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Abstract

Energetic neutrons produced in ep collisions at HERA have been studied
with the ZEUS detector in the photoproduction regime at a mean photon-
proton center-of-mass energy of 220 GeV. The neutrons carry a large frac-
tion 0.64 < xp < 0.925 of the incoming proton energy, and the four-
momentum-transfer squared at the proton-neutron vertex is small, [t| <
0.425 GeV2. The x, distribution of the neutrons is measured in bins of
t. The (1 — z) distributions in the ¢ bins studied satisfy a power law
dN/dx; o (1 — x1)*®, with the powers a(t) following a linear function of
t:a(t) = 0.88 + 0.09(stat.) 70 5a(syst.) — (2.81 & 0.42(stat.) T} 5 (syst.) GeV~?)t.
This result is consistent with the expectations of pion-exchange models, in which
the incoming proton fluctuates to a neutron-pion state, and the electron interacts
with the pion.
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1 Introduction

Several studies of leading neutron production in ep interactions at HERA have been
reported previously [1-5]. Many features of the data are described by pion exchange
models, in which the incoming proton fluctuates into a neutron-pion state and the pion
interacts with the incoming electron or positron. The kinematic variables ¢, the square
of the four-momentum transfer at the proton-neutron vertex, and xy,, the energy fraction
of the proton carried by the neutron, are convenient variables for studying energy-angle
correlations. In this study of semi-inclusive photoproduction, yp — n.X, where the photon
is quasi-real, the energy distribution of leading neutrons is measured as a function of ¢,
which is determined using a new position detector to measure the angle of the neutron.
The (1 — x) distribution is presented as a function of ¢ for large z, (0.64 < x < 0.925)
and small |¢| (|t| < 0.425 GeV?). The results are interpreted in the context of pion
exchange, in order to provide a test of the consistency of this picture of leading neutron
production.

2 Experimental set-up and kinematics

The data used for this measurement were collected in the year 2000 at the ep collider
HERA with the ZEUS detector, during a short run period in which a special trigger was
implemented. The data set corresponds to an integrated luminosity of 9 pb~!. During
this period HERA collided 27.5 GeV positrons with 920 GeV protons at a center-of-mass
energy of 318 GeV.

Charged particles are tracked in the central tracking detector [6], which operates in a
magnetic field of 1.43 T provided by a thin superconducting solenoid and covers the polar-
angle! region 15° < 6 < 164°. Outside the solenoid is a hermetic, high-resolution uranium-—
scintillator calorimeter (CAL) [7] used to measure the energies of the final-state particles.

Bremsstrahlung ep — eyp and the photoproduction of hadrons ep — eX are tagged using
the luminosity (LUMI) detectors [8]. The bremsstrahlung photons are measured with a
lead-scintillator calorimeter located 107 m from the interaction point in the positron-beam
direction. A similar calorimeter at 35 m from the interaction point is used to measure
positrons scattered at very small angles in an energy range 5-20 GeV, with an energy
resolution of 0.19vE (E in GeV).

! The ZEUS coordinate system is a right-handed Cartesian system, with the Z axis pointing in the
proton beam direction, referred to as the “forward direction”, and the X axis pointing left towards
the center of HERA. The coordinate origin is at the nominal interaction point.



ZEUS has two detectors for measuring forward particles, a leading proton spectrometer
(LPS) [9], consisting of six stations of silicon strip detectors, and a forward neutron
calorimeter (FNC) [10-12] downstream from the LPS, 105 m from the interaction point.
The FNC is a lead-scintillator sampling calorimeter, the front section of which is divided
into 14 towers, as illustrated in Fig. [ The hadronic energy resolution, as measured in
a pion test beam at 120 GeV, is 0.65vE (E in GeV). Three planes of veto counters,
located 70, 78, and 199 cm in front of the calorimeter, are used to detect charged particles
produced by neutrons interacting in inactive material in front of the FNC.

