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Abstract

Energetic neutrons produced in ep collisions at HERA have been studied

with the ZEUS detector in the photoproduction regime at a mean photon-

proton center-of-mass energy of 220 GeV. The neutrons carry a large frac-

tion 0.64 < xL < 0.925 of the incoming proton energy, and the four-

momentum-transfer squared at the proton-neutron vertex is small, |t| <

0.425 GeV2. The xL distribution of the neutrons is measured in bins of

t. The (1 − xL) distributions in the t bins studied satisfy a power law

dN/dxL ∝ (1 − xL)a(t), with the powers a(t) following a linear function of

t: a(t) = 0.88 ± 0.09(stat.)+0.34
−0.39(syst.) − (2.81 ± 0.42(stat.)+1.13

−0.62(syst.) GeV−2)t.

This result is consistent with the expectations of pion-exchange models, in which

the incoming proton fluctuates to a neutron-pion state, and the electron interacts

with the pion.
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man, W. Zeuner

Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

S. Schlenstedt

DESY Zeuthen, Zeuthen, Germany

G. Barbagli, E. Gallo, C. Genta, P. G. Pelfer

University and INFN, Florence, Italy e

A. Bamberger, A. Benen, F. Karstens, D. Dobur, N.N. Vlasov

Fakultät für Physik der Universität Freiburg i.Br., Freiburg i.Br., Germany b

M. Bell, P.J. Bussey, A.T. Doyle, J. Ferrando, J. Hamilton, S. Hanlon, D.H. Saxon,

I.O. Skillicorn

Department of Physics and Astronomy, University of Glasgow, Glasgow, United King-

dom m

I. Gialas

Department of Engineering in Management and Finance, Univ. of Aegean, Greece

T. Carli, T. Gosau, U. Holm, N. Krumnack, E. Lohrmann, M. Milite, H. Salehi, P. Schleper,

T. Schörner-Sadenius, S. Stonjek12, K. Wichmann, K. Wick, A. Ziegler, Ar. Ziegler

Hamburg University, Institute of Exp. Physics, Hamburg, Germany b

C. Collins-Tooth, C. Foudas, R. Gonçalo13, K.R. Long, A.D. Tapper
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J. Ciborowski22, R. Ciesielski23, P.  Lużniak24, R.J. Nowak, J.M. Pawlak, J. Sztuk25,

T. Tymieniecka, A. Ukleja, J. Ukleja26, A.F. Żarnecki
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25  Lódź University, Poland, supported by the KBN grant 2P03B12925
26 supported by the KBN grant 2P03B12725
27 on leave from MSU, partly supported by the Weizmann Institute via the U.S.-Israel BSF

7



a supported by the Natural Sciences and Engineering Research Council of

Canada (NSERC)
b supported by the German Federal Ministry for Education and Research

(BMBF), under contract numbers HZ1GUA 2, HZ1GUB 0, HZ1PDA 5,

HZ1VFA 5
c supported by the MINERVA Gesellschaft für Forschung GmbH, the Israel

Science Foundation, the U.S.-Israel Binational Science Foundation and the

Benozyio Center for High Energy Physics
d supported by the German-Israeli Foundation and the Israel Science Foundation
e supported by the Italian National Institute for Nuclear Physics (INFN)
f supported by the Japanese Ministry of Education, Culture, Sports, Science

and Technology (MEXT) and its grants for Scientific Research
g supported by the Korean Ministry of Education and Korea Science and Engi-

neering Foundation
h supported by the Netherlands Foundation for Research on Matter (FOM)
i supported by the Polish State Committee for Scientific Research, grant no.

620/E-77/SPB/DESY/P-03/DZ 117/2003-2005
j partially supported by the German Federal Ministry for Education and Re-

search (BMBF)
k supported by RF President grant N 1685.2003.2 for the leading scientific

schools and by the Russian Ministry of Industry, Science and Technology

through its grant for Scientific Research on High Energy Physics
l supported by the Spanish Ministry of Education and Science through funds

provided by CICYT
m supported by the Particle Physics and Astronomy Research Council, UK
n supported by the US Department of Energy
o supported by the US National Science Foundation
p supported by the Polish Ministry of Scientific Research and Information Tech-

nology, grant no. 112/E-356/SPUB/DESY/P-03/DZ 116/2003-2005
q supported by the Polish State Committee for Scientific Research, grant no.

