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Abstract

The production of energetic neutrons in ep collisions has been studied with the
ZEUS detector at HERA. The neutron energy and p3 distributions were mea-
sured with a forward neutron calorimeter and tracker in a 40pb~' sample of
inclusive deep inelastic scattering (DIS) data and a 6 pb~! sample of photopro-
duction data. The neutron yield in photoproduction is suppressed relative to
DIS for the lower neutron energies and the neutrons have a steeper p2 distribu-
tion, consistent with the expectation from absorption models. The distributions
are compared to HERA measurements of leading protons. The neutron energy
and transverse-momentum distributions in DIS are compared to Monte Carlo
simulations and to the predictions of particle exchange models. Models of pion
exchange incorporating absorption and additional secondary meson exchanges
give a good description of the data.
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1 Introduction

In ep scattering at HERA, a significant fraction of events contains a low-transverse-
momentum baryon carrying a large fraction of the incoming proton energy [1-5]. Al-
though the production mechanism of these leading baryons is not completely understood,
exchange models (Fig. 1) give a reasonable description of the data. In this picture, the
incoming proton emits a virtual particle which scatters on the photon emitted from the
beam electron. The outgoing baryon, of energy Ep, carries a fraction x;, = Ep/FE, of
the beam energy, while the exchanged particle participates in the process with energy
(1 —2z)E,.

In particular, one-pion exchange is a significant contributor to leading neutron production
for large x;, [1,2]. For such a process the cross section for the semi-inclusive reaction
v*p — Xn factorizes into two terms (Regge factorization [6]):

d20<W27 Q27 XL, t)
d[[’Ldt

= fW/p(va t)o-v*ﬂ((l - xL)W2> Q2)7

where 2 is the virtuality of the exchanged photon, W is the center-of-mass energy of the
virtual photon-proton system and t is the square of the four-momentum of the exchanged
pion. In terms of the measured quantities x; and transverse momentum pz, the pion

virtuality is:
. _ﬁ B (1 —wp)(m? — mf,:cL)
o Xy, Xy, .

The flux of virtual pions emitted by the proton is represented by fr/, and o, is the
cross section of the virtual-photon and virtual-pion interaction at center-of-mass energy
/1 —xp W. If the ¥*7 cross section is independent of ¢, the py distribution of produced
neutrons is completely determined by the flux factor.

Many parameterizations of the pion flux have been suggested in the literature [6-11].
They have the general form:

—t

- (1- a(t) 2

Jrp(xr,t) o (t—m?r)2<1 xp) " (xp, ).

The power «(t) and the form factor F'(xy,t) are model dependent with parameters that
can be extracted from hadron-hadron scattering data.

Comparisons between cross sections for the production of particles in the fragmentation
region of a target nucleon provide tests of the concepts of vertex factorization and limiting
fragmentation [12]. The hypothesis of limiting fragmentation states that, in the high-
energy limit, the production of particles in the proton target-fragmentation region is
independent of the nature of the incident projectile. For leading neutron production in



ep scattering, where the projectile is the exchanged virtual photon, this implies that the
dependence of the cross section on the lepton variables (W, Q?) should be independent
of the baryon variables (x,t). For such vertex factorization, the cross section can be
written as
dQO(W27 Q27 TL, p%“)
dxpdp?

- g(vap%)G(W27 QQ)a

where g and G are arbitrary functions. The Regge factorization introduced earlier violates
this vertex factorization because of the dependence of o,-; on x; in addition to Ww?
and Q2. Factorization tests involve comparing semi-inclusive rates, normalized to their
respective total cross sections, to study whether particle production from a given target
is independent of the lepton variables.

In exchange models, neutron absorption can occur through rescattering [13-16]. In a
geometrical picture [14], if the size of the n-7 system is small compared to the size of the
photon, the neutron can also scatter on the photon. The neutron may migrate to lower
xy, and higher pr such that it is outside of the detector acceptance. The rescattering
can also transform the neutron into a charged baryon which may also escape detection.
Since the size of the virtual photon is inversely related to %, more neutron rescattering
would be expected for photoproduction (Q* =~ 0) than for deep inelastic scattering (DIS,
Q* > 1GeV?). A previous study [2] showed a mild violation of vertex factorization with
the expected increase of rate when going from photoproduction to DIS. Similar effects
have also been seen for leading protons [3]. The size of the n-m system is inversely
proportional to the neutron pr, so rescattering removes neutrons with large py. Thus
rescattering results in a depletion of high p; neutrons in photoproduction relative to DIS:
a violation of vertex factorization. Pion-exchange models [6-11] incorporate a variation
of the mean size of the n-7 system as a function of x. This results in an x; dependence
of the absorption, again a violation of vertex factorization.

Absorption is a key ingredient in calculations of gap-survival probability in pp inter-
actions at the LHC, critical in interpreting hard diffractive processes, including central
exclusive Higgs production. The most recent absorption model calculations [15,16], based
on multi-Pomeron exchanges, gave a good description of previous leading-neutron results
on absorption [2].

This paper presents measurements of the z; and p% distributions of leading neutrons
coming from samples of DIS and photoproduction (yp) processes, with more than seven
times higher statistics and smaller systematic uncertainties than the previous ZEUS pub-
lication [2]. The z;, and p3 distributions in DIS and photoproduction are compared as
a test of vertex factorization. The neutron measurements are compared to similar mea-
surements of leading protons at HERA. The data are also compared to the predictions of
several Monte Carlo (MC) models. The neutron p% distributions in DIS are compared to



several pion-exchange models with various choices of their parameters. Finally, the z; and
pr distributions in photoproduction and DIS are compared to models incorporating pion
exchange and rescattering, and a model that also includes secondary meson exchanges.

2 Detectors

A detailed description of the ZEUS detector can be found elsewhere [17]. A brief outline
of the components that are most relevant for this analysis is given below.

The high-resolution uranium-scintillator calorimeter (CAL) [18] consists of three parts:
the forward (FCAL), the barrel (BCAL) and the rear (RCAL) calorimeters. Each part
is subdivided transversely into towers and longitudinally into one electromagnetic sec-
tion (EMC) and either one (in RCAL) or two (in BCAL and FCAL) hadronic sections
(HAC). The smallest subdivision of the calorimeter is called a cell. The CAL energy res-
olutions, as measured under test-beam conditions, are o(E)/E = 0.18/y/E for electrons
and o(E)/E = 0.35/'E for hadrons (E in GeV). The EMC sections were used to detect
scattered positrons in DIS events and the RCAL was used to trigger on the dissociated
photon in photoproduction events.

Bremsstrahlung, ep — evyp, and the photoproduction of hadrons, ep — eX, are tagged
using the luminosity detectors [19]. The bremsstrahlung photons are measured with a
lead-scintillator calorimeter located at Z = —107m! from the interaction point in the
positron-beam direction. The positron tagger was a similar calorimeter at Z = —35m
from the interaction point with an energy resolution of o(E)/E = 0.19/VE (E in GeV).
It was used to measure positrons scattered at very small angles in an energy range of

5-20 GeV.

The forward neutron calorimeter (FNC) [20] was installed in the HERA tunnel at § =0
degrees and at Z = 106 m from the interaction point in the proton-beam direction, as
depicted in Fig. 2. It was used for the 1995-2000 data taking. The FNC was a lead-
scintillator calorimeter with an energy resolution for hadrons measured in a test beam
to be o(E)/E = 0.70/v/E (E in GeV). The calorimeter was segmented vertically into
14 towers as shown in Fig. 3. Three planes of veto counters were located in front of the
FNC to reject events in which a particle showered in dead material along the beamline
upstream of the FNC.

