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Abstract

Differential cross sections for dijet photoproduction in association with a leading
neutron using the reaction e™ + p — et + n + jet + jet + X, have been measured with
the ZEUS detector at HERA using an integrated luminosity of 6.4 pb~!. The fraction
of dijet events with a leading neutron in the final state was studied as a function of
the jet kinematic variables. The cross sections were measured for jet transverse energies
EX* > 6 GeV, neutron energy E, > 400 GeV, and neutron production angle 6,, < 0.8
mrad. The data are broadly consistent with factorization of the lepton and hadron
vertices and with a simple one-pion-exchange model.
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1 Introduction

A wealth of data [[HIO] exists on charge-exchange processes in soft hadronic reactions,
where an initial-state proton is transformed into a final-state neutron, p — n. A successful
phenomenological description of these results has been obtained with the concept of the
exchange of virtual isovector mesons, such as m, p, and ay, using Regge theory [LIHLT].
Since the pion is by far the lightest hadron, its exchange dominates the p — n transition,
particularly at small values of the squared momentum transfer, ¢, between the proton and
the neutron.

The assumption of factorization, namely that the partonic nature of a hadron is inde-
pendent of the hard scattering process in which it participates, has been shown to be
valid in the case of the nucleon, whose partonic structure has been probed extensively in
jet-production processes as well as in deep inelastic scattering. The idea of factorization
may be extended to the exchanged objects in charge-exchange reactions. Under this as-
sumption, hard processes occurring in charge-exchange reactions, such as the production
of high-Fr jets, provide a means of investigating the partonic nature of the exchanged
objects.

Charge-exchange processes have been studied in deep inelastic scattering at HERA [[L§,[19].
This paper reports the first observation of the photoproduction of dijets in association
with an energetic forward neutron:

em+p—et +n+jet +jet + X, (1)

where X, denotes the remainder of the final state. The virtuality of the exchanged photon,
Q?, was less than ~ 4 GeV?, with a median value of about 1073 GeV?2. Neutrons with
energy F, > 400 GeV and produced at an angle #,, < 0.8 mrad with respect to the
directionf] of the HERA proton beam (E, = 820 GeV) were detected in a forward neutron
calorimeter. These results extend previous ZEUS photoproduction dijet studies [20-Z].

The present data are compared to an inclusive sample of dijet events selected without the
requirement of a forward neutron. Cross sections are presented both as a function of the
kinematic variables of the jet and of the p — n transition. The contributions to the cross
section of direct processes, where the photon acts as a point particle, and resolved, where
the photon acts as a source of partons, are compared in both the neutron-tagged and the
inclusive samples. In addition, the fraction of the inclusive dijet sample with a leading
neutron is given as a function of the jet transverse energy (Ei") and pseudorapidity (7).
These fractions are used to study the factorization properties of the processes. The results
are compared to predictions of one-pion exchange.

L The ZEUS coordinate system is defined as right-handed with the Z axis pointing in the proton beam
direction, hereafter referred to as forward, and the X axis horizontal, pointing towards the center of
HERA. Pseudorapidity is defined as 7 = — In (tan(6/2)), where the polar angle 6 is taken with respect
to the proton beam direction.



2 Event kinematics

The dijet processes under consideration here are characterized by an initial state consisting
of a positron e, and a proton p, and a final state consisting of the scattered positron,
the scattered neutron n, and a hadronic system H:

et (k) +p(P) — " (K) + n(P") + H (2)

where k, k', P and P’ are the four-momenta of the initial and scattered positron, and
the proton and neutron, respectively. The process is described by four Lorentz invariants.
Two describe the positron-photon vertex and can be taken to be the virtuality of the
exchanged photon (Q?) and the electron’s inelasticity (y), defined by:

QP = —¢=—(k—F) (3)
v = B g

In photoproduction, where Q* is small, y = (E. — E')/E, = E, /E,, where E.(E') is the
energy of the initial (scattered) positron, and E., is the incident photon energy. The other
two variables, which describe the proton-neutron vertex, are the fraction of the energy
of the initial-state proton carried by the neutron (z.), and the square of the momentum
transfer (¢) between the initial proton and the produced neutron, defined by:

Pk E,
T, = P.szp (5)
t = (¢)?=(P-P) (6)

where E, is the energy of the incident proton. The transverse momentum, py, of the

neutron is related to ¢t and x,, by:
2 2
. _p_?r B (1 —a)(m; — zyms) )

Ty, Ty,

where m,(m,,) is the mass of the proton (neutron).

In the photoproduction of dijets tagged with a leading neutron, the hadronic system H
contains at least two jets:

et (k) +p(P) — e (K)+n(P)+H — e (K)+n(P)+jet + jet + X, (8)

In 2 — 2 scattering of massless partons, the fractions of the four-momenta ¢ = (k — k')
and ¢’ = (P — P’) carried into the hard scattering by the initial-state partons are given
by:

(P +Dps2) - ¢
T, = v 9)
Tr = (le ;’Zi]{?) - q (10)



respectively, where p; is the four-momentum of the ¢th final-state parton, and the approx-
imation ¢*> ~ (¢')® ~ 0 has been used. The energy fraction contributed by the exchanged
photon to the production of the dijets is z,; in Regge models, where p — n is the result
of the 7w, p or as trajectory coupling to the pn vertex, the corresponding contribution of
the exchanged meson is . A further relationship is:

e = 2p)(1 - 22) (1)

where z, is the fraction of the proton energy participating in the production of the dijets.

