

High Q² DIS Results and Search for Leptoquarks at HERA

Ph. Bruel

LPNHE Ecole Polytechnique

IN2P3-CNRS

On behalf of the

H1 Collaboration

- Introduction
- High Q^2 NC DIS Cross-sections
- \bullet New Rates at very High Q^2
- Search for Leptoquarks

Rencontres de Moriond 14-21/03/1998

DESY

Introduction: High Q^2 Physics

$$\begin{array}{l} \mathrm{HERA} = \boldsymbol{e} \ (27.5 \ \mathrm{GeV}) \rightarrow \leftarrow \boldsymbol{p} \ (820 \ \mathrm{GeV}) \\ \Rightarrow \sqrt{s} = 300 \ \mathrm{GeV} \end{array}$$

Probing the proton at small distances down to 10^{-3} fm ...

• t-channel exchange of a highly virtual gauge boson

• Search for s-channel production of new particles coupling to lepton-quark pairs

 $M_X \le 300 \text{ GeV}$ $d\sigma/dy \sim const.$ (S = 0) $d\sigma/dy \sim (1 - y)^2$ (S = 1)

NC DIS Candidate in the H1 Detector

LAr Calorimetry

- Very fine granularity

 $(\approx 44000 \text{ cells})$ • Optimal for *e*-identification $\sigma(E)/E \simeq 12\%/\sqrt{E/\text{ GeV}} \oplus 1\%$ • offline weighting for hadrons $\sigma(E)/E \simeq 50\%/\sqrt{E/\text{ GeV}} \oplus 2\%$

Kinematics Reconstruction

$ heta_e, E_e$	"electron" method
$ heta_e, heta_{hadrons}$	"double-angle" method
full information	$\omega { m method}$

• More luminosity

$$14.2 \text{ pb}^{-1} \rightarrow 37 \text{ pb}^{-1}$$

• Improved electromagnetic calibration

In situ calibration now achieved for the LAr_{em} wheels using : Double-angle method or ω -method for NC DIS Double-angle method or P_T balance for QED Comptons

Systematics on the LAr em. energy scale: 3% in the forward part to 1% in the backward part.

Standard Model of DIS

The Born Neutral Current cross-section is:

$$\frac{d^2\sigma}{dx\,dQ^2} = \frac{2\pi\alpha^2}{xQ^4} \left\{ Y_+ \mathcal{F}_2(x,Q^2) - Y_{\Leftrightarrow} x \mathcal{F}_3(x,Q^2) \right\}$$

with $Y_{\pm} = 1 \pm (1 \Leftrightarrow y)^2$

$$\begin{pmatrix} \mathcal{F}_2(x,Q^2) \\ x\mathcal{F}_3(x,Q^2) \end{pmatrix} = x \sum_q \begin{pmatrix} C_2^q(Q^2)[q(x,Q^2) + \bar{q}(x,Q^2)] \\ C_3^q(Q^2)[q(x,Q^2) - \bar{q}(x,Q^2)] \end{pmatrix}$$

 $C_2(Q^2)$ and $C_3(Q^2)$ depending on charges, axial and vector electroweak couplings, $\sin(\theta_w)$ and M_Z .

Systematics of 7% on the prediction of the cross-sections at high Q^2

Ph.Bruel

Moriond 98

kinematical cuts: $E_{el} > 11$ GeV and y < 0.9.

Ph.Bruel

6

DIS cross-section measurement

 $\mathcal{F}_2(x,Q^2)$ extracted from $\frac{d^2\sigma}{dx\,dQ^2}$ assuming standard $\mathcal{F}_3(x,Q^2)$.

The measured scaling violations are extremely well followed by pQCD evolution (DGLAP) for $Q^2 < 15000 \text{ GeV}^2$.

7

Reduced cross-section

We start to measure in the region sensitive to $\gamma \Leftrightarrow \! Z$ interference.

Ph.Bruel

Moriond 98

Integrated cross-section $\frac{d\sigma}{dx}$

The data significantly supports the EW (negative interference) contribution to e^+p data.

Ph.Bruel

Moriond 98

Reduced cross-section

$$\sigma(e^+p) = \frac{xQ^4}{2\pi\alpha^2} \frac{1}{1+(1\Leftrightarrow y)^2} \frac{d^2\sigma}{dx\,dQ^2}$$

Including new H1 data at high Q^2 would pull the SM QCD fit further down compared to MRSH. Excess at very high Q^2 and high x_{bj} ...

NC Data Sample in the M-y Plane

H1 NC candidates e-method $\mathcal{L} = 37.04 \pm 0.96 \text{ pb}^{-1}$

 $Q_e^2 > 5000 \text{ GeV}^2$ $0.1 < y_e < 0.9$ Obs. = 322 \Leftrightarrow Exp. = 336 ± 29.6

The acceptance has increased to more than 90% within the y- Q^2 range due to the new selection:

Energy-momenta Conservation:

 $\begin{array}{l} 40 < \sum E \Leftrightarrow P_z < 70 \,\, \mathrm{GeV} \\ \mathbf{Kinematics:} \\ \hline E_{T,e} > 15 \,\, \mathrm{GeV} \end{array} \begin{array}{l} \boxed{0.1 < y_e < 0.9} \quad \boxed{Q_e^2 > 2500 \,\, \mathrm{GeV}^2} \end{array}$

