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Abstract

It is shown that the observation of the spectra of leading neutrons from proton beams
can be a good probe of absorptive and migration effects. We quantify how these effects
modify the Reggeized pion-exchange description of the measurements of leading neutrons
at HERA. We are able to obtain a satisfactory description of all the features of these
data. We also briefly discuss the corresponding data for leading baryons produced in
hadron-hadron collisions.

Introduction

e

Leading neutrons, which are produced from proton beams, are of special interest since the
production process is dominated by 7 exchange, see Section 2. Such leading neutron spectra
have been measured recently in photon-proton collisions at HERA [I]-[5]. These data supple-
ment measurements of leading baryon spectra made in hadron-hadron collisions many years
ago [6]-[10]. By observing leading neutrons we have essentially a tagged = beam. For example
at HERA this 7 beam may participate in deep inelastic scattering (DIS) or photoproduction.
In this way both the structure function of the pion FJ [ 2] and the form of the underlying
Reggeized 7 trajectory [3] can be studied.

There is another aspect of such processes which merits particular study. Soft rescattering
effectively leads to the absorption of leading neutrons with Feynman x (which we denote x)
close to 1; the role of this correction was originally studied in Refs. [I1), T2]. At that time,
these were essentially theoretical studies, which provided predictions for future measurements.
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Figure 1: (a) The pion-exchange amplitude and (b) the corresponding dominant triple-Regge
contribution to the cross section of the inclusive production of leading neutrons, ap — Xn.
The coupling of the Pomeron—7 — 7 Regge trajectories is denoted by rp..(t) in ().

Now detailed leading neutron data have become available from the experiments at HERA.
These experiments measure the v*p — Xn cross sections for producing leading neutrons with
different x; and pr values, as functions of both the virtuality, @2, of the photon, and the
c.m. energy, W, of the incoming vp system. The HERA data offer the opportunity of seeing
how absorption changes as a function of all these kinematic observables. We also show the
importance of migration, or change of the kinematic variables, of the leading neutron due
to rescattering effects. The ways to estimate the effects of absorption and of migration are
discussed in Sections 3 and 4 respectively. The description of the HERA data, yp — Xn, is
presented in Section 5. For completeness, in Section 6, we discuss the behaviour of leading
baryons produced in hadron-hadron collisions, in particular in the processes pp — Xn and
pn — Xp.

In exclusive reactions, the rescattering could produce new secondaries which has the effect
of suppressing the rate. That is, an exclusive cross section is suppressed by absorptive effects.
On the other hand, for an inclusive process the rescattering, will just change the energy and
transverse momentum of the leading baryon, and will depopulate the region of large x; and
small pr. From the viewpoint of an experimental trigger, for x; — 1 this appears as absorption,
but it is better to consider it as a migration into an enlarged phase space. In particular, such a
migration can affect the form of the effective (that is measured) 7 trajectory, leading to a larger
mean pr at lower zy. Of course, this may also modify the measurement of the pion structure
function, £, which is extracted from the HERA data.

2 Leading neutrons from 7 exchange

To begin, let us recall the triple-Regge formula which describes the inclusive processes ap — Xn
with a = v or p. For x close to unity the inclusive leading neutron spectra is given by the



triple-Regge diagrams shown in Fig. [[l Thus we have

dPo s\ 707 g2(t) gp(0) rpaa(t)
= E o 2 T T 1 . ap(O)—Qa-,r(t) 1
/ d3p (so) sin?(ragx(t)) (1=w1) ’ (1)

where t = (p, — p,)?; and gp(0) is the coupling of the Pomeron to the photon, via a ¢g pair,
or the proton, depending on whether a = ~ or p. The above form, with only the dominant
pion-exchange contribution, has been used by many authors, see, for example, Refs. [2 [3] [14].
Moreover, both the old hadron-hadron interaction data and the recent HERA results on the
spectra of neutrons [3] clearly indicate the reggeization of pion exchange. In fact, detailed
studies of hadronic interactions in the reggeized pion-exchange model [I3, [[4] have shown that
the formula can be used in a broad range of zy, with z; 2 0.4 — 0.5.