In 1998 a forward neutron tracker (FNT) was installed in the FNC at a depth of one

I The ZEUS coordinate system is a right-handed Cartesian system, with the Z axis pointing in the
proton beam direction, referred to as the “forward direction”, and the X axis pointing towards the
center of HERA. The coordinate origin is at the nominal interaction point.



interaction length. It was a scintillator hodoscope designed to measure the position of
neutron showers. FEach scintillator finger was 16.8 cm long, 1.2 cm wide and 0.5 cm
deep; 17 were used for X position reconstruction and 15 for Y. Figure 3 shows the
position of the FNT hodoscope in the FNC relative to the incoming neutron beam. The
irregular outlined area indicates the geometric acceptance defined by magnet apertures.
This limited detection to neutrons with production angles less than 0.75 mrad, allowing
transverse momenta in the range pr < E, 0.« = 0.69 2, GeV. The resulting kinematic
regions in p2 and ¢ are shown in Fig. 4.

Scans by a %°Co radioactive source and data from frequent proton beam-gas runs were
used to calibrate and monitor both detectors. The relative calibration between FNC
towers was adjusted using position information from the FNT. The energy scale of the
FNC was determined with a systematic uncertainty of £2% from fits to the endpoint of
the neutron energy spectrum near 920 GeV. The minimum-ionizing-particle (mip) scale in
the veto counters was determined by selecting electromagnetic showers in the FNC, a large
fraction of which were converted photons which deposited a 2-mip signal in the counters.
The position resolution of neutron showers in the FNT of +0.23 cm was measured by
placing an adjustable collimator in front of the outermost veto counter of the FNC during
special test and calibration runs.

3 Data selection and analysis

The data for this analysis were collected in 2000 when HERA collided 27.5 GeV positrons
with 920 GeV protons, giving an ep center-of-mass energy /s = 318 GeV. Separate trig-
gers were used to collect DIS and photoproduction events with leading neutrons.

3.1 Data selection

The DIS events were collected using a trigger that required the detection of the scattered
positron in the CAL. In the offline analysis, the scattered positron was required to have
energy E! > 10GeV and to be at least 3 cm from the inner edge of the beam-pipe hole
in the RCAL. The quantity £ — Py = ), E;(1 — cosf;), with the sum running over all
calorimeter cells, was required to be in the range 35 < £ — P, < 65 GeV; the lower cut
reduced photoproduction background with a misidentified positron. These cuts resulted
in a clean sample of DIS events in the kinematic range Q? > 2 GeV? with a mean photon
virtuality of (Q?) ~ 13 GeV?2. For further studies, the variable Q? was reconstructed using
the double angle (DA) method [21]. This method requires a certain amount of hadronic
activity in the CAL in order to measure the angle of the hadronic system. To ensure



this, an additional requirement y;g > 0.02 was imposed for those measurements requiring
Q? reconstruction. Here yjp is the inelasticity y ~ (W? + Q?)/s reconstructed using
the Jacquet-Blondel (JB) method [22]. The integrated luminosity of the DIS sample was
approximately 40 pb™!.

The photoproduction events were collected during the last part of the 2000 running period
using a trigger that required at least 5 GeV in the positron tagger in coincidence with at
least 464 MeV in the RCAL EMC [23]. The acceptance of the positron tagger limited
the photon virtuality to Q? < 0.02GeV?, with a mean Q* of approximately (Q?) ~
4 x 107*GeV?. Offline, the total energy per event deposited in the photon tagger was
required to be less than 1 GeV in order to reject overlapping bremsstrahlung events. The
integrated luminosity of the photoproduction sample was approximately 6 pb ™.

The DIS and photoproduction triggers required at least 180 GeV of energy to be deposited
in the FNC. Good FNC neutron candidates were required offline to satisfy the following
conditions:

e the FNC tower with maximum energy was one of the four towers covered by the FNT
as depicted in Fig. 3, to reject protons with x; < 1 which were deflected into the top
towers of the FNC by the vertical bending magnets shown in Fig. 2;

e the veto counter had a signal of less than one mip, to reject showers which started in
dead material upstream of the FNC; to minimize effects of backsplash from hadronic
showers, only the veto counter farthest from the FNC was used;

e 1o signal in the veto counter consistent with a shower from a previous bunch crossing,
to reject pile-up energy deposits;

e the timing information from the FNC consistent with the triggered bunch;

e cnergy sharing among the towers was used to reject electromagnetic showers from
high-energy photons.

These cuts, similar to those used in the previous ZEUS measurements [2,5], selected long-
lived neutral hadrons which had not interacted with material before reaching the FNC.
The sample was predominantly neutrons, with a small component of K? hadrons. The
MC models RAPGAP with pion exchange [24] and LEPTO with soft color interactions [25]
predict that the K9 contribution is less than 2% above z; = 0.6, and increases slowly to
approximately 20% at x = 0.2.

The above selection was used for the x; measurements. For results requiring also a
measurement of p2, the following additional requirements were imposed to ensure a well
reconstructed position measurement in the FNT:

e the highest pulse-height channel in each of the hodoscope planes was above the pedestal
level, to select neutrons which showered before the FN'T plane;



e shower profiles with more than one peak were rejected, to eliminate mismeasurement
from shower fluctuations.

The fraction of clean FNC neutrons passing the FNT cuts determined the FNT efficiency
as a function of xy. The efficiency rises with neutron energy from 35% at xz; = 0.2 to
63% at x;, = 0.85, corresponding to the fraction of neutrons that shower before the FNT.

3.2 Normalization

The cross sections for leading neutron production presented here, oy, were normalized
to the inclusive cross sections without a leading-neutron requirement, oy, as:

oax(W?, Q%)
Tinc(W?2, Q%) .

Variations of this relative neutron yield, rrx, with W?2 or Q? indicate differences in the

TLN(qu Q2) =

neutron-production mechanism. The acceptance for detecting different types of events in
the central ZEUS detector in a small kinematic region of (W?2,Q?) is independent of the
neutron requirement; the acceptance cancels in the yield ry, so that:

Nin (W2, Q?)

NinC(W27 QQ) .

Here N, is the number of inclusive events in the sample and Ny is the number of these

TLN(W27Q2) =

events with a neutron tag, corrected for the acceptance of the forward neutron detectors.
The acceptance of the central ZEUS detector varies with (W2, Q?); if the neutron-tagged
and inclusive events have different kinematic dependences, their acceptances integrated
over a given (W2, Q?) region would be different. The mild violation of vertex factorization
observed in the previous ZEUS measurement [2] indicates that such differences in accep-
tance are less than 2%, and so were ignored. Thus the acceptance of the central ZEUS
detector and associated systematic uncertainties do not affect the neutron yield. Only the
acceptance of the forward neutron detectors together with its systematic uncertainties are
relevant for measuring rpy.

For the DIS sample, a set of inclusive events was collected simultaneously and used to
normalize the neutron data. For the inclusive photoproduction events, 49nb~! of data
were collected in a special run in 1996 when the proton beam energy was 820 GeV, for
measurement of the photon-proton total cross section [23]. The normalization of the 2000
photoproduction data was determined by assuming that the ratio of the photoproduction
and DIS neutron yields, for any given neutron (xp, p%) kinematic region, was the same at
the two proton beam energies:

vp vp
LN N

/DIS /DIS :
LN 1920 Gev LN 1820 Gev



In this equation 7% (820 GeV) was measured in the 1996 inclusive photoproduction sam-

ple, rP¥(820 GeV) was measured in inclusive DIS data from the same running period and

rDI3(920 GeV) was measured in the inclusive DIS data from the 2000 running period. The
neutron kinematic region for the measured yields was z;, > 0.2 and p2. < 0.476 22 GeVZ.
This normalization procedure resulted in an uncertainty on the neutron yield in photopro-
duction of 5.1%, predominantly from the limited statistics of the 1996 photoproduction

data.

3.3 Beamline and forward-detector simulation

The acceptance of the forward neutron detectors, for the measurement of neutron yields,
was determined from a simple one-particle MC simulation. The simulation accounts for
the aperture and dead material along the neutron flight path, the measured proton beam
position and pr spread, and the measured detector resolutions.