115/E-343/SPUB-M/DESY/P-03/DZ 121/2001-2002, 2 P03B 07022

8



1 Introduction

Several studies of leading neutron production in ep interactions at HERA have been

reported previously [1–5]. Many features of the data are described by pion exchange

models, in which the incoming proton fluctuates into a neutron-pion state and the pion

interacts with the incoming electron or positron. The kinematic variables t, the square

of the four-momentum transfer at the proton-neutron vertex, and xL, the energy fraction

of the proton carried by the neutron, are convenient variables for studying energy-angle

correlations. In this study of semi-inclusive photoproduction, γp → nX, where the photon

is quasi-real, the energy distribution of leading neutrons is measured as a function of t,

which is determined using a new position detector to measure the angle of the neutron.

The (1 − xL) distribution is presented as a function of t for large xL (0.64 < xL < 0.925)

and small |t| (|t| < 0.425 GeV2). The results are interpreted in the context of pion

exchange, in order to provide a test of the consistency of this picture of leading neutron

production.

2 Experimental set-up and kinematics

The data used for this measurement were collected in the year 2000 at the ep collider

HERA with the ZEUS detector, during a short run period in which a special trigger was

implemented. The data set corresponds to an integrated luminosity of 9 pb−1. During

this period HERA collided 27.5 GeV positrons with 920 GeV protons at a center-of-mass

energy of 318 GeV.

Charged particles are tracked in the central tracking detector [6], which operates in a

magnetic field of 1.43 T provided by a thin superconducting solenoid and covers the polar-

angle1 region 15◦ < θ < 164◦. Outside the solenoid is a hermetic, high-resolution uranium–

scintillator calorimeter (CAL) [7] used to measure the energies of the final-state particles.

Bremsstrahlung ep → eγp and the photoproduction of hadrons ep → eX are tagged using

the luminosity (LUMI) detectors [8]. The bremsstrahlung photons are measured with a

lead-scintillator calorimeter located 107 m from the interaction point in the positron-beam

direction. A similar calorimeter at 35 m from the interaction point is used to measure

positrons scattered at very small angles in an energy range 5-20 GeV, with an energy

resolution of 0.19
√

E (E in GeV).

1 The ZEUS coordinate system is a right-handed Cartesian system, with the Z axis pointing in the

proton beam direction, referred to as the “forward direction”, and the X axis pointing left towards

the center of HERA. The coordinate origin is at the nominal interaction point.
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ZEUS has two detectors for measuring forward particles, a leading proton spectrometer

(LPS) [9], consisting of six stations of silicon strip detectors, and a forward neutron

calorimeter (FNC) [10–12] downstream from the LPS, 105 m from the interaction point.

The FNC is a lead-scintillator sampling calorimeter, the front section of which is divided

into 14 towers, as illustrated in Fig. 1. The hadronic energy resolution, as measured in

a pion test beam at 120 GeV, is 0.65
√

E (E in GeV). Three planes of veto counters,

located 70, 78, and 199 cm in front of the calorimeter, are used to detect charged particles

produced by neutrons interacting in inactive material in front of the FNC.

Magnet apertures limit the FNC geometric acceptance to neutrons inside the area outlined

in Fig. 1. This limit corresponds to neutron production angles less than 0.8 mrad; i.e.,

to transverse momenta pT = Enθn ≤ 0.74xL GeV. The neutron production angle, θn, is

measured with respect to the proton beam direction at the interaction point. The mean

value of pT of the detected neutrons is 0.22 GeV. The overall acceptance of the FNC is

about 25% for neutrons with energy xL > 0.6 and θn < 0.8 mrad.

