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Abstract

The photoproduction of D**(2010) mesons associated with a leading neutron
has been observed with the ZEUS detector in ep collisions at HERA using an
integrated luminosity of 80 pb~!. The neutron carries a large fraction, x;, > 0.2,
of the incoming proton beam energy and is detected at very small production
angles, 6, < 0.8 mrad, an indication of peripheral scattering. The D* meson
is centrally produced with pseudorapidity |n| < 1.5, and has a transverse mo-
mentum pr > 1.9 GeV, which is large compared to the average transverse mo-
mentum of the neutron of 0.22 GeV. The ratio of neutron-tagged to inclusive
D* production is 8.85 + 0.93(stat.) )¢} (syst.) % in the photon-proton center-of-
mass energy range 130 < W < 280 GeV. The data suggest that the presence of
a hard scale enhances the fraction of events with a leading neutron in the final
state.
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1 Introduction

Events containing a leading neutron have been studied in ep collisions at HERA [1-4].
The neutrons carry a large fraction of the incoming proton beam energy, x; > 0.2, and
are produced at very small scattering angles, 6, < 0.8 mrad, indicative of a peripheral
process.

The small transverse momenta (pr) which characterize leading baryon production pro-
cesses imply a soft scale, which means that a non-perturbative approach is required to
model such events. Particle-exchange models within Regge theory [5], in particular the
one-pion-exchange model (OPE) [6-8], are often applied to describe leading neutron pro-
duction. Charm production, in contrast, can be used to investigate parton dynamics
because the charm-quark mass provides the hard scale necessary to ensure the applica-
bility of perturbative Quantum Chromodynamics (pQCD). Therefore the study of charm
production in events with a leading neutron gives information on the interplay between
soft and hard scales.

This letter presents measurements of D** photoproduction associated with a leading neu-
tron. Differential cross sections and ratios to inclusive D** photoproduction are reported.
These results extend previous ZEUS studies [1,3,4] of leading-neutron production in dijet
and inclusive photoproduction and deep inelastic scattering.

2 Charm and neutron production

An important process in charm photoproduction is Boson-Gluon Fusion (BGF). At leading
order this corresponds to the direct component where the photon couples directly to a
high-transverse-momentum c¢ pair which interacts with a gluon from the proton. Another
contribution to the cross section comes from the resolved component, where the photon
acts as a source of partons, interacting with the proton mostly via charm excitation
processes, cq — c¢q and cg — cg [9].

The mechanism for leading neutron production is not well understood. In the following
subsections some models for neutron production are briefly discussed.

2.1 Fragmentation models

In fragmentation models of partons into hadrons, such as the cluster model [10] or the
Lund string model [11], a certain fraction of neutrons is expected in the final state. In
this case the leading neutrons are produced by fragmentation of the proton remnant using



the same mechanism as is used for the other final state hadrons. Such models predict a
softer zy distribution than that measured [1-4].

2.2 One-pion-exchange model

Previous studies have shown that particle-exchange models [6-8,12-15] describe data on
leading neutron production both at HERA [1-4] and at hadroproduction experiments
[16-25]. In such models the transition amplitude for p — n is dominated by OPE and the
electroproduction cross section can be written as the convolution of a function describing
the splitting of a proton into a mn system, i.e. the pion flux factor fr/,(xr,t), and the er
cross section:

dae —e'nX e
ﬁ = fapplzr, t)o " (s), (1)

where t is the squared four-momentum transfer at the proton vertex, s’ = s(1 —zp) is the
squared center-of-mass energy of the err system and s is that of the ep.

The flux factors found in the literature can be expressed in general as [8, 15]

_ LQQI%WP —t
CAm 4m (t—m2)?