Figure 5 shows a scatter plot of reconstructed hits in the FNT from a sample of DIS
events. The irregular curve is the aperture expected from the MC simulation. Numerous
events are reconstructed outside of the aperture, as the aperture is not a sharp boundary
as modeled, but presents a varying amount of dead material over several millimeters
transverse to the neutron flight path. The effect of this on the measured neutron yield is
less than 2% and was ignored.

The simulation also modeled significant amounts of dead material along the neutron flight
path, primarily from stations S5 and S6 of the ZEUS leading proton spectrometer (LPS)
shown in Fig. 2. The LPS was a set of Roman pots used to measure protons scattered
at very low angles [26]. The elements of these stations were measured after the LPS
was removed from the HERA tunnel in 2000 and implemented in the simulation. The
positions of these elements in the simulation were adjusted to reproduce the data. For
example, the deficit of events observed near Y ~ 10.5 cm, seen clearly in the vertical slice
of the scatter plot in Fig. 6, determined the vertical alignment of the LPS. There is good
agreement between the simulation and the data distributions.

During operation, the LPS was normally in one of two positions: extracted, or inserted for
data taking. Separate dead material maps were made for the two positions. Data collected
during periods when the LPS was moving were rejected. The results were determined
separately for the two LPS positions and combined according to the luminosity taken in
each position. The difference with the results obtained for each position was taken as a
measure of the systematic uncertainty from the dead material map.

The reconstruction of the neutron scattering angle, 6,,, requires knowledge of the zero-
degree point. This was determined by generating a symmetric distribution of neutrons,



passing it through the simulation, and fitting the reconstructed distribution to the data.
An example of such a fit for the zero-degree position in the vertical plane is shown in Fig. 6.
Considering different input distributions, and taking into account the uncertainties in the
dead material map, the beam zero-degree point was determined to an accuracy of £0.2 cm
in both X and Y.

The simulation also takes into account the energy resolution of the FNC, the position
resolution of the FNT, and the inherent pp-spread of the HERA proton beam. The
latter was measured in the reaction yp — pp, with the p decay products measured in the
ZEUS central detector and the final-state proton measured with the LPS [26]. The beam
pr-spread corresponds to a smearing of the zero-degree point by 0.45 cm horizontally
and 1.0 cm vertically, significantly larger than the FNT resolution. The spectrum of
generated neutrons was tuned to match the z; and p2 distributions separately for the
DIS and photoproduction samples.

These MC distributions were then used to correct the data for all acceptance and smearing
effects. For distributions requiring a position measurement, the correction for the x-
dependent FNT efficiency was also applied.

3.4 Systematic uncertainties

The dominant effects contributing to the systematic uncertainties arose from:
e the beam zero-degree point;
e the dead material map;
e the FNC energy scale;
e the p? distributions, input for z-distribution acceptance.

The systematic uncertainties were typically 5-10% of the measured quantities, and are
shown as shaded bands in the figures. The variation of the energy scale shifted the points
in 7. The other systematic variations amount to a change in acceptance resulting in a
correlated shift of the neutron yields. The small uncertainties from the assumption of
acceptance cancellation in rpx and from the aperture edge were ignored.

Corrections for efficiency of the cuts and backgrounds were applied to the normalization
of the neutron yields. The corrections, similar to those of the previous ZEUS measure-
ment (2], were:

e false veto counter firing: +10.6 + 1.0%, determined from randomly triggered events;

e veto counter inefficiency: —2.5 4+ 1.0%, determined from 2-mip distributions in the
veto counter;



e backsplash from neutron showers: +1.5 + 1.5%, determined from timing information
in the veto counter giving the fraction of late time vetoes;

e neutrons from proton beam-gas interactions: —1.4 4+0.3%, determined from randomly
triggered events.

The overall systematic uncertainty on the normalization of the neutron yield from these
corrections, not included in the shaded bands of the figures, was £2.1%. The yield in pho-
toproduction has an additional uncertainty of +5.1% from the normalization procedure
described in Section 3.2.

4 Results

4.1 Neutron xz, and p32 distributions in DIS

Figure 7 shows the normalized differential distribution (1/0i,)dorn/dzy, for neutrons
in DIS with scattering angles 6, < 0.75mrad, corresponding to the kinematic range
p2 < 0.476 22 GeV2. Tt rises from the lowest z;, due to the increase in p2 space, reaches
a maximum near x; = 0.7, and falls to zero at the endpoint x; = 1. These results are
consistent with the previous ZEUS measurement [2]. Integrating this distribution, the
total leading-neutron yield for the measured region is:

rin(Q? > 2GeV? x> 0.2, p7 < 0.476 77 GeV?) = 0.0885 + 0.0002 (stat.) T0955 (sys.).

Here the systematic uncertainty includes the overall +2.1% scale uncertainty.

The corrected p2 distributions in DIS for different x; bins are shown in Fig. 8 and sum-
marized in Table 1. They are presented as normalized doubly differential distributions
(1/01ne)d?01n/dzrdp%. The bins in p2 are at least as large as the resolution, which is
dominated by the pr spread of the proton beam. The varying p2 ranges of the plots
are due to the aperture limitation. The line on each plot is a fit to the functional form
dopn/dp3 o< exp(—bp2). The distributions are compatible with a single exponential within
the statistical and uncorrelated systematic uncertainties. Thus, with the parameterization

1 dzULN

Oinc de dp%

= a[(xL) e_b<xL>p%’
the neutron (zr, p2) distribution is fully characterized by the slopes b(x1) and intercepts
a(zy) = (1/o4e)d*on/dx Ldp%|p2T _o- The dependences of the intercepts and the slopes on
xy, are shown in Figs. 9 and 10 and summarized in Table 2. The systematic uncertainties
were evaluated by making the variations listed in Section 3.4 and repeating the fits. The



intercepts fall rapidly from the lowest x, are roughly constant in the region z; = 0.45-
0.75, and fall to zero at the endpoint x; = 1. Below z; = 0.32, the slopes are consistent
with zero and are not plotted; they rise linearly in the range 0.3 < x; < 0.85 to a value
of b ~ 8 GeV ™%, and then decrease slightly at higher ;. Figure 11 shows the ratio a/b for
the region 0.32 < z;, < 1 where b > 0, which can be taken as the leading-neutron yield
integrated over p2 values from zero to infinity, assuming that the p2. distributions remain
an exponential also beyond the measured p2 range. This distribution, integrated over xp,
in the range 0.32 < z;, < 1, corresponds to a yield:

rn(Q? > 2GeV? x> 0.32) = 0.159 £ 0.008 (stat.) To0s (sys.).

Here the systematic uncertainty includes the overall 2.1% scale uncertainty.

4.2 Q? dependence of leading neutron production

To investigate the Q% dependence of leading-neutron production, the full DIS sample
was divided into three subsamples depending on the Q3 , range, with the additional cut
yyg > 0.02. The kinematic regions in Q2 and W for all DIS and photoproduction samples
are summarized in Table 3.

Figure 12 shows the z distributions and Fig. 13 the pZ slopes in the range p% <
0.476 22 GeV? for the photoproduction and three DIS subsamples. There is a trend of in-
creasing neutron yield with increasing @2, a clear violation of vertex factorization. There
is a large increase between the photoproduction region and the low- and mid-Q? DIS
regions, in which the data are nearly @? independent. There is then a smaller, but sig-
nificant, increase between the mid-Q? and high-Q? regions. The effect of the different W
ranges for the DIS and photoproduction samples on the neutron yield was less than 5%,
as evaluated by restricting the DIS sample to low- and high-W regions. The slopes for
all three DIS samples are equal within the uncertainties. The slopes for photoproduction
are higher in the region 0.6 < z; < 0.9.

The total neutron yields integrated over x; > 0.2 for the four samples are summarized in
Table 4. The doubly differential distributions 1/ci,.dory/dxpdp? for the photoproduction
and three DIS subsamples are summarized in Table 5, and the intercepts and slopes of
the exponential fits are summarized in Table 6.