The forward neutron tracker (FNT), designed to measure the position of neutron showers,

was installed in the FNC in 1998. It consists of two hodoscope planes of 1.2 cm-wide

scintillator strips, with 17 strips measuring the X position and 15 strips measuring the

Y position. Figure 1 shows the position of the FNT hodoscope in the FNC in the plane

transverse to the beam as well as the zero-degree point, the projection of the proton beam

direction at the interaction point onto the FNT. The FNT is situated approximately one

interaction length inside the FNC. This position is deep enough that a large fraction of

the neutrons begin to shower in front of the FNT, but not so deep as to compromise the

position resolution. The position resolution of neutron showers in the FNT was measured

to be 0.23 cm by placing an adjustable collimator in front of the FNC during special test

and calibration runs.

The kinematics of inclusive photoproduction ep → eγp → eX at HERA is specified by W ,

the photon-proton center-of-mass energy. This is related to the positron-proton center-

of-mass energy,
√

s, by W 2 = ys. The inelasticity, y, of the scattered positron is defined

by y = (E − E ′)/E, where E (E ′) is the energy of the incoming (scattered) positron.

To describe the neutron-tagged process ep → eγp → enX, the variables xL and pT are

also used. These are related to t by

t ≈ −p2
T

xL
− (1 − xL)

xL

(

m2
n − xLm2

p

)

,

where mp is the mass of the proton and mn is the mass of the neutron.
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3 Event selection

The data sample was collected using a trigger that required at least 5 GeV in the LUMI

electron calorimeter in coincidence with at least 0.5 GeV in the rear part (θ > 127◦) of

the CAL. In addition, the trigger required an energy deposit in the FNC corresponding

to xL > 0.2. The trigger efficiency of the FNC was close to 100% for the xL range under

consideration in this paper (xL > 0.64).

Photoproduction events were selected offline using cuts based on the reconstructed vertex

position and calorimeter energy deposits. The events were required to have an energy

in the LUMI electron calorimeter in the range 10 < E′ < 18 GeV and an energy in the

LUMI photon calorimeter smaller than 1 GeV to eliminate bremsstrahlung overlap events.

These cuts restricted the photon virtuality, Q2, to values smaller than ∼ 0.02 GeV2, with

a median value of ≈ 10−3 GeV2, and resulted in a mean value for W of 220 GeV.

Events with a leading neutron were selected offline by requiring xL > 0.64 and by imposing

the following cleaning cuts. Scattered protons, bent into the top towers 11 to 14 of the

FNC (Fig. 1) by the HERA dipole magnets, were eliminated by requiring that the tower

with the maximum energy deposit be in the range 6 to 9. Photons were removed by

eliminating showers with a small energy-weighted vertical width.

Neutrons that started showering in front of the FNC were removed by requiring that the

scintillator veto counter farthest from the FNC had an energy deposit below that of a

minimum-ionizing particle. To minimize false vetoes due to calorimeter albedo, only the

farthest counter was used.

Finally, only events with xL < 0.925 were used in the analysis, since the effect of any

error in the energy scale, and the influence of exchanges other than the pion, become

significant at high xL (see Sections 5 and 6, respectively). After these selection cuts, the

data sample consisted of 31 756 events.

Not all neutrons start to shower in front of the FNT. To select events with useful position

information, it was required that the energy deposited in each plane of the FNT be well

above pedestal and that the strips with the two largest energy deposits be adjacent. These

cuts reduced the sample to 17 919 events.

4 Neutron efficiencies and correction factors

The efficiencies and correction factors for the leading neutron were calculated with a

single-particle Monte Carlo (MC) simulation. The MC program included the geometry of

the proton beam-line magnets which define the geometric acceptance, the details of the
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absorbing material as obtained from survey measurements, the proton beam divergence,

and the measured energy (FNC) and position (FNT) resolutions for hadronic showers.

The MC program accounts for the different amount of absorbing material in front of the

FNC for the two cases when the ZEUS LPS was, or was not, in the data-taking position.