OBS

The observables x 9% and 9%, defined in terms of jets, are introduced [B{]:

v o Up
et — jet
povs D PECT (12)
K 2F,
it T’jet
2088 — Zjets EJT € (13)
P 2E,
,',UOBS
:L,OBS — p 14
™ (1 _ xL) ( )
where the sum runs over the two jets of highest EX* in an event. The variables 20" and

OBS
™

"% are estimators of z, and x,, respectively.

In leading-order (LO) QCD, two types of processes contribute to jet photoproduction
[B3,B4): either the entire photon interacts with a parton in the target (the direct process),
or the photon acts as a source of partons which scatter off those in the target (the resolved

process). Figure [l illustrates these processes for reaction () with an assumed meson-

OBS
~

[BF]. Direct processes are concentrated at high values of x

is sensitive to which type of process occurs

OBS
v

exchange contribution. The observable x
, resolved processes at low
values.

3 Experimental conditions

The data sample used in this analysis was collected in 1995 with the ZEUS detector
using etp interactions. In this period HERA operated with 174 colliding bunches of
E, = 820 GeV protons and E, = 27.5 GeV positrons, corresponding to a center-of-
momentum-frame energy /s = 300 GeV. Additionally, 21 unpaired bunches of protons
or positrons allowed the beam-related backgrounds to be determined. The integrated
luminosity used in this analysis is 6.4 pb™!.

The ZEUS detector is described in detail elsewhere [2g]. The principal components used in
the present analysis were the central tracking detector (CTD) [B7] positioned in a 1.43 T

3



solenoidal magnetic field, the uranium-scintillator sampling calorimeter (CAL) [R§], and
the forward neutron calorimeter (FNC) [R9]. The tracking system was used to establish
an interaction vertex with a typical resolution along (transverse to) the beam direction
of 0.4(0.1) cm. Energy deposits in the CAL were used to find jets and to measure their
energies and angles. The CAL is hermetic and consists of 5918 cells, each read out by
two photomultiplier tubes. Under test beam conditions, the CAL has energy resolutions
of 0(F) = 18%/E for electrons and 35%+/E for hadrons (F in GeV) [B. Jet energies
were corrected for the energy lost in inactive material (typically one radiation length) in
front of the CAL.

3.1 Forward neutron calorimeter

The forward neutron calorimeter [P9] was installed in the HERA tunnel at § = 0 degrees
and at Z = 106 m from the interaction point in the proton-beam direction, and used
for the 1995 data taking. The layout of the calorimeter is shown in Fig. J. The FNC
is a sampling calorimeter with 134 layers of 1.25 cm thick lead as the absorber and
0.26 cm thick scintillator as the active material. The scintillator is read out on each side
with wavelength-shifting light-guides coupled to photomultiplier tubes. It is segmented
longitudinally into a front section, seven interaction-lengths deep, and a rear section, three
interaction-lengths deep. The front section is divided vertically into 14 towers, allowing
the separation of electromagnetic and hadronic showers using the energy-weighted vertical
width of the showers. The energy resolution for hadrons, as measured in a beam test,
is 65%VE (F in GeV) [B9. Neutrons are easily distinguished from protons, which are
deflected upwards by the beam magnets and deposit most of their energy in the top four
towers of the FNC.

Three planes of veto counters, each 70 x 50 x 2 cm?®, are located 70, 78, and 199 cm in
front of the calorimeter. These counters, which completely cover the bottom front face
of the calorimeter, were used offline to identify charged particles and so reject particles
which interacted in the inactive material in front of the FNC.

Magnet apertures limit the FNC acceptance to neutrons with production angles less than
0.8 mrad, that is to transverse momenta p; < FE,0... = 0.66x; GeV. Only about one
quarter of the corresponding azimuth is free of obstruction, as can be seen from the
outline of the aperture in Fig. PJ(a). The Z-axis intersection with the FNC is also indi-
cated. The overall acceptance of the FNC, which includes beam-line geometry, absorb-
ing material, and the angular distribution of the neutrons, is about 30% for neutrons
with energy E, > 400 GeV and 6, < 0.8 mrad. The kinematic region covered by the
FNC in longitudinal and transverse variables is shown in Fig. [J. Although the accep-
tance extends to p2 ~ 0.4 GeV?, the mean value of p2 for the accepted data is less
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than 0.05 GeV? [B{]. The ¢ acceptance is strongly affected by the minimum value of |¢],
toin = (L — ) (m2 — xym?) /2.

The calibration and monitoring [BI] of the FNC follow the methods developed for the
FNC test calorimeters [[§,B3]. The gain of the photomultiplier tubes is obtained by
scanning the FNC with a %°Co radioactive source. Changes in gain during data taking
are monitored using energy deposits from interactions of the HERA proton beam with
residual gas in the beam pipe. The overall energy scale is set from the kinematic end
point of 820 GeV by fitting proton beam-gas interaction data with energy greater than
600 GeV to that expected from one-pion exchange [13,BJ].