To investigate the differences between the photoproduction and DIS regimes further, the
effects of energy calibration and beam position drifts were minimized by using only the
subset of DIS data collected simultaneously with the photoproduction data. The DIS
sample without yyp or Q%, cuts was used to maximize the statistical precision of the
comparison.
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The ratio of the normalized differential distributions

1 dof}

for the region p?. < 0.476 22 GeV? is shown in Fig. 14. In the range 0.2 < x; < 0.4, the
ratio drops slightly but rises for higher x; values, exceeding unity for x; > 0.9. The
deviation of the ratio from unity is a clear violation of vertex factorization. The ratio of
the intercepts for photoproduction and DIS, which has a nearly identical behavior to that
of Fig. 14, is not shown.

The p2. distributions for both samples, normalized to unity at p% = 0, are shown in Fig. 15.
The photoproduction distributions are steeper in the range 0.6 < x; < 0.9, with relatively
fewer neutrons at high p2. The difference of the slopes Ab = b(Q? < 0.02 GeV?) —b(Q? >
2GeV?) is less sensitive to systematic effects than each of the individual slopes. These
values are plotted in Fig. 16. The slopes for photoproduction are larger in the range
0.6 < 21, < 0.9, with Ab = 0.5-1.0 GeV 2, qualitatively consistent with the violation of
vertex factorization expected from absorption as discussed in the introduction.

4.3 Comparison to leading protons

ZEUS has also reported z; distributions for leading protons in the kinematic region
p% < 0.04 GeV? [4]. The neutron x;, distributions were also measured in the same region,
using the FNT measurement of p2. The results for DIS are compared in Fig. 17. There
are approximately twice as many protons as neutrons in the range 0.6 < x; < 0.9. If
only isospin-1 particle exchanges contributed to proton production, there should be half
as many protons as neutrons. Thus, exchanges of particles with different isospins such as
isoscalars must be invoked to account for the observed proton rate [11].

The slopes of the p2. distributions for leading protons and neutrons in DIS are shown in
Fig. 18. Note that the pZ range for the proton measurement, p < 0.5 GeV?, is larger than
for the neutron measurement. The two samples have similar values of b near z; ~ 0.8,
the region where pion exchange is expected to dominate for both processes [11].

5 Comparison to models

In this section the data are compared to several models. First the data are compared
to various MC models for the simulation of DIS events. A comparison is then made
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to models incorporating only pion exchange. Next, more sophisticated models including
the effects of absorption of the neutron are considered. Finally, a model incorporating
enhanced absorption with pion and additional secondary Regge exchanges is discussed.

5.1 Monte Carlo models

Most MC models generate leading neutrons from the fragmentation of the proton rem-
nant [27]. Some models also incorporate additional processes to simulate diffraction and
leading baryon production. The leading neutron x distribution, intercepts and slopes in
DIS are compared to two MC models in Fig. 19. The models presented here are RAP-
GAP [24] and LEPTO [28]. The proton PDF parameterization used was CTEQ5L [29].
With only standard proton-remnant fragmentation, the models are lower than the data
in the normalization of the z; distribution and intercepts, and are peaked at lower .
They do not show the observed x; dependence of the slopes. Other models incorporating
only standard fragmentation, ARIADNE [30] and CASCADE [31] for DIS, and PYTHIA [32]
and PHOJET [33] for photoproduction, give a similarly poor description of the data.

LEPTO has the option to implement soft color interactions (SCI) [25] to produce rapidity
gaps observed in diffractive events. This model gives a qualitative description of the
leading proton zj, distribution [4], including the diffractive peak, although it predicts
too few protons in the central xj region. The predictions for leading neutrons, with the
probability of SCI set to 0.5, are shown in Fig. 19. LEPTO SCI comes close to the data in
the shape and normalization of the z;, distribution. The intercepts also exhibit a shoulder
in the distribution near x; ~ 0.8 similar to that in the data. It does not, however, give
the observed strong x; dependence of the slopes.

RapcaP also includes Pomeron exchange to simulate diffractive events, and pion ex-
change to simulate leading baryon production. These processes are mixed with standard
fragmentation according to their respective cross sections. The PDF parameterizations
used here were the H1 LO fit 2 [34] for the Pomeron and GRV-P LO fit [35] for the
pion. The predictions for leading neutrons from a mixture of these exchanges and stan-
dard fragmentation are also shown in Fig. 19. The model well reproduces the shape of
the x, distribution and intercepts, although it predicts more neutrons than are observed.
The model also shows the strong x; dependence of the slopes in the data, although the
predicted values of the slopes are systematically larger than the data.

5.2 Pure pion exchange

In the Regge factorization relation discussed in the introduction, the leading neutron z,
distribution is a product of the pion flux, fr/,, and the v*m cross section, o.«,. However,

12



if 0.« is assumed to be independent of ¢, the py distribution of the produced neutrons is
determined only by the pion flux f;/,. The slopes can be compared to various parame-
terizations of the flux. Although fr/, is not an exponential in p7., at fixed 2, the models
can be fit to the form exp(—bp2) using the same binning as the data, and the resulting
b(xy) values compared to the measurements. All of the parameterizations in the litera-
ture [6-9, 11] give values for the slopes larger than the data. Most of them also have the
wrong x;, dependence of the slopes. The models that most resemble the data are shown
in Fig. 20. The simple model of Bishari [6], with the form factor F'(z,t) = 1, is closest
in magnitude to the data. Other models with more detailed parameterizations show the
turnover of the slopes near x; ~ 0.85 [7]. The model of Holtmann et al. [8] is used for
pion exchange in the RAPGAP-m MC. The values for b from RAPGAP-7 in Fig. 19 are
lower than this curve because RAPGAP also includes a contribution from standard frag-
mentation, which has flatter p2 distributions than pion exchange. None of these models,
based on pion exchange alone, describes the data.

5.3 Pion exchange with neutron absorption

As discussed in the introduction, in a geometrical picture, neutron absorption may occur
for large photon sizes and small n-7 separations. The former is inversely related to Q?, and
so is largest for photoproduction; thus more absorption is expected in photoproduction
than in DIS. The n-7 separation r,, is the Fourier conjugate of py, and the distribution
of 7 is given by the Fourier transform of f,,(pr). Parameterizations of the pion flux in
general show that the mean value of r,,; increases with x, so more absorption is expected
at lower x; than at higher z;. The dashed curve in Fig. 21 is the expectation for the
suppression of leading neutrons in photoproduction relative to DIS from a model of pion
exchange with neutron absorption [14]. Although the curve lies below the data, it follows
the same trend. The 7p interaction has a power-law dependence o oc W?*, with different
values of A for DIS and photoproduction. Assuming that 7 interactions have the same
dependence, and recalling that W,, = /1 —2,W,,, the ratio of photoproduction and
DIS cross sections is proportional to (1 — x;)2*. Previous ZEUS measurements of A in
photoproduction [23] and DIS [36,37] give A\ ~ —0.13. Applying this to the absorption
suppression factor results in the solid curve in Fig. 21. Within the normalization uncer-
tainty of 5.1%, the data are well described by the absorption model with this correction
for different W dependences. Hence such a geometric absorption model can account for
the differences between the x distributions in DIS and photoproduction.

Also shown in Fig. 21 is the NSZ model [13] which employs the optical theorem to-
gether with multi-Pomeron exchanges to describe all possible rescattering processes of
the leading hadron, resulting in absorptive effects. With the correction for different W
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dependences, the prediction is close in magnitude to the data, but does not have as steep
an xry, dependence.