Magnet apertures limit the FNC geometric acceptance to neutrons inside the area outlined
in Fig. [l This limit corresponds to neutron production angles less than 0.8 mrad; i.e.,
to transverse momenta pr = E,0, < 0.74x; GeV. The neutron production angle, 6,,, is
measured with respect to the proton beam direction at the interaction point. The mean
value of pr of the detected neutrons is 0.22 GeV. The overall acceptance of the FNC is
about 25% for neutrons with energy x; > 0.6 and 6,, < 0.8 mrad.

The forward neutron tracker (FNT), designed to measure the position of neutron showers,
was installed in the FNC in 1998. It consists of two hodoscope planes of 1.2 cm-wide
scintillator strips, with 17 strips measuring the X position and 15 strips measuring the
Y position. Figure [l shows the position of the FNT hodoscope in the FNC in the plane
transverse to the beam as well as the zero-degree point, the projection of the proton beam
direction at the interaction point onto the FNT. The FNT is situated approximately one
interaction length inside the FNC. This position is deep enough that a large fraction of
the neutrons begin to shower in front of the FNT, but not so deep as to compromise the
position resolution. The position resolution of neutron showers in the FN'T was measured
to be 0.23 cm by placing an adjustable collimator in front of the FNC during special test
and calibration runs.

The kinematics of inclusive photoproduction ep — eyp — eX at HERA is specified by W,
the photon-proton center-of-mass energy. This is related to the positron-proton center-
of-mass energy, /s, by W? = ys. The inelasticity, y, of the scattered positron is defined
by y = (E — E')/E, where E (E’) is the energy of the incoming (scattered) positron.

To describe the neutron-tagged process ep — eyp — enX, the variables x; and pr are
also used. These are related to t by

2

1—

t~ _Pr 7( “L) (mi — :Eme,) )
TL TL

where m,, is the mass of the proton and m,, is the mass of the neutron.



3 Event selection

The data sample was collected using a trigger that required at least 5 GeV in the LUMI
electron calorimeter in coincidence with at least 0.5 GeV in the rear part (¢ > 127°) of
the CAL. In addition, the trigger required an energy deposit in the FNC corresponding
to xp > 0.2. The trigger efficiency of the FNC was close to 100% for the x; range under
consideration in this paper (x > 0.64).

Photoproduction events were selected offline using cuts based on the reconstructed vertex
position and calorimeter energy deposits. The events were required to have an energy
in the LUMI electron calorimeter in the range 10 < E’ < 18 GeV and an energy in the
LUMI photon calorimeter smaller than 1 GeV to eliminate bremsstrahlung overlap events.
These cuts restricted the photon virtuality, Q?, to values smaller than ~ 0.02 GeV?, with
a median value of ~ 1072 GeV?, and resulted in a mean value for W of 220 GeV.

Events with a leading neutron were selected offline by requiring x; > 0.64 and by imposing
the following cleaning cuts. Scattered protons, bent into the top towers 11 to 14 of the
FNC (Fig. 1) by the HERA dipole magnets, were eliminated by requiring that the tower
with the maximum energy deposit be in the range 6 to 9. Photons were removed by
eliminating showers with a small energy-weighted vertical width.

Neutrons that started showering in front of the FNC were removed by requiring that the
scintillator veto counter farthest from the FNC had an energy deposit below that of a
minimum-ionizing particle. To minimize false vetoes due to calorimeter albedo, only the
farthest counter was used.

Finally, only events with x; < 0.925 were used in the analysis, since the effect of any
error in the energy scale, and the influence of exchanges other than the pion, become
significant at high z; (see Sections 5 and 6, respectively). After these selection cuts, the
data sample consisted of 31756 events.

Not all neutrons start to shower in front of the FNT. To select events with useful position
information, it was required that the energy deposited in each plane of the FNT be well
above pedestal and that the strips with the two largest energy deposits be adjacent. These
cuts reduced the sample to 17919 events.

