Neutral Current and Charged Current Results from H1

Beate Heinemann

DESY, Hamburg

On behalf of the

H1 Collaboration

DIS 98, Brussels, April $7^{th},\,1998$

 $e^+p \longrightarrow e^+X, \, \bar{\nu}X$

HERA: $E_e = 27.6 \text{ GeV}, E_p = 820 \text{ GeV} \Rightarrow \sqrt{s} \simeq 300 \text{ GeV}$

probe proton at very short distances via t-channel exchange of virtual gauge boson

- measurement of proton Structure
- Test of pQCD up to very high Q^2
- Test of EW Standard Model

total luminosity for e^+p data 37 pb⁻¹

- In situ Energy Calibration
- Update of High Q^2 Results (DESY-97-24)
- Neutral Current cross sections at High Q^2
- Charged Current cross sections at High Q^2

Liquid Argon Calorimeter:

45000 cells

EM section $\sigma(E)/E = 12\%/\sqrt{E} \oplus 1\%$ syst. Unc.: $1 \Leftrightarrow 3\%$

HAD section $\sigma(E)/E = 50\%/\sqrt{E} \oplus 1\%$ syst. Unc.: $3 \Leftrightarrow 4\%$

Observables in NC events: E_e and θ_e of the electron $\Sigma = E - p_z$ and $P_{t,h}$ of the hadrons

 \implies various possibilities for reconstruction of kinematics with different systematics

Methods used for Measurements:

- Electron Method: $y_e = 1 \Leftrightarrow \frac{E'_e}{E_e} \sin^2 \frac{\theta_e}{2}$ $Q_e^2 = 4E'_e E_e \cos^2 \frac{\theta_e}{2}$
 - most precise at high y / low x
 - bad x resolution at low y
 - good Q^2 resolution in full range
- Hadron Method: $y_h = \frac{\Sigma}{2E_e}$ $Q_h^2 = \frac{p_{t,h}^2}{1-y_h}$
 - low precision, but only method for charged current
- $e\Sigma$ Method: $x_{e\Sigma} = x_{\Sigma}$ and $Q_{e\Sigma}^2 = Q_e^2$
 - precise over the whole kinematic range
 - good resolution even at very high $\mathbf x$

Further Methods for Calibration and Cross Checks

- Σ Method:
 - good x resolution also at low y
 - independent of QED initial state radiation
- Double Angle Method:
 - angle of scattered electron and hadronic final state
 - high precision at high Q^2 , but sensitive to QED radiation
 - independent of energy scale \Rightarrow used for calibration
- ω Method:
 - identification/correction of radiative events
 - determination of kinematics/calibration on an event by event basis

Electron Energy Calibration

- Detailed calibration performed in backward part of LAr calorimeter $\theta > 80^{\circ}$:
 - at low y < 0.3 using the Double Angle method (independent of electron energy) as reference

$$-E_{DA} = \frac{2E_{e,beam}\sin\gamma}{\sin\gamma + \sin\theta_e - \sin(\gamma + \theta_e)}$$

– cm-wise in z and octant by octant in ϕ

Improvement of the electron energy calibration using different types of events

- NC DIS events (DA-method and ω -method)
- elastic QED Compton and $e^+p \rightarrow e^+e^-e^+p$

- e-calib. well within originally quoted $\pm 3\%$ syst. for central LAr wheels $\Rightarrow 1\%$ precision for θ between 80° to 150° ($Q^2 < 1000 \text{ GeV}^2$)
- In the forward LAr wheels (Q² > 2500 GeV²): consistency from various methods using NC DIS and QED ⇒ calibration scale improved.

Uncertainty at the 3% precision level only limited by statistics

Hadronic Energies

- hadronic scale is being precisely calibrated using the P_t balance of the hadrons and the electron in NC events as reference
- width and scale of the hadronic distributions well described at low and high P_t

 P_t balance vs. Q^2

• reduction of systematic error on hadronic energy scale $4 \rightarrow 3\%$ in forward region ($\gamma < 60^{o}$)

- mean of P_t balance well described
- resolution $\simeq 20\%$ in $P_t \Longrightarrow Q^2$ resolution $\simeq 30\%$

Update on Very High Q^2 results with 97 data

- New E_e calibration
- Slightly modified selection cuts

$Q_e^2 > 15000 {\rm GeV}^2$

 $\label{eq:obs} \begin{array}{l} \text{Obs.} = 22 \ \Leftrightarrow \ \text{Exp.} = 14.7 \pm 2.1 \\ M_e = 200 \pm 12.5 \ \text{GeV} \end{array}$

Obs = 8 for 94-97 \Leftrightarrow Exp = 3.01 \pm 0.54 (Obs = 7 for 94-96 \Leftrightarrow Exp = 0.95 \pm 0.18)

accumulation of events in mass window is not confirmed by the 97 data (details \rightarrow M.-C. Cousinou)

- Slight deviations from SM expectation observed for $Q_e^2 \gtrsim 15000 \text{GeV}^2$
- Excess at highest Q_e^2 less significant than with 1994 \rightarrow 96 data only

