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Abstract

A search for scalar and vector leptoquarks coupling to first generation fermions is per-
formed in the H1 experiment at the ��� collider HERA. The analysis uses �	�
� data collected
in 1998 and 1999 at a centre-of-mass energy of ��� GeV, corresponding to an integrated
luminosity of ����� pb ��� . No evidence for the direct production of such particles is found
in a data sample with a large transverse momentum final state electron or with large miss-
ing transverse momentum, and constraints on leptoquark models are established. For a
Yukawa coupling of electromagnetic strength leptoquarks are excluded for masses up to
����� GeV. This analysis complements the leptoquark searches performed previously
using data collected whilst HERA was operating with positrons instead of electrons.

To be submitted to Phys. Lett. B
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���
, P. Höting
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�
, P. Laycock �

�
, E. Lebailly

�	�
, A. Lebedev

�	�
, B. Leißner � , R. Lemrani �



,

V. Lendermann
�
, S. Levonian �



, M. Lindstroem

�	

, B. List �

�
, E. Lobodzinska �


�� �
, B. Lobodzinski

���
�


,

A. Loginov
�
� , N. Loktionova

�	�
, V. Lubimov

�
� , S. Lüders �
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�	�
, V. Tchernyshov

�
� , S. Tchetchelnitski

�
� , G. Thompson �

�
, P.D. Thompson � ,

N. Tobien �


, D. Traynor �

�
, P. Truöl �

�
, G. Tsipolitis �


��
�
�
, I. Tsurin �

�
, J. Turnau

�
, J.E. Turney �

�
,

E. Tzamariudaki
���

, S. Udluft
���

, M. Urban �
�
, A. Usik

�	�
, S. Valkár �



, A. Valkárová �
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, A.C. Wyatt

�
� , J. Žáček �
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The ��� collider HERA offers the unique possibility to search for resonant production of
new particles which couple to lepton-parton pairs. Examples are leptoquarks (LQs), colour
triplet bosons which appear naturally in various unifying theories beyond the Standard Model
(SM). At HERA, leptoquarks could be singly produced by the fusion of the initial state lepton
of energy �����	� GeV with a quark from the incoming proton of 
��� GeV, with masses up to the
centre-of-mass energy � � ��� of ���� GeV.

This analysis presents a search for LQs coupling to first generation fermions using � � � data
collected in 1998 and 1999. Collisions between electrons and protons provide a high sensitivity
to LQs with fermion number ����� (i.e. LQs coupling to � � and a valence quark) while the
production of such LQs is largely suppressed in ����� collisions where the interaction involves
an antiquark1. Thus this analysis complements the searches for LQs in ����� data [1, 2]. This
search considers the decays ����� �! and ���"� #� which lead to final states similar to those
of deep-inelastic scattering (DIS) neutral current (NC) and charged current (CC) interactions at
very high squared momentum transfer $ �

. The integrated luminosity amounts to %&� pb ��� , an
increase in statistics by a factor of about 35 compared to previous LQ searches [3, 4] in � � �
collisions.

The phenomenology of LQs at HERA was discussed in detail in [1]. At HERA, LQs can
be resonantly produced in the � -channel or exchanged in the ' -channel between the incoming
lepton and a quark coming from the proton. The amplitudes for both these processes interfere
with those from DIS. We shall consider here the mass domain where the resonant � -channel
contributions largely dominate the LQ signal cross-section.

In the � -channel, a LQ is produced at a mass ( � � � ���!) where ) is the momentum
fraction of the proton carried by the interacting quark. When the LQ decays into an electron
and a quark, the mass is reconstructed from the measured kinematics of the scattered electron,
and is henceforth labelled ( � . Similarly when the LQ decays into a neutrino and a quark, the
mass is labelled ( � as it is reconstructed from the hadronic final state alone [1].

The H1 detector components most relevant to this analysis are the liquid argon calorime-
ter, which measures the positions and energies of charged and neutral particles over the polar
angular range2 *�+-,/.0, %&� *1+ , and the inner tracking detectors which measure the angles and
momenta of charged particles over the range � +2,3.4, %&5�� + . A full description of the detector
can be found in [5].

This search relies essentially on inclusive NC and CC DIS selections. The selection of NC-
like events is identical to that presented in [1]. It requires an identified electron with transverse
energy above %&� GeV and considers the kinematic domain defined by $ �76 ������ GeV

�
and

���8% ,/9:, �;�	
 , where 9 �<$ �>= ( �
. The inelasticity variable 9 is related to the polar angle .1?

of the lepton in the centre-of-mass frame of the hard subprocess by 9 � ��1@ %BADC>E1F . ?>G . Since
the angular distribution of the electron coming from the decay of a scalar (vector) resonance is
markedly (slightly) different from that of the scattered lepton in NC DIS [1], a mass dependent
cut 9 6 9�HJILK allows the signal significance to be optimized. The measured mass spectrum is
compared in Fig. 1 with the NC SM prediction, obtained using a Monte-Carlo calculation [6]
and the MRST parametrization [7] for the parton densities. The distributions are shown before

