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Abstract

The differential cross section with respect to all final state particle momenta and electric charge in
high Q2 events is measured in deep-inelastic positron-proton scattering using data collected with
the H1 detector of HERA. The unbinned and full phase-space unfolding is implemented using the
OmniFold machine learning algorithm, with the point-edge transformer neural network architecture.
To illustrate the utility of this measurement, we present a number of projections from the full phase
space, including observables previously measured by H1 and new observables that are challenging
using conventional methods. For example, we show a simultaneous measurement of jets in the lab-
oratory and Breit frames. The data are corrected for detector acceptance, efficiency, and resolution
effects and uncertainties are estimated at the per-particle level and we are working towards releasing
the result in an unbinned format.
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1 Introduction

High Q2 deep inelastic scattering (DIS) data have diverse utility in particle and nuclear physics. These
data have been used to study event and jet shapes, probe nuclear structure, and much more [1]. Each
result is presented as a separate measurement, often in the form of a binned, differential cross-section.

Machine learning has enabled a complementary paradigm whereby the full phase space is simultane-
ously measured [2]. By extracting the differential cross section with respect to all final state particle
properties, observables can be extracted after the measurement instead of before. An essential aspect of
these measurements is that they are unbinned. A number of unbinned measurements in hadronic final
states have been presented recently by H1 [3–6], LHCb [7], STAR [8,9], ATLAS [10,11], and CMS [12].

This paper significantly extends previous measurements in hadronic final states by simultaneously mea-
suring the spectrum of all final-state particles. This requires machine learning models capable of pro-
cessing the set of particle momenta and electric charges, which in machine learning is called a variable-
cardinality point cloud. The unfolding thus proceeds with the OmniFold method [13, 14] based on the
Point-Edge Transformer neural network architecture [15, 16]. The resulting phase space is vast and we
are working toward publishing the data in an unbinned format for widespread use. In the mean time,
a representative set of observables have been chosen to illustrate the potential of the differential cross
section. This set includes observables previously measured, such a lepton-jet azimuthal correlations in
the lab frame [3] and jet substructure [5] as well as observables that are challenging to measure using
conventional methods, like jet properties measured in different reference frames.

This note is organized as follows. Section 2 introduces the H1 detector and the analysis observables.
Then, Sec. 3 describes the Monte Carlo simulated datasets used for the analysis. Corrections for detector
effects (unfolding) using the OMNIFOLD algorithm are detailed in Sec. 4. Uncertainty estimation is
detailed in Sec. 5. Theoretical predictions using Quantum Chromodynamics (QCD) and experimental
results are presented in Sec. 6 and the note ends with conclusions and outlook in Sec. 7.

2 Experimental method

A full description of the H1 detector can be found elsewhere [17–21] while the detector components that
are most relevant for this measurement are described below. The main sub-detectors used in this analysis
are the inner tracking detectors and the Liquid Argon (LAr) calorimeter, which are both immersed in a
magnetic field of 1.16 T provided by a superconducting solenoid. The central tracking system, which
covers 15◦ < θ < 165◦ and the full azimuthal angle, consists of drift and proportional chambers that are
complemented with a silicon vertex detector in the range 30◦ < θ < 150◦ [22]. It yields a transverse
momentum resolution for charged particles of σpT/pT = 0.2% pT/GeV ⊕ 1.5%. The LAr calorimeter,
which covers 4◦ < θ < 154◦ and full azimuthal angle, consists of an electromagnetic section made of
lead absorbers and a hadronic section with steel absorbers; both are highly segmented in the transverse
and longitudinal directions. Its energy resolution is σE/E = 11%/

√
E/GeV ⊕ 1% for leptons [23] and

σE/E ≈ 50%/
√

E/GeV ⊕ 3% for charged pions [24]. In the backward region (153◦ < θ < 177.5◦),
energies are measured with a lead-scintillating fiber calorimeter [21]. Results are reported using the data
recorded by the H1 detector in the years 2006 and 2007 when positrons and protons were collided at
energies of 27.6 GeV and 920 GeV, respectively. The total integrated luminosity of this data sample
corresponds to 228 pb−1 [25].