5.4 Enhanced neutron absorption and secondary exchanges

Recently a new calculation (KKMR) of pion exchange with neutron absorption based
on multi-Pomeron exchanges has become available [15]. The pion exchange is based on
the Bishari flux. In addition to the rescatterings implemented in the earlier model [13], a
small contribution from rescattering on intermediate partons in the central rapidity region
is also included. The model also accounts for the migration of neutrons in (z, p3) after
rescattering. The prediction for the neutron x; distribution for photoproduction, where
rescattering is most important, is shown by the dashed curve in Fig. 22. The model gives
a fair description of both the shape and normalization of the data. The loss of neutrons
through absorption is approximately 50%; this is consistent with the deviation from the
Oyr/0~p = 2/3 prediction of the additive quark model that was noted in the previous
ZEUS measurement [2]. Within this model, the present data can be used to constrain the
gap-survival probability, one of the crucial inputs to calculations of diffractive interactions
at the LHC — both hard, such as central exclusive Higgs production, and soft, such as
those giving rise to the diffractive pile-up events [38]. The prediction of this model for the
slopes b in DIS is shown in Fig. 23. As for the pure pion-exchange calculations, the model
predicts larger values of b than seen in the data. This model does give a fair prediction
for the magnitude of the difference of the slopes in photoproduction and DIS, as shown
in Fig. 23.

More recently this model was extended to include, in addition to pion exchange, the
exchange of secondary (p, as) Reggeons [16]. This extended model gives a fair description
of the shape and normalization of the z; distribution in photoproduction, as seen in
Fig. 22. Since there are additional exchanges the model gives a prediction for the x
distribution which is higher than for pion-exchange alone. As shown in Fig. 23, the model
with secondary exchanges also gives a good prediction for the slopes. Its description of
the slope differences is also close in magnitude to the data, as seen in Fig. 23.

6 Summary

The x7 and p2 distributions of leading neutrons in photoproduction and DIS events at
HERA have been measured. The x distributions for the measured region 6,, < 0.75 mrad
rise from the lowest x; due to the increasing pr phase space, reach a maximum near
xr = 0.7, and fall to zero at the endpoint x; = 1. The p2 distributions are well described
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by an exponential do/dp2 = aexp(—bp2). The intercepts a fall rapidly from the lowest
xr, are roughly constant in the region z; = 0.45-0.75, and fall to zero at the endpoint
xr, = 1. The exponential slopes b rise linearly with z in the range 0.3 < x;, < 0.85 to a
value of b ~ 8 GeV 2, and then decrease slightly at higher x;,.

The neutron yield rises monotonically with @? from the photoproduction region Q? <
0.02 GeV? to the high-Q? DIS region Q? > 20 GeV?. The relative rise in yield is greatest
near z;, = 0.5 and becomes less significant at higher x7. The slopes of the p% distribu-
tions do not change significantly within the DIS region @* > 2GeV?, but the slopes in
photoproduction exhibit a small increase over those in DIS for 0.6 < x;, < 0.9.

In the kinematic region 0.6 < z; < 0.9 and p? < 0.04 GeV? there are approximately
twice as many leading protons as neutrons. This indicates that leading proton production
proceeds through exchanges in addition to pure isovector (e.g. pion) exchange. The slopes
b for leading protons agree with the neutron slopes near x; ~ 0.8 where pion exchange is
expected to dominate both processes.

Monte Carlo models commonly in use for the simulation of DIS and photoproduction
events which implement standard fragmentation of the proton remnant do not describe
the leading-neutron data. They predict fewer neutrons, concentrated at lower x;. They
also predict smaller pZ slopes and do not have the strong z;, dependence of the data. The
inclusion of soft color interactions gives a reasonable description of the x; distributions,
but again fails to predict the p2. slopes. A mixture of processes including standard frag-
mentation, diffraction and pion exchange gives a good description of the xj, distributions
and the z; dependence of the slopes, although they are larger than the data.

The measured b(z) dependence in DIS has been compared with various pion-exchange
models. All models give values larger than the data. The simplest model is closest in
magnitude to the data; other models reproduce the measured shape of b(x ).

The Q* dependence of the neutron yield and p2 slopes is consistent with absorption
models where neutrons from pion exchange with smaller n-m separations are lost through
rescattering on larger photons. The photon size increases with decreasing %, and the
mean n-m separation is smaller in the mid-z; range than at higher x;. The result is
a depletion of neutrons with decreasing (), with the depletion greater at mid-z; than
at higher zy, as seen in the data. The loss of neutrons with small n-m separations,
corresponding to large p%, also explains the larger p2. slopes measured in photoproduction
than in DIS.

A model of neutron production through pion exchange, incorporating enhanced neutron
absorption and migration of the neutrons in (zr, p3) after rescattering, gives a fair descrip-
tion of the shape and normalization of the x; distributions in DIS and photoproduction,
and of the difference in the p3 slopes b between the two sets. However, as with pure
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pion exchange, it predicts too high a value for b. Extending the model to include also p
and as exchanges still gives a fair description of the shape and normalization of the xz,
distributions in DIS and photoproduction, and also good descriptions of the p2 slopes and
of the differences between the two sets.
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xy, range | (x1) | pa( GeVQ) 1/0ine dorn/dxdp2 ( GeV_Q)
0.20-0.32 | 0.27 | 7.96 -10~* 2.031 + 0.064
2.51 1073 1.881 £ 0.064
4.86 -1073 1.955 £+ 0.070
7.95-1073 2.002 + 0.068
1.19 1072 1.962 + 0.063
1.65 -1072 2.001 £ 0.062
0.32-0.42 | 0.37 | 1.99 -1073 1.541 £ 0.035
6.46 -1073 1.454 4+ 0.038
1.24 -1072 1.445 4+ 0.039
2.04 -1072 1.527 + 0.037
3.03 -1072 1.440 + 0.034
4.23 1072 1.256 + 0.031
0.42-0.50 | 0.46 | 3.42 -1073 1.336 £ 0.026
1.11 1072 1.211 £ 0.029
2.14 -1072 1.218 + 0.029
3.51 -1072 1.217 £ 0.027
5.22 -1072 1.147 £ 0.025
7.28 -1072 1.005 £+ 0.023
0.50-0.54 | 0.52 | 4.84 -1073 1.274 £+ 0.030
1.58 -1072 1.218 £+ 0.035
3.03 -1072 1.200 £ 0.034
4.97 -1072 1.110 £ 0.031
7.40 -1072 0.946 + 0.026
1.03 -10~* 0.836 + 0.026
0.54-0.58 | 0.56 | 5.64 -1073 1.328 + 0.028
1.84 1072 1.144 + 0.031
3.53 1072 1.166 + 0.031
5.80 -1072 1.016 £ 0.027
8.62 -1072 0.904 + 0.024
1.20 -10~* 0.767 £+ 0.023

Table 1: The normalized doubly differential distributions (1/ci)d*o1n/dxdp>
for the full DIS sample. Only statistical uncertainties are shown.
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Table 1 (cont.)

xp, range | (x1) | pa( GeV?) | 1/0wme dopn/dzpdp? (GeV™—?)
0.58-0.62 | 0.60 | 6.50 -1073 1.286 £+ 0.025
2.12 1072 1.175 £+ 0.029
4.07 -1072 1.112 £+ 0.028
6.68 102 0.976 £ 0.024
9.94 -1072 0.795 £+ 0.020
1.39 -107! 0.654 £+ 0.019
0.62-0.66 | 0.64 | 7.42 -1073 1.296 + 0.024
2.42 1072 1.157 £ 0.027
4.65 -1072 1.034 £ 0.025
7.63 -1072 0.926 £ 0.022
1.14 -107! 0.703 £ 0.018
1.58 -107! 0.571 £ 0.017
0.66-0.70 | 0.68 | 8.39 -1073 1.297 4+ 0.022
2.74 1072 1.112 4+ 0.025
5.27 1072 0.990 £ 0.022
8.64 -102 0.821 £ 0.019
1.29 -107! 0.581 £ 0.015
1.79 -107! 0.456 4+ 0.014
0.70-0.74 | 0.72 | 9.42 -1073 1.306 + 0.021
3.08 1072 1.126 £+ 0.023
5.92 1072 0.914 £ 0.020
9.71 1072 0.707 £ 0.016
1.44 -1071 0.524 £+ 0.013
2.01 -107* 0.388 £ 0.012
0.74-0.78 | 0.76 | 1.05 -1072 1.280 £+ 0.019
3.44 1072 1.030 £ 0.021
6.61 102 0.837 £ 0.018
1.08 -1071 0.617 4+ 0.014
1.61 107! 0.403 £+ 0.011
2.25 -1071 0.308 £ 0.010
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Table 1 (cont.)