1A fusion between an MON and a valence quark would lead to a LQ with PRQTS .
2The polar angle U is defined with respect to the incident proton momentum vector (the positive V axis).
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10
-1

1

10

10 2

10 3

75 100 125 150 175 200 225 250 275

Me (GeV)

ev
en

ts
 p

er
 b

in H1 data, y > 0.1 H1 data, y > ycut

SM, y > 0.1 SM with uncertainty
y > ycut , optimized
for Vector LQ

H1 e– p → e– X

(b)

Figure 1: Mass spectra of the events from the inclusive NC DIS selection for data (symbols) and DIS
expectation (histograms). The data is shown before (open squares, dashed-line histogram) and after
(filled dots, full-line histogram) a � cut designed to maximize the significance of (a) a scalar and (b) a
vector leptoquark (LQ) signal. The grey boxes indicate the � ��� uncertainty due to the systematic errors
on the NC DIS expectation.

and after applying the mass dependent lower 9 cut designed to maximize the significance of
a scalar (Fig. 1a) or vector (Fig. 1b) LQ. For scalar (vector) LQs, 9 HJILK continuously decreases
from �3�;� * � ( � ��� ��� ) at %&�� GeV to � ���	�� ( � �;��%&� ) at 200 GeV, reaching 0.1 (0.1) at 290 GeV.
In the mass range ( � 6 5���� � GeV and after applying the 9 cut optimized for scalar (vector) LQ
searches, 298 (514) events are observed in good agreement with the SM expectation of ��
���� ��
( �� * �D��� ) events.

The selection of CC-like events follows closely that presented in [8]. In addition, a missing
transverse momentum exceeding �� GeV and $ �06 ����� GeV

�
are required. The domain at

high 9 where the resolution on the mass ( � degrades is removed by requiring 9 , ���	
 . For
( � 6 5�� GeV, 345 events are observed, in good agreement with the CC SM expectation of
����	� �
� events. The observed and expected mass spectra are shown in Fig. 2.

No evidence for LQ production is observed in either data sample. Hence the data are used
to set constraints on LQs which couple to first generation fermions. We use the numbers of
observed and expected events within a variable mass bin, adapted to the experimental mass
distribution for a given true LQ mass (��� , and which slides over the accessible mass range.
As an example, candidate events with ( � within the interval from %���� GeV to ���5 GeV are
used to constrain a ���� GeV LQ decaying into electrons. For LQs decaying into #  , the mass
window is enlarged (to about * � GeV for a 200 GeV LQ) to account for the mass resolution
when relying on the hadronic final state. The final signal efficiencies, including the mass bin
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Figure 2: Mass spectra of the events from the inclusive CC DIS selection for data (symbols) and DIS
expectation (histogram). The grey boxes indicate the � ��� uncertainty due to the systematic errors on the
CC DIS expectation.

requirement, vary with the LQ mass between ���� ( ����� ) and ����� ( * ��� ) for scalar (vector)
LQs decaying into �& , and between ���� and ����� for LQs decaying into #� .

Assuming Poisson distributions for the SM background expectations and for the signal, an
upper limit on the number of events coming from LQ production is obtained using a standard
Bayesian prescription. This limit on the number of signal events is then translated into an
upper bound on the LQ cross-section, which in turn leads to constraints on LQ models. The
signal cross-section is obtained from the leading-order LQ amplitudes given in [9], corrected
by multiplicative � -factors [10] to account for next-to-leading order QCD corrections. These
corrections can enhance the LQ cross-section by � @ %&��� G .

The procedure which folds in the statistical and systematic errors is described in detail in [3].
The main source of experimental systematic error is the uncertainty on the electromagnetic en-
ergy scale (between �;� ��� and ��� ) for the NC analysis, and the uncertainty on the hadronic
energy scale ( ��� ) for the CC analysis. Furthermore, an error of � ��� on the DIS expectations
is attributed to the limited knowledge of proton structure. An additional systematic error arises
from the theoretical uncertainty on the signal cross-section, originating mainly from the uncer-
tainties on the parton densities. This uncertainty is ��� for LQs coupling to � � ' , and varies
between ��� at low LQ masses up to ����� around 290 GeV for LQs coupling to � ��� . More-
over, choosing alternatively $ �

or the square of the transverse momentum of the final state
lepton instead of ( �

�  as the hard scale at which the parton distributions are estimated yields an
additional uncertainty of �-��� on the signal cross-section.

