New H1 Results at High Q^2

Gregorio Bernardi

LPNHE-Paris, CNRS-IN2P3

On behalf of the

H1 Collaboration

DESY Seminar, Hamburg, March 13^{th} , 1998

- Calibration of the Liquid Argon Calorimeter
- Events at Very High Q^2
- Results on Searches for
 - Leptoquarks
 - Excited Leptons
- Neutral Current-Cross Section Measurements at High Q^2 and High x

High Q^2 Physics at HERA

• Probe the proton at very small distances $(\geq 10^{-18} \text{m})$ via *t*-channel exchange of virtual gauge bosons

The Standard DIS Model

Neutral and Charged Current (NC,CC) cross-sections are determined using perturbative QCD and Electroweak theory

- Description of the proton in terms of scale dependent structure functions (SF).
- Parton density parametrizations extracted from global fits to SF measurements from HERA and fixed target also including inclusive lepton and direct photon measurements.
- Parton densities are evolved to high Q^2 using Next-to-Leading Order DGLAP equations.
- Couplings as given in the Standard Strong-Electroweak Model $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$
- At high x and high Q^2 the NC cross-section is dominated by the u valence quark density, the CC by the d quark.

The uncertainty on the expectation comes from

- The parton distributions which are determined $\pm 5\%$
 - a) Input data (e.g. BCDMS at high xand low Q^2)
 - b) Assumed shape of the distributions at the evolution starting point.
- The uncertainty on α_S which translates into a $\pm 4\%$ uncertainty at high Q^2 .
- Higher Order QED corrections $\rightarrow \pm 2\%$.

NC DIS cross-section predictions at high x, Q^2 is accurate to $\simeq 7\%$

NC DIS Event

 $Q^2 = 16950 \,\, {
m GeV^2}, \ \ y = 0.44, \ \ M = 196 \,\, {
m GeV}$

Liquid Argon Calorimeter: 44000 Cells $\sigma(E)/E(em) \simeq 12\%/\sqrt{E/\text{GeV}} \oplus 1\%$ $\sigma(E)/E(had) \simeq 50\%/\sqrt{E/\text{GeV}} \oplus 2\%$ $\Delta E/E_{em} = 1 \Leftrightarrow 3\%$ $\Delta E/E_{had} = 4\%$ $\Delta \theta_e = 2 \Leftrightarrow 5 \text{ mrad}$

measured quantities:

hadrons:

e⁺: energy E polar angle θ ons: $\Sigma = \sum_{hadrons} (E_h \Leftrightarrow p_{z,h})$ $\tan \gamma/2 = \Sigma/p_{t,h}$

Kinematic Reconstruction

• Electron Method:
$$y_e = 1 \Leftrightarrow \frac{E'_e}{E_e} \sin^2 \frac{\theta_e}{2}$$
 $Q_e^2 = 4E'_e E_e \cos^2 \frac{\theta_e}{2}$

- most precise at high y / low x
- degrades severely at low y
- Hadron Method: $y_h = \frac{\Sigma}{2E_e}$ $Q_h^2 = \frac{p_{t,h}^2}{1-y_h}$
 - low precision, but only method for charged current

•
$$\Sigma$$
 Method: $y_{\Sigma} = \underbrace{\frac{\Sigma}{\Sigma + E'_e(1 \Leftrightarrow \cos\theta_e)}}_{\sum + E'_e(1 \Leftrightarrow \cos\theta_e)} \qquad Q_{\Sigma}^2 = \frac{E'_e^2 \sin^2\theta_e}{1 - y_{\Sigma}}$

 $2 \cdot E_{Incident}$ Electron

- precise over the whole kinematic range
- independent of QED initial state radiation
- Double Angle Method:

$$y_{DA} = \frac{\tan \gamma/2}{\tan \gamma/2 + \tan \theta/2} \qquad Q_{DA}^2 = 4E_e^2 \frac{\tan \theta}{2} \frac{\cot \theta/2}{\tan \gamma/2 + \tan \theta/2}$$