Frpp(@L,t) (L —ar)' O [F (2, )], (2)
where g2 /(4m) ~ 14.5 is the pmp coupling constant, m, is the pion mass and «a(t) is
defined below. The form-factor F'(xy,t) accounts for the finite size of the nucleon and
pion. Examples of flux factor parametrizations are:

o f, [26]:
(t—m2)

™

, a(t) =0, 3

= e ®)
where R = 0.6 GeV™! and F(z,t) is the light-cone form factor.

o f2[8]:

F(zp,t) =exp [Rz

F(xp,t) =1, a(t) = a(t) (4)
where o, (t) >~ t (with ¢ in GeV?) is the Regge trajectory of the pion.

o f3[27):
F(zp,t) = explb(t —m3)], a(t) = ax(t) (5)

where b = 0.3 GeV~2 and F(xr,t) is the exponential form factor ;

o £, [28]:
(1 —mz/A%)

(1—12/A%)
where A = 0.25 GeV and F(zp,t) is the monopole form factor.

F(xzp,t) = , aft)=0 (6)



The term ¢°™ in Eq. ([Il) involve the parton distribution in the pion. Charm production in
association with a leading neutron is potentially sensitive to the gluon content of the pion
in OPE models via the BGF process. Parametrizations for the pionic parton distribution
function (PDF) available in the literature were obtained by performing fits to 7N scatter-
ing data, assuming some parametrization for the nucleon structure function. Examples of
such parametrizations are those by Owens [29] which come from fits on J/¥ and dimuon
production data. The more recent GRV parametrizations [30] assume a valence-like struc-
ture for the pion at a certain low scale. This distribution is dynamically evolved and the
results combined with the constraints imposed by prompt photon production data on the
pionic gluon density.

2.3 Rescattering effects

From the factorization hypothesis expressed in Eq. ([), it is expected that the ratios, ,
of neutron-tagged to inclusive cross sections for different electroproduction processes are
about the same. Most of the dependence of the cross sections on the kinematics of the
processes cancels; remaining differences can be attributed to differences between the pion
and proton energies and their PDFs. However, larger differences than these may arise
from neutron absorption, which can occur through rescattering of the neutron on the
exchanged photon [14,31]. With increasing size of the virtual photon more rescattering
may be expected.

Inclusive photoproduction cross sections are well described by vector meson dominance
models [32-34], where the dipole associated with the photon is of hadronic size. In
dijet photoproduction, the presence of the hard scale given by the transverse energy of
the jets implies smaller dipole size. In the infinite-momentum frame the smaller dipole
size corresponds to the enhancement of the direct photon component at high transverse
energy Fr. Such an enhancement has been observed at HERA [35]. Absorptive effects
in dijet photoproduction, therefore, are expected to be smaller than those in inclusive
photoproduction. In the case of charm photoproduction, an additional hard scale is
provided by the mass of the charm quark. Previous ZEUS measurements have shown that
requiring the presence of charm further suppresses the resolved component [36] compared
to inclusive dijet photoproduction. Therefore rescattering in D* photoproduction may be
further suppressed in comparison to dijet photoproduction. In deep inelastic scattering
(DIS), at sufficiently high photon virtuality, little rescattering should occur. Within such
a picture, therefore, the ratios are expected to have the following relationship:

rP < rl < ,,AD S I.DIS.



3 Experimental conditions

The integrated luminosity of 80.2 + 1.8 pb™" used for this measurement was collected at
the ep collider HERA with the ZEUS detector during 1998 - 2000, when HERA collided
27.5GeV electrons or positrons' with 920 GeV protons, giving a center-of-mass energy of
318 GeV.

A detailed description of the ZEUS detector can be found elsewhere [37]. A brief outline of
the components that are most relevant for this analysis is given below. Charged particles
are tracked in the central tracking detector (CTD) [38], which operates in a magnetic
field of 1.43 T provided by a thin superconducting solenoid. The central tracking detector
consists of 72 cylindrical drift chamber layers, organized in nine superlayers covering the
polar-angle? region 15° < # < 164°. The transverse-momentum resolution for full-length
tracks is o(pr)/pr = 0.0058pr & 0.0065 & 0.0014/pr, with pr in GeV.