DIS reactions are governed by the momentum transferred between the lepton and proton squared, Q2,
and the inelasticity y, or equivalently, the longitudinal momentum fraction x = Q2/(s · y), where s is the
center-of-mass energy of the collision. The Σ method [26] is used to reconstruct Q2 and y as:

Q2 =
E2

e′
sin2

θe′

1− y
(1)
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y =
∑i∈had(Ei − pi,z)

∑i∈had(Ei − pi,z)+Ee′ (1− cosθe′ )
, (2)

where θe′ is the polar angle of the scattered lepton and ∑(Ei − pi,z) is the total difference between the
energy and longitudinal momentum of the entire hadronic final state. Compared to other methods, the Σ

reconstruction method reduces sensitivity to collinear initial state QED radiation, e → eγ , since the beam
energies are not included in the calculation.

Events are triggered by requiring a high energy cluster in the electromagnetic part of the LAr calorimeter.
The scattered lepton is identified as the highest transverse momentum LAr cluster matched to a track
passing an isolation criteria [27]. Events containing scattered leptons with energy Ee′ > 11 GeV are
kept for further analysis, resulting in a trigger efficiency higher than 99.5% [28, 29]. Backgrounds from
additional processes such as cosmic rays, beam-gas interactions, photoproduction, charged-current DIS
and Quantum Electrodynamics (QED) Compton processes are rejected after a dedicated selection [29,
30], resulting in negligible background contamination. In particular, events with Q2 > 150 GeV2, 0.08 <
y < 0.7, pmiss

T < 10 GeV, and 45 < E − pz < 65 GeV and particles with ppart
T > 0.1 GeV and −1.5 <

ηpart. < 2.75 are selected.

The full phase space is measured, but to highlight the utility of these data, we select a set of jet and
event-level observables described below.

The FASTJET 3.4.2 package [31, 32] is used to cluster jets. We first cluster jets in the laboratory frame
with the inclusive kT algorithm [33, 34] and distance parameter R = 1. The inputs for the jet clustering
are hadronic final state (HFS) objects with −1.5 < η < 2.75. These objects are built from calorimeter-
cell clusters and reconstructed tracks, after removing those associated with the scattered lepton, using an
energy flow algorithm [35–37]. Jets with transverse momentum pjet

T > 10 GeV are selected for further
analysis.

The Breit frame, illustrated in Figure 1, is also used in this analysis, simultaneously with the laboratory
frame measurements. The Breit frame is defined with the relation 2xBP⃗+ q⃗ = 0, where P⃗ is the momen-
tum of the incoming proton and q⃗ is the momentum of the exchanged virtual photon. In this frame, the
struck quark before collision travels along the +z direction with momentum pz =

q
2 and then back-scatters

with momentum pz =−q
2 . The x-y plane is chosen such that the scattered lepton has an azimuthal angle

φ b
e′ = 0. The boosted HFS four-vectors pb are obtained following the methodology from [38]:

pb = M(φ b
e′=0) · pLab, (3)

where pLab are the four-vectors of the HFS four-vectors in the lab frame and M(φ b
e′=0) defines the boost

when it is chosen that the scattered lepton travels along the x-axis. This matrix is given by:

M(φ b
e′=0) =−


qx
qT

qy
qT

qT
Σ

−qT
Σ

qy
qT

qx
qT

0 0
qx
Q

qy
Q

qz
Q −qE

Q
bx
Q

by
qT

bz
Q −bE

Q

 , (4)

where the boost vector b is
b = q− q ·q

q · ẑ
ẑ. (5)

ẑ is (1;0,0,1), Q2 = −q · q, and q is the photon four-momentum. The quantity q is reconstructed as
q = k − k′, where k′ is the scattered lepton momentum and k is the effective lepton beam momentum
k = (Σtot

2 ;0,0, Σtot
2 ), where Σtot is the denominator of y in Equation 2. Lastly, Σ = q · ẑ = qE −qz.

Jets are clustered in the Breit frame using two different jet clustering algorithms — kT and Centauro [39].
The Centauro jet algorithm is a longitudinally invariant method designed for DIS studies. It employs an
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asymmetric distance metric that, in DIS events with configurations close to the Born level (i.e., γ∗q → q′)
in the Breit frame, successfully clusters the struck-quark jet (see Figure 1, at rapidity y = −∞) while
excluding beam remnants (at rapidity y =+∞). Note that such low-pT jets cannot be clustered with the
kT (or anti-kT) algorithm (see Ref. [39] for a detailed discussion).