- high precision at high Q^2 , but sensitive to QED radiation
- independent of energy scale \Rightarrow used for calibration
- ω Method: calibrates Σ after solving the energy momentum conservation equations (asuming $\frac{\delta \Sigma}{\Sigma} = \frac{\delta p_T}{p_T}$)

$$(1 \Leftrightarrow y_e)\frac{\delta E}{E} + y_h \frac{\delta \Sigma}{\Sigma} = y_e \Leftrightarrow y_h$$
$$\Leftrightarrow p_{T,e} \frac{\delta E}{E} + p_{T,h} \frac{\delta \Sigma}{\Sigma} = p_{T,e} \Leftrightarrow p_{T,h}$$

- identification/correction of radiative events
- determination of kinematics/calibration on an event by event basis

Electron Energy Calibration

- Detailed calibration performed:
 - at low y using the Double Angle method
 - year by year
 - cm-wise in z and octant by octant in ϕ

• In situ calibration now achieved for the LAr_{em} wheels using : Double-angle method and ω -method for NC DIS Double-angle method and P_T balance for QED Comptons

• *e*-calib. well within originally quoted $\pm 3\%$ syst. for central LAr wheels $\Rightarrow 1\%$ precision for θ between 80° to 150°

 In the forward LAr wheels: consistency from various methods using NC DIS and QED ⇒ calibration scale improved. Uncertainty at the 3% precision level only limited by statistics

Electron Polar Angle and Energy

- Polar angle well described over the full Q^2 range $(\delta\theta \simeq 3 \text{mrad})$
- Energy spectrum under control for search $(Q^2 > 2500 \text{ GeV}^2)$ and cross-section $(Q^2 > 200 \text{ GeV}^2)$ analyses

Hadronic Energies

- hadronic scale is being precisely calibrated using the electron as reference
- width and scale of the hadronic distributions well described within the quoted $\operatorname{error}(\pm 4\%)$

Excess of High Q^2 Events at HERA

Event Selection for High Q^2 Searches

NC-like Events

CC-like Events

$P_{T,miss} > 50 \text{GeV}$					
$(E_T \Leftrightarrow P_{T,h})/E_T < 0.5$	Background finders				
$\Rightarrow 31$ events					

 $Q_e^2 > 15000 \text{GeV}^2$ Obs. = 22 \Leftrightarrow Exp

Obs. =
$$22 \Leftrightarrow \text{Exp.} = 14.7 \pm 2.1$$

- New E_e calibration
- Slightly modified selection cuts

- Slight deviations from SM expectation observed for $Q_e^2 \gtrsim 15000 {\rm GeV}^2$
- Excess at highest Q_e^2 less significant than with 1994 \rightarrow 96 data only

- New E_e calibration
- Slightly modified selection cuts

Good agreement with SM expectation for 1997 data
Only marginal deviations observed for Q_e²≥15000GeV²

 Q^2 Integrals

1997 Data, H1 Preliminary						
$Q^2_{min}/{ m GeV}^2$	2500	5000	10000	15000	20000	25000
N_{obs}	753	178	31	10	4	2
N_{DIS}	758	199.7	32.7	8.77	2.61	0.94
	± 57.9	± 17.6	± 3.8	± 1.26	± 0.43	± 0.17
$\mathcal{P}(N \ge N_{obs.})$	53%	83%	59%	38%	27%	24%
All 1994-97 Data, H1 Preliminary						
$Q^2_{min}/{ m GeV^2}$	2500	5000	10000	15000	20000	25000
N_{obs}	1297	322	51	22	10	6
N_{DIS}	1276	336	55.0	14.8	4.39	1.58
	± 98	± 29.6	± 6.42	± 2.13	± 0.73	± 0.29
$\mathcal{P}(N \ge N_{obs.})$	42%	56%	60%	5.9%	1.8%	0.64%

Systematic errors dominate for every Q_{min}^2

- Significance of "anomaly" decrease including 1997 data
- Excess in integrated spectra at $Q^2 \gtrsim 15000 \text{GeV}^2$ remains
- ... but only **marginally** supported by 1997 data alone !