The phenomenological model proposed by Buchmüller, Rückl and Wyler (BRW) [9] de-
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scribes 14 LQs. We focus here on the 7 LQs with fermion number � � � since those with
� � � are better constrained using � �;� data [1]. In the BRW model the branching ratios � � ( ��� )
for the LQ decays into �! ( #� ) are fixed and equal to 1 or 0.5 (0 or 0.5) depending on the LQ
quantum numbers. The upper limits on the Yukawa coupling � at the �  ��� vertex obtained at

���� confidence level (CL) are shown as a function of the LQ mass in Figs. 3a and b, for scalar
and vector LQs respectively. The nomenclature of [11] is used to label the various scalar ��� � �
( ��( )

� � 	 ) or vector �
( )

� � � (

 � � 	 ) LQ types of weak isospin � , which couple to a left-handed (right-

handed) electron. The tilde is used to distinguish LQs which differ only by their hypercharge.
For LQs decaying with an equal branching ratio into �& and #� , both the NC and CC channels
were combined in the derivation of the limits. However, the CC channel offers much less sen-
sitivity to the signal than the NC channel, and thus only marginally contributes to the resulting
bounds. This is due to the fact that the mass windows are larger, and that no discriminating
angular cut is applied in the CC channel. Both effects yield a much larger SM background in
the CC channel than in the NC case3. For a Yukawa coupling of electromagnetic strength ����
( � � � *�� ����������	� ) this analysis rules out LQ masses below �1��� to ��
� GeV depending on
the LQ type, at 
���� CL. These are the most stringent direct bounds on LQs with � � � .

Beyond the BRW ansatz, generic LQ models can also be considered, where other LQ de-
cay modes are allowed such that the branching ratios � � and � � are free parameters. The LQ
production cross-section does not depend on the total LQ width � as long as � is not too large.
Hence the signal cross-section observable in e.g. the NC channel depends only on the Yukawa
coupling and on the branching ratio � � , and mass dependent constraints on � � can be set for
a given value of � . For a scalar LQ with (��  � ��
� GeV and � � �;�	� , this approach holds
as long as � ,� � GeV, such that the LQ total width does not exceed about four times its par-
tial decay width into �! . For a scalar LQ possessing the quantum numbers of the �� 
�� 	 , which
couples to � ��� and thus cannot decay into #� , Fig. 4a shows the excluded part of the � � - ( ��
plane for three values of the Yukawa coupling. The domain excluded by the D � experiment
at the Tevatron [12] is also shown. For a scalar LQ coupling to � � ' (possessing the quantum
numbers of the � 
�� � ) and for � ���;�	�� , the domain of the � � - ( �  ( ��� - ( �� ) plane excluded
by the NC (CC) analysis is shown in Fig. 4b. If the LQ decays into �& or #� only4, the combi-
nation of both channels rules out the part of the plane on the left of the middle full curve, for
�:�"��� ��� . The resulting combined bound is largely independent of the individual values of � �
and � � . Combined bounds are also shown for �0� �;�	��� and �0� ���	� , for the same LQ type. For
� greater than �3��� ��� , these bounds extend considerably beyond the region excluded by the D �
experiment [12].

To summarize, a search for leptoquarks with fermion number � � � has been performed us-
ing the � � � data collected by H1 in 1998 and 1999. No signal has been observed and constraints
on such LQs have been set, which extend beyond the domains excluded by other experiments.
For a Yukawa coupling of electromagnetic strength, LQ masses up to 290 GeV can be ruled out.
This represents the most stringent direct bound on � � � leptoquarks.

3This is different from the M�N�� case, where the CC channel significantly improves the sensitivity on the LQ
production cross-section [1] due to the smaller CC DIS cross-section.

4It should be noted that �������! Q#" does not imply ��� Q$�! even when invariance under %'&)(+*-,�. transfor-
mations is required. For example, when LQs belonging to a given isospin multiplet are not mass eigenstates, their
mixing usually leads to different branching ratios in both channels for the physical LQ states.

7



10
-2

10
-1

1

75 100 125 150 175 200 225 250 275

e
+  p

10
-2

10
-1

1

75 100 125 150 175 200 225 250 275

e
–  p

M LQ (GeV)

λ

S 0, R
~

S 0, L
S 0, R
S 1, L

SCALAR LEPTOQUARKS with F=2

H1

(a)

10
-2

10
-1

1

75 100 125 150 175 200 225 250 275

e
+  p

10
-2

10
-1

1

75 100 125 150 175 200 225 250 275

e
–  p

M LQ (GeV)

λ

V 1 / 2, L
V 1 / 2, L
~

V 1 / 2, R

VECTOR LEPTOQUARKS with F=2

H1

(b)

Figure 3: Exclusion limits at ���� CL on the Yukawa coupling � as a function of the mass of (a) scalar
and (b) vector leptoquarks (LQs) with fermion number ��� � described by the BRW model. Domains
above the curves are excluded by this analysis of the � � � data. The shaded area on each plot indicates
the excluded region obtained from the � � � data [1], less suited for constraining ��� � LQs.
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Figure 4: (a) Mass dependent exclusion limits at �� � CL on the branching ratio
� � of a scalar lepto-

quark (LQ) which couples to � ��� (with the quantum numbers of the �
� 
�� 	 ). (b) Domains ruled out by

the combination of the NC and CC analyses, for a scalar LQ which couples to � ��� (with the quantum
numbers of the

� 
�� � ) and decaying only into �	� and 
�� for three example values of the Yukawa coupling
� . The regions on the left of the full curves are excluded at � � � CL. For � � ��� �� , the part of the

� � - �� (
� � -  �� ) plane on the left of the dashed (dotted) curve is excluded by the NC (CC) analysis. The

branching ratios
� � and

� � are shown on the left and right axes respectively. In (a) and (b), the hatched
region represents the domain excluded by the D � experiment [12].
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