Both clustering algorithms use the distance parameter R = 1. The kT jets with transverse momentum
pjet

T > 5 GeV are selected for further analysis with the kT algorithm. There is no minimum pjet
T require-

ment for the jets clustered with Centauro. Instead, jets with zjet > 0.2, as defined below, are used in this
analysis.

The jet observables explored in this analysis are the azimuthal angular distance between the lepton and
the jet (∆φ jet) in the laboratory frame using the kT algorithm, similar to Ref. [3]; the jet angularity
observable known as jet girth ln(λ 1

1 ) in the laboratory frame, using the kT, similar to Ref. [5]; the jet
transverse momentum pjet

T using the kT algorithm in the laboratory frame and the Breit frame and using
Centauro in the Breit frame; and the fraction of the struck-quark momentum carried by the jet zjet using
the kT algorithm in the laboratory frame and the Breit frame and using Centauro in the Breit frame. This
is illustrated in Table 1 below:

Lab kT Breit kT Centauro
∆φ jet Y N N
ln(λ 1

1 ) Y N N
pjet

T Y Y Y
zjet Y Y Y

Table 1: Jet observables used in this analysis. Y (N) indicates that observable is (not) calculated for the frame and
clustering algorithm in a given column. In addition to these, ∆zjet and the Energy-Energy Correlator are measured.

The distributions of the angular distance between the lepton and the jet, jet girth1, and jet transverse
momentum are used to highlight the ability to recover previous results using the unfolded information.
Although the particle selection used to select the HFS candidates is changed in comparison to previous
measurements, we observe that the results are nevertheless compatible.

In the laboratory frame, zjet is defined as P·pjet

P·q , where P is the proton momentum in the laboratory frame
(920 GeV; 0, 0, 920 GeV) and q is the virtual photon momentum. In the Breit frame, zjet is given by
n·pjet

Q , where n = (1;0,0,1). This quantity can be compared between frames and jet clustering algorithms
by defining:

∆zjet = zleading jet
lab, kT

− zleading jet
Breit, Centauro, (6)

where zleading jet
lab, kT

and zleading jet
Breit, Centauro are the zjet of the leading jet from the event clustered using kT in the

laboratory frame and Centauro in the Breit frame, respectively. The leading jet is defined as the jet with
the highest zjet value. If there are no jets in the laboratory frame for a given event due to the pjet

T cut, that
event is skipped when calculating ∆zjet.

In addition, we leverage the unique advantage of the methodology to measure Energy-Energy Correlator
(EECDIS), which probes multi-particle correlations and is only well-defined in the Breit frame [40].
Therefore, EECDIS poses a number of fundamental challenges for histogram-based unfolding methods,
which are not relevant in this analysis.

First formulated in formal theory [41], the EEC has been found to have widespread utility. (See Ref. [42–
48] for review and a list of applications.) Most recently, the EEC has been measured in the cleanest

1The jet girth is defined as ln(λ 1
1 ), where λ κ

β
= ∑i∈jet zκ

i

(
Ri
R0

)β

, zi is the ratio pT,i/pjet
T for a particle with transverse

momentum pT,i clustered inside a jet with radius R0 and momentum pjet
T . The parameter Ri describes the distance between the

particle and the jet axis in the transverse plane.
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Fig. 1: DIS Born kinematics in the Breit frame. Graphic from Ref. [39].

possible case of e+e− collision using the ALEPH data [49]. It then becomes of interest to measure it
over the full range of angles in the relatively clean initial state of e−p. Comparison between the two
provides tests of factorization, and detailed studies of the proton initial state (e.g. TMDs, structure
functions). e−p provides a natural intermediate step between e+e− and pp. Furthermore, EEC has a
number of good unique theoretical properties, so it can be computed to high accuracy [50–53] and has
suppressed non-perturbative effects through energy weighting. This has enabled an αs extraction with
record precision using jet substructure method in pp [54]. It is interesting to explore if it will make a
competitive αs extraction in a different system. Additionally, the EEC can be expanded for the study
of spin effects in a polarized target hadron and therefore, constitutes a useful tool for the study TMD
physics and nuclear matter effects at the future Electron Ion Collider (EIC) [40].