• Translation as cross-section corrected to Born level :

$\sigma_{Born} \ (pb)$ for $Q_0^2 > Q_{min}^2$ and $y_0 < 0.9$				
Q^2_{min}	SM (MRSH)	H1 $(EPS-97)$	H1 Preliminary	
5000	9.03	$8.86^{+1.02}_{-1.02}$	$8.69^{+0.77}_{-0.77}$	
15000	0.38	$0.78\substack{+0.22 \\ -0.20}$	$0.59^{+0.15}_{-0.13}$	
25000	0.040	$0.210\substack{+0.112\\-0.091}$	$0.168\substack{+0.083\\-0.060}$	

Improved acceptance (and statistics $!)\,$ since EPS $97\,$

Charged Current Deep Inelastic Scattering

Cross Section for $e^+p \longrightarrow \bar{\nu}X$:

$$\frac{d^2 \sigma_{CC}}{dx dQ^2} = \frac{G_F^2}{2\pi} \frac{1}{(1 + Q^2/m_W^2)^2} \left(\bar{u} + \bar{c} + (1 \Leftrightarrow y)^2 (d+s) \right)$$

- For e⁺p scattering the dominating contribution to the cross section comes from the d quark
 ⇒ Largest theoretical error arises from uncertainty of the d quark density
- The main experimental uncertainty is the hadronic energy scale of the calorimeter

Update of Charged Current Rates

Q_h^2 Integrals:

CC DIS, 19	94-96			
$Q^2_{min}/{ m GeV}^2$	2500	7500	15000	15000
N_{obs}	100	41	9	4
N_{DIS}	95.3	27.6	5.07	1.77
	± 16.7	± 8.4	± 2.8	± 0.4

- Systematic errors dominate for every Q_{min}^2
- Excess in integrated spectra for $Q^2 \gtrsim 7500 \text{GeV}^2$... but compatible with SM within errors

Mass Windows at large y_e :

Most significant deviation from SM expectation observed with the 1994-96 data alone for masses $M_e \simeq 200 \text{GeV}$ at large y_e :

 $N_{obs} = 7$ within $M_e = 200 \pm 12.5 GeV$ for $N_{exp} = 0.95 \pm 0.18$

 $\rightarrow \mathcal{P} \simeq 1\%$ to observe an equal or larger deviation within kine. range in a random Monte Carlo experiment

Including the 1997 data:

 $N_{obs} = 8$ within $M_e = 200 \pm 12.5 GeV$ for $N_{exp} = 3.01 \pm 0.54$

 $\Rightarrow {\rm The \ 1997 \ data \ alone \ do \ not \ confirm \ the \ observation \ of} \\ {\rm a \ ``clustering'' \ of \ events \ around \ } M_e \simeq 200 GeV$

Integrated rates at large masses ($\geq 180 \text{ GeV}^2$):

1994-97 data:	$N_{obs} = 10$ for $N_{exp} = 5.61 \pm 1.03$ for $y_e > 0.4$
	$N_{obs} = 8$ for $N_{exp} = 2.94 \pm 0.42$ for $y_e > 0.5$

1997 data alone:
$$N_{obs} = 4$$
 for $N_{exp} = 3.33 \pm 0.62$ for $y_e > 0.4$
 $N_{obs} = 4$ for $N_{exp} = 1.75 \pm 0.25$ for $y_e > 0.5$

Setting Constraints for Leptoquarks

- either fix λ and set constraints in plane β versus M_{LQ}
- or constrain λ vs M_{LQ} in specific models (β known)

Method : sliding mass window procedure, Poisson statistics (H1 Collab., Phys. Lett. B369 (1996) 173.)