The high-resolution uranium-scintillator calorimeter (CAL) [39] consists of three parts:
the forward, the barrel and the rear calorimeters. Each part is subdivided transversely into
towers and longitudinally into one electromagnetic section and either one (in rear) or two
(in barrel and forward) hadronic sections. The smallest subdivision of the calorimeter is
called a cell. The calorimeter energy resolutions, as measured under test-beam conditions,
are o(E)/E = 0.18/V/E for electrons and o(E)/E = 0.35/y/E for hadrons, with E in
GeV.

The forward neutron calorimeter (FNC) [40,41] was installed in the HERA tunnel at § = 0
degrees and at Z = 106 m from the interaction point in the proton-beam direction. It is a
lead-scintillator calorimeter which is segmented longitudinally into a front section, seven
interaction lengths deep, and a rear section, three interaction lengths deep. The front
section is divided vertically into 14 towers, allowing the separation of electromagnetic and
hadronic showers from the energy-weighted vertical width of the showers. The energy
resolution for neutrons, as measured in a beam test, is o(E,)/E, = 0.65//E,, with neu-
tron energy, F,, in GeV. Three planes of veto counters are used to reject events in which
particles had interacted with the inactive material in front of the FNC. Magnet apertures
limit the FNC acceptance to neutrons with production angles less than 0.8 mrad, which
corresponds to transverse momenta pr < FE,0,... = 0.74x; GeV. The mean value of pp
for the data is 0.22 GeV.

The luminosity was determined from the rate of the bremsstrahlung process ep — evyp,

I Hereafter, both et and e~ are referred to as electrons.

2 The ZEUS coordinate system is a right-handed Cartesian system, with the Z axis pointing in the
proton beam direction, referred to as the “forward direction”, and the X axis pointing left towards
the center of HERA. The coordinate origin is at the nominal interaction point.



where the photon was measured with a lead-scintillator calorimeter [42,43] located at
Z = —107 m.

4 Kinematics

The kinematics of photoproduction at HERA are specified by the photon virtuality, Q?,
and the photon-proton center-of-mass energy, W. The electron-proton center-of-mass
energy, /s, is related to W by W? = ys where y is the fraction of the electron beam
energy carried by the photon in the proton rest frame.

To describe the process ep — ¢’ D**nX, four additional variables are used: two for the
neutron and two for the charmed meson. They are:

e (z1,0,), the fractional energy and production angle of the produced neutron; only
about half of the data have a 0,, measurement, therefore all results discussed here are
integrated over this variable up to the maximum accepted angle of 0.8 mrad;

e (pr,n), the transverse momentum and pseudorapidity of the produced D** meson.

The measurement was performed in the following kinematic region: Q? < 1 GeV?Z,
130 < W < 280 GeV, |n(D*)| < 1.5, pr(D*) > 1.9 GeV, z;, > 0.2 and 0,, < 0.8 mrad.

5 Event Selection

5.1 Trigger

A three-level trigger system was used to select events online [37,44]. The selection was
based on energy deposits, tracking and event timing. The FNC was not used in the
trigger.

5.2 Photoproduction selection

Photoproduction events were selected offline using cuts based on the reconstructed pri-
mary vertex position, CAL energy deposits and the reconstructed tracks of charged parti-
cles. Events with a well-identified electron candidate in the CAL were removed. It was re-
quired that ) .(E;—pz,) > 7 GeV, where the sum runs over all CAL cells and pz; is the Z
component of the momentum vector assigned to each cell of energy F;. Tracking and CAL
information was combined to form energy flow objects (EFOs) [45,46]. A cut was made on
the Jacquet-Blondel [47] estimator of W2, W#; = yjps, where yjp = >.,(E; — Ez;)/2FE,,



and Ez,; = E;cos0;; E; is the energy of EFO ¢ with polar angle §; with respect to the
measured Z-vertex of the event. The sum runs over all EFOs. It was required that
Wig < 265 GeV. These cuts correspond to a true W range of 130 < W < 280 GeV and
Q? <1 GeV? with the median Q% ~ 1072 GeV?.