4 Data selection

The ZEUS detector uses a three-level trigger system. At the first level, events were selected
by a coincidence of a regional or transverse energy sum in the calorimeter, and at least one
track from the interaction point measured in the CTD. At the second level, at least 8 GeV
total transverse energy, excluding the eight calorimeter towers immediately surrounding
the forward beam pipe, was required and cuts on calorimeter energies and timing were
used to suppress events caused by beam-gas interactions [B4]. At the third level, a cone
algorithm used the calorimeter cell energies and positions to identify jets. Events were
required to have at least two jets, each of which satisfied the requirement E)* > 3.5 GeV
and 7" < 2.0, or Ei* > 4.0 GeV and 2.0 < n** < 2.5. Additional tracking cuts were
made to reject proton beam-gas interactions and cosmic-ray events. No requirement on
the FNC was made at any trigger level.

Further selection criteria were applied offline. Charged current scattering events were
rejected by a cut on the missing transverse momentum measured in the calorimeter. To
reject remaining beam-gas and cosmic-ray backgrounds, tighter cuts were applied. These
used the final Z-vertex position, other tracking information and timing information. T'wo
additional cuts were also made [B]:

e events with a well-identified positron candidate in the uranium calorimeter were re-
moved.

e a cut was made on the Jacquet-Blondel estimator of y B, yyp = >_;(Ei — Ez;)/2Ek,
where Ez; = E;cost;, and E; is the energy deposited in the calorimeter cell ¢ with a
polar angle 6; with respect to the measured Z-vertex of the event. The sum runs over
all calorimeter cells. For any event where the scattered positron entered the uranium
calorimeter and was not well identified, the value of y;5 is close to one. Proton beam-
gas events have low values of y;5. To reduce further the contamination from this
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source, it was required that 0.15 < y;p < 0.7. This range corresponds approximately
to a true y range of 0.2 < y < 0.8, and so to a energy range of 134 < W < 269 GeV
in the yp center-of-momentum frame.

These cuts restricted the range of Q2 to be less than ~ 4 GeV?, with a median value of
about 1072 GeV?.

Dijet candidates were selected using the KTCLUS [B7] jet algorithm (details can be found
in a previous ZEUS publication [R1]). Cone [Bg] algorithms were also used as a check: the
conclusions did not change. The jet transverse energy measured in the ZEUS detector was
corrected as a function of pseudorapidity and transverse energy to account for energy lost
in inactive material. This correction was derived from the Monte Carlo (MC) simulation

described in the next section. After all cuts, the kinematic region under study is defined
by: Ei > 6 GeV, || < 2, Q% < 4 GeV? and 0.2 < y < 0.8.

Events with a leading neutron were selected from the inclusive dijet sample by requiring a
large energy deposit (> 400 GeV) in the FNC. The segmentation of the FNC permits the
identification of protons, photons, and neutrons. Scattered protons are bent into the top
towers (11-14) by the HERA dipole magnets. As seen in Fig. P}, the geometric aperture of
the FNC for neutral particles at normal incidence is centered on towers 7 and 8. Scattered
protons were eliminated from the sample by requiring that the tower with the maximum
energy deposit be either 6,7,8 or 9. Although both photons and neutrons produce large
energy deposits in the bottom section (towers 1-10), the vertical spread of electromagnetic
showers is much less than that of hadronic showers. Photons were removed by eliminating
showers with a small vertical spread (< 3 cm). Finally, neutrons that started showering
in front of the FNC were removed by requiring that the scintillator veto counter farthest
from the FNC had an energy deposit below that of a minimum-ionizing particle. Only the
farthest counter was used, to minimize false vetoes due to calorimeter albedo. Showers
with spreads greater than 7.5 cm were also removed since they are inconsistent with
originating from a single high-energy hadron.

After these cuts, 1921 events with a neutron remained, comprising approximately 1%
(before correction for the FNC acceptance) of the inclusive dijet sample of 2 - 10° events.

5 Monte Carlo simulation

Monte Carlo simulations were used to correct the data for acceptance and for smearing
of the measured quantities due to the finite resolution of the detector. For all generated
events, the ZEUS detector response was simulated in detail using a program based on
GEANTS3.13 [BY], and the Monte Carlo events were subjected to the same analysis chain
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as the data. For the inclusive dijet analysis, the data were compared to Monte Carlo
simulations based on PYTHIA5.7 [i0] and HERWIG5.9 [}, which include leading-
order QCD calculations. A minimum cut-off value pz™ of 2.5 GeV was applied at the MC
generator level to the transverse momenta of the outgoing partons in the hard scattering
process. The HERWIG event generator was used to check the PYTHIA results. In
PYTHIA, the photon flux is calculated using the Weizsdcker-Williams approximation.
The parton densities used were GRV LO [fJ] for the photon and CTEQ4 LO [£3] for the
proton. The hadronization in PYTHIA was performed using the LUND string model as
implemented in JETSET [[4]. In HERWIG, the hadronization of partons is based on
a cluster model. For comparison, the LAC1 [f] parameterization for the photon and
MRSA LO [[i] for the proton were also used.

Previous studies have shown that including a simulation of multiparton interactions (MI)
in the parton shower programs significantly improves the description of jet production
in the forward region [I]. This option, which applies only to resolved processes, adds
interactions between the partons in the remnants of the proton and photon, calculated as
LO QCD processes, to the hardest scattering process of the event. It was implemented

in the HERWIG simulation [[7].