H1 Preliminary

Sensitivity drop on β for $M_{LQ} \simeq 210 \text{GeV}$:

- new calibration $\Rightarrow \simeq +6 \text{GeV}$
- M_e underestimates M_{LQ} by $\simeq 4 \text{GeV}$
- Unexplored domain covered by H1, even for LQ coupling to e^+d
- Competition with TeVatron ($\lambda = 0.1$ corresponds to $\simeq 1/10 \times \alpha_{em}$)
- Still a high discovery potential at HERA, provided that $\beta << 1$

Mass-Coupling Constraints for Leptoquarks

Constraints on a specific LQ model (Buchmüller/Rückl/Wyler) pure chiral coupling 7 scalar LQ types $\beta = 1 \text{ or } 1/2$ $LQ \rightarrow e + q$, or $\nu + q$, or both **SEA QUARKS** λ Iim H1 Preliminary -1 10 0. R 0. R -2 10 100 120 140 160 180 200 220 240 260 80 M_{LQ} (GeV) VALENCE QUARKS 1 $\lambda_{\sf lim}$ liminarv 0 5 -1 10 5_{1/2 R} 10 160 180 200 220 240 260 100 120 140 80 excluded by TeVatron M_{LQ} (GeV)

Stringent limits from TeVatron, BUT :

- For $\lambda \simeq \alpha_{em}$: $M_{LQ} > 275 \text{GeV}$ at 95% C.L.
- Improvement by a factor $\simeq 3$ compared to earlier published results

Excited Leptons Search

Channel	Selection	Data	SM exp.	Efficiency
$e^* ightarrow e\gamma$	2 EM clusters	223	239 ± 7	85~%
$e^* \to eZ \hookrightarrow ee$	$3 \mathrm{EM}$ clusters	3	1.4 ± 0.3	78~%
$e^* \to eZ \hookrightarrow \nu\bar{\nu}$	1 electron + P_t^{miss}	1	3.6 ± 0.7	70~%
$e^* \to eZ \hookrightarrow q\bar{q}$	2 jets + 1 electron	38	48 ± 3	41~%
$e^* \to \nu W \hookrightarrow e\nu$	1 electron + P_t^{miss}	1	3.6 ± 0.7	70~%
$e^* ightarrow u W \hookrightarrow q \bar{q}$	$2 \text{ jets} + P_t^{miss}$	3	3.8 ± 0.5	40~%
$ u^* ightarrow u\gamma$	1 photon + P_t^{miss}	0	1.3 ± 0.8	38~%
$\nu^* \to \nu Z \hookrightarrow ee$	$2 \text{ electrons} + P_t^{miss}$	0	0.38 ± 0.2	40~%
$\nu^* \to \nu Z \hookrightarrow q\bar{q}$	$2 \text{ jets} + P_t^{miss}$	3	3.8 ± 0.5	40~%
$\nu^* \to eW \hookrightarrow e\nu$	$2 \text{ electrons} + P_t^{miss}$	0	0.38 ± 0.2	40~%
$\nu^* \to eW \hookrightarrow q\bar{q}$	2 jets + 1 electron	38	48 ± 3	41~%

Invariant Mass Spectra

- e.g. based on the model of Hagiwara et al.
- better limit than previously published at HERA
 (≥ factor 2)
- sensitivity extends beyond the LEP mass reach

Event Selection:

– Calorimetric based trigger ($\epsilon > 99.5\%$) $y_{e} < 0.9$ $- \mathrm{E}_e > 11 \mathrm{~GeV}$ $\theta_e \leq 150^\circ$ $-\mid Z_{vertex}\mid < 35 \text{ cm}$ $- \text{E-P}_z > 35 \text{ GeV}$ \Rightarrow Data sample $\simeq 75000$ events \Rightarrow Background < 1% • Both positron and hadrons are used for kinematic reconstruction 10⁵ ZEUS BPC 1995 **H1 95+96** PREL. **HERA 1994 HERA 1993**

Kinematic Domain: $200 \text{ GeV}^2 \leq Q^2 \leq 30000 \text{ GeV}^2$ $0.005 \leq x \leq 0.65$