xp range | (z1) | p2( GeV?) | 1/0wme dopy /dzpdp? (GeV—?)
0.78-0.82 | 0.80 | 1.16 -1072 1.180 £+ 0.018
3.81 -1072 0.920 £ 0.019
7.33 -1072 0.714 £ 0.016
1.20 -107! 0.482 £ 0.012
1.79 -107" 0.304 £ 0.009
2.49 -1071 0.213 £ 0.008
0.82-0.86 | 0.84 | 1.28 -1072 1.000 £+ 0.016
4.21 -1072 0.783 £+ 0.017
8.10 -1072 0.568 4+ 0.014
1.33 1071 0.374 £ 0.010
1.98 -107! 0.208 £ 0.007
2.75 -1071 0.139 £ 0.006
0.86-0.90 | 0.88 | 1.41 -1072 0.719 £ 0.013
4.63 -1072 0.537 £ 0.013
8.90 -10~2 0.363 £ 0.010
1.46 -1071 0.232 £+ 0.007
2.17 -1071 0.135 £ 0.005
3.03 -1071 0.082 £ 0.004
0.90-0.95 | 0.92 | 1.54 -1072 0.347 £+ 0.007
5.07 -1072 0.267 £ 0.008
9.74 -1072 0.172 £ 0.006
1.60 -107! 0.110 £ 0.004
2.38 1071 0.059 £ 0.003
3.31 -1071 0.034 4+ 0.002
0.95-1.00 | 0.97 | 1.72 -1072 0.054 £ 0.002
5.64 -10~2 0.043 £ 0.002
1.08 -1071 0.032 £ 0.002
1.78 -1071 0.015 £ 0.001
2.65 -1071 0.009 £ 0.001
3.69 -10~1 0.005 £ 0.001
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vy range | (7r) a(GeV™?) b(GeV™?)
0.20-0.32 | 0.27 | 1.958 £ 0.0457019 | —0.94 + 2.407 %12
0.32-0.42 | 0.37 | 1.551 4 0.0257532 | 3.93 &+ 0.68705
0.42-0.50 | 0.46 | 1.325 4 0.02070:02 | 3.38 £0.370:2]
0.50-0.54 | 0.52 | 1.324 £ 0.0247535 | 4.32 £0.3370%
0.54-0.58 | 0.56 | 1.327 £0.0227500 | 4.53 £0.277053
0.58-0.62 | 0.60 | 1.336 & 0.021701; | 5.09 & 0.227 79
0.62-0.66 | 0.64 | 1.343 4 0.02075:3S | 5.44 4 0.197)52
0.66-0.70 | 0.68 | 1.357 £0.0197531 | 6.23 £0.1773%
0.70-0.74 | 0.72 | 1.370 £ 0.018¥1 | 6.53 £ 0.1570 %3
0.74-0.78 | 0.76 | 1.344 £ 0.017005 | 7.06 £ 0.147027
0.78-0.82 | 0.80 | 1.258 £ 0.017X0:03 | 7.66 & 0.1475:72
0.82-0.86 | 0.84 | 1.098 £ 0.015700> | 8.04 4+ 0.14% %)
0.86-0.90 | 0.88 | 0.782 4 0.01375% | 8.03 4+ 0.15772
0.90-0.95 | 0.92 | 0.387 £0.0071013 | 7.79+0.17+3%0
0.95-1.00 | 0.97 | 0.063 £ 0.0020:07 | 7.46 & 0.287752

Table 2:  The intercepts a and slopes b from the exponential parameterization
of the differential cross defined in Section 4.1 for the full DIS sample. Statistical
uncertainties are listed first, followed by systematic uncertainties, not including
an overall normalization uncertainty of 2.1% on the intercepts. The systematic
uncertainties are largely correlated between all points.
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sample Q? range (GeV?) | (Q%) (GeV?) | W range (GeV) | (W) (GeV)
vp Q? < 0.02 4 %1071 150 < W < 270 215
full DIS Q?>2 13 W < 250 95
low-Q? DIS 2<Q%,<5 2.7 50 < W < 250 140
mid-Q? DIS 5<%, <20 8.9 50 < W < 250 132
high-Q? DIS | 20 < Q%4 < 120 40 50 < W < 250 131
Table 3: Kinematic regions for each of the data samples. The yp ranges were

estimated from a simulation of photoproduction including the positron tagger used
to trigger these data. The Q* ranges for the low-, mid-, and high-Q* DIS samples
are the limits on the double angle variable Q% ,. All other ranges and means for DIS
were estimated using the DJANGOH 1.1 [39] generator, where the CTEQ4D [40]
parton-density parameterizations were used.

sample LN
- 0.0700 £0.0004 +3904
full DIS | 0.0885 £0.0002 00029
low-@? DIS | 0.0837 £0.0003 *{-9550
mid-Q2 DIS | 0.0843 +£0.0003 *9:9929
high-Q2 DIS | 0.0913 £0.0006 39921

Table 4: rpy in the region vy > 0.2, p% < 0.4762% GeV?, for the photoproduction
and DIS samples. Statistical uncertainties are listed first, followed by systematic
uncertainties, not including an overall normalization uncertainty of 2.1%.
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Ty range

(z1)

p2( GeV?)

1/Gine dopx /dapdp3 (GeV™?)

p

low-Q? DIS

mid-Q2 DIS

high-Q2 DIS

0.20-0.50

0.38

8.40
2.43
4.86
7.94
1.19
1.65

1074
1073
1073
1073
1072
1072

1.501 £ 0.108
1.289 £+ 0.090
1.127 £ 0.076
1.232 £ 0.084
1.064 = 0.075
1.021 £ 0.068

1.491 £+ 0.058
1.342 £+ 0.052
1.370 + 0.052
1.417 £ 0.054
1.359 £ 0.053
1.374 £+ 0.052

1.721 + 0.063
1.500 £ 0.056
1.451 + 0.053
1.528 £+ 0.057
1.451 £+ 0.055
1.589 £ 0.056

1.848 + 0.115
1.749 £+ 0.106
1.757 + 0.104
1.809 £+ 0.110
1.803 £ 0.109
1.805 £ 0.106

0.50-0.58

0.54

4.84
1.58
3.03
4.97

1073
1072
1072
1072
7.39 -
1.03 -

0.988 + 0.056
0.791 £ 0.055
0.812 £ 0.058
0.784 £ 0.052
0.654 £ 0.043
0.591 £ 0.041

1.196 + 0.036
1.077 £ 0.042
1.027 £+ 0.040
1.005 + 0.037
0.880 £ 0.033
0.768 £ 0.031

1.247 £ 0.037
1.096 £ 0.042
1.042 £+ 0.041
1.009 £+ 0.037
0.857 £ 0.032
0.760 £ 0.031

1.452 £+ 0.071
1.220 £ 0.079
1.191 £+ 0.078
1.187 £+ 0.072
0.934 £ 0.060
0.782 £ 0.056

0.58-0.66

0.62

6.50 -
212
4.08 -
6.68 -
1072
1.39 -

9.94

0.991 £ 0.047
0.849 £ 0.051
0.892 £ 0.055
0.753 £ 0.045
0.563 £ 0.035
0.451 £ 0.031

1.192 £+ 0.031
1.062 = 0.035
1.025 £+ 0.034
0.906 £ 0.030
0.714 £ 0.025
0.575 £ 0.023

1.261 £ 0.032
1.122 £ 0.037
1.068 £+ 0.035
0.889 £ 0.030
0.748 £ 0.025
0.605 £ 0.023

1.221 £+ 0.055
1.131 £ 0.065
1.151 £ 0.065
1.090 £ 0.059
0.837 £ 0.048
0.626 £ 0.042

0.66-0.74

0.70

8.38 -
2.74 -
1072
8.64 -
1.28 -
1.79 -

5.27

1.083 £+ 0.044
0.882 £ 0.047
0.815 £ 0.045
0.688 £ 0.039
0.451 £ 0.027
0.305 £ 0.021

1.303 + 0.028
1.116 £+ 0.032
0.935 £ 0.028
0.751 £ 0.024
0.530 £ 0.018
0.426 £ 0.017

1.263 £+ 0.028
1.093 £+ 0.031
0.961 £ 0.029
0.739 £ 0.023
0.560 £ 0.019
0.428 £ 0.017

1.309 £+ 0.050
1.104 + 0.056
1.035 £ 0.054
0.745 £ 0.042
0.532 £ 0.033
0.448 £ 0.031

Table 5:

shown.