5.3 D**(2010) reconstruction

The inclusive charm sample was selected by identifying events containing a charmed me-
son. The D** selection cuts are based on the decay channel: D** — (D° — K—7n)xF
(+ charge conjugate), where 7y indicates the “slow” pion [48]. Only tracks assigned to
the primary event vertex and with hits in at least three superlayers of the CTD were
considered. The combinatorial background was reduced and the kinematic phase space
defined by requiring: the transverse momentum of the kaon and pion candidates to satisty
pr(K) > 0.45 GeV, pr(r) > 0.45 GeV and pp(ms) > 0.12 GeV; the transverse momen-
tum of the D** to be greater than 1.9 GeV and the pseudorapidity of the D** to satisfy
In(D**)] < 1.5.

Since no particle identification was performed, the K and m masses were alternately at-
tributed to the decay products of the candidate DY meson. Those D° candidates that
had an invariant mass between 1.80 and 1.92 GeV were required to have a mass differ-
ence AM = M(Knns) — M(Km) between 0.1435 and 0.1475 GeV. The combinatorial
background was estimated from the mass-difference distribution for wrong-charge combi-
nations, in which both tracks forming the D° candidates have the same charge and the
third track has the opposite charge.

5.4 Neutron reconstruction

Events with a leading neutron were selected from the inclusive charm sample by requiring
a large energy deposit (F, > 184 GeV) in the FNC. Protons, photons, and neutrons are
separated by their position in the detector, as well as by the shower width. Scattered
protons are deflected by the HERA magnets and strike the top part of the FNC. Pho-
tons can be identified and removed from the sample because the transverse spread of
electromagnetic showers is much less than that of hadronic showers.

Events with particles that started to shower before reaching the FNC were removed by re-
quiring that the scintillator veto counter had an energy deposit below that of a minimum-
ionizing particle. Events with wide showers, inconsistent with originating from a single
high-energy hadron, were removed.



5.5 Final event sample

The AM distribution for the neutron-tagged sample is shown in Fig. [l along with the
wrong-charge combinations. A prominent D** signal is observed. The signal observed in
the M (K) distribution for events within the mass window 0.1435 < AM < 0.1475 GeV

is shown as an inset.

After the wrong-charge background subtraction, 298 4+ 31 D** mesons were found.
The same background subtraction procedure, applied to the inclusive D** sample, gave
14743 £ 253 events.

6 Monte Carlo simulation and acceptance corrections

A GEANT-based [49] Monte Carlo (MC) simulation was used to calculate selection efficien-
cies and correction factors for the charmed meson. Three different event generators were
used: RAPGAP 2.08/06 [50] for evaluating the nominal corrections, HERWIG 6.301 [51] and
PyTHIA 6.156 [52] as systematic checks. RAPGAP and PYTHIA use the Lund string model
for hadronization. HERWIG uses a cluster model. The events generated with RAPGAP for
acceptance calculations were produced using OPE for the production of the leading neu-
tron, with the pion flux factor from Eqgs. () and (Bl) and the GRV parametrization [30] for
the pion PDF. Inclusive RAPGAP, employing the Lund string model instead of OPE for
neutron production, was produced for comparisons to the final measurements. The leading
neutron is also produced via the Lund string model in PyTHIA. In HERWIG, it is pro-
duced via the cluster model. The proton PDF's parametrizations used were CTEQSL [53]
for PyTHIA and HERwIG, and CTEQ4D [54] for inclusive RAPGAP. The photon PDF
GRV-G LO [55] was used in PyTHIA and HERWIG, and GRS LO [56] in RApGAP. The
mass of the charm quark was set to 1.5 GeV. The fraction of ¢ quarks hadronizing to a D*
meson was set to f(c — D*) = 0.235 [57]. Both direct and resolved photon processes for
charm production were generated, in proportion to their predicted cross sections. Effects
of neutron rescattering were not taken into account in the simulation.

For all the MC samples used to evaluate the acceptances, events with at least one D**
decaying in the appropriate decay channel were selected and passed through the ZEUS
detector and trigger simulations as well as the event-reconstruction package.

Since the D* and neutron were independently detected and their kinematics largely un-
correlated, the acceptances for the two particles factorize. The selection efficiencies and
correction factors for the neutron calculated for previous analyses [4] were used. The
overall acceptance of the FNC, which includes the beam-line geometry and the angular
distribution of the neutrons, is about 25% for neutrons with z; > 0.2 and 6,, < 0.8 mrad.



