

15-th Lomonosov Conference on Elementary Particle Physics August 18-24, 2011 Moscow, Russia

Recent Results from HERA Collider

S. Levonian (DESY)

representing

HERA: The World's Only ep Collider

Physics at HERA

• HERA as Super-microscope

- ▷ Proton structure at high resolution
- ▷ Impact for LHC

• HERA as Energy frontier machine

- Electroweak unification at work
- ▷ Anything beyond the Standard Model?

• HERA as QCD laboratory

- ▷ Putting QCD in stringent tests with:
 - \circ Jets (parton evolution schemes, NLQ QCD, $lpha_s$)
 - Diffraction (interplay of soft and hard physics)
 - \circ Heavy flavor sector (multiscale problem: Q^2, M_Q, E_t)
 - Particle production (parton dynamics and fragmentation)
- \triangleright HERA specifics: low x phenomena

DIS: Cross sections and Structure Functions

NC

$$\frac{d\sigma_{NC}^{\pm}}{dxdQ^{2}} = \frac{2\pi\alpha^{2}}{x} \left[\frac{1}{Q^{2}}\right]^{2} \left[Y_{+}\tilde{F}_{2}\mp Y_{-}x\tilde{F}_{3}-y^{2}\tilde{F}_{L}\right]$$

$$\frac{d\sigma_{CC}^{\pm}}{dxdQ^{2}} = \frac{G_{F}^{2}}{4\pi x} \left[\frac{M_{W}^{2}}{M_{W}^{2}+Q^{2}}\right]^{2} \left[Y_{+}\tilde{W}_{2}^{\pm}\mp Y_{-}x\tilde{W}_{3}^{\pm}-y^{2}\tilde{W}_{L}^{\pm}\right]$$

$$Y_{\pm} = 1 \pm (1 - y)^2$$

1 Х

(similarly for pure weak CC analogues: W_2^{\pm}, xW_3 and W_L^{\pm})

Parity violation in polarised NC and CC DIS

$$A = \frac{2}{P_R - P_L} \cdot \frac{\sigma^{\pm}(P_R) - \sigma^{\pm}(P_L)