The observable EECDIS is defined as

EECDIS = ∑
a

∫ dσep→e+a+X

σ
za δ (cosθap − cosθ) , (7)

where
za ≡

P · pq

P · (∑i pi)
, (8)

and pµ
a and Pµ are the momenta of the hadron a and the incoming proton respectively. The angle θap

is the polar angle of hadron a, which is measured with respect to the incoming proton. The asymmetric
weight function, za, is suppressed for soft radiation and radiation close to the beam direction. In this
analysis, we calculate the EECDIS observable by looping over hadrons and calculate za and the angle θap

with respect to the proton. Furthermore, this definition of EECDIS naturally separates the contribution to
the cosθ spectrum from: (a) wide angle soft radiation, (b) initial state radiation and beam remnants, and
(c) radiation from the hadronization of the struck quark [40].

3 Monte Carlo simulations

Monte Carlo (MC) simulations are used to correct the data for detector acceptance and resolution effects
as well as to compare theoretical predictions with experimental results.

Detector acceptance and resolution effects are estimated using the Djangoh 1.4 [55] and Rapgap 3.1 [56] sim-
ulators. Both generators implement Born level matrix elements for neutral current DIS, boson–gluon
fusion, and QCD Compton processes and are interfaced with HERACLES [57–59] for QED radiation.
The CTEQ6L PDF set [60] and the Lund hadronization model [61] with parameters determined by the
ALEPH Collaboration [62] are used for the non-perturbative components. Djangoh uses the Color Dipole
Model as implemented in ARIADNE [63] for higher order emissions, and Rapgap uses parton showers in
the leading logarithmic approximation. Each of these generators is combined with a detailed simulation
of the H1 detector response based on GEANT3 [64] and the generated events are reconstructed in the
same way as data. The same selection described in 2 is applied to Particle-level event and particle sim-
ulation. Reco-level MC events and particles have a more relaxed selection applied, requiring the event
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have Q2 > 100 GeV2 and at least one particle reconstructed in the event. Particle-level MC events with
Q2 > 150 GeV2, 0.08 < y < 0.7 and particles with ppart

T > 0.1 GeV and −1.5 < ηpart. < 2.75 are selected.
Additionally, MC events with no particles passing this selection are rejected before the unfolding.

4 Unfolding

The unfolding procedure for this measurement, OMNIFOLD [13,14], is used for the unbinned unfolding
of all particles. While in all previous measurements a subset of observables were used for unfolding,
this time we aim to include the entire event information. The OMNIFOLD method is an iterative two-step
(expectation-maximization) procedure to correct for detector effects. The goal is to infer particle-level
data using detector-level data and simulations. The main components of OMNIFOLD are explained in
more detail below.

The inputs to the unfolding are:

– Per-particles features: [pT, η , φ , C ]

– Global DIS quantities: [Q2, y, pe
x, pe

y, pe
z ],

with pT, η , φ , C as the particles’ transverse momentum, pseudorapidity, azimuthal angle, and electric
charge, respectively. The momenta pe

x, pe
y, and pe

z are the x̂, ŷ, and ẑ component of the scattered lepton
momentum in Cartesian coordinates. Lastly, Q2 and y are the transverse momentum square and inelas-
ticity of the event. These features, [pT, η , φ , C ] and [Q2, y, pe

x, pe
y, pe

z ], are represented as the input
vector x⃗ in the description of the unfolding procedure.

The first step of OMNIFOLD uses observables at detector level while the second step operates at particle
level. Let Xdata = {⃗xi} be the set of events in data and XMC,gen = {⃗xgen,i} and XMC,reco = {⃗xreco,i} be
sets of events in simulation with a correspondence between the two sets. In simulation, there is a set of
observables at particle-level and detector-level for each event. If an event does not pass the particle-level
or detector-level event selection, then the observables for that event are assigned a dummy value x⃗ = /0.
Each event i in simulation is also associated with a weight wi from the MC simulation.

OMNIFOLD achieves an unbinned unfolding by iteratively re-weighting the particle-level events. Each
event i in simulation is given a weight νi and these weights are updated at each iteration. The final result
is the simulated events with weights νiwi. From these events, one can compute new observables defined
on x⃗ and can construct histograms or other summary statistics. The OMNIFOLD weights are initialized at
νi = 1, i.e. the prior is the initial MC simulation.