The differential cross section for D** photoproduction associated with a leading neutron
was evaluated in terms of a given variable Y as do/dY = N/(Agnc-Ap«- B-AY) where N
is the number of D* found in the final sample in a bin of size AY', Apnc is the acceptance

for the neutron detection in the FNC, Ap- is the acceptance for the D* reconstruction
and B is the branching ratio for the selected decay mode. A value of B = 2.57% [58] was
used.

7

Systematic uncertainties

For the D** measurement the major sources of systematic uncertainty are listed below

(the relative uncertainty on D** acceptance is shown in parentheses):

the selection of photoproduction events and D** candidates. Variations were made in
the Wig (+4.5 %) and Z-vertex (755 %) cuts;

the pr of the pion and kaon cuts. These were varied according to their resolutions
(F17 %);
variation of the mass windows. The AM window used for the extraction of the D**

was widened symmetrically by 0.5 MeV. The M (D°) window was widened and reduced
symmetrically by 5 MeV (T3¢ %);
the AM region for the normalization of the wrong-charged combinations. This was

changed from 0.15 — 0.165 GeV to 0.15 — 0.163 GeV (+2.4 %);

the MC model dependence. HERWIG (—4.8 %) and PYTHIA (42 %) were used instead
of RAPGAP;

the fraction of resolved photon events in the MC was lowered by 20% and raised by
10 % (X195 %);

the CAL energy scale. This was varied within its uncertainty of £3% (£0.9 %).

An extensive discussion of the systematic effects related to the neutron measurement is

given elsewhere [4]. Here, the major sources of systematic uncertainty and their effect on

the FNC acceptance (shown in parentheses) is listed:

the uncertainty in the angular distribution of the neutrons (£4% for z; < 0.82,
+7% for xy, > 0.82);

the uncertainty in the overall FNC energy scale of +2% (less than 4% effect for
rp < 0.82, T18% for 2 > 0.82 );

the normalization uncertainty arising from proton-beam-gas interactions overlapping
with photoproduction events, the uncertainty in the amount of dead material in the
beam line, and the uncertainties from the veto cuts (+5%).



All above errors were added in quadrature separately for the positive and negative vari-
ations to determine the overall systematic uncertainty. The overall normalization has
additional uncertainties of 2.2% due to the luminosity measurement and 2.5% due to the
knowledge of branching ratios.

Sources of systematic uncertainty in the ratio measurement were studied in a similar
manner to those for the cross-section measurements. There is a cancellation between
the common systematic uncertainties originating from the selection of inclusive photo-
production events, the selection of D** candidates and the background estimation. The
remaining contributions are those from the model dependence of the acceptance correc-
tions used in the evaluation of the inclusive D** photoproduction cross sections and from
the neutron measurement uncertainties.

8 Results

The integrated cross section for the reaction ep — ¢/ D**nX in the kinematic region
Q? <1 GeV? 130 < W < 280 GeV, |n(D*)| < 1.5, pp(D*) >1.9 GeV, x; > 0.2 and
0, < 0.8 mrad is

2.08 £ 0.22(stat.) )12 (syst.) & 0.05(B.R.) nb,

where the final uncertainty arises from the uncertainty of the branching ratios for the
D* and D°. The luminosity uncertainty was included in the systematic uncertainty. The
predicted cross sections from the models are 3.0 nb for HERWIG, 4.6 nb for PYTHIA, 2.6 nb
for inclusive RAPGAP and 2.0 nb for RAPGAP with OPE.

Table 1 and Fig. Bl show the differential cross sections for neutron-tagged D** production
as a function of W, pp(D*) and n(D*). The differential cross section as a function of x,
is shown in Table 1 and Fig.

