Diffractive Charm Production with H1

Dis 06, Tsukuba, 21.04.2006 Olaf Behnke, Uni Heidelberg

A Test of Factorisation in Diffraction

$\sigma = universal$ diffractive PDF \otimes hard ME

Inclusive diffraction

Diffractive charm:

- -γ**p** :**D***
- DIS : Charm contribution to σ Inclusive lifetime tag, D*

Diffractive Selection via Rapidity Gap

D* in γp: Specific Selections

- 99/00 data
- 47.0 pb⁻¹
- Tagged yp:
 - Measure scattered positron in tagger at z=-33 m
 - Q²<0.01 GeV²
 - Y ∈ [0.3,0.65]
- D* Selection:

- **D***
$$\rightarrow$$
 D^U π_{s} \rightarrow **K** π π

- p_t(D*) > 2 GeV
- |η(**D***)| < 1.5

D* in γp: 'Massive' NLO Calculation FMNR

Leading Order Processes:

Charm probes mainly direct γ **component** (in contrast to dijets)

D* in yp: Total Cross Section

Visible Range: Q²<0.01 GeV², 0.3<y<0.65 x_p<0.04, M_Y<1.6 GeV, |t|< 1 GeV², p_t(D*) > 2 GeV, |η(D*)| < 1.5

NLO Settings (FMNR): • $m_c = 1.5 \text{ GeV}$ • $\mu_f^2 = \mu_r^2 = (p_t^2 + 4m_c^2)$ •H1 2006 DPDF FIT •Peterson ($\epsilon_p = 0.035$) NLO Variations: $m_c = 1.3 \dots 1.7 \text{ GeV}$

$$\mu_{f}^{2} = \mu_{r}^{2} = \frac{1}{4} \dots 4$$

- Factorisation ok (within large errors)
- No evidence for diffr.
 γp suppression as
 observed for dijets

D* in γp vs Diffractive Variables

D* in γp vs D* and Event Kinematics

Charm in DIS: Reduced Cross Section

$$ilde{\sigma}_{D}^{car{x}}(x_{IP},eta,Q^2) = rac{d^3 \sigma_{D}^{car{c}}}{dx_{IP} deta dQ^2} rac{xQ^4}{2\pi lpha^2 (1+(1-y)^2)}$$

Two Measurements: 99/00 Data, ~50 pb⁻¹ x_p <0.04, M_Y<1.6 GeV, |t|< 1 GeV²

1. D* analysis $2 < Q^2 < 100 \text{ GeV}^2$, 0.05 < y < 0.7 $p_t(D^*) > 2 \text{ GeV}$, $|\eta(D^*)| < 1.5$ Large extrapol. factors ~2.5 from D* visible range to total charm σ

2. First inclusive lifetime tag measurement in diffractive DIS 15.8<Q²<100 GeV², 0.07<y<0.7

Incl. Lifetime Tag for Diffractive Charm in DIS

Negative subtracted

Apply simultaneous fit to negative subtracted S_1 , S_2 and total number of diffractive events -> determine diffractive charm cross section

Note: Beauty contribution is fixed in fit to Rapgap MC prediction and varied by -100% to +400% -> large syst. errors at medium and low β

Results: Reduced Cross Sections

Charm fractional contribution to diffr. DIS

~20%, similar as for inclusive DIS, Charm gives a large contribution!

Conclusions

Brand-new H1 measurements of diffractive charm production at HERA compared to NLO predictions using the H1 2006 DPDF:

D* in γp :

- Well described by NLO
- No evidence for suppression of diffr. γp as observed for dijets

Diffractive Charm Cross Section in DIS (incl Lifetime Tag & D*)

- Consistent results with two different methods
- Charm contributes ~20% to inclusive diffraction (in given Q² range)
- Adequate description by NLO