The energy corrections for jets were determined from the Monte Carlo samples by compar-
ing the true transverse energy of a jet (found by applying the algorithm to the final state
particles) to the transverse energy measured in the calorimeter simulation. The correction
to the jet energies was on average +17%, varying between +10% and +25% depending
upon n'**. The largest corrections occurred at boundaries within the calorimeter. No
correction was applied to the jet pseudorapidity, since the average shift in n between the
true and detected jets was less than 40.05 for all n values in the range used for the cross
section measurements. In each event, the two jets with the highest transverse energies
were selected.

For the dijet events with a neutron tag (E, > 400 GeV), the data were corrected using
Monte Carlo programs based on POMPYT2.5 [§] and RAPGAP2.06 [[9). These sim-
ulations include pion-exchange processes where a virtual pion is emitted from the incoming
proton (see Appendix). As discussed later, such a model reproduces the characteristics of
the data. The POMPYT generator makes use of the program PYTHIA to simulate e™ 7™
interactions via resolved and direct photon processes. These programs simulate higher
order effects through the use of leading-order parton showers. Hadronization processes
are implemented by JETSET (the LUND string model). In both programs GRV-LO was
used for the parton densities of the photon and SMRS-P3 [B(] for the parton densities of
the pion.

The conclusions are independent of the Monte Carlo model used for the corrections: the
jet energy corrections and acceptance calculations, both inclusive and neutron-tagged,
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can be performed with any of the four Monte Carlo programs (POMPYT, RAPGAP,
HERWIG, PYTHIA) without significant change in the results.

6 Systematic uncertainties

A detailed study of the sources contributing to the systematic uncertainties of the mea-
surements was carried out [BI]]. Those associated with the CTD and CAL, which impact
on the jet measurement, and those associated with the FNC, which impact on the neutron
measurement, are considered separately.

For the jet measurements, the uncertainties are grouped into the following classes:

e absolute energy scale of the CAL: the energy scale uncertainty of the low Er CAL jets
used in this study is 5%, leading to an uncertainty of 15 to 20% on the cross section;

e model dependence: for the inclusive dijet cross section, the jet-acceptance correction
was performed using HERWIG instead of PYTHIA. For the neutron-tagged sample,
the acceptance correction was changed from POMPYT to RAPGAP. The associated
uncertainties were at the 5% level;

e parton parameterization: changing the parton densities of the proton (CTEQ to
MRSA) contributed an uncertainty of 0.4%; changing the parton densities of the
photon (GRV to LAC1) 2%;

e event selection: variation of each selection cut by one standard deviation of the reso-
lution gave uncertainties of about 5%.

The main systematic uncertainties associated with the FNC were:

e absolute energy scale of the FNC: the uncertainty on the FNC energy scale is +2% [BI]|.
This introduced a 1.5% normalization uncertainty on the cross section;

e beam-gas background: charge-exchange processes for beam-gas interactions can pro-
duce a high-energy nucleon which might overlap with a dijet event. The uncertainty
in the correction of 2% is less than 1%;

e event selection: veto-counter noise (from beam halo and calorimeter albedo) and veto-
counter inefficiencies resulted in a 2.5% uncertainty;

e angular distribution of neutrons: the acceptance of the FNC was uncertain due to
uncertainties in the angular distribution of the neutrons. The uncertainty in the ac-
ceptance was estimated by using different parameterizations of the pion flux. To obtain
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a model-independent estimate, the angular distribution at fixed x;, was assumed to
fall exponentially with p2, dN/dp2 oc exp(—bp2), and the acceptance and its system-
atic uncertainty were determined by varying the slope parameter b as a function of x;,
within the limits allowed by the data [B{]. The resulting acceptance uncertainty for
neutrons with energy E, > 400 GeV was 5.5%;

e sensitivity of the description of the beam-line: the calculated acceptance of the FNC
depends on a complete and accurate description of the proton beam-line between
the interaction point and the calorimeter. Both the amount of inactive material and
the alignment must be known. The model was tested by comparing the fraction of
neutrons in the FNC surviving the selection cuts, according to RAPGAP, to that
observed. The discrepancy between the expected and observed fraction gave a nor-
malization uncertainty of 6%.

The dominant systematic uncertainty is that associated with the energy scale of the CAL
jets. The statistical errors and the systematic uncertainties were added in quadrature and
are shown as error bars in the figures. The systematic uncertainty associated with the
absolute energy scale is shown as a shaded band. The systematic uncertainties from the
FNC give a 9% normalization uncertainty on the neutron-tagged cross section. Since this
uncertainty does not affect the shape of any distribution, it is not included in the figures.
In addition, a normalization uncertainty of 1.5% from the luminosity determination was
not included; this is not relevant in the measurement of the neutron-tagged to inclusive
event-rate ratios.