The inclusive D** cross section was measured and found to agree with previous measure-
ments [36] in a similar kinematic range. Table Bl and Fig. @l show the measured ratios of
neutron-tagged to inclusive D** production as a function of different kinematic variables.
Over the whole measured kinematic range the ratio is

rP" = 8.85 4 0.93(stat.) T el (syst.) %

which is shown superposed on Fig. Bl The x? per degree of freedom with respect to the
overall ratio are 0.27, 1.65 and 0.09 for the W, pr(D*) and n(D*) distributions. Within
the experimental uncertainties neutron-tagged D** production is compatible with being
a constant fraction of inclusive D** production, independent of the D** kinematics.



9 Discussion

The experimental results in Figs. Bland Bh are compared to the predictions, normalized to
the data, of the MC models RAPGAP with OPE for leading-neutron production, HERWIG,
PyTHIA and inclusive RAPGAP. In Fig. Bl the agreement in shape between data and MC
models is satisfactory in all cases. Fig. Bh, however, shows that only RApGAP with OPE
agrees with the measured neutron energy distribution seen in the data. A similar result
was obtained in the study of neutron-tagged dijet photoproduction [3].

In principle the data allow the pion PDF to be probed in the range of the parton frac-
tional momenta 1072 < z, < 1072. Figure Bb shows the differential cross section in
compared to the predicted cross sections from RapcaP with OPE, based on different
parametrizations for the pion structure function: GRV set 1 and Owens sets 1 and 2. The
data have little sensitivity, as in the case of neutron-tagged dijet photoproduction [3], to
the choice of the pion structure function. Even with an extreme choice of a pion structure
function, e.g. a completely flat gluon distribution, or a parametrization identical to the
proton structure function, little variation is seen in the predictions.

Figure Bc shows the data compared to the predictions of RAPGAP with OPE for the four
flux factors discussed in Section All RapcAP distributions are normalized to the
data and the resulting normalization factors are given in the figure. Fluxes f; and f3 give
similar results, being compatible with the data both in shape and normalization. The
fluxes fy and f; are disfavored by the shape of the data, and the latter predicts cross
sections almost three times smaller than data.

The independence of r?" on W, pp(D*) and n(D*), shown in Fig. B supports the hy-
pothesis of vertex factorization, in agreement with previous studies of leading-neutron
production [1,3,4]. The predicted ratios from the models are: 0.24 for HErRwiG, 0.29 for
PyTHIA, and 0.18 for RAPGAP.
The ratio for charm production, r?", is in agreement with the analogous ratio previously
measured for neutron-tagged DIS, Q% > 4 GeV? [4],

P =8.0+0.5 %,

but lies above the ratio previously measured for neutron-tagged inclusive photoproduction
at W =207 GeV [4],
r’?=57+04 %,

as expected from the rescattering effects within the OPE model (see Section Z3]). The
errors quoted are the quadratic sum of the statistical and systematic uncertainties.

For photoproduced dijets the neutron-tagged to inclusive ratio has only been measured
for x;, > 0.49. In this kinematic region, the measured D** ratio and their corresponding
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ratios previously measured for DIS, inclusive photoproduction [4], and photoproduction
of dijets with transverse energy E}' > 6 GeV [3] are:

rP (x> 0.49) = 6.55 4+ 0.76(stat.) T332 (syst.) %

( )
Pz >049) = 58+03%
i ) 49+04 %
)

M2y > 0.49
rP(xp >049) = 43+03%.

The results are compatible with the rescattering hypothesis described in Section 2.3.

10 Summary

The photoproduction of D** mesons associated with a leading neutron has been studied
in ep interactions at HERA in the kinematic region Q% < 1 GeV?, 130 < W < 280 GeV,
In(D*)| < 1.5, pr(D*) > 1.9 GeV, 0,, < 0.8 mrad and z > 0.2. The Monte Carlo mod-
els RAPGAP, HERWIG and PYTHIA give a satisfactory description of the D** kine-
matics, but only RAPGAP with one-pion exchange satisfactorily describes the leading-
neutron energy distribution. The results show sensitivity to the choice of pion flux factor.
The ratio of neutron-tagged D** photoproduction to inclusive D** photoproduction is
rP" = 8.85 4 0.93(stat.) )¢5 (syst.) %.