Events were generated using the observed xL spectrum and an exponential distribution in

transverse momentum, e−b(xL)p2

T . The slope b(xL) was iterated until the MC distributions

matched the observed uncorrected distributions. The corrected data distributions were

obtained using bin-by-bin unfolding. The two samples of data, corresponding to the

two cases when the LPS was, or was not, in the data-taking position, were corrected

independently.

The simulation of the absorbing material was cross-checked by producing a material map

from an analysis of low-energy (xL < 0.27) neutron data, under the assumption that low

xL neutrons are distributed uniformly over the geometric acceptance. This assumption is

based on noting that both the maximum pT accepted by the FNC as well as the slope b

decrease with xL [3], and hence the geometric acceptance covers a small region of a slowly

changing pT distribution. An analysis using this material map gives results consistent

with those obtained using the material measurements from the survey.

The proton beam had a transverse momentum spread of approximately 0.04 GeV hor-

izontally and 0.1 GeV vertically, as measured by the LPS. The variation of the proton

beam orbit was considerably smaller than this spread. The spread broadens the observed

position distribution of the neutrons in the FNC, but does not change the peak position.

5 Results

The events were binned in xL and t. The bins were chosen to be well within the acceptance

in the xL-t plane and contained 12 523 events. The corrected xL distributions of leading

neutrons as a function of t are shown in Fig. 2. The distributions are consistent with a

power-law dependence in (1 − xL) of the form dN/dxL ∝ (1 − xL)a(t). For each t bin the

power a(t) was obtained by a least-squares fit of this function to the observed distribution.

Only statistical errors were used in the fits because the systematic uncertainties are highly

correlated. The resulting fits are superposed on the measured data points.

There are two main sources of systematic uncertainty: an uncertainty of ±2% in the

absolute energy scale of the FNC resulting from the calibration procedure [3,12,13], and

an uncertainty of ±0.2 cm in each of the X and Y coordinates of the zero-degree point

determined from the peak in the X, Y distribution in the FNT [14]. The systematic uncer-

tainties on a(t) were obtained by varying the energy scale and beam-spot position within
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their uncertainties and then repeating the complete analysis. The dominant contribution

comes from the energy-scale uncertainty.

The powers determined from the fits to the data in Fig. 2 are plotted as a function of −t

in Fig. 3. They are consistent with a linear function,

a(t) = 0.88 ± 0.09(stat.)+0.34
−0.39(syst.) − (2.81 ± 0.42(stat.)+1.13

−0.62(syst.) GeV−2)t.

The correlation between the slope and the intercept is predominantly statistical; the

coefficient of correlation is -0.9.

6 Discussion

Previous experiments ([3] and references therein) have shown that leading neutron produc-

tion in lepton-hadron and hadron-hadron experiments can be described by pion-exchange

models. The consistency of this description can be tested by assuming that pion exchange

is the dominant mechanism and deriving the pion Regge trajectory from the measured

values of a(t).

The pion “flux”, the splitting function of a proton to a neutron and pion (p → nπ+), can

be written [15] as

fπ/p(xL, t) =
1

4π

g2
nπp

4π

−t

(m2
π − t)2

(1 − xL)1−2απ(t) (F (xL, t))2 , (1)

where gnπp is the coupling at the nπp vertex, mπ is the mass of the pion, and απ(t) =

α′

π(t−m2
π) is the Regge trajectory of the pion [16]. The function F (xL, t) is a form-factor

which accounts for the effect of hadronic structure on the p → πn amplitude and for

final-state rescattering of the neutron. As discussed elsewhere [2], this prescription for

the flux with F (xL, t) set to 1 describes most of the pn → Xp data and also gives a good

description of the ZEUS xL spectrum for photoproduced neutrons [2, 3]. In this analysis

it is assumed that F (xL, t) is a function of t only.