The first step of OMNIFOLD is to train a classifier f to distinguish the weighted simulation at detector-
level from the data. The classifier is trained to maximize the common binary cross entropy:

ε = ∑
x⃗i∈Xdata

log( f (⃗xi))+ ∑
x⃗i∈XMC,reco

νi wi log(1− f (⃗xi)) , (9)

where both sums only include events that pass the detector-level selection. For events that pass the
detector-level selection, define λi = νi · f (⃗xi)/(1− f (⃗xi)) for x⃗i ∈ XMC,reco. This manipulation of the
classifier output is known (see e.g. Refs. [65–67]) to produce an estimate of the ratio of the likelihoods
for the event to be from the measured data or from the simulation. For events that do not pass the
detector-level selection, λi = νi.

The second step of OMNIFOLD is a regularization step. The weights λi are insufficient because they
are not a proper function of the particle-level phase space. In other words, a single phase space point
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x⃗gen can be mapped to different x⃗reco values under the stochastic detector response. The second step of
OMNIFOLD averages the weights λ for a fixed particle-level phase space point. This is accomplished
by training a classifier to distinguish the particle-level simulation weighted by ν from the particle-level
simulation weighted by λ . The loss function is once again the binary cross entropy:

L = ∑
x⃗i∈XMC,truth

λi wi log( f ′(⃗xi))+νi wi log(1− f ′(⃗xi)) , (10)

where the sum only includes events that pass the particle-level selection. For events that pass the particle-
level selection, define νi+1 = νi · f (⃗xi)/(1− f (⃗xi)) for x⃗i ∈ XMC,truth. For events that do not pass the
particle-level selection, νi is left unchanged from its previous value.

The classifiers for Steps 1 and 2 are parameterized as neural networks. In order to process all the particles
and lepton information in the event we use an adapted version of the OMNILEARN model [15, 16]. The
OMNILEARN model combines the scalability of transformer models using the point-edge transformer
architecture and encodes the local information using graph neural networks. More specifically, a local
embedding is created for each hadron using the k-nearest neighbors of each particle in η − φ space,
where k is set to 5. The representation of each hadron is then updated based on the local embedding
information and used as an input for four transformer layers. The classification output is encoded us-
ing a classification token [68]. The classification token summarizes the information of the entire point
cloud and returns a binary output used for the classification task. All hyperparameters of the model,
including number of layers, number off neighbors, and layer sizes were optimized by running multiple
trainings and tracking the value of the validation loss of the classification between the Rapgap and Djan-
goh simulations. Since the entire procedure is computationally expensive, we only considered options
that lead to acceptable running times, but we did check that using more complex models did not lead to
noticeable improvements in the validation loss. All networks are implemented in TENSORFLOW [69]
and KERAS [70] and optimized using LION [71]. All inputs are scaled so that each input feature has
mean zero and unit standard deviation.

In previous measurements with OMNIFOLD, each training would start from a network initialized using
random weights. Since the size of the simulated samples are 2 orders of magnitude bigger than the data,
the unfolding precision was limited by the data size. We can improve the quality and stability of the
unfolding procedure by first pre-training a model to fulfill a specific task, in this case, the classification
between Rapgap and Djangoh simulations. For this task, we use 20M Rapgap and 20M Djangoh events.
This pre-trained model can then be used as the starting point for the unfolding procedure of all subsequent
unfolding runs. The validation loss obtained by using the pre-trained model on the first OMNIFOLD

iteration is compared with the loss observed by training a model from scratch in Fig. 2.

5 Uncertainties

Systematic uncertainties on the description of the detector are estimated by varying the relevant aspects
of the simulation and carrying out the full analysis procedure with the varied simulation set. We include
the systematic uncertainties related to the modeling of reconstructed hadrons and scattered lepton. In
particular, the energy scale and azimuthal angle are carefully considered. The uncertainties on the HFS
energy scale are categorized into two classifications: HFS objects within high pT jets and all other
remaining HFS objects. The energy-scale uncertainty in both cases is ±1%. Both sources of uncertainty
are estimated separately [72, 73] by varying each HFS energy by ±1%. An uncertainty of ±20 mrad is
assigned to the azimuthal angle determination of HFS objects. The uncertainties on the lepton energy
scale ranges from ±0.5% to ±1% [73, 74]. Uncertainties on the azimuthal angle of the scattered lepton
are estimated to be ±1 mrad [75]. For each variation to the simulation, the models for the unfolding are
completely retrained and the unfolding procedure is repeated. The full difference in the final observable
from the nominal result is taken as the uncertainty for that variation.
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Fig. 2: Comparison of the validation loss obtained by training the first step and iteration of OMNIFOLD either
using a model initialized with random weights (dotted lines) and a model initialized using the same weights of the
pre-training task (full lines).

