

Exclusive ρ^0 and ρ' Photoproduction at HERA

Sergey Levonian, DESY

for the H1 Collaboration

HERA: The World's Only ep Collider

HERA-1 (1993-2000) $\simeq 120 \text{ pb}^{-1}$ HERA-2 (2003-2007) $\simeq 380 \text{ pb}^{-1}$

Final Data samples H1+ZEUS: 2×0.5 fb⁻¹

2

HERA: The World's Only ep Collider

HERA-1 (1993-2000) $\simeq 120 \text{ pb}^{-1}$ HERA-2 (2003-2007) $\simeq 380 \text{ pb}^{-1}$

Final Data samples H1+ZEUS: $2 \times 0.5 \text{ fb}^{-1}$

Days of running

- Data at W > 20 GeV are all from HERA
- HERA VM Photoproduction data are well described by Regge-type power law $\sigma \propto W^{\delta}$
- Transition from soft to hard regime at universal scale $\mu^2 = (Q^2 + M_V^2)/4 \approx 4 \div 5 \text{ GeV}^2$
- Low-mass VM: only few points are measured and only for ground states ho, ω, ϕ

H1 Detector

Central Tracker: drift chambers and two-layer silicon strip detector
 ^{(20°} < θ < 160° used in VM analyses)
 <p>Proton Dissociation Tagger

 EM+Had Calorimeters
 ^{(4°} < θ < 178°)

 Forward Detectors: Fµ,Plug,p-tag
 (effective pseudorapidity coverage 3.5 < η_{lab} < 7.5)

Powerful fast track trigger (allows untagged soft γp to be collected)

Z

ρ⁰ Analysis

Data Sample and MC modelling

 $egin{aligned} 15 \ {
m GeV} < W_{\gamma p} < 100 \ {
m GeV} \ 0.3 \ {
m GeV} < m_{\pi\pi} < 1.5 \ {
m GeV} \ p_{t,\pi\pi}^2 \simeq |t| < 2 \ {
m GeV}^2 \ Q^2 < 2 \ {
m GeV}^2; \quad M_Y < 10 \ {
m GeV} \end{aligned}$

DiffVM MC (Regge + VDM)

• $\pi^+\pi^-$ signal: elastic and p-dissociative

tuned to data in $W_{\gamma p}, \ m_{\pi\pi}, \ t$ includes also $\omega \to \pi^+\pi^-$ and non-resonant $\pi^+\pi^-$ contributions

• backgrounds:

$$\omega \to \pi^+ \pi^- \pi^0$$

 $\phi \to K^+ K^-, K_S K_L, \pi^+ \pi^- \pi^0, \rho \pi, \eta \gamma$
 $\rho' \to \rho \pi \pi, 4\pi$
 γ -dissociation: M_X \to hadrons via Jetset

• proton dissociation:

continuum & resonances; $d\sigma_{\gamma p}/dM_Y^2 \propto (1/M_Y^2)^{\delta}$ $M_Y < 1.9 \text{ GeV: } N^{\star}$ with measured decay channels $M_Y > 1.9 \text{ GeV: } p' \rightarrow$ hadrons via Jetset

Control Plots

Differential cross section definition

$$rac{\mathrm{d}\sigma(\gamma p o \pi^+ \pi^- Y)}{\mathrm{d}m_{\pi\pi}}(W_{\gamma p},m_{\pi\pi}) = rac{N_{\mathrm{unfolded}}^Y(W_{\gamma p},m_{\pi\pi})}{\mathcal{L}\cdot\Delta m_{\pi\pi}\cdot\Phi_{\gamma/e}(W_{\gamma p})}$$

Reduced measurement Phase Space

20 GeV \leq	$W_{\gamma p}$	≤ 80	GeV
0.4 GeV \leq	$m_{\pi\pi}$	≤ 1.2	GeV
	-t	≤ 1.5	GeV^2
	Q^2	≤ 0.1	GeV ²
elastic:			
	M_Y	$= m_p$	GeV
<i>p</i> -dissociative:			
m_p <	M_Y	≤ 10	GeV