The contribution of reggeized pion exchange to the inclusive production of baryons, ap —
XN with N =p,n, ..., is of the form

do(ap — XN) G?ﬁpn (—t) , o .
= F VM 1— o (t) 9
dpdt 1672 (t — m2 )2 (t) Ogr (M7) (1 —21) : 2)

where a,(t) = o (t —m2) is the pion trajectory with slope af ~ 1 GeV~?, and G2, /47 =

Gfﬁpn /8™ = 13.75 [15]. The invariant mass M of the produced system X is given by M? ~
s(1 — xp). The signature factor, and the difference between sin(ra,(t)) and (¢t — m?2) factors
in the denominators of () and (&), are absorbed in the effective vertex form factor F'(¢). This

form factor is usually taken to be of the form

F(t) = exp(bt/2), (3)

where, from data at relatively low energies, we expect b ~ 4 GeV ™2, see, for example, Ref. [T4].
However more recent analyses find b ~ 0 [T6, 2.

For the pion-exchange contributions to the spectra of both protons and neutrons, it is
possible to take account, not only of the diagram of Fig. Bh, but also, of the diagram of Fig. 2b.
Besides this we can include the contributions of p, as, ... exchanges, and also of resonance decays,
such the A-resonance contribution in the 7N amplitude, to the leading p and n spectra. The
calculations of the spectra of neutrons of Refs. [I3] [[4, 6], show that the diagram of Fig. Ba
dominates, and that the contribution of the diagram of Fig. Pb is about 20% at most. On
the contrary, the leading proton spectrum is dominated by the triple-Pomeron diagram; the
diagram of Fig. B gives only about 30% of the inclusive cross section for x, ~ 0.8 in the ISR
energy range.

One interesting application of the leading neutron spectra at HERA is the possibility of
using (&) to extract information on the y7 total cross section, o'%', for both real and virtual
photons. This, in turn, allows a measurement of the pion structure function FJ (zp, Q?) at very
high energy or small Bjorken xp. The direct application of (&) to the HERA photoproduction

data [2] leads to the result o' /ct" = (.32 £ 0.03, which is about a factor 2 lower than the
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Figure 2: Diagrams (a) and (b) show the reggeized m-exchange contributions to the leading
ap — XN and ap — X (N) spectra respectively, with N = p, n.

expected! ratio of 2/3. However, so far, we have neglected the absorptive corrections, or so-
called rescattering effects, to (£]). These are very important at high energies. They reduce the
predicted cross section, as well as modifying both the energy and the Q? dependence of the
inclusive spectra of leading neutrons. We discuss the form of the correction in the next Section,
and present the leading neutron spectra at HERA in Section 5.

3 Unitarity effects and gap survival

The Born-type regge pole exchange diagram of Fig. [l represents only the first approximation
to the description of the leading neutron spectra at high energies. Multi-pomeron exchanges
introduce modifications of the amplitudes, and lead to the restoration of unitarity [I8, 9.

We use the space-time diagram of Fig. Bl to distinguish between two types of rescattering.
First we have the eikonal scattering of the leading hadrons (either incoming or outgoing) indi-
cated by exchange (a). The other possibility is the rescattering of the leading hadron on one
of the intermediate partons in the central rapidity region, indicated by exchange (b).

In terms of Feynman diagrams, an additional Pomeron exchange leads to a negative contri-
bution; that is absorptive corrections diminish the size of the predicted cross section. From the
physical point of view, the inelastic interaction, shown by either exchange (a) or exchange (b)
in Fig. B, produces new secondary particles which populate the rapidity gaps and carry away
energy from the leading neutron. In other words a leading neutron, with a large energy fraction
xr, can only be observed in the small fraction of events which have no secondary inelastic inter-
actions. The rescattering corrections therefore reduce the probability that the leading neutrons
will be found in the large x; bins.

!Note that experimental estimates of af,‘;f at high energies, based on the absorptive corrections to the

amplitude for v +p — 77~ + p and its interference with the v +p — p° + p amplitude, are about %0;‘;} at the

same energy [[7]. Thus we expect the additive quark model estimates to be reliable.
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Figure 3: The space-time diagram for the amplitude describing leading neutrons produced by
the inclusive processes vp — Xn or pp — Xn. The two types of multi-Pomeron absorptive
corrections are indicated symbolically by the shaded areas (a) and (b). The corresponding
corrections to the cross section are shown in Fig. @l and Fig. [ respectively.
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Figure 4: Symbolic diagrams of the eikonal absorptive corrections to the cross section for the
inclusive process ap — Xn. The extra lines denoted by P, which surround the triple-Regge
interaction, represent multi-Pomeron exchanges between the leading hadrons.
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Figure 5: Symbolic diagrams for the “enhanced” absorptive corrections to the cross section for
the inclusive process ap — Xn, which become important at very high energies. The mass M
of the produced system X is assumed to be sufficiently large for both the rapidity intervals
and y, to accommodate Pomeron exchange. The extra lines denoted by P, which are coupled
directly to the ingoing p or outgoing n, represent multi-Pomeron exchanges.

