L-curve method [48–50].
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H1 Inclusive Prompt Photon Cross Sections
Eγ

T dσ/dEγ
T uncorr. corr. fcorr

[GeV] [pb/GeV]
[6.0,7.0] 27.24 ±1.86 ±3.04 0.88+0.02

− 0.04

[7.0,8.5] 12.94 ±0.71 ±1.94 0.89+0.02
− 0.04

[8.5,10.0] 6.74 ±0.65 ±0.95 0.93+0.02
− 0.04

[10.0,15.0] 2.02 ±0.17 ±0.24 0.96+0.02
− 0.03

ηγ dσ/dηγ uncorr. corr. fcorr

[pb]
[−1.00,−0.57] 18.4 ±1.3 ±2.5 0.99+0.02

− 0.04

[−0.57,0.20] 23.9 ±1.5 ±1.5 0.94+0.02
− 0.03

[0.20,0.94] 27.7 ±1.2 ±2.3 0.90+0.01
− 0.04

[0.94,1.42] 19.3 ±1.3 ±3.0 0.87+0.03
− 0.04

[1.42,2.40] 11.0 ±1.0 ±3.5 0.84+0.02
− 0.05

Table 2: Bin averaged differential cross sections for inclusive prompt photon production as a
function of ηγ and Eγ

T in the kinematic range specified in table 1. The bin ranges, the differ-
ential cross section values, the uncorrelated and correlated uncertainties, and fcorr are listed,
where fcorr denotes the correction factor applied to the theoretical cross sections. It corrects for
multiple interactions, hadronisation and the different algorithm used for the isolation cut.
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H1 Inclusive Prompt Photon Cross Sections
ηγ Eγ

T d2σ/dEγ
T dηγ uncorr. corr. fcorr

[GeV] [pb/GeV]
[−1.00,−0.57] [6.00,7.00] 9.24 ±0.93 ±1.06 0.99 +0.02

− 0.04

[7.00,8.50] 3.75 ±0.57 ±0.44 0.99+0.02
− 0.05

[8.50,10.00] 1.43 ±0.41 ±0.24 0.99+0.02
− 0.02

[10.00,15.00] 0.27 ±0.10 ±0.07 1.01+0.01
− 0.03

[−0.57,0.20] [6.00,7.00] 9.19 ±1.04 ±0.59 0.93 +0.02
− 0.04

[7.00,8.50] 5.02 ±0.59 ±0.48 0.94+0.02
− 0.02

[8.50,10.00] 2.29 ±0.46 ±0.19 0.96+0.02
− 0.03

[10.00,15.00] 0.76 ±0.12 ±0.06 1.00+0.02
− 0.03

[0.20,0.94] [6.00,7.00] 10.90 ±0.86 ±0.78 0.87 +0.01
− 0.05

[7.00,8.50] 5.15 ±0.43 ±0.52 0.89+0.02
− 0.03

[8.50,10.00] 3.28 ±0.34 ±0.24 0.94+0.01
− 0.04

[10.00,15.00] 0.83 ±0.10 ±0.07 0.96+0.02
− 0.04

[0.94,1.42] [6.00,7.00] 7.68 ±1.02 ±1.18 0.83 +0.04
− 0.04

[7.00,8.50] 3.31 ±0.51 ±0.51 0.85+0.02
− 0.05

[8.50,10.00] 2.27 ±0.44 ±0.38 0.90+0.03
− 0.04

[10.00,15.00] 0.66 ±0.12 ±0.09 0.95+0.03
− 0.03

[1.42,2.43] [6.00,7.00] 4.54 ±0.90 ±1.29 0.79 +0.02
− 0.05

[7.00,8.50] 2.12 ±0.41 ±0.72 0.82+0.02
− 0.05

[8.50,10.00] 0.86 ±0.31 ±0.35 0.88+0.02
− 0.06

[10.00,15.00] 0.40 ±0.08 ±0.09 0.93+0.03
− 0.03

Table 3: Bin averaged double differential cross section for inclusive prompt photon production
in bins of transverse energy and pseudorapidity of the photon. The errors are correlated between
different Eγ

T and different ηγ bins. More details are given in the caption of table 2.
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H1 Prompt Photon plus Jet Cross Sections
Eγ