4 Neutron efficiencies and correction factors

The efficiencies and correction factors for the leading neutron were calculated with a
single-particle Monte Carlo (MC) simulation. The MC program included the geometry of
the proton beam-line magnets which define the geometric acceptance, the details of the



absorbing material as obtained from survey measurements, the proton beam divergence,
and the measured energy (FNC) and position (FNT) resolutions for hadronic showers.
The MC program accounts for the different amount of absorbing material in front of the
FNC for the two cases when the ZEUS LPS was, or was not, in the data-taking position.
Events were generated using the observed x;, spectrum and an exponential distribution in
transverse momentum, e~*@LP7_ The slope b(xy) was iterated until the MC distributions
matched the observed uncorrected distributions. The corrected data distributions were
obtained using bin-by-bin unfolding. The two samples of data, corresponding to the
two cases when the LPS was, or was not, in the data-taking position, were corrected
independently.

The simulation of the absorbing material was cross-checked by producing a material map
from an analysis of low-energy (z; < 0.27) neutron data, under the assumption that low
xr, neutrons are distributed uniformly over the geometric acceptance. This assumption is
based on noting that both the maximum pr accepted by the FNC as well as the slope b
decrease with zy, [3], and hence the geometric acceptance covers a small region of a slowly
changing pr distribution. An analysis using this material map gives results consistent
with those obtained using the material measurements from the survey.

The proton beam had a transverse momentum spread of approximately 0.04 GeV hor-
izontally and 0.1 GeV vertically, as measured by the LPS. The variation of the proton
beam orbit was considerably smaller than this spread. The spread broadens the observed
position distribution of the neutrons in the FNC, but does not change the peak position.

5 Results

The events were binned in x;, and t. The bins were chosen to be well within the acceptance
in the x-t plane and contained 12523 events. The corrected xj, distributions of leading
neutrons as a function of ¢ are shown in Fig. Bl The distributions are consistent with a
power-law dependence in (1 — z;) of the form dN/dxy, o< (1 — )", For each t bin the
power a(t) was obtained by a least-squares fit of this function to the observed distribution.
Only statistical errors were used in the fits because the systematic uncertainties are highly
correlated. The resulting fits are superposed on the measured data points.

There are two main sources of systematic uncertainty: an uncertainty of 2% in the
absolute energy scale of the FNC resulting from the calibration procedure [3,12,13], and
an uncertainty of £0.2 cm in each of the X and Y coordinates of the zero-degree point
determined from the peak in the X, Y distribution in the FNT [14]. The systematic uncer-
tainties on a(t) were obtained by varying the energy scale and beam-spot position within



their uncertainties and then repeating the complete analysis. The dominant contribution
comes from the energy-scale uncertainty.

The powers determined from the fits to the data in Fig. 2 are plotted as a function of —t
in Fig. B They are consistent with a linear function,

a(t) = 0.8 £ 0.09(stat.) *J:3 (syst.) — (2.81 % 0.42(stat.) L (syst.) GeV2)t.

The correlation between the slope and the intercept is predominantly statistical; the
coefficient of correlation is -0.9.

6 Discussion

Previous experiments ([3] and references therein) have shown that leading neutron produc-
tion in lepton-hadron and hadron-hadron experiments can be described by pion-exchange
models. The consistency of this description can be tested by assuming that pion exchange
is the dominant mechanism and deriving the pion Regge trajectory from the measured
values of a(t).

The pion “flux”, the splitting function of a proton to a neutron and pion (p — nzr™), can
be written [15] as

1 Gy —t
47 4 (m2 —t)2

fw/p(IDt) (1 - xL)l_2a7r(t) (F(xL>t))2 ) (1)

where ¢y, is the coupling at the nmp vertex, m, is the mass of the pion, and a,(t) =
/

al (t —m?) is the Regge trajectory of the pion [16]. The function F(xy,t) is a form-factor
which accounts for the effect of hadronic structure on the p — 7n amplitude and for
final-state rescattering of the neutron. As discussed elsewhere [2], this prescription for
the flux with F'(xp,t) set to 1 describes most of the pn — Xp data and also gives a good
description of the ZEUS z, spectrum for photoproduced neutrons [2,3]. In this analysis

it is assumed that F'(xp,t) is a function of ¢ only.