Technically the absorptive corrections are calculated in the following way. The most familiar
are the eikonal-type corrections which are shown symbolically in Fig. Bl where only elastic
rescatterings are taken into account. The corrections are well known:

do = /exp(—Q(s,pT)) doy(s, pr-..), (4)

where pr is the impact parameter, and dog is the contribution to the cross section for leading
neutron production from the lowest order diagram of Fig. [l(b). The opacity €2 is the impact
representation of the single-pomeron contribution to elastic scattering, which can be determined
from studies of the total and elastic processes; for a recent review see, for example, Ref. [20]. The
formalism can easily be extended to take into account diffractive excitations of the initial and
final hadrons. It leads to a multi-channel version of (@), see, for example [21], 18, 19]. Diagrams
of this eikonal type have been considered in previous estimates of absorptive corrections to the
spectra of leading baryons [I1], T2].

Note that since €)(s, pr) increases with energy, the suppression of the Born cross section doy
also increases with energy. The damping factor, exp(—£(s, pr)), is strongest for small values of
the impact parameter pr. Thus the absorptive suppression is greater for the p, as reggeons than
for m-exchange, which, due to the 1/(t — m?2) behaviour at small ¢, has a broader distribution
in pp.

The unitarity corrections have an interesting effect on the t-dependence of the cross section
driven by pion-exchange, (). As the pion pole is approached, that is as ¢ — m?2, the corre-
sponding impact parameter becomes very large, pr — 0o, and the gap survival damping factor

S*(pr) = exp(—Q) — 1. (5)
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Figure 6: Multi-pomeron corrections to the reggeons in the triple-regge diagrams. They have
no, or at most a weak, dependence on energy. The curved lines denoted by P represent multi-
Pomeron exchanges.

Thus we anticipate a more complicated ¢ dependence than that given by eqs. () and (B]). First,
at very small ¢, [t| S 4m2, the survival factor S? rapidly decreases from S? = 1 at t = m2,
finally reaching a value ~ exp(—Q(p; = 0)) at large |t|. However before then, the additional ¢-
dependence coming from the pion vertex and trajectory reveals itself, namely fy (t) = exp(bt/2)
with b ~ 1 GeVZ2 So, in (), we have

F(t) = fv(t)S(t). (6)

Thus fitting the data using the single exponential form (B) may confuse the situation. Note
that in the discussion below we will use the average value of S?

A

S* = (exp(=Q(pr)))- (7)

Another class of multi-pomeron diagrams corresponds to the modification of the upper
reggeon in the triple-pomeron diagram (Fig. Bk), or of the lower reggeons (Fig. @b), or of both
(Fig.Bk). The diagrams of Fig. Bl modify only the M? dependence of the cross sections, and for
the m-exchange model can be absorbed in the behaviour of o®*(M?). The diagrams of Fig. Bb
modify the x; dependence, and for the 7 case can be by modifying the 7-trajectory (essentially
the slope o) and the form factor. It is important, that to a good approximation, they do not

depend on the energy? /s.

The multi-pomeron diagrams of Fig. [l are only expected to become relevant at sufficiently
high energies. That is when the energy is large enough for the mass M of the produced system
X to itself be large enough for both the rapidity intervals y; and yo = yyr — y1 to be sufficiently
large to accommodate pomeron exchange®; that is y; > yo with yo ~ 2 — 3. Recall that

2The unfactorizable diagram Fig. Bc can, in principle, have some weak s dependence.
3Diagrams of this type were mentioned in our paper on dijet production at the Tevatron [I8], but for this
hard diffractive process they were small even at Tevatron energies.
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Figure 7: A cut leading to an s-channel discontinuity of the triple-pomeron diagram for the
elastic ap scattering amplitude,

yy = In(M?/M2) with M2 = 1 GeV?; so for a typical value of M? ~ 3000 GeV? we have
ym = Y1 + Yo ~ 8. Note that rapidity intervals y; < yo are included in the contributions of the
diagrams of Fig. @l and Fig. B(b).