The flux is thus of the form fπ/p = A(t) (1 − xL)1−2απ(t). The cross section for neutron

production is given by the product of the flux and the total γπ cross-section σγπ(s′) =

σγπ ((1 − xL)W 2) as

d2σ

dxLdt
= A(t)(1 − xL)1−2απ(t)σγπ

(

(1 − xL)W 2
)

,

where s′ = (1 − xL)W 2 is the square of the γπ center-of-mass energy. The total γπ cross

section is assumed to have a power law dependence on s′, for large s′, of the Donnachie-

Landshoff form [17]

σγπ(s′) = A(s′)ǫ + B(s′)−η,
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where ǫ ≈ 0.1 and η ≈ 0.5. The two terms correspond to the exchange of the Pomeron

(IP ) and the Reggeon (IR), respectively. For large s′ the Pomeron contribution dominates

that of the Reggeon. In this case the (1− xL) distribution is proportional to (1− xL)a(t),

where

a(t) = 1 + ǫ − 2α′

πt.

Here m2
π has been ignored, since its effect on the result is much smaller than the systematic

error. Therefore, the measured linear function a(t) discussed in Section 5 has an intercept

of αIP (0) = (1 + ǫ), the value of the Pomeron trajectory at t = 0, and a slope of 2α′

π, twice

the slope of the pion trajectory.

It is assumed that the IP term dominates in the xL region of this measurement. The

fit [17] to the total γp cross section suggests that the highest contribution of the IR term

is about 12% at xL = 0.925. As xL decreases (s′ increases), the Reggeon contribution

falls rapidly. No correction for the Reggeon contribution is applied in this analysis.

Previous measurements of the effective Regge trajectory in the p → n transition in

hadronic interactions [16,18,19] found it to be dominated by the pion, with the intercept

in the range -0.1 to 0.3 and the slope in the range 1.1 to 1.3 GeV−2.

The values extracted from the experimental results,

1 + ǫ = αIP (0) = 0.88 ± 0.09(stat.)+0.34
−0.39(syst.)

and

α′

π = 1.40 ± 0.21(stat.)+0.56
−0.31(syst.) GeV−2,

are consistent with the expectation that αIP (0) is about 1.1 and α′

π is about 1 GeV−2 in

the range of 0.08 < −t < 0.425 GeV2, and so support the hypothesis that pion exchange

is the dominant process in this reaction. Note that the data rule out a significant role for

ρ exchange. If the ρ trajectory, αρ = 0.5 + t [20], is substituted for the pion trajectory in

Eq. (1), the value for 1 + ǫ extracted from the data is 1.88 rather than 0.88, which is an

inconsistent result for αIP (0).

7 Summary

The dependence of the energy distribution of photoproduced leading neutrons on the

momentum transfer at the proton-neutron vertex has been studied at an average photon-

proton center-of-mass energy of 220 GeV. The (1 − xL) distributions in bins of t are de-

scribed by a power law, dN/dxL ∝ (1−xL)a(t), with the powers a(t) following a linear func-

tion of t: a(t) = 0.88 ± 0.09(stat.)+0.34
−0.39(syst.) − (2.81 ± 0.42(stat.)+1.13

−0.62(syst.) GeV−2)t.
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The linear function can be interpreted in the framework of Regge theory. The measured

values of the intercept and slope are in agreement with the expectations from pion ex-

change: i.e., the intercept is the value of the Pomeron trajectory at t = 0, and the slope

is twice the slope of the pion trajectory. The data thus confirm that the production of

leading neutrons in photon-proton collisions is well described by the pion-exchange model.
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Figure 1: The FNC as viewed from the rear with the tower numbers indicated
on the left-hand side. The scintillator strips of the FNT hodoscope are shown
superposed on towers 6-9 of the FNC. The irregular contour shows the outline of

the geometric acceptance allowed by the proton beam-line elements. The full square
indicates the approximate position of the projection of the zero-degree line. The
proton beampipe, shown as a circle, passes through a hole in the upper part of the

FNC.
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Figure 2: The xL distribution in bins of t. The curves show the results of fits
to the data with 0.64 < xL < 0.925 to the form (1 − xL)a(t). The inner error bars

indicate the statistical uncertainties and the full bars indicate the quadratic sum of
the statistical and systematic uncertainties.
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solid line is the result of the fit described in the text. The shaded band shows the
systematic uncertainty.
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