The flux is thus of the form f,,, = A(t) (1 — z1)' 2. The cross section for neutron

production is given by the product of the flux and the total y7 cross-section 0., (s") =
Oy (1 — 2)W?) as

d*o B

d!L’Ldt N

where s’ = (1 — x7)W? is the square of the ym center-of-mass energy. The total ym cross

A(t)(1 — :BL)l_Qa”(t)aw ((1 — xL)WQ) ,

section is assumed to have a power law dependence on &', for large s, of the Donnachie-
Landshoff form [17]
0n(s') = A(s)" + B(s) ",



where € ~ 0.1 and 7 = 0.5. The two terms correspond to the exchange of the Pomeron
(IP) and the Reggeon (IR), respectively. For large s’ the Pomeron contribution dominates
that of the Reggeon. In this case the (1 — z;) distribution is proportional to (1 — z,)*®,
where

a(t) =14 € —2at.

Here m? has been ignored, since its effect on the result is much smaller than the systematic
error. Therefore, the measured linear function a(t) discussed in Section 5 has an intercept
of ap(0) = (1 + ¢€), the value of the Pomeron trajectory at t = 0, and a slope of 2o/, twice
the slope of the pion trajectory.

It is assumed that the IP term dominates in the xy region of this measurement. The
fit [17] to the total yp cross section suggests that the highest contribution of the IR term
is about 12% at x; = 0.925. As x; decreases (s’ increases), the Reggeon contribution
falls rapidly. No correction for the Reggeon contribution is applied in this analysis.

Previous measurements of the effective Regge trajectory in the p — n transition in
hadronic interactions [16,18,19] found it to be dominated by the pion, with the intercept
in the range -0.1 to 0.3 and the slope in the range 1.1 to 1.3 GeV~2.

The values extracted from the experimental results,
1+e=ap(0) =0.88 £ 0.09(stat.) )35 (syst.)

and
of = 1.40 4 0.21(stat.) T30 (syst.) GeV 2,

are consistent with the expectation that az(0) is about 1.1 and o, is about 1 GeV~2 in
the range of 0.08 < —t < 0.425 GeV?, and so support the hypothesis that pion exchange
is the dominant process in this reaction. Note that the data rule out a significant role for
p exchange. If the p trajectory, o, = 0.5+t [20], is substituted for the pion trajectory in
Eq. (1), the value for 1 + € extracted from the data is 1.88 rather than 0.88, which is an
inconsistent result for ap(0).

7 Summary

The dependence of the energy distribution of photoproduced leading neutrons on the
momentum transfer at the proton-neutron vertex has been studied at an average photon-
proton center-of-mass energy of 220 GeV. The (1 — zy) distributions in bins of ¢ are de-
scribed by a power law, dN/dx;, o< (1—21)*® | with the powers a(t) following a linear func-

tion of t: a(t) = 0.88 4 0.09(stat.) 535 (syst.) — (2.81 + 0.42(stat.) "¢ &5 (syst.) GeV?)t.



The linear function can be interpreted in the framework of Regge theory. The measured
values of the intercept and slope are in agreement with the expectations from pion ex-
change: i.e., the intercept is the value of the Pomeron trajectory at ¢ = 0, and the slope
is twice the slope of the pion trajectory. The data thus confirm that the production of
leading neutrons in photon-proton collisions is well described by the pion-exchange model.
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Figure 1:  The FNC as viewed from the rear with the tower numbers indicated

on the left-hand side. The scintillator strips of the FNT hodoscope are shown
superposed on towers 6-9 of the FNC. The irreqular contour shows the outline of
the geometric acceptance allowed by the proton beam-line elements. The full square
indicates the approximate position of the projection of the zero-degree line. The

proton beampipe, shown as a circle, passes through a hole in the upper part of the
FNC.
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Figure 2:  The x; distribution in bins of t. The curves show the results of fits

to the data with 0.64 < xp < 0.925 to the form (1 — x.)*®. The inner error bars
indicate the statistical uncertainties and the full bars indicate the quadratic sum of
the statistical and systematic uncertainties.
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Figure 3: The powers, a(t), with statistical errors, as a function of —t. The

solid line is the result of the fit described in the text. The shaded band shows the
systematic uncertainty.
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