T dσ/dEγ
T uncorr. corr. fcorr

[GeV] [pb/GeV]
[6.0,7.0] 18.53 ±1.61 ±2.21 0.82+0.05

− 0.06

[7.0,8.5] 9.93 ±1.06 ±1.39 0.87+0.04
− 0.05

[8.5,10.0] 5.50 ±0.45 ±0.73 0.92+0.03
− 0.04

[10.0,15.0] 1.68 ±0.23 ±0.16 0.95+0.03
− 0.03

ηγ dσ/dηγ uncorr. corr. fcorr

[pb]
[−1.00,−0.57] 14.79 ±1.25 ±1.70 0.94 +0.06

− 0.07

[−0.57,0.20] 18.57 ±1.47 ±1.75 0.90+0.04
− 0.05

[0.20,0.94] 21.12 ±1.21 ±1.77 0.87+0.03
− 0.04

[0.94,1.42] 13.88 ±3.15 ±2.12 0.86+0.04
− 0.04

[1.42,2.40] 7.31 ±2.73 ±1.54 0.84+0.03
− 0.05

Ejet
T dσ/dEjet

T uncorr. corr. fcorr

[GeV] [pb/GeV]
[4.5,6.2] 6.60 ±0.74 ±1.42 0.85+0.04

− 0.05

[6.2,8.0] 6.93 ±1.08 ±0.84 0.83+0.05
− 0.06

[8.0,10.0] 6.15 ±0.78 ±0.65 0.90+0.03
− 0.05

[10.0,15.0] 1.88 ±0.33 ±0.17 0.96+0.03
− 0.04

ηjet dσ/dηjet uncorr. corr. fcorr

[pb]
[−1.3,−0.4] 7.1 ±0.7 ±1.0 0.80+0.03

− 0.04

[−0.4,0.5] 14.9 ±0.8 ±2.1 0.86+0.03
− 0.04

[0.5,1.4] 18.7 ±1.1 ±2.7 0.91+0.04
− 0.06

[1.4,2.3] 15.3 ±1.2 ±2.2 0.94+0.04
− 0.06

Table 4: Bin averaged differential cross section for prompt photon plus jet production as a
function of Eγ

T , ηγ , Ejet
T and ηjet. More details are given in the caption of table 2.
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H1 Prompt Photon plus Jet Cross Sections
xLO

γ dσ/dxLO
γ uncorr. corr. fcorr

[pb]
[0.0,0.5] 23.0 ±3.3 ±3.8 0.78+0.04

− 0.08

[0.5,0.7] 44.1 ±9.6 ±8.1 0.89+0.06
− 0.08

[0.7,0.9] 70.3 ±12.3 ±10.9 1.24+0.04
− 0.06

[0.9,1.1] 75.9 ±9.8 ±8.4 0.82+0.04
− 0.04

xLO
p dσ/dxLO

p uncorr. corr. fcorr

[pb]
[0.001,0.010] 1257 ±91 ±102 0.84+0.04

− 0.05

[0.010,0.025] 1325 ±65 ±150 0.88+0.04
− 0.05

[0.025,0.040] 698 ±90 ±134 0.90+0.03
− 0.05

[0.040,0.060] 341 ±47 ±66 0.91+0.03
− 0.06

Table 5: Bin averaged differential cross section for prompt photon plus jet production as a
function of xLO

γ and xLO
p . More details are given in the caption of table 2.
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H1 Prompt Photon plus Jet Cross Sections
xLO

γ p⊥ dσ/dp⊥ uncorr. corr. fcorr

[GeV] [pb/GeV]
[0.8,1.1] [0,2] 7.75 ±0.50 ±0.32 0.89+0.04

− 0.04

[2,4] 3.96 ±0.43 ±0.53 0.87+0.01
− 0.01

[4,6] 2.16 ±0.55 ±0.56 0.84+0.07
− 0.07

[6,8] 0.60 ±0.53 ±0.36 0.81+0.08
− 0.08

[0.0,0.8] [0,2] 7.14 ±0.48 ±1.04 0.84+0.08
− 0.11

[2,4] 4.52 ±0.49 ±0.80 0.91+0.03
− 0.08

[4,6] 2.91 ±0.40 ±0.56 0.96+0.03
− 0.04

[6,8] 2.35 ±0.44 ±0.37 1.07+0.09
− 0.10

Table 6: Bin averaged differential cross sections for prompt photon plus jet production as a
function of p⊥, the photon’s momentum perpendicular to the jet direction in the transverse
plane, separated into two regions with xLO

γ > 0.8 and xLO
γ < 0.8. More details are given in the

caption of table 2.
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H1 Prompt Photon plus Jet Cross Sections
xLO

γ ∆Φ dσ/d∆Φ uncorr. corr. fcorr

[pb]
[0.8,1.1] [130,150] 0.19 ±0.04 ±0.01 0.82 +0.03

− 0.04

[150,165] 0.46 ±0.06 ±0.06 0.84+0.01
− 0.01

[165,172] 0.89 ±0.14 ±0.07 0.93+0.00
− 0.01

[172,180] 1.38 ±0.04 ±0.17 0.89+0.05
− 0.05

[0.0,0.8] [130,150] 0.27 ±0.03 ±0.04 0.94 +0.03
− 0.05

[150,165] 0.52 ±0.06 ±0.08 0.91+0.04
− 0.08

[165,172] 0.91 ±0.14 ±0.18 0.83+0.07
− 0.09

[172,180] 1.21 ±0.11 ±0.15 0.84+0.08
− 0.12

Table 7: Bin averaged differential cross sections for prompt photon plus jet production as a
function of ∆Φ, the difference in azimuthal angle between the photon and the jet, separated into
two regions with xLO