 $\frac{d^2\sigma}{dx\,dQ^2} = \frac{2\pi\alpha^2}{xQ^4} \left[Y_+ F_2(x,Q^2) - y^2 F_L(x,Q^2) - Y_- x F_3(x,Q^2) \right]$

 $Y_{\pm}(y) = 1 \pm (1 \Leftrightarrow y)^2$

- F_2 : generalized structure function
- F_{L} : longitudinal structure function

 F_3 : parity violating term from Z° exchange

$$F_2 = F_2^{em} + \frac{Q^2}{(Q^2 + M_Z^2)} F_2^{int} + \frac{Q^4}{(Q^2 + M_Z^2)^2} F_2^{wk} = F_2^{em} (1 + \delta_Z)$$

 F_2^{em} : photon exchange F_2^{wk} : Z° exchange F_2^{int} : γZ° interference

$$\frac{d^2\sigma}{dx \, dQ^2} = \frac{2\pi\alpha^2 Y_+}{xQ^4} F_2^{em} (1 + \delta_Z - \delta_3 - \delta_L)$$

$$\delta_Z - \delta_3$$
: < 1% at Q² < 1500 GeV²
 $\approx 10\%$ at Q² = 5000 GeV² and x=0.08
 δ_L : negligible at $y < 0.5$
 $\approx 5\%$ at $y = 0.9$

In the following we will use the Reduced Cross Section:

$$\sigma(e^+p) \equiv \frac{xQ^4}{2\pi\alpha^2} \frac{1}{Y_+} \frac{\mathrm{d}^2\sigma}{\mathrm{d}x\mathrm{d}Q^2}$$

H1 Collaboration

DESY-Seminar 13/3/98

(presented at EPS'97)

- Improvement of experimental techniques enable H1 to reach higher x values
- Higher statistics \Rightarrow Higher Q^2

- Necessity to reduce the "noisy" cells at low y
 ⇒ electronic noise
 - \Rightarrow backscattering in the beam-pipe
- Topological noise suppression improves y_h resolution at high x:

systematic error on the noise supression:
 ± 25 % of the subtraction

Comparison of e and Σ Method

- Opposite systematic shift for electron energy error ⇒ energy calibration check
- Different behaviour for radiative corrections
- For final result we use the $e\Sigma$ -method (x_{Σ}, Q_e^2) which has a good stability in the full kinematic plane (cf DESY-97-137).
- H1 Collaboration

Comparison to 1994 Data

- Total errors improved by about a factor 2.
- $\delta F_2/F_2 \simeq 8\%$ over the full x and Q^2 range.

• Use NLO DGLAP equations to evolve:

$$\begin{array}{l} -xu_{val}(x,Q^2) \ , xd_{val}(x,Q^2) \\ xg(x,Q^2) \ , xSea(x,Q^2) \\ - \text{Treat charm and bottom as massless partons} \\ \Rightarrow \text{ more appropriate description for high } Q^2 \\ c(x,Q^2) = 0 \text{ for } Q^2 < 1.5 \text{ GeV}^2 \\ b(x,Q^2) = 0 \text{ for } Q^2 < 5 \text{ GeV}^2 \\ - \text{Assume } \bar{u} = \bar{d} = 2\bar{s} \text{ and} \\ Sea = 2(\bar{u} + \bar{d} + \bar{s} + \bar{c}) \text{ at } Q_0^2 \\ - \text{Take } \bar{c} = 0.02 \times xSea \\ - \text{ Use QCDNUM program from M. Botje} \end{array}$$