7 Some results and comparisons

The usual simulation models for hard photoproduction processes such as HERWIG or
PYTHIA contain a fraction of events with a leading neutron, although it is not, a priori,
expected that such simulations will properly describe particle production in the proton
fragmentation region. For leading neutrons produced with high longitudinal momentum
and low transverse momentum, particle-exchange models may be more appropriate. In
this case the LO cross section can be expressed as:

[ / / dydQ ey, Q%) / / dydtfy gy t Z / 0 fiy . 11%) / A fy (s 1)
Z / dp? dm*{;k”(% P 17 )] (15)

where the exchanged meson is denoted by 7, and a sum over all exchanged mesons is im-
plied. The dijet cross section in charge-exchange photoproduction contains contributions
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from both the direct and resolved processes. In Eq. ([H), f,/. is the splitting function of
a positron into a photon and positron, fr/, is the splitting function of a proton into a
meson and neutron ( i.e., the flux of mesons in the proton), f;/, is the density of partons
of type 7 in the photon, and f;/. is the density of partons of type j in the meson. The
sum in 7,7 runs over all possible types of partons ¢ present in the photon and j in the
meson. The sum in k,[ runs over all possible types of final state partons. The term
Oitj—k+ 1s the cross section for the two-body collision 7 + j — k 4 [ and depends on
the square of the center-of-momentum-frame energy, s = y(1 — x,)xz,2,s, the transverse
momentum of the two outgoing partons (p2), and the momentum scale (u) at which the
strong-coupling constant (a,(p?)) is evaluated. For the direct process, Eq. ([[J) also holds
except that f;/,(z,) is replaced by the Dirac delta function, 6(1 — z,), and there is no
sum over partons ¢ in the photon.

Equation ([[) incorporates the assumption of factorization. In particular, the resolved
cross section depends on four “parton” densities and a two-body scattering cross section.
The kinematic variables y, z;, x, and z, are coupled only through the § dependence of
the hard-scattering cross section, . A priori, the shape of the neutron-tagged jet cross
sections depends on the kinematic variables of the neutron. In a complete factorization
of the baryon and the photon vertices, however, the shape of x, and the jet-variable
distributions would not depend either on the presence of a neutron or explicitly on its
kinematic variables. Similarly, the energy spectrum of the neutrons would be independent
of the photon and jet variables.

Meson-exchange models, in the context of Regge theory, are often used to describe nucleon
charge-exchange reactions. Since the mass of the pion is small compared to all other
mesons, pion exchange (see Appendix) is expected to dominate the amplitude for the
p — n transition, with small contributions from p, as, etc. In fact, LO one-pion-exchange
models account for both the shape and normalization of the distributions for the neutron-
tagged data. Figure fJ(a) compares the shape of the uncorrected neutron energy spectrum
to the prediction of the one-pion-exchange (OPE) model POMPYT for the monopole
and light-cone pion form-factors. The POMPYT OPE model with the light-cone form-
factor agrees well with the measured energy spectrum. RAPGAP gives essentially the
same prediction. The figure also shows that the monopole choice for the form factor is
disfavored. It gives a distribution which is both shifted in energy and too narrow. For
this comparison, the SMRS-P3 [B(] pion parton densities have been used; however, the
predicted shape of the neutron spectrum is insensitive to the choice of parton density of
the pion [50,62H4] (not shown). These parton densities are constrained by dimuon and
prompt-photon production data from fixed-target experiments that are sensitive mainly
to the valence quark distributions, and the parameterizations are similar in the z, range
studied here.
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Figure fl(b) shows a comparison of the shape of the neutron energy distribution with
the predictions of the Monte Carlo programs PYTHIA and HERWIG. Neither simulation
provides a good description of the data. Moreover, PYTHIA (HERWIG) predicts a leading
neutron (E,, > 400 GeV) in 2% (0.5%) of the dijet events in comparison with the 4.940.4%
(after correction for the acceptance of the FNC) observed in the data.

The Monte Carlo models considered here do not contain an explicit diffractive component;
however, neutrons can also be produced by the diffractive dissociation of the incoming
proton through Pomeron exchange. Monte Carlo studies indicate that such neutrons
will have an energy spectrum which agrees qualitatively with that observed in the data.
Diffractive processes give rise to a large rapidity gap between the hadronic system and
the remnant of the proton, which is either a single proton or a low-mass system with the
quantum numbers of the proton. The pseudorapidity of the most-forward hadron (7,,.,) in
the central detector was used to select diffractive events. Meson exchange can also give rise
to events with a large rapidity gap via the Deck mechanism [f5 in which the exchanged
meson itself scatters diffractively off the incoming photon and escapes undetected down
the beam pipe.

Diffractively dissociating protons are expected to account for only a small fraction of
the dijet events, both inclusive and neutron-tagged, because the Er of diffractive events
is severely limited by the small fraction of the proton energy carried by the Pomeron
(< 5%). In contrast, in neutron production there is on average a much larger fraction of
the initial proton energy (=~ 25%) available for jet production. Figure fl(a) shows the 7,,.,
distribution for both inclusive and neutron-tagged dijet photoproduction, normalized to
equal area. The shapes of the two distributions are similar. Although there are differ-
ences between the two distributions at large 7,..., this region is insensitive to diffractive
processes. Less than 1% of each sample has a large rapidity gap (m.. < 2). In addition,
the distributions of the jet variables, EX*, n'*', and xJ" for events with a large rapidity
gap [ are different from those of the neutron-tagged sample, which strongly resemble
the inclusive sample ( see Section §). POMPYT and RAPGAP also reproduce the 7,,.,
distribution of neutron-tagged events, as seen in Fig. f(b), although neither Monte Carlo
contains an explicit diffractive component.