QED corrections are not yet included in the current analysis.

We include two types of unfolding uncertainties to the final results. The first one is determined from a
closure test, where the Rapgap simulation is used to unfold the response of the Djangoh simulation. In
this setting, we restrict the number of events in the Djangoh simulation to match the one expected from
the data. The difference between the unfolded results and the true response from Djangoh is used as
an uncertainty. An additional uncertainty from the unfolding procedure is estimated to cover a possible
bias from the generator choice used to perform the unfolding. This is designated as the model bias, and
is estimated by the difference in results obtained when performing the unfolding with the Rapgap or
Djangoh simulations.

The statistical uncertainty of the measurement is estimated using the bootstrap technique [76]. The
unfolding procedure is repeated on 25 pseudo datasets, each defined by resampling the original data
according to a Poisson distribution with µ = 1. The number of MC events exceeds the number of
data events by nearly two orders of magnitude and therefore the MC statistical uncertainty is negligible
compared to the corresponding data uncertainty. Variations from the random nature of the network
initialization and training are negligible compared to the data statistical uncertainty.

6 Results

6.1 Closure results

Before looking at the unfolded data, a closure test is performed to validate the unfolding procedure.
The closure unfolding procedure is done with Rapgap as the Monte Carlo simulation and Djangoh as
pseudodata. Figures 3, 4, 5, 6, and 7 show the closure results for the observables discussed in Sec. 2.
All of the unfolded observables show good agreement with the truth Djangoh values. The remaining
differences between the unfolded distributions and Djangoh predictions are used as an uncertainty.
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Fig. 5: Closure test of zjet in the laboratory frame (left) and Breit frame (middle) using the kT algorithm and in the
Breit frame using the Centauro algorithm (right). These all use R = 1. The laboratory kT, Breit kT, and Centauro
plots use a pjet

T > 10 GeV cut, a pjet
T > 5 GeV cut, and a zjet > 0.2 cut, respectively. The RAPGAP and DJANGOH

data are at the generation-level. The RAPGAP Closure histogram is the RAPGAP results with unfolded weights
applied. Ref. in the bottom panel is RAPGAP Closure.
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6.2 Unfolded Results

Finally, we show the unfolding results obtained in this analysis, in Figures 8, 9, 10, 11, and 12. In these
plots, the unfolded results and the two Monte Carlo datasets are shown. The ratio to the unfolded results
is displayed in the bottom panel.
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Fig. 8: Unfolded ∆φ jet (left) and ln(λ 1
1 ) (right) in the laboratory frame using the kT algorithm with R = 1. These

plots contain jets with pjet
T > 10 GeV. The RAPGAP and DJANGOH data are at the generation-level. Data Unfolded

is the unfolded H1 data. Ref. in the bottom panel is the unfolded data.

The distributions of ∆φ jet and ln(λ 1
1 ) in Fig. 9 qualitatively agree with previous published results shown

in Refs. [3, 5], where at smaller values of ∆φ jet, the DJANGOH simulation agrees with the measured
value, but at higher values both simulations start to show discrepancies compared to the measured values.
Similarly, the jet girth shows an agreement with predictions at the peak value of the distribution but starts
to show deviations near the tails of the distribution.

The peak around unity in the left panel of Figure 10 originates from DIS events with configurations close
to the Born level. In these events, a high-pT jet balances the high-pT electron by taking most of the
energy of the struck quark. In the Breit frame, this peak is removed by applying a minimum pT > 5 GeV
requirement. This cut effectively excludes DIS events close to the Born-level configuration and instead
selects events with dijet or multijet configurations arising from higher-order processes, such as photon-
gluon fusion. The minimum pT is necessary; otherwise, the kT algorithm would yield pathological
results, such as a high multiplicity of jets with low pT.