• Parton densities parametrised at Q_0^2 :

$$f_j(x) = A_j x^{B_j} (1-x)^{C_j} (1-D_j x + E_j \sqrt{x})$$

 \rightarrow parameters adjusted by fitting procedure

• Momentum and flavour sum rules applied

- Datasets and Cuts:
 - NMC/BCDMS p+d F₂ data
 - H1 94 and preliminary H1 95/96 F_2 data with $Q^2 \leq 120 \text{ GeV}^2$
 - H1 preliminary 97 Use reduced cross-section data \rightarrow no assumptions for F_L or xF_3
 - Require $Q^2 \ge 4 \text{ GeV}^2$ and $W^2 \ge 10 \text{ GeV}^2$
 - Require $x \leq 0.5$ for $Q^2 \leq 15 \text{ GeV}^2$

• Parameters:

- starting scale: $Q_0^2 = 4 \text{ GeV}^2$
- $-\alpha_s(M_Z^2)=0.118$ (fixed)

• Results:

- Fit statistical \oplus uncorrelated syst. errors
- 1 Fit only data with $Q^2 \leq 120 \text{ GeV}^2$ then extrapolate to high Q^2
- 2 Fit all data with $Q^2 \leq 30000 \text{ GeV}^2$
- Both fits have $\chi^2/\text{ndf} \approx 1.2$

Reduced Cross Section

- Measurement from $Q^2 = 200$ to 30000 GeV². Up to x = 0.65 for $Q^2 \ge 650$ GeV²
- NLO QCD fit gives good description of the data in the whole Q^2 and x range

 F_2 - scaling violations

- F_2 derived from $\frac{d^2\sigma}{dxdQ^2}$ assuming F_L and xF_3 from MRSH
- access to valence quark region
- approaching overlap to the fixed target data at high x

- Difference visible in the QCD fit when the high Q^2 data is or is not included.
- High Q^2 HERA data now also have an influence at <u>high x</u>.

Single Differential Cross-Sections

• High Q^2 data are compatible with a NLO QCD fit to all low Q^2 data ($\leq 120 \text{GeV}^2$) evolved over two orders of magnitude.

38

- Slight Excess visible at $Q^2 \ge 15000 \text{ GeV}^2$.
- H1 Collaboration

DESY-Seminar 13/3/98

Sensitivity To Electroweak Processes

- Effects are visible at $Q^2 \ge 10000 \text{ GeV}^2$
- Greater sensitivity can be gained from single differential distributions

$\mathrm{d}\sigma/\mathrm{d}x$ at $Q^2 > 1000, 10000~\mathrm{GeV}^2$

- For $Q^2 \ge 1000 \text{ GeV}^2$, the cross-section is still dominated by low x partons.
- For $Q^2 \ge 10000 \text{ GeV}^2$ the valence quarks contribute.
- The data are in good agreement with the electroweak Standard Model.

H1 Collaboration

DESY-Seminar 13/3/98

Summary

Searches:

- The excess of neutral current events observed at high Q^2 in the 94-96 data is still present, but with a lower significance ($\simeq 2\sigma$ at $Q^2 \ge 15000$ GeV² for the data taken from 94 to 97).
- In the mass window around 200 GeV the number of events observed in 1997 is comparable to expectation \Rightarrow no confirmation of an accumulation of events at this mass value.
- Stringent limits have been determined for scalar leptoquarks. $\lambda \geq e.m.$ coupling strenght are excluded for masses up to 275 GeV. HERA still has a discovery potential for general ($\beta \ll 1$) leptoquark searches.

Cross-Sections:

- Single and double differential cross-sections have been measured for Q^2 from 200 to 30000 GeV², in the valence region up to x = 0.65 with a precision comparable to the low Q^2 HERA data.
- These cross-section measurements are very well described over two orders of magnitude in Q^2 by perturbative QCD, as shown by a Next to Leading Order QCD fit based only on low Q^2 ($\leq 120 \text{ GeV}^2$) data.
- At $Q^2 \ge 15000 \text{ GeV}^2$ a slight excess of events over expectation is also visible in the double differential cross-section.
- At high Q^2 ($\geq 10000 \text{ GeV}^2$), the single differential $d\sigma/dx$ cross-section favours the Standard Model expectation of a suppression of the cross-section due to $\gamma \Leftrightarrow Z^0$ interference.