Let us study in more detail the diagram shown in Fig. Ba, which describes the process
ap — Xn. This diagram is one of the s-channel discontinuities of the triple-pomeron diagram
for the elastic ap scattering amplitude?®, see Fig. [ Indeed the diagram is related to the triple-
pomeron diagram for the elastic amplitude by the AGK cutting rules [24]. The corresponding
coefficient is 4. So it is straightforward to obtain the correction to the ap — Xn cross section
from diagram of Fig. Bh, provided we know the cross section of Fig. [ in the triple-Pomeron
region, x; — 1. By fitting this cross section to the triple-Pomeron formula we can extract the
strength of the vertex rppp [25]. If we take the value of the effective vertex rppp determined in
the analysis of the old hadron data, then we find the correction due to the enhanced absorptive
diagrams to be about 15%.

So there is a relatively small contribution coming from the enhanced graphs of Fig. B,
that is from the rescattering of intermediate partons, as indicated by the shaded region (b) of
Fig. Bl This is consistent with the fact that within the HERA range (W = 40 — 270 GeV) no
energy dependence is observed in the leading neutron yields; see, for example, Figs. 6 of [4]°,
and Tables 14, 18 and Figs. 11, 12 of 2] which show, for fixed Q?, the same probability® to
observe a leading neutron for values of xp; which decrease by more than an order of magnitude
corresponding to an increase of the photon laboratory energy by more than a factor of 10. This
flat experimental behaviour of the probability indicates that actually the absorptive corrections
caused by the rescattering of intermediate partons are much smaller than might be expected

4The summation of more complicated enhanced diagrams was discussed in [22], and more recently in [23].

5See also Figs. 2 and 4 of [5] for leading proton data, where the effect of enhanced diagrams should be the
same.

5That is the same probability, S 2, to observe the rapidity gap associated with pion-exchange.



from leading-order perturbative QCD calculations, similar to those presented in Ref. [26] (see
also the discussion in [27, 28]).

4 The inclusion of migration

In order to compute the spectra of leading neutrons, we must consider the effects of migration,
as well as of absorption. We assume that each rescattering spreads out the pr, xy spectra of
the leading baryon according to distribution’

dN

sy — (793" o exp(=prbn) ®)

where we take the slope b,, = 6 GeV~2, and the intercept a ~ 0 — % corresponding to secondary
Reggeon exchange in the Kancheli-Mueller approach. Thus, after two rescatterings

dN(2) 2 d2qT 2 2 ! dl’ldl'g
S — — - —(pr — @ 1 —a)? - =
G~ U [ exp(oib) e = @) [ TR (1= 0 by — i)
b (1 —a)? In(1/xy)

2(2L’L)a

Correspondingly, after k rescatterings the distribution becomes

exp(—p7bm/2) - (9)

dN(k) b, (1 _ a)k ll’lk_l(l/xL) )
- —pbn k) . 1
dpidzy k(k—1)! (xg)e exp(—prbm/k) (10)

The probability of rescattering, or, equivalently, the mean number v of rescatterings, at fixed
impact parameter pr is given by the opacity v = 2

a(s)

Qpr) = B

exp(—p7/4B;) . (11)

Here we focus attention on migration effects in yp — Xn, so pr = pyn. The cross section o
is, however, not the YN total cross section, since the process proceeds in two stages. First the
photon fluctuates into a ¢q pair, which may be considered as a sum of vector mesons, and then
the vector mesons rescatter on a nucleon. We therefore assume o is the 7p total cross section
having in mind the additive quark model and/or p meson dominance. B, is the slope of the
rescattering amplitude (which we take to be B, = 5 GeV~2).

Note that the impact parameter py in ([I), which controls the absorption and migration
effects, is not equal to the parameter p,y which describes the space structure of ‘pure’ one-pion

"Strictly speaking, besides the migration in pr,r;, space, there may be charge-exchange (that is neutron to
proton transitions). We neglect this effect since the goal of the present section is not a precise quantitative
description, but rather a qualitative evaluation of the role and possible size of the ‘migration’ phenomena. For
the same reason we use a simplified form, (), of the leading baryon distribution.



exchange in leading neutron production. The subscript m denotes the ‘transverse’ position of the
m — m—Pomeron vertex in Fig. [[(b). That is p,x is Fourier conjugate of the neutron transverse
momentum in the bare (Born) amplitude leading to the cross section in (). However, due to
the rather large values of p,y, we may expect that the absorptive and migration effects will not
be too strong — since the transverse distance between the leading baryon and the incoming
photon (or ¢g-pair),

pr = pyN = |Pan + Pixl; (12)
is, in turn, relatively large and the mean number of rescatterings v(pr) = Q(pr) at the periph-
ery of the interaction (described by the amplitude 2) is rather small. Here p,, is the impact
parameter for the amplitude describing the interaction of the incoming photon with the ‘effec-
tive’ pion (exchanged in the ¢-channel); recall that the subscript 7 denotes the position of the
7 — m—Pomeron vertex in Fig. A

To account for the fact that pr and p,y are not the same, for each value of p,y, we calculate
the probability

W(prs pex) = Nlpen) / P Uu(pon) 8pr — |Fm + Bun]) (13)

where Q. (py-) is the amplitude in impact parameter space for the photon-pion interaction. It
is of the form ([Tl) with the same slope B.g = B, =5 GeV~2. Since the expression () already
includes the probability of the ‘effective’-pion-v interaction the probabilities w(pr, p-n) are
normalized to one; that is the normalization N(p,y) is fixed by the condition®

/dﬂT w(pr, pry) =1 (14)
for every value of p, .

Thus, to calculate the inclusive cross section for leading neutron production we have to
integrate over the impact parameter pr

do exp(ipr - Pr
= /d2pT M dzpr w(pTvaN>f(pT7p7rN7xL> ) (15)

dzxdp3 2m

where
1
Flpr, pans ) = vipr)e ") {f(o)(PwN,xL) +/ dz, FOpen, 2y) FO pan, x1/2h)
xr
(16)

8Strictly speaking we should work with amplitudes and not with cross sections. Moreover the impact pa-

rameter pr in the amplitude A may not be equal to the parameter p}. in the conjugated amplitude A*. We find
pr = p; only after integration over the neutron transverse momentun pr. However to simplify the computa-
tions, here we use the semiclassical approximation, which assumes pr = p%,, using the Fourier transform just
for the cross section. This approach, which is usually used in Monte Carlo simulations, may be justified by the
fact that the effect of migration becomes important only at relatively large pr, see Fig. B So after we integrate
up to pr = 0.5 —1 GeV we find that the equality pr = p%. holds to rather good accuracy. Nevertheless, the fact
that we need to correct the normalization in (34 is just the result of this semiclassical approximation.

10



The factor v(pr)exp(—v(pr)) accounts for the probability of the first interaction and the ab-
sorption at a given impact parameter pr, where v(pr) = Q(pr) is the mean number of inter-
actions. The first term in the square brackets, F(©), is the original cross section () in the prx
representation, that is

d*pr L do(©®
5 exp(ipr - Prn)
T

f(o)(PnN,l'L) = /

drpdp?

The second term function F) accounts for the migration. When we sum over k = 1,2, ...
rescatterings, the spectra in p,, representation takes the form

dN °° dN(’“ o e (I—a)® " (1/2p)
dpde_ dpde, /_eXprTmz”ep/ (k— 1) (ap)e
d2 2 2
= | 5 P explifir - 7) v(1 — a)e "1 exp (V(l—a) e P/ 1n(1/xL)) /(xr)® (17)

Thus the function F) in (I8) is

FO(p,x) = v(l— a)e /¥ exp (V(l—a) e/ ln(l/xL)> Jzr)* . (18)

The results shown below correspond to a = 0, but the spectra obtained for a = % are very

similar.

5 Predictions for leading neutrons at HERA

To predict the absorptive corrections to the pion-exchange formula (), in which we set b = 0,
we use (@), together with (1) in which we take 0 = 1.3 x 31 mb. The value oy (7p) = 31 mb
agrees with the Donnachie-Landshoff parametrization [29] and with the cross section evaluated
by ZEUS via the m-proton absorption in yp — (777~) p process [I7]. The factor 1.3 takes
account of the diffractive excitations of the initial and final hadrons [30].

The resulting predictions for the x spectra of leading neutrons produced at HERA are
shown in Fig. In the first plot the ZEUS acceptance cut, 6, < 0.8 mrad, has been im-
posed. In the next three plots we show the effect of imposing different pr cuts, rather than
the 6, cut, on the leading neutron. Each plot shows three curves. The dotted curve is the
Reggeised m-exchange prediction calculated from (£]), whereas the continuous and dashed curves
are computed from ([H) and ([[f) with and without migration (F)) included. The data points
correspond to the leading neutron spectra measured by ZEUS [2].

As anticipated, the migration practically does not affect the region of large x; > 0.8, where
it is essentially enough to account for absorption only. However at smaller x;, the role of
migration becomes quite important. First of all, it compensates the absorption (which occurs

11
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Figure 8: The predictions for the zj spectra of leading neutrons corresponding to the ZEUS

kinematics. The dotted, dashed and continuous curves are respectively the results assuming

first only Reggeised 7 exchange, then including absorptive effects, and finally allowing for
migration. The different plots show the effects of imposing different pr cuts on the leading

neutron. The data points are the spectra obtained from the measurements of Ref. [2].

Note

that the curves plotted here account only for the pion-exchange contribution, which is not the

dominant source of leading neutrons for z; < 0.4.
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for zp close to 1), and provides the conservation of baryon charge. Next, it changes the
behaviour of the x; and pr distributions of the leading neutrons; and modifies the ‘effective’
slope of the reggeized pion trajectory which was extracted from the data using the simplified
formula &2).

From Fig. [, we see that the predicted leading neutron spectrum is in satisfactory agreement
with that measured by ZEUS. The absorptive corrections reduce the cross section given simply
by Reggeised pion exchange by a factor of just less than 0.5 so that the predictions are in
agreement with the data at large xy. The reduction by 0.4-0.5 is not inconsistent with an
earlier calculation [31] which gave a rapidity gap survival factor 52 of 0.34 for the resolved part
of the photon wave function.

Moreover the data on the production of a leading neutron, together with either a pair of
high Er jets [32] or charm (D*) [33], are consistent with a much larger value of 52, as is to
be expected when we select x, — 1 events which sample a point-like photon, which directly
interacts with high Ep dijets. In particular, the probability to observe a leading neutron
increases by up to a factor of 2.5 (that is S2 increases up to about 0.9) when the momentum
fraction carried by the dijet grows from 0 to 1, see Fig. 8c of Ref. [32]. In Ref. [34] the H1 dijet
data were described, within NLO QCD [35], by pure pion-exchange without the inclusion of
the survival factor, that is with 52 = 1. However the t-dependence was not studied. Moreover
a larger t-slope parameter, R = 0.93 GeV ™', was used in [34] than the value R = 0.5 GeV !
used in [35]. Thus the b slope in [34] is 3.5 times larger. In this way the absorptive corrections
were mimicked in [34], see the discussion leading to eq. ().

The comparison with the ZEUS data in Fig. Bshows evidence of migration for 0.4 S 2 < 0.6.
The points at lower z, indicate that there may be additional contributions® caused by the re-
combination of an initial valence quark with a sea quark in the neutron with x; ~ 0.3, as well
as by baryon charge transfer to the central region'’, whose description is beyond the present
analysis.

The leading neutron measurements at HERA also allow us to explore the Q? dependence of
the problem. Unlike the naive Vector Dominance Model (VDM), where the effect of absorption
should disappear as 1/Q?, in QCD (or in the Generalized VDM) these effects are expected
to decrease as 1/In@Q?. It was shown in Ref. [2] that the Q? behaviour observed at HERA is
consistent with predictions [T, 2] based on the QCD dipole approach.

6 Leading baryon spectra in hadron-hadron collisions

Some years before the HERA data became available, leading nucleon spectra had been observed
in hadron-hadron collisions in a variety of experiments, albeit at lower energies. Generally,

9Note that in our computation we have already used b = 0. Thus we have no possibility to enlarge the
neutron yield for z; ~ 0.5 by diminishing the value that we take for the slope b.

0The ratio p/p > 1 measured in the central region at RHIC and HERA indicates the presence of such an
effect.
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these, and related, data are well described by the triple-Reggeon formalism. At first sight, it
appears strange that no gap survival factor suppression, S2, was necessary — particularly in
view of our discussion of the HERA data in the previous section. However, this factor is effec-
tively included in the normalization of the triple-Reggeon vertices [25] which were determined
by fitting the data. The only problem is the wm-Pomeron vertex, which must be consistent
with the known result for the on-shell pion as ¢ — m2. The on-shell vertex is known from
an independent analysis of mp total and differential cross section data. Now, it is crucial to
note that the wm-Pomeron vertex depends strongly on the value of t — m?2, leading to an ef-
fective factor F'(t) = 1 at t = m2. In the physical region of negative ¢ this factor is expected
to be S% ~ 0.4 in the CERN ISR energy range [36, B, B0]. Indeed, the indications for such
absorptive corrections to m-exchange were observed in data for pp — XA*" production [, 36].
Spectra of leading baryons in the Reggeized pion-exchange model have been described in papers
M3, B8, B9, M6, B6, B7. In papers [13, B8, B9 a phenomenological form-factor, which to some
extent mimic absorptive effects, has been used.

The situation with inclusive nucleon-charge exchange in pp (and pd) collisions, that is in the
spectra of neutrons in pp-collisions and protons in pn-collisions, is not clear. The largest set of
the highest energy data was obtained at the CERN ISR, Refs.[6] and [7]. These ISR spectra of
neutrons have a rather different form. It was emphasized in Ref. [3§] that the data of [6] are
strongly different!! from predictions of the pion-exchange model, and lead to a violation of the
energy-momentum sum rule, while the data of [7] are in a reasonable agreement with theoretical
predictions [39]. As mentioned above, the models of Refs. [38, B9] are based on Reggeized pion-
exchange, with the gap survival factor 52 represented by a form factor which, however, gave
only a rather small effect (~ 10%). The equivalent process pn — Xp was also measured [9]
over range of energies, which partly overlap with ISR energy range and are consistent with the
model of Ref. [38]. On the other hand there are data on the process pn — Xp at relatively low
energies (11.6 GeV), which are lower than predictions of the pion-exchange model without the
52 factor.

Thus the final picture for hadron-hadron processes is not clear. Some experiments are in
agreement with the theoretical expectations of appreciable absorptive corrections to m-exchange,
while others appear to be described by simplified m-exchange.

7 Summary

We have described all the main features of the leading neutrons observed at HERA, both in
photoproduction and as a function of Q. For photoproduction we may refer to Fig. B We see
that Reggeized pion-exchange on its own is insufficient to describe the production of leading
neutrons. However the inclusion of absorptive corrections are found to reduce the m-exchange

" Note that in the CERN ISR paper [6] the cross section plotted in Fig. 7 is about 3 times smaller than that
given in the Tables and in Fig. 6.
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prediction by a factor of just less than 0.5, and to bring the theoretical expectation in line
with the data. Thus, after accounting for the rapidity gap survival factor S 2 such data can be
used to measure the ym cross section and the pion structure function. Moreover the value of
the gap survival factor 52 may be monitored by comparing the spectra of leading neutrons in
dijet production at low z., with those for z, — 1, where the cross section is dominated by the
direct, point-like photon. Next, the dependence of the survival factor 52 (which specifies the
probability to observe a leading neutron) on the photon energy may be used to experimentally
probe the contribution of the enhanced absorptive corrections of Fig. Bl The data appear to be
flat in energy indicating only a small contribution from enhanced diagrams. This is relevant to
the proposed Higgs searches in exclusive diffractive production at the LHC. Thus we conclude
that the additional suppression of the exclusive Higgs cross section caused by the enhanced
diagrams cannot be as large as mentioned in Ref. [26], see [28] for a detailed discussion.

We also found that the neutron spectrum shows some evidence of migration effects, see
Fig. B Including migration slightly reduces the value extracted for the slope of the pion Regge
trajectory; the reduction is about 0.05 — 0.1 GeV ™2 depending on the interval of 2 used to
measure a. .

Finally, in Section 6, we briefly reviewed the available experimental data for leading baryons
produced in hadron-hadron interactions, which were obtained about 30 years ago. Here the
experimental situation is confusing. Some experiments are in line with theoretical expectations,
while others are not.
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