Unfolding particle level cross sections:

- subtract backgrounds
- correct signal for detector efficiency and resolution
- separate elastic from p-dissociative contributions

Regularised template fit using TUnfold package

- p-dissociation separated using 3 tagging control regions
- backgrounds normalised in 4 control regions

$\mathrm{d}\sigma(\gamma p o \pi^+\pi^- Y)/\mathrm{d}m_{\pi\pi}$

2D unfolding $(m_{\pi\pi}\otimes W_{\gamma p}) \;\; \Rightarrow \;\; \mathrm{d}\sigma(\gamma p o \pi^+\pi^-Y)/\mathrm{d}m_{\pi\pi}$ in 16 elastic $W_{\gamma p}$ bins

2D unfolding $(m_{\pi\pi}\otimes W_{\gamma p}) \; \Rightarrow \; \mathrm{d}\sigma(\gamma p o \pi^+\pi^-Y)/\mathrm{d}m_{\pi\pi}$ in 8 proton-dissociative $W_{\gamma p}$ bins

Energy Dependence of ρ^0 Cross Sections

- Cross sections from fit function integral
- P-diss. cross section affected by PS restrictions

$\pi^+\pi^-$ Mass Spectra in Extended Mass Range

- ullet look at extended range $m_{\pi\pi} < 2.2~{
 m GeV}$
- good fit with one extra $BW_{
 ho'}$

$\pi^+\pi^-$ Mass Spectra in Extended Mass Range

- ullet look at extended range $m_{\pi\pi} < 2.2~{
 m GeV}$
- good fit with one extra $BW_{
 ho'}$

Similar measurement by ZEUS [2012] but in DIS regime ($Q^2 > 2 \text{ GeV}^2$)

Complicated fit, large ho(770) 'bgr' both ho(1450) and ho(1700) observed

Analysis sketch

Experimental information is sparse Dominant decay channel: $\rho\pi\pi$

ρ(14	50) [r
P(,

 $I^{G}(J^{PC}) = 1^{+}(1^{-})$

Mass $m = 1465 \pm 25$ MeV ^[/] Full width $\Gamma = 400 \pm 60$ MeV ^[/]

p(1450) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
ππ	seen	720	
4π	seen	669	
$e^{+}e^{-}$	seen	732	
$\eta \rho$	seen	311	
$a_2(1320)\pi$	not seen	54	
KK	not seen	541	
$K\overline{K}^{*}(892) + c.c.$	possibly seen	229	
$\eta\gamma$	seen	630	

$$\rho(1700)^{[r]}$$
 $I^{G}(J^{PC}) = 1^{+}(1^{-})$

Mass $m = 1720 \pm 20$ MeV ^[I] ($\eta \rho^0$ and $\pi^+ \pi^-$ modes) Full width $\Gamma = 250 \pm 100$ MeV ^[I] ($\eta \rho^0$ and $\pi^+ \pi^-$ modes)

$\rho(1700)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$2(\pi^{+}\pi^{-})$	large	803	
$\rho\pi\pi$	dominant	653	
$ ho^0 \pi^+ \pi^-$	large	651	
$ ho^{\pm}\pi^{\mp}\pi^{0}$	large	652	
$a_1(1260)\pi$	seen	404	
$h_1(1170)\pi$	seen	447	
$\pi(1300)\pi$	seen	349	
ρρ	seen	372	
$\pi^+\pi^-$	seen	849	

- 4 tracks with zero net charge, from nominal vertex veto e' and other energies not associated with tracks veto on forward activity (LRG)
- ullet non-ep background at low $W_{\gamma p} \Rightarrow$ defines $W_{\gamma p}^{\min}$ cut
- $2\pi^+2\pi^-X$ background: take from MC (DiffVM/PYTHIA) cross-check MC vs data using wrong charge background

• fit 4π mass spectra to extract ρ' cross sections

Two data samples: **HE** (\sqrt{s} = 319 GeV, \mathcal{L} = 7.6 pb⁻¹), **LE** (\sqrt{s} = 225 GeV, \mathcal{L} = 1.7 pb⁻¹)

Phase Space:

 $Q^2 < 2 \; {
m GeV}^2 \; ({
m PHP})$ $45 < W/GeV < 100 \; ({
m at} \; \sqrt{s} = 319 \; {
m GeV})$ $35 < W/GeV < \; 75 \; ({
m at} \; \sqrt{s} = 225 \; {
m GeV})$ $M_Y < 1.6 \; {
m GeV}, \; \; |t| < 1 \; {
m GeV}^2$

- ullet Remaining background $\sim 15\%$
- \bullet Contamination from p-diss. events with $M_Y < 1.6~{
 m GeV}: \sim 10\%$

Control plots for HE sample (more in backup)

Green band represents $(4\pi + X)$ background subtraction systematics only

Total cross section at the reference point W = 75 GeV:

 $\sigma_{\gamma p
ightarrow 2\pi^+ 2\pi^- Y} = (1.07 \pm 0.01_{
m stat} \pm 0.14_{
m sys}) \, \mu {
m b}$

 $R = \frac{\sigma(\gamma p \to 2\pi^+ 2\pi^- p)}{\sigma(\gamma p \to \pi^+ \pi^- p)} \approx 9\%$

World data are well described by Regge-like fit (Reggeon and soft Pomeron contributions)

Cross Section as a function of t

 Exponential fall-off in *t*, typical for diffractive VM production

• Slope b_1 is similar to that of ho(770) in photoproduction

 Second exponent possibly due to: proton-dissociative processes, non-resonant production amplitude

Cross Section as a function of Mass

- Vast majority of events populate mass range around 1.6 GeV with the width of ~ 600 MeV
- This supports the expectation of predominantly resonant production of the final state
- No clear indication of 2 resonances; distribution shape similar to that in earlier fixed target γp experiments

Decay modes

- Study correlations of $M_{4\pi}$ with invariant mass of oppositely charged pion pairs
- Caveat: these distributions are not corrected for acceptance effects

- Prominent structure at $m_{
 ho^0}$ is observed
- One broad resonance at $M_{4\pi}=1600$ or two at $M_{4\pi}=1450$ and $1700\ ?$

- Simple fit including one Breit-Wigner, non-resonant term and complex phase describes data fairly well
- Fit with two resonances gives similar quality
- More sophisticated fits in progress taking into account intermediate ho^0 in cascade decay $ho'
 ightarrow
 ho\pi\pi
 ightarrow 4\pi$

- Large statistics π⁺π⁻ sample collected and analysed thanks to the upgraded H1 detector capabilities.
- Sophisticated unfolding procedure allowed to measure differential $\pi^+\pi^$ photoproduction cross sections and separate elastic from protondissociative components.
- ρ^0 cross sections are extracted using extended Söding model and taking into account interfering ρ^0, ω and nonresonant $\pi^+\pi^-$ terms.
- 3D unfolding in progress, with the aim to measure double-differential cross section in W and t and to extract Pomeron trajectory.

- Photoproduction of exclusive $2\pi^+2\pi^$ final states is measured for the first time at HERA.
- The W and t dependencies are similar to previous $\rho(770)$ measurement.
- Mass distribution indicates, that the reaction proceeds predominantly via ρ' production and decay. More sophisticated mass fits are being worked on to distinguish one- from two-resonance hypotheses.
- An extension to DIS regime is in progress, with the aim to investigate Q^2 dependence for the ratio $R(\rho'/\rho)$.

Backup Slides

Basic Control Plots (LE)

Green band represents $(4\pi + X)$ background subtraction systematics only

Control Plots (HE)

Acceptances in HE PHP regime