Cross Sections for $e^+p \rightarrow e^+X$ at High Q^2

Kinematic Domain:
$$200 \text{ GeV}^2 \leq Q^2 \leq 30000 \text{ GeV}^2$$
 $0.005 \leq x \leq 0.65$

 $\frac{d^2\sigma}{dx\,dQ^2} = \frac{2\pi\alpha^2}{xQ^4} \left[Y_+ F_2(x,Q^2) - y^2 F_L(x,Q^2) - Y_- x F_3(x,Q^2) \right]$

 $Y_{\pm}(y) = 1 \pm (1 \Leftrightarrow y)^2$

- F_2 : generalized structure function
- F_{L} : longitudinal structure function
- F_3 : parity violating term from Z° exchange

$$F_2 = F_2^{em} + \frac{Q^2}{(Q^2 + M_Z^2)} F_2^{int} + \frac{Q^4}{(Q^2 + M_Z^2)^2} F_2^{wk} = F_2^{em} (1 + \delta_Z)$$

 F_2^{em} : photon exchange F_2^{wk} : Z° exchange F_2^{int} : γZ° interference

- contributions from Z exchange and γZ interference terms only for $Q^2 > 1500 \text{ GeV}^2$ at high y (low x)
- small influence of $F_L < 5\%$ at highest y values

In the following we will use the Reduced Cross Section:

$$\sigma(e^+p) \equiv \frac{xQ^4}{2\pi\alpha^2} \frac{1}{Y_+} \frac{\mathrm{d}^2\sigma}{\mathrm{d}x\mathrm{d}Q^2}$$

Event Selection of High Q^2 events: - Calorimetric based trigger ($\epsilon > 99.5\%$) - $E_e > 11 \text{ GeV}$ $y_e < 0.9$ $\theta_e \le 150^\circ$ - $|z_{vertex}| < 35 \text{ cm}$ - $E-P_z > 35 \text{ GeV}$ \Rightarrow Data sample $\simeq 75000 \text{ events}$ \Rightarrow Background < 1%

extension of phase space to higher Q^2 and higher x

Sample of NC events

- Polar angle well described over the full Q^2 range $(\delta\theta \simeq 3 \mathrm{mrad})$
- Energy spectrum under control in high Q^2 ($\delta \simeq 3\%$) and low Q^2 ($\delta \simeq 1\%$) region

Systematic Uncertainties for NC measurement

• main error sources

- Trigger efficiency $\pm 0.5\%$
- Electron finding efficiency $\pm 1\%$
- e^+ Track validation $\pm 1\%$
- Electron Energy scale $\pm 1 \Leftrightarrow 3\%$
- $-e^+$ scattering angle ± 3 mrad
- Hadronic Energy scale $\pm 4\%$
- Noise suppression $\pm 25\%$
- Photoproduction background $\pm 30\%$
- radiative corrections $\pm 2\%$
- no single error source dominates at low $Q^2 \approx 400 \text{ GeV}^2$
- precision still limited statistical error for $Q^2 > 1000 \text{ GeV}^2$

Comparison of e and Σ Method

- Opposite systematic shift for electron energy error ⇒ energy calibration check
- Different behaviour for radiative corrections
- For final result we use the $e\Sigma$ -method (x_{Σ}, Q_e^2) which has a good stability in the full kinematic plane (cf DESY-97-137).

Reduced Cross Section

- Measurement from $Q^2 = 200$ to 30000 GeV². Up to x = 0.65 for $Q^2 \ge 650$ GeV²
- NLO QCD fit gives good description of the data in the whole Q^2 and x range (details E. Rizvi)

- approaching overlap with fixed target data at high x
- cross section falls at high x (scaling violation)
- high Q^2 HERA data now also have an influence at <u>high x</u>.

Single Differential Cross-Sections

- Neutral Current cross section falls by seven orders of magnitude in measured region
- High Q^2 data are compatible with a NLO QCD fit to all low Q^2 data ($\leq 120 \text{GeV}^2$) evolved over two orders of magnitude.
- Slight Excess visible at $Q^2 \ge 15000 \text{ GeV}^2$.

Sensitivity To Z^0 Contribution

- Cross section reduced due to γZ interference at low x (high y)
- Effects are visible at $Q^2 \ge 10000 \text{ GeV}^2$
- Greater sensitivity can be gained from single differential distributions

$\mathrm{d}\sigma/\mathrm{d}x$ at $Q^2 > 1000, 10000~\mathrm{GeV}^2$

- For $Q^2 \ge 1000 \text{ GeV}^2$, the cross-section is still dominated by low x partons.
- For $Q^2 \ge 10000 \text{ GeV}^2$ the valence quarks contribute.
- The data are in good agreement with the electroweak Standard Model.

Cross Section for $e^+p \longrightarrow \bar{\nu}X$:

$$\frac{d^2\sigma}{dxdQ^2} = \frac{G_F^2}{2\pi} \frac{1}{(1+Q^2/m_W^2)^2} \left(\bar{u} + \bar{c} + (1 \Leftrightarrow y)^2 (d+s)\right)$$

- Propagator \Rightarrow W mass determination (94: 85^{+9+5}_{-6-4} GeV)
- parton densities \Rightarrow sensitivity to *d*-quark density
- helicity dependence \Rightarrow V-A coupling

Radiative Corrections (< 10%) depend on $M_W \Rightarrow$ Measure radiative Cross Section

We define the

Reduced Charged Current Cross Section:

$$\sigma_{CC} \equiv x \cdot \frac{2\pi}{G_F^2} (1 + Q^2 / m_W^2)^2 \frac{d^2\sigma}{dx dQ^2} \\ = x \cdot (\bar{u} + \bar{c} + (1 - y)^2 (d + s))$$

in Standard Model

- • definition in analogy to Reduced Neutral Current Cross Section
 σ
- measurement of the parton densities

Selection of Charged Current Events

- Calorimeter and track based trigger $\implies \epsilon = 50 100\%$ depending on P_t
- $P_t > 12 \text{ GeV}$
- $z_{vtx} < 35 \text{ cm}$
- topological Non-ep-background filters
- γp background: $P_{t,antiparallel}/P_{t,parallel} < 0.15$
- reconstruction of kinematic variables from tracks and calorimetris energy depositions
- good understanding of hadronic energy scale essential

Single differential Charged Current Cross Section

- shape of cross section determined by propagator mass
- statistical errors dominate

- Neutral and Charged Current cross section approaching each other with increasing Q^2 as expected from Standard Model
- remaining difference at high Q^2 due to coupling to different quark flavours

Comparison of Reduced NC Cross Section between "hadron" and "electron" method

• important cross check of hadronic energy scale control

- electron and hadron method agree within systematic errors only
- hadronic energy scale well known in terms of x and Q^2

Systematic Uncertainties for CC measurement

main error sources

- Trigger efficiency $(1 \Leftrightarrow \epsilon) * 10\%$
- Vertex Efficiency $\approx \pm 1\%$
- Hadronic Energy scale $\pm 4\%$
- Noise suppression $\pm 25\%$
- Photoproduction background $\pm 50\%$

error on hadronic energy scale dominating

- double differential measurement at high x and high Q^2
- good agreement with Standard Model prediction

Quark and Antiquark Contributions to CC Cross Section

- sensitivity to quark and antiquark densities at high Q^2

Comparison of Reduced CC and NC Cross Section

Coupling to different quarks in Neutral and Charged Current interaction (QPM):

NC:
$$\sigma_{NC} = x \cdot \left[\frac{4}{9}(u + \bar{u} + c + \bar{c}) + \frac{1}{9}(d + \bar{d} + s + \bar{s})\right] (1 + \delta_{Z,L})$$

CC: $\sigma_{CC} = x \cdot \left[\bar{u} + \bar{c} + (1 \Leftrightarrow y)^2 (d + s)\right]$

 \Rightarrow

- Main contribution to NC cross section from u type quarks
- CC Cross section at high y mainly determined by \bar{u} and at low y mainly determined by d

use helicity dependence to estimate antiquark and quark contribution to Charged Current cross section – neglect contribution from c, s and d in NC

– compare

$$(1 \Leftrightarrow y)^2 \cdot \sigma_{NC} \approx (1 \Leftrightarrow y)^2 \frac{4}{9} x (u_v + u_{sea} + \bar{u})$$

$$\sigma_{CC} \approx (1 \Leftrightarrow y)^2 x d_v + x (\bar{u} + \bar{c})$$

 $-(1-y)^2 \sigma_{NC} / \sigma_{CC} \approx \frac{4}{9} u_v / d_v \text{ at high } x \text{ (low y)} \\ -\underline{\text{see}} \text{ antiquark density } \bar{u} \text{ at low } x \\ \text{Warning: This is only a qualitative comparison!}$

- relation between NC and CC cross section as expected from QPM
- measurement of d quark density and d/u ratio at high Q^2 will be done

Summary

- The excess of neutral current events observed at high Q^2 in the 94-96 data is still present, but with a lower significance ($\simeq 2\sigma$ at $Q^2 \ge 15000$ GeV² for the data taken from 94 to 97).
- Single and double differential Neutral Current cross-sections have been measured for Q^2 from 200 to 30000 GeV², in the valence region up to x = 0.65 with a precision comparable to the low Q^2 HERA data.
- These cross-section measurements are very well described over two orders of magnitude in Q^2 by perturbative QCD, as shown by a Next to Leading Order QCD fit
- At high Q^2 ($\geq 10000 \text{ GeV}^2$), the single differential $d\sigma/dx$ cross-section favours the Standard Model expectation of a suppression of the cross-section due to $\gamma \Leftrightarrow Z^0$ interference.
- The single differential Charged Current cross sections shows the Q^2 dependence as expected from the Standard Model
- The double differential Charged Current cross section has been measured for $Q^2 = 400 \Leftrightarrow 16000 \text{ GeV}^2$ and $x = 0.01 \Leftrightarrow 0.5$ and covers the regions where valence- and the region where sea- quarks dominate
- We are looking forward to e^-p data taking this year!