Neutrons can also be produced indirectly through the production and decay of baryonic
resonances. Most prominent of these is the A, which is itself produced directly through
7, p or ay exchange, and which can decay via A° — nz7® or A* — na*. Monte Carlo
studies indicate that such decay neutrons will also have an energy spectrum which agrees
qualitatively with the data; however, the study of hadronic interactions [pG-F9] shows
that the An contribution to the Fock state of the proton is approximately half that of
nm [B3J60]. When account is taken of the branching ratio for A — n, such indirect neutron
production is small compared to the direct p — n transition.
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It can therefore be concluded that standard fragmentation processes, diffractively disso-
ciating protons, and the decay of the A resonance are ruled out as the dominant source
of dijet events tagged with a leading neutron. The data will be further compared with
the one-pion-exchange model in Section .

8 Factorization tests

The differential dijet cross sections as a function of E)¢* and 7 are shown in Fig. fi(a,b) for
the inclusive sample, and in Fig. fi(c,d) for the neutron-tagged sample. The predictions of
PYTHIA and HERWIG describe the shape of the Ei* distribution reasonably well. The
predictions have been normalized to the measured cross section at high Ei* (>16 GeV)
in order to facilitate the shape comparison. For the n*** distribution, the Monte Carlo is
normalized at small n’**, —1.5 < n’** < 0. HERWIG with multiparton interactions is in
better agreement with the data than PYTHIA without such interactions.

The study of ratios of neutron-tagged to inclusive cross sections is advantageous since
many systematic uncertainties, especially those related to the jet measurements, are
greatly reduced. In addition, the ratio provides a quantitative comparison of the shapes
of the cross sections, and so tests factorization. That the neutron-tagged and inclusive
differential cross sections have similar shapes as a function of EJ* is evident in Fig. [j(e).
The cross sections fall by over two orders of magnitude in the range 6 < EJ* < 25 GeV,
but the ratio is approximately constant as a function of Ei¢*. Figure f(f) shows that the
ratio as a function of 7' falls slightly with increasing 7**. The ratios of RAPGAP to
PYTHIA and RAPGAP to HERWIG with multiparton interactions are also shown in
Figs. fl(e,f). The ratio of RAPGAP to HERWIG is in better agreement with the data, as
expected from the cross section comparisons. The agreement of RAPGAP and POMPYT
with the tagged data supports factorization, which is built into these MC models.

To test further the factorization properties of the dijet cross section, the neutron-tagged
and inclusive samples were divided into bins of z9"° and E¥*. The shape of the observed
energy spectrum of the neutron is approximately independent of z7%° and EX*, as seen in
Fig. [](a) and (b). Moreover, in a given bin of 29", the fraction of events with a leading
neutron is approximately independent on E¥*, as seen in Fig. [](c).

The xz0™ distribution is determined by the parton densities in the colliding particles,

kinematic factors, and a possible presence of interactions between the hadron remnants.
Figures B(a,b) show the uncorrected xJ" distribution for inclusive and neutron-tagged
events, respectively. The corresponding ratio of neutron-tagged to inclusive production

is shown in Fig. §(c), corrected only for the acceptance of the FNC. In sharp contrast to

OBS

the results shown in Fig. [j, the ratio rises with increasing T

. The rise is only partially
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explained by the Monte Carlo models. The Monte Carlo predictions are shown area
normalized to the data in Figs. §(a,b); the ratio of RAPGAP to HERWIG normalized at

29" = 0.5 is shown in Fig. §(c).

Figure §(d) shows the ratio of the resolved (z%° < 0.75) and direct (2" > 0.75) photo-
production cross sections as a function of Ei** for inclusive events while Fig. §(e) show the
same quantity for neutron-tagged events. The size of the direct component increases with
E'* for both the neutron-tagged and the inclusive samples. Overall the direct component
is approximately twice as large in the neutron-tagged sample. Figure §(f) shows that
the ratio of the two ratios is constant within errors as a function of E¥* indicating that,
although the proportion changes, the shape in E)* is the same for both samples.

In summary, the shape of the neutron energy spectrum is approximately independent
of the the jet variables EX*, n** and x9"; the jet variables EX* and 7 are relatively
insensitive to the presence of a neutron; however, the ratio of neutron-tagged to inclusive

OBS

dijet events rates rises with increasing x9".

9 Comparison to a one-pion-exchange model

In the previous two sections, it was shown that standard fragmentation processes, diffrac-
tively dissociating protons, and the decay of the A resonance are not the dominant source
of dijet events tagged with a leading neutron, but that the data are consistent with one-
pion exchange and approximately satisfy factorization. It is therefore appropriate in this
section to make further comparisons to OPE under the assumption that it is the dominant
mechanism for the production of the neutron-tagged events.