γ > 0.8 and xLO
γ < 0.8. More details are given in the caption of table 2.
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Figure 2: Distributions of a) the inelasticity yh, b) the transverse energy Eγ
T of the photon, c)

the isolation parameter z and d) ηjet for events with prompt photon candidates. Data are shown
as points with error bars indicating the statistical error. The signal prediction from PYTHIA for
prompt photons is shown as dark full line, and the contribution of direct interactions as a dotted
line. The background as simulated with PYTHIA is shown as a dashed line. The signal and
background contributions are scaled on average by a factor 1.5 and 1.7, respectively. The sum
of the scaled signal and background is shown as the light grey histogram. The vertical dashed
lines indicate the kinematic region of the cross section measurement.
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Figure 3: Distributions of the shower shape variables that are used to define the discriminant
for isolated photon identification: a) transverse radius, b) transverse symmetry, c) transverse
kurtosis, d) the fraction of energy in the first layer, e) the fraction of energy in the hot core
of the cluster and f) the fraction of energy in the hottest cell of the cluster for all the photon
candidates. Data are shown as points with error bars for the statistical error. The expectation
from PYTHIA for the signal (background) is shown as a full (dashed) line. The signal and
background contributions are scaled on average by a factor 1.5 and 1.7, respectively. The shaded
band shows the sum of the MC predictions. The width of the band corresponds to the systematic
uncertainty assigned to the description of the shower shapes.

27



D
0 0.2 0.4 0.6 0.8 1

Ev
en

ts

0

100

200

300

400

D
0 0.2 0.4 0.6 0.8 1

Ev
en

ts

0

100

200

300

400

D
0 0.2 0.4 0.6 0.8 1

Ev
en

ts
0

100

200

D
0 0.2 0.4 0.6 0.8 1

Ev
en

ts
0

100

200

D
0 0.2 0.4 0.6 0.8 1

Ev
en

ts

0

50

100

D
0 0.2 0.4 0.6 0.8 1

Ev
en

ts

0

50

100

D
0 0.2 0.4 0.6 0.8 1

Ev
en

ts

0

50

100

150

D
0 0.2 0.4 0.6 0.8 1

Ev
en

ts

0

50

100

150

H1 Data
Sum
Signal
Background

 < 7 GeVγ
T               6 < E H1                                       < 8.5 GeVγ

T               7 < E H1                                        

 < 10 GeVγ
T               8.5 < E H1                                         < 15 GeVγ

T               10 < E H1                                       

Figure 4: The distribution of the discriminant D for 0.94 < ηγ < 1.42 in four different Eγ
T

bins. D is used in the identification of prompt photon candidates for events that have passed
the event selection. Data are shown as points with error bars for the statistical error. The
expectation from PYTHIA for the signal (background) is shown as a full (dashed) line. The
signal and background contributions are scaled by a factor 1.5 and 1.7 on average, respectively.
The shaded band shows the sum of the MC predictions with the systematic uncertainty from the
description of the shower shapes.
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Figure 5: Inclusive differential prompt photon cross sections a) dσ/dEγ
T and b) dσ/dηγ in the

kinematic range specified in table 1. The inner error bars on the data points indicate the uncor-
related error including the statistical error, the full error bars contain in addition the correlated
errors added in quadrature. The data are compared to a QCD calculation based on the collinear
factorisation in NLO (FGH) [6, 7] and to a QCD calculation based on the kT factorisation ap-
proach (LZ) [11]. For each plot the lower figure shows the ratio of NLO QCD to the measured
cross section (R = σFGH/σ) as a the hatched band. The width of this band shows the un-
certainty from the NLO calculation only. The data points are shown at R = 1 and their bars
indicate the experimental uncorrelated uncertainty. The correlated experimental uncertainty of
the data is indicated by the shaded area.
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Figure 6: Inclusive double differential prompt photon cross sections d2σ/dEγ
T dηγ for five bins

in ηγ . The errors between different ηγ bins are correlated. The kinematic range is specified in
table 1. The cross sections are compared to theoretical calculations (see caption figure 5). In
addition the prediction from PYTHIA [17] is shown as dashed line.
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Figure 7: Differential prompt photon plus jet cross sections a) dσ/dEγ
T , b) dσ/dηγ , c) dσ/dEjet

T

and d) dσ/dηjet in the kinematic range specified in table 1. The cross sections are compared to
theoretical calculations (see caption figure 5).
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Figure 8: Differential prompt photon plus jet cross sections a) dσ/dxLO
γ and b) dσ/dxLO

p , in the
kinematic range specified in table 1. The cross sections are compared to theoretical calculations
(see caption figure 5).
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Figure 9: Differential prompt photon plus jet cross sections dσ/d∆Φ and dσ/dp⊥ the photon
momentum transverse to the jet direction, the difference in azimuthal angle between the photon
and the jet. The kinematic range is specified in table 1. Figures a) and b) show the cross
section for xLO

γ > 0.8, c) and d) for xLO
γ < 0.8. The cross sections are compared to theoretical

calculations (see caption figure 5).

a) b)

c) d)
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