The normalized doubly differential distributions (1/ow.)d*orN/dzrdps
for the photoproduction and three DIS samples. Only statistical uncertainties are
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Table 5 (cont.)

X range

(zr)

p2( GeV?)

1/0ine dopx /dxpdp3 (GeV—?)

P

low-Q2 DIS

mid-Q2 DIS

high-Q? DIS

0.74-0.82

0.78

1.05 -
3.44 -
6.61 -
1.08 -
1.61 -
2.25 -

1.111 £ 0.041
0.884 £ 0.043
0.769 £ 0.042
0.494 £ 0.028
0.285 £ 0.018
0.209 £ 0.016

1.250 £ 0.025
1.027 + 0.027
0.824 £ 0.024
0.587 £ 0.018
0.361 £ 0.013
0.267 £ 0.012

1.181 £ 0.024
0.986 £ 0.027
0.779 £ 0.023
0.541 £ 0.018
0.362 £ 0.013
0.243 + 0.011

1.251 £+ 0.044
0.915 £ 0.046
0.846 £ 0.043
0.576 £ 0.033
0.399 £ 0.025
0.289 £ 0.022

0.82-0.90

0.86

1.28 -
4.21 -
8.09 -
1.33 -
1071
2.75 -

1.97

0.876 £ 0.034
0.688 £ 0.036
0.538 £ 0.033
0.293 £ 0.020
0.134 £ 0.011
0.098 £ 0.010

0.899 £ 0.019
0.732 £ 0.021
0.528 £ 0.017
0.335 £ 0.013
0.195 £ 0.009
0.116 £ 0.007

0.894 £ 0.019
0.671 £ 0.020
0.477 £ 0.016
0.329 £ 0.012
0.170 £ 0.008
0.113 £ 0.007

0.838 £ 0.032
0.647 £ 0.035
0.477 £ 0.029
0.268 £ 0.020
0.174 £ 0.015
0.116 £ 0.012

0.90-1.00

0.93

1.54 -
5.06 -
9.74 -
1.60 -
2.38 -
3.31 -

0.242 + 0.015
0.166 £+ 0.014
0.130 £+ 0.012
0.072 £ 0.008
0.039 + 0.005
0.022 + 0.004

0.236 £ 0.008
0.180 £ 0.008
0.117 £ 0.006
0.077 £ 0.005
0.041 £ 0.003
0.019 £ 0.002

0.228 £ 0.007
0.156 £ 0.007
0.115 £ 0.006
0.065 £ 0.004
0.035 £ 0.003
0.023 £ 0.002

0.201 £ 0.012
0.142 £ 0.013
0.093 £ 0.010
0.057 £ 0.007
0.034 £ 0.005
0.019 £ 0.004
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sample | xp range | (zr) a (GeV2) b(GeV?)
vp | 0.20-0.50 | 0.38 | 1.386 4 0.0687010 | 20.32 £ 5.27755
0.50-0.58 | 0.54 | 0.949 +0.04170°7 | 4.72 £0.7870 %3
0.58-0.66 | 0.62 | 1.037 £ 0.03970¢3 | 5.82+0.53%¢0
0.66-0.74 | 0.70 | 1.149 4 0.03870 1] | 7.13 +0.4070 73
0.74-0.82 | 0.78 | 1.217 £ 0.0387052 | 8.32 £0.3310 1
0.82-0.90 | 0.86 | 1.009 + 0.0357055 | 9.23 +0.3370:29
0.90-1.00 | 0.93 | 0.266 &= 0.01470% | 7.91 +0.4410%]
low-Q% | 0.20-0.50 | 0.38 | 1.412 £ 0.03870 09 | 2.21 £ 292727
DIS | 0.50-0.58 | 0.54 | 1.196 £ 0.0291097 | 4.20 4 0.4419%
0.58-0.66 | 0.62 | 1.238 £ 0.02575:83 | 5.40 +0.3075:%
0.66-0.74 | 0.70 | 1.359 £ 0.025707% | 6.88 +£0.23%)73
0.74-0.82 | 0.78 | 1.346 & 0.023 000 | 7.65 £ 0.19707)
0.82-0.90 | 0.86 | 1.005 4 0.01970:95 | 8.10 £ 0.1810:3%
0.90-1.00 | 0.93 | 0.266 £ 0.0087053 | 7.94 +0.25702}
mid-Q? | 0.20-0.50 | 0.38 | 1.552 4 0.0417033 | 1.80 £ 2.8712%7
DIS | 0.50-0.58 | 0.54 | 1.238 £ 0.029709 | 4.80 & 0.44777%;
0.58-0.66 | 0.62 | 1.298 +0.0261010 | 5.53 £ 0.30103;
0.66-0.74 | 0.70 | 1.324 £ 0.02470:% | 6.51 +0.2270%
0.74-0.82 | 0.78 | 1.276 £ 0.0227007 | 7.65+0.19702%
0.82-0.90 | 0.86 | 0.975 +0.019%0¢02 | 8.40 £0.19%2]
0.90-1.00 | 0.93 | 0.248 4 0.00870:59 | 7.99 £ 0.2870:3)
high-Q? | 0.20-0.50 | 0.38 | 1.786 + 0.0767( 12 | —0.53 & 4.5675)
DIS | 0.50-0.58 | 0.54 | 1.449 £ 0.05670: | 5.79 & 0.7470:5%
0.58-0.66 | 0.62 | 1.309 £ 0.04570:17 | 4.66 & 0.4870%5
0.66-0.74 | 0.70 | 1.374 £ 0.044703} | 6.76 +£0.4070 05
0.74-0.82 | 0.78 | 1.283 4+ 0.0397002 | 7.02 4 0.3379 %%
0.82-0.90 | 0.86 | 0.915 £ 0.0327005 | 8.29 4+ 0.3670%;
0.90-1.00 | 0.93 | 0.217 £ 0.01370¢2 | 7.93 +£0.53% 35
Table 6: The intercepts a and slopes b from the exponential parameterization of

the differential cross defined in Section 4.1 for the photoproduction and three DIS
samples. Statistical uncertainties are listed first, followed by systematic uncertain-
ties, not including an overall normalization uncertainty of 2.1% on the intercepts
in DIS, nor an additional uncorrelated uncertainty of 5.1% on the photoproduction
intercepts. The systematic uncertainties are largely correlated between all points.

27




Figure 1: a) HERA ep scaltering event with the final-state baryon in the proton-
fragmentation system, X. b) Leading baryon production via an exchange process.