The Centauro jet measurements in the right panel of Figure 10 show a peak near unity, as expected since,
in the Breit frame, the Centauro algorithm can cluster the leading jet in DIS events with configurations
close to the Born level—unlike the kT algorithm. The Centauro jet pT spectrum exhibits a peak around 1
GeV. This peaking behavior is qualitatively similar to our previous measurement [3] of the qT distribution
in the laboratory frame using the kT algorithm, which plays an analogous role to the jet pT in the Breit
frame. Both observables are expected to be sensitive to quark transverse-momentum-dependent (TMD)
PDFs, see Ref. [77] for a discussion on Centauro algorithm, and Ref. [78] for discussion of qT in the
laboratory frame.

The Centauro jet z peak, however, is observed to be significantly broader than the corresponding peak in
laboratory-frame measurements. To further quantify this difference, we compare the z values between
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Fig. 9: Unfolded pjet
T in the laboratory frame (left) and Breit frame (middle) using the kT algorithm and in the Breit

frame using the Centauro algorithm (right). These all use R = 1. The laboratory kT, Breit kT, and Centauro plots
use a pjet

T > 10 GeV cut, a pjet
T > 5 GeV cut, and a zjet > 0.2 cut, respectively. The RAPGAP and DJANGOH data

are at the generation-level. Data Unfolded is the unfolded H1 data. Ref. in the bottom panel is the unfolded data.
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Fig. 10: Unfolded zjet in the laboratory frame (left) and Breit frame (middle) using the kT algorithm and in the
Breit frame using the Centauro algorithm (right). These all use R = 1. The laboratory kT, Breit kT, and Centauro
plots use a pjet

T > 10 GeV cut, a pjet
T > 5 GeV cut, and a zjet > 0.2 cut, respectively. The RAPGAP and DJANGOH

data are at the generation-level. Data Unfolded is the unfolded H1 data. Ref. in the bottom panel is the unfolded
data.

the leading jets clustered in the laboratory frame and the leading Centauro jets in the Breit frame, The
leading jets are those with the highest zjet values. Note that such a measurement is only possible when
events are analyzed simultaneously in both the laboratory and Breit frames, which is feasible with the
current unfolding approach.

The ∆zjet distribution peaks at zero and exhibits two asymmetric tails, with the positive tail being signif-
icantly more prominent. This may suggest that clustering jets in the laboratory frame captures a greater
fraction of the struck quark’s energy than clustering in the Breit frame. However, the distribution could
also be affected by QED radiation, which influences the boost to the Breit frame. QED radiation effects
are not corrected at this stage of the analysis.
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Fig. 11: Unfolded ∆zjet. ∆zjet is defined as in Equation 6, where the values of zjet from the leading jets clustered
from kT and Centauro are subtracted. The RAPGAP and DJANGOH data are at the generation-level. Data Un-
folded is the unfolded H1 data. Ref. in the bottom panel is the unfolded data.
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Fig. 12: Unfolded EECDIS. EECDIS is defined as in in Equation 7 and calculated using all the particles with
ppart

T > 100 MeV in Breit frame. More details may be found in Ref. [40]. The RAPGAP and DJANGOH histograms
are at the generation-level. The ’Data Unfolded’ histogram is the unfolded H1 data. Ref. in the bottom panel is the
unfolded data.

7 Conclusions and Outlook

This work presents the first complete implementation of OMNIFOLD used to unfold all particles in DIS
events measured with the H1 detector. Unfolding all particles in the events has enabled for the first
time many impactful studies; the first measurement of EECDIS in Breit frame is presented, as well as a
comparison of Jets in both the Center-of-Mass and Breit frames.
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The first study comparing of jets clustered in the laboratory and Breit frames, using the kT and Centauro
algorithms, respectively, indicate significant differences in the resulting z distribution, which is intended
to be a Lorentz invariant reflecting the energy fraction of the struck quark carried by the jet. These
differences suggest that the choice of clustering algorithm plays an important role in the analysis of this
variable, an effect not expected at leading order. However, this interpretation is tempered by the fact
that QED radiation—which has not been corrected for at this stage—is also expected to affect the z
distributions differently in the laboratory and Breit frames, with the latter being more sensitive due to the
required boost.
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