 Q^2 Dependence, 1994-97 Data

- Slight deviations from SM expectation observed for $Q_e^2 \gtrsim 15000 \text{ GeV}^2 \dots$
- Excess at highest Q_e^2 less significant than with 1994 \rightarrow 96 data only

• Good agreement with SM expectation for 1997 data • Only marginal deviations observed for $Q_e^2 \gtrsim 15000 \text{ GeV}^2$

Q^2 Integrals, *e*-method

1997 Data, H1 Preliminary							
$Q_{min}^2/{ m GeV^2}$	2500	5000	10000	15000	20000	25000	
N_{obs}	753	178	31	10	4	2	
N_{DIS}	758	199.7	32.7	8.77	2.61	0.94	
	± 57.9	± 17.6	± 3.8	± 1.26	± 0.43	± 0.17	
$\mathcal{P}(N \ge N_{obs.})$	53%	83%	59%	38%	27%	24%	
All 1994-97 Data, H1 Preliminary							
$Q^2_{min}/~{ m GeV^2}$	2500	5000	10000	15000	20000	25000	
N_{obs}	1297	322	51	22	10	6	
N_{DIS}	1276	336	55.0	14.8	4.39	1.58	
	± 98	± 29.6	± 6.42	± 2.13	± 0.73	± 0.29	
$\mathcal{P}(N \ge N_{obs.})$	42%	56%	60%	5.9%	1.8%	0.64%	

Systematic errors dominate for every Q^2_{min}

- Significance of "anomaly" decrease including 1997 data
- Excess in integrated spectra at $Q^2 \gtrsim 15000 \text{ GeV}^2$ remains
- ... but only **marginally** supported by 1997 data alone !
- Translation as cross-section corrected to Born level :

σ_{Born} within $(Q_0^2 > Q_{min}^2, y_0 < 0.9)$						
Q^2_{min}	SM (MRSH)	H1 $EPS97$	H1 Preliminary			
5000	9.03	$8.86^{+1.02}_{-1.02}$	$8.69\substack{+0.77 \\ -0.77}$			
15000	0.38	$0.78\substack{+0.22\\-0.20}$	$0.59\substack{+0.15 \\ -0.13}$			
25000	0.040	$0.210_{-0.091}^{+0.112}$	$0.168\substack{+0.083\\-0.060}$			

Improved acceptance (and statistics !) since ECHEP97

H1 Preliminary, data 94 \rightarrow 97

- Slight excess remains at large Q^2 (or large M); mostly at large y
- Excess mainly due to $1994 \rightarrow 96$ data

NC events at Large Masses

Mass Windows at large y_e :

With the 1994-96 data alone (Z.Phys.C74(1997)191): most significant deviation observed at masses $M_e = 200 \pm 12.5$ GeV:

$$N_{obs} = 7$$
 for $N_{exp} = 0.95 \pm 0.18$

Including the 1997 data:

 $N_{obs} = 8$ for $N_{exp} = 3.01 \pm 0.54$ (new selection/calibration)

• The 1997 data alone does not confirm the observation of a "clustering" of events around $M_e \simeq 200 \text{ GeV}$

Setting Constraints for Leptoquarks

 \implies optimized cut $y > y_{cut}$ which maximizes ratio signal / background

• either fix λ and set constraints in plane β versus M_{LQ}

• either constrain λ vs M_{LQ} in specific models (β known)

Method : sliding mass window procedure, Poisson statistics (H1 Collab., Phys. Lett. B369 (1996) 173.)

Ph.Bruel

Constraints vs. β for Leptoquarks

H1 Preliminary

Sensitivity drop on β for $M_{LQ} \simeq 210 \text{ GeV}$:

- new calibration $\Rightarrow \simeq +6 \text{ GeV}$
- M_e underestimates M_{LQ} by $\simeq 4 \text{ GeV}$
- Unexplored domain covered by H1, even for LQ coupling to e^+d
- Competition with TeVatron ($\lambda = 0.1$ corresponds to $\simeq 1/10 \times \alpha_{em}$)
- Still a high discovery potential at HERA, provided that $\beta << 1$.

Mass-Coupling Constraints for Leptoquarks

Stringent limits from TeVatron, BUT :

- For $\lambda \simeq \alpha_{em}$: $M_{LQ} > 275 \text{ GeV}$ at 95% C.L.
- Improvement by a factor $\simeq 3$ compared to earlier published results

Update of Charge Current Results

 Q_h^2 Integrals:

CC DIS, 1994 - 97 Data, H1 Preliminary						
$Q^2_{min}/~{ m GeV^2}$	2500	7500	15000			
N_{obs}	100	41	9			
N_{DIS}	95.3	27.6	5.07			
	± 16.7	± 8.4	± 2.8			

- Systematic errors dominate for every Q_{min}^2
- Excess in integrated spectra for $Q^2 \gtrsim 7500 \text{ GeV}^2$... but compatible with SM within errors

Conclusion

For the first time NC DIS cross-sections are measured:
- at very high Q² (where γ ⇔Z interference can no longer be neglected)
- at high x_{Bj}

(where the valence quarks dominate)

The data are consistent with expectation of a suppression of the cross-section at high Q^2 due to $\gamma \Leftrightarrow Z$ interference;

- The magnitude of the excess at high Q^2 is reduced when adding 97 data;
- New constraints on Leptoquarks (improvement of a factor 3 compared to earlier H1 publication);
- HERA has still a good potential discovery for Leptoquarks !