B77 B72 B67 Q51,5558 B47 Q42 Q30,34,38 B26 B18,22 Q6-15 ZEUS

= = DTI i TDTI IDTD i

A S382 S1

Figure 2: Side view of the proton beamline downstream from the ZEUS interac-
tion region. The protons are moving from right to left. The labels for the HERA
components, e.q. BJ7, indicate the horizontal distance in meters from the interac-
tion point. The horizontal and vertical axes are not to scale. The proton beam 1s
bent upward by approximately 6 mrad by the dipole magnets B67-B77 near Z=+"70
m. The FNC'is located on the zero-degree line at Z=+105.5 m. S1-S6 indicate the
locations of the ZEUS leading-proton spectrometer stations [26].
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Figure 3: Diagram of the FNC/FNT assembly. The thick horizontal lines show
the 5 c¢m wvertical segmentation of the front part of the FNC. The hole through
the third and fourth towers from the top allows the proton beam to pass through
the calorimeter. The 17 x 15 grid of small squares shows the fingers of the FNT
hodoscopes. The irreqular curve shows the geometric aperture defined by upstream
beamline elements, and the bullet () shows the zero-degree point.
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Figure 4:  The kinematic regions in (a) pa and (b) t covered by the angular
acceptance of the FNC' (6,, < 0.75 mrad) are shown as shaded bands.
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X (cm)

Figure 5: Scatter plot of reconstructed positions in the FNT. The irreqular curve
1s the geometric aperture defined by upstream beamline elements as modeled in the
Monte Carlo. The zero-degree point is at X = 12.5cm, Y = 8.3 cm. The deficit of
events observed near'Y ~ 10.5 cm is due to dead material in the LPS.
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Figure 6: Vertical slice of the data in Fig. 5 for 7 < X < 10.5 cm. The smooth
curve is the generated Monte Carlo distribution; the histogram is the Monte Carlo
distribution of reconstructed events after the dead material simulation. The peak of
the smooth curve, determined from a fit to the data, corresponds to the zero-degree
point in the vertical plane.
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Figure 7: The distribution (1/oi.)dopn/dxy, for neutrons in DIS with scattering
angles 0,, < 0.75 mrad, corresponding to the kinematic range p% < 0.476 2 GeV?.
The statistical uncertainties are smaller than the plotted symbols; the shaded band
shows the systematic uncertainties. The band does not include the overall normal-
ization uncertainty of 2.1%.
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Figure 8: The p2 distributions for DIS. Note the logarithmic vertical scale and
the varying p% ranges. The statistical uncertainties are shown by a vertical error
bar; in most cases they are smaller than the plotted symbol. The systematic un-
certainties are not shown. The line on each plot is the result of a fit to the form

dovx/dp7 o< exp(—bp7).
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Figure 9: The intercepts a = (1/ainc)d20LN/dedp%\p2T:O versus xy, from fits of the
p2 distributions in DIS to the form dopx/dpa = aexp(—bp2) over the pa ranges
shown in Fig. 8. The statistical uncertainties are shown by a vertical error bar;
i most cases they are smaller than the plotted symbol. The shaded band shows
the systematic uncertainties. The band does not include the overall normalization
uncertainty of 2.1%.
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Figure 10: The exponential slopes b versus xy, from fits of the p% distributions in
DIS to the form dopx/dps = aexp(—bp3) over the p% ranges shown in Fig. 8. The
error bars show the statistical uncertainties; the shaded band shows the systematic
uncertainties.
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Figure 11:  The ratio a/b versus xy from fits of the p% distributions in DIS
to the form doyx/dp% = aexp(—bp%) over the p3 ranges shown in Fig. 8. The
error bars show the statistical uncertainties; the shaded band shows the systematic

uncertainties. The band does not include the overall normalization uncertainty of
2.1%.
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Figure 12: The x;, distributions for the photoproduction and three DIS subsam-
ples. The error bars show the statistical uncertainties. The common systematic
uncertainties are shown as a shaded band. There is an overall normalization un-
certainty of 2.1% for the DIS data, and an additional uncorrelated uncertainty of
5.1% for the photoproduction data.
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Figure 13: The exponential slopes b for the photoproduction and three DIS sub-
samples. The points are slightly offset horizontally for clarity. The error bars show
the statistical uncertainties. The common systematic uncertainties are shown as a

shaded band.

38



ZEUS

O_ 1_4 T ‘ T ‘ T ‘ T ‘ T T ‘ T T T T T T

e ZEUSG6pb*
[_| Systematic uncertainty

1.2

—@—
——
|

1

0.8

‘*Q‘"Q"‘

0.6

0.4
(1o, ) do, , /dx, (Q°<0.02 GeV?)

Inc

(Lo, ) do,  /dx, (Q*>2 GeV?)

Inc

0.2

0
0.2 0.3 04 05 06 0.7 0.8 09 1
Xy

Figure 14: The ratio of the x distributions for photoproduction and DIS, nor-
malized as described in the text, for neutrons with scattering angles 6,, < 0.75 mrad,
corresponding to the kinematic range p2 < 0.476 x2 GeV?2. The error bars show the
statistical uncertainties; the shaded band shows the systematic uncertainties. The
band does not include the overall normalization uncertainty of 5.1% on the ratio.
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Figure 15:  The p2 distributions for photoproduction and DIS. They are each
normalized to unity at p% = 0. Note the logarithmic vertical scale and the vary-
ing p% ranges. The statistical uncertainties are shown by a vertical error bar;
in some cases they are smaller than the plotted symbol. The systematic uncer-
tainties are not shown. The lines on each plot are the results of fits to the form

doyx/dpy o< exp(—bp7.).
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Figure 16: The differences between the exponential slopes in photoproduction and
DIS, Ab, versus xy. The error bars show the statistical uncertainties; the shaded
band shows the systematic uncertainties.
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Figure 17: The normalized differential distributions (1/oim.)dorg/dxy, for leading
protons and neutrons in the range p> < 0.04 GeV?2. For the leading-neutron points,
the statistical uncertainties are shown by a vertical error bar; in most cases they
are smaller than the plotted symbol. The shaded band shows the systematic uncer-
tainties; the band does not include the overall normalization uncertainty of 2.1%.
For the leading-proton points, the inner error bars show the statistical uncertainty
only; the full error bars show the statistical and systematic uncertainties added in
quadrature.
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Figure 18: The exponential slopes of the p3 distributions for leading neutrons and
protons in DIS. For the leading-neutron points, the error bars show the statistical
uncertainties; the shaded band shows the systematic uncertainties. For the leading-
proton points, the inner error bars show the statistical uncertainty only; the full
error bars show the statistical and systematic uncertainties added in quadrature.
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Figure 19:

X,

Comparison to Monte Carlo models of DIS: (a) x, distributions, (b)

intercepts, and (c¢) exponential slopes. The error bars show the statistical uncertain-
ties; the shaded bands show the systematic uncertainties. The bands do not include
the overall normalization uncertainty of 2.1% for the xy, distribution and intercepts.
The curves are from the DIS Monte Carlo models RAPGAP [2/] and LEPTO [28].
The curves labeled RAPGAP std. frag. and LEPTO std. frag. are the models incor-
porating only standard fragmentation. The curve labeled RAPGAP-7 includes also
Pomeron and pion exchange; the curve labeled LEPTO-SCI is the model including
soft color interactions.
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Figure 20: The measured exponential slopes b compared to the predictions of mod-
els of one-pion exchange alone. The error bars show the statistical uncertainties;
the shaded band shows the systematic uncertainties. The curves show predictions
from the models discussed in the text [6-8].
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Figure 21: Ratio of photoproduction and DIS xj, distributions. The error bars
show the statistical uncertainties; the shaded band shows the systematic uncertain-
ties. The band does not include the overall normalization uncertainty of 5.1% on the
ratio. The dashed curve shows the neutron loss from a model of rescattering [14];
the solid curve is this model corrected for the different W dependence of the pion
cross section in DIS and photoproduction. The dot-dashed curve shows the neutron
loss from another absorption model [13]; the dotted curve is this model corrected for
the different W dependence of the pion cross section in DIS and photoproduction.
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Figure 22: x distribution for photoproduction. The error bars show the statistical
uncertainties; the shaded band shows the systematic uncertainties. The band does
not include the overall normalization uncertainty of 5.5%. The dashed curve shows
the prediction of a model with enhanced neutron absorption and migration for pion
exchange only [15]. The solid curve shows the same model including also p and as
exchanges [16].
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Figure 23: (a) Ezponential slopes b for DIS, and (b) difference of exponen-
tial slopes b for photoproduction and DIS. In both plots the error bars show the
statistical uncertainties; the shaded band shows the systematic uncertainties. The
dashed curves are from a model [16] based on pion exchange with enhanced neutron
absorption and migration; the solid curves include also p and ay exchanges.
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