The ratio of neutron-tagged D** photoproduction to inclusive D** photoproduction is
constant as a function of W, pr(D*) and n(D*), in agreement with the hypothesis of
vertex factorization. This ratio is consistent with the analogous ratio in deep inelastic
scattering, but both are about 30% higher than the corresponding ratio for inclusive
photoproduction, suggesting that the presence of a hard scale enhances the fraction of
events with a leading neutron in the final state.
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W Range (GeV) do/dW =+ (stat.) & (syst.) (nb/GeV)
130 - 160 0.0226 + 0.005479:9967

160 - 188 0.0214 4 0.0036+9:9027

188 - 226 0.0111 4 0.0026 10 0005

226 - 280 0.0080 4 0.0017+0- 5097
pr(D*¥) Range (GeV) | do/dpp(D**) & (stat.) & (syst.) (nb/GeV)
1.9-23 1.991 + 0.53179:317
2.3-2.73 1.089 + 0.26170 143
2.73-3.8 0.364 & 0.09010073

3.8-15 0.038 & 0.0041900%

n(D**) Range do /dn(D**) & (stat.) & (syst.) (nb)
(=1.5) - (=0.72) 0.914 + 0.126+0057

(—0.72) - (—0.15) 0.858 & 0.14710 452

(—0.15) - (+0.42) 0.665 £ 0.161+0:222

(+0.42) - (+1.5) 0.436 =+ 0.13270:961

xy, Range do/dxp, + (stat.) & (syst.) (nb)
0.2 - 0.46 2.18 4 0.4810 35

0.46 - 0.64 3.70 + 0.6410 33

0.64 - 0.82 4.29 +0.6510%2

0.82-1.0 0.456 =+ 0.38170:97

Table 1: Values of the differential cross sections for neutron-tagged D** photo-
production (Q* < 1 GeV? and 0,, < 0.8 mrad) with respect to W, pr(D**), n(D**)
and xj,.
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W Range (GeV)

rP” 4 (stat.) £ (syst.)

130 - 160 0.089 £ 0.022+5-99
160 - 188 0.101 £ 0.017+3:996
188 - 226 0.075 + 0.018+0:912
226 - 280 0.090 = 0.0197%:9%

pr(D**) Range (GeV)

rP” & (stat.) £ (syst.)

1.9-23

0.137 4 0.038+0030

9.3-2.73 0.105 + 0.02670:926
92.73 - 3.8 0.058 = 0.01470.91
3.8-15 0.087 4 0.01073004

ange T stat. syst.

n(D**) R b 4 +

( 5) - (—0.72) 0.093 = 0.013*(-092
(—0. 72) - (—0.15) 0.097 & 0.016 13997
(—0.15) - (+0.42) 0.085 £ 0.021+3:997
(+0.42) - (+1.5) 0.080 4 0.024+399

Table 2: Values of the ratios of the differential cross sections for neutron-tagged to
inclusive D** photoproduction (Q* <1 GeV?, x; > 0.2 and 0, < 0.8 mrad) with
respect to W, pp(D*%) and n(D*F).
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Figure 1:  The data points show the neutron-tagged AM distribution for right-
charge track combinations. The solid line shows the wrong-charge combinations
normalized to the right-charge combinations in the region 0.15 < AM < 0.165 GeV
outside the D** mass window 0.1435 < AM < 0.1475 GeV which is shown shaded.
The signal observed in the M(Km) distribution for events within the mass window
0.1435 < AM < 0.1475 GeV is shown as an inset. The solid line also shows the
wrong-charge combinations normalized to the right-charge combinations as before.
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Figure 2: The points show the differential cross sections for neutron-tagged D**
production as a function of W, pr(D*) and n(D*) for x;, > 0.2 and 6,, < 0.8 mrad.
The error bars displayed on the plots denote the statistical uncertainty (inner) and
the quadratic sum of the statistical and the systematic uncertainties (outer). The
uncertainties due to the luminosity measurement and the branching ratios are not
shown. The predictions of Monte Carlo models normalized to the data are also
shown.
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