The predictions of RAPGAP simulations using the SMRS-P3 parton densities for the pion
and the light-cone pion form-factor are in good agreement with the EJ* spectrum for the
neutron-tagged events of Fig. fj(c). POMPYT, which is not shown, gives a similar result.
Both OPE Monte Carlo models also adequately describe the shape of the n’** distribution
of Fig. f(d), where only RAPGAP is shown. The leading-order OPE model is also able to
account for the normalization of the data, as shown by the RAPGAP prediction. In con-
trast to the inclusive case (Fig. f(b)), the Monte Carlo simulations reproduce the forward
7" region without a simulation of multiparton interactions. This comparison suggests
that hadron remnant interactions are less important for the neutron-tagged sample, in
agreement with naive expectations based on their lower effective center-of-momentum-
frame energy compared to the inclusive sample. The RAPGAP and POMPY'T simula-
tions are also in fair agreement with the z3"° distribution for the neutron-tagged events
(Fig. B(b)). As in the case of the " distribution, the OPE Monte Carlo models describe
the data without simulation of MI, which is needed in the case of the inclusive sample
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(Fig. B(a)). According to the Monte Carlo models, the MI contribution in the inclusive
sample strongly increases at low values of 29" BT]. Therefore the ratio of neutron-tagged
to inclusive events, which increases with 29" (Fig. f§(c)), can be interpreted to be at least
partially caused by the difference in remnant-remnant interactions of the two samples.

The differential cross section for neutron-tagged events as a function of 9% (see Eq. [4) is
shown in Fig. fl. The measured cross section is compared in Fig. f to the predictions of the
RAPGAP Monte Carlo model using the light-cone pion form-factor and the SMRS-P3 pion
parton densities. The shape of the 29%° distribution disfavors the monopole form-factor
(not shown), but both the shape and normalization are reproduced by both RAPGAP
and POMPYT (not shown). The results for other parameterizations of the pion parton
densities, which are determined from hadron-hadron interactions, are indistinguishable.
The bands show the systematic uncertainty due to the calorimeter energy scale. There is
an additional normalization error of 9% which is not shown.

10 Conclusions

Differential cross sections for the inclusive reaction etp — e + jet + jet + X, and the
neutron-tagged reaction e*p — et + n + jet + jet + X, have been measured in photopro-
duction for Q% < 4 GeV? and 0.2 < y < 0.8, with jet transverse energy Ei** > 6 GeV,
neutron energy FE, > 400 GeV and neutron production angle #,, < 0.8 mrad. Such
neutrons are observed in 4.9 + 0.4% of the events.

The shape of the neutron energy spectrum is observed to be independent of both EJ*

OBS
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is approximately independent of the jet transverse energy and pseudorapidity. These

and x In addition, the ratio of neutron-tagged to inclusive dijet production rates

observations support the idea of factorization of the positron and proton vertices.

The above ratio does depend on z7%°, the fraction of the initial photon momentum par-
ticipating in the hard interaction; the direct to resolved fraction is approximately twice
as large in the neutron-tagged sample as in the inclusive sample.

The 29" distribution for the inclusive dijet process can be reproduced in a simulation
which includes multiparton interactions. In contrast the neutron-tagged data are well
simulated by LO Monte Carlo models including one-pion exchange but without multi-

parton interactions. These comparisons suggest that the rising ratio of neutron-tagged

OBS
~

remnant-remnant interactions in the two samples.

to inclusive dijet rates as a function of x9%° is at least partially due to the difference in

The standard photoproduction Monte Carlo models, PYTHIA and HERWIG, fail to re-
produce either the neutron production rate or the neutron energy spectrum. In contrast,
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LO Monte Carlo models such as POMPYT and RAPGAP, which include one-pion ex-
change and which assume factorization of the pion flux and pion structure, reproduce all
aspects of the neutron-tagged data for both the neutron and jet kinematic variables.
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Appendix: pion exchange

Although there are many choices found in the literature for the splitting function of a
proton into a pion and neutron, they all can be summarized conveniently in the form

L3, 14:

l Gop 1 20
frpp(w,t) = Ir 4me(1 —2,)' 72O (F (1)) (16)

where ¢, is the coupling at the nmp vertex, m, is the mass of the pion, and a,(t) =
o' (t —m?) is the Regge trajectory of the pion. The trajectory is often omitted by setting
the slope constant o’ = 0, instead of to the measured value, o’ ~ 1 GeV~2. F(x.,t) is
a form-factor which accounts for final state rescattering of the neutron. Possible choices
for the form-factor F(x.,t) are:

exp (b(t — m?2)) Exponential
F(z,,t) =< exp(R*(t —m2)/(1 —x.)) Light cone (17)
(1—-m2/A?) /(1 —t/A?) Monopole

where b, R and A are constants [B3,p],62]. The choice of form-factor depends on whether
the pion’s Regge trajectory is included or excluded. For the flux with the Regge trajectory
the form factor is usually chosen to be an exponential [[[J. The light-cone form-factor is
usually associated with the flux without the Regge trajectory [[7,3]. These choices are
associated with the experimental observation that in hadronic interactions the shape of
the =, distribution depends on ¢ [B,[,[q-

The experimental data are consistent with the flux with the trajectory term included and
a constant form factor (that is, b ~ 0) [[HI0,[[3,[4]. Beam-gas data at HERA are also
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consistent with a small value for b [BI; Kopeliovich et al [f1] use b = 0.3 GeV~2. For
the light-cone form-factor and the flux without the pion’s Regge trajectory, Holtmann
et al. B3] take R = 0.6 GeV~!. A calculation [f4] of the pion form-factor for the one-
boson-exchange potential (OBEP) suggests that the monopole with A = 0.8 GeV is a
good approximation; however, RAPGAP (see Section []) takes A = 0.5 GeV [6J] and the
flux without the Regge trajectory. In the region of the peak of the energy spectrum,
x;, =~ 0.7, the Regge and light-cone splitting functions differ by < 10%. It should be
noted that choices other than those given in Eq. ([7) are possible. In particular, recent
studies [p3,pd] suggest that the the experimental data is best described by a form factor
that is hard for small momentum transfers and soft for large momentum transfers.

Other isovector meson exchanges, such as the p or ay, can also contribute to direct neutron
production. Recent theoretical studies of neutron production in ep collisions show that
processes other than direct pion exchange are expected to contribute < 25% of neutron
production [B3,B0,61,f7]. These backgrounds to OPE, which increase the rate of neutron
production in the FNC phase space, are offset by absorptive rescattering of the neutron,
which decreases the rate by approximately the amount of the increase [68,F9]. Also
absorptive rescattering preferentially removes neutrons with larger p, increasing the pion
contribution relative to the p and as. Therefore these effects are also neglected in the
present analysis.
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Figure 1: Resolved photoproduction of dijet events with a leading neutron through
meson exchange. The fraction of the energy of the exchanged meson (photon)
participating in the partonic hard scattering that produces the dijet system is denoted
by x (v,); the corresponding hard cross section is 6. In direct photoproduction,
the entire exchanged photon participates in the hard scattering, there is no photon
remnant, and x, = 1.
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Figure 2: (a) Front view of the FNC showing the top and bottom sections.
The outline in towers 7 and 8 shows the open geometric aperture for the incident
neutrons. The point (+) marks zero degrees. The hole in towers 11 and 12 accom-
modates the proton beam pipe of HERA. The darker shading indicates the location
of the wavelength-shifting light-guides. (b) A side view showing the front and rear
sections. The vertical segmentation in the front is 50 mm; the segmentation in the
rear is 100 mm. All dimensions are in mm.
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Figure 3: The kinematic regions in (a) t, and (b) p2 covered by the angular
acceptance of the FNC (0 < 0.8 mrad) are shown as shaded bands. The solid lines
show the average t and p2, respectively, as function of the neutron energy E,.
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Figure 4: Comparison of the neutron energy spectrum in dijet events with

(a) the predictions of POMPY'T for (i) the light-cone and (i1) the monopole pion
form-factors and flux without the pion’s Regge trajectory, and (b) the predictions of
PYTHIA and HERWIG with multiparton interactions. The results for RAPGAP
are indistinguishable from those of POMPYT. The energy spectrum is uncorrected
for acceptance. The Monte Carlo results, which take into account the acceptance
and resolution of the FNC, are area-normalized to the data. Only statistical errors
are shown.
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Figure 5:  (a) The 1., distribution for neutron-tagged and inclusive dijet photo-
production data. (b) The M., distribution for neutron-tagged dijet photoproduction
compared to the predictions of POMPYT and RAPGAP. The inclusive distribution

is area normalized to the tagged distribution. Only statistical errors are shown.
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Figure 6: The differential dijet cross sections as a function of Ei* and " for both
inclusive (a,b) and neutron-tagged (c,d) photoproduction. The kinematic region
studied is EI* > 6 GeV, || <2, Q? <4 GeV?, 02 <y <0.8, E, >400 GeV,
and 6, < 0.8 mrad. For the inclusive cross sections the Monte Carlo predictions
have been normalized to the measured cross sections at high EX* and negative 1",
respectively, in order to facilitate the comparison of the shapes. The tagged data
are compared with the predictions of the one-pion-exchange model RAPGAP using
the SMRS-P3 pion parton densities and the light-cone pion form-factor. The bands
show the systematic uncertainty due to the calorimeter energy scale. The error
bars show the statistical error added in quadrature with the remaining systematic
error. The tagged cross sections have an additional normalization uncertainty of
9% which is not shown. Also shown are the ratio of the cross sections of neutron-
tagged to inclusive dijet photoproduction as a function of (e) Ei¢t, i.e. [(¢)/(a)], and
(f) i, i.e. [(d)/(b)]; and Monte Carlo predictions for the ratio using RAPGAP
to PYTHIA and RAPGAP to HERWIG.
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Figure 8:  The uncorrected x5 distribution for (a) inclusive events compared to
the expectations of HERWIG with multiple interactions, and (b) for neutron-tagged
events compared to the expectations of POMPYT and RAPGAP. The ratio of the
neutron-tagged to inclusive 9% distributions is shown in (c) together with the ratio
of RAPGAP to HERWIG MI. The Monte Carlo predictions are area normalized to
the data in (a,b) and normalized at 2% = 0.5 in (c). The ratio of the resolved to
direct cross sections as a function of EX* is shown in (d) and (e) for inclusive and
neutron-tagged photoproduction, respectively. Resolved (direct events) are defined
by x9%° < 0.75 (x9%° > 0.75). The ratio of the ratios shown in (d) and (e), i.e.
[(e)/(d)], is shown in (f). Only statistical errors are shown.
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Figure 9: Differential cross section as a function of x2"°, the fraction of the
exchanged pion’s momentum participating in the production of the dijet system for
the neutron-tagged sample. The measured cross section is compared to the pre-
diction of the Monte Carlo model RAPGAP using the light-cone pion form-factor
and the SMRS-P3 pion parton densities. The bands show the systematic uncer-
tainty due to the calorimeter energy scale. The error bars show the statistical error
added in quadrature with the remaining systematic error. There is an additional

normalization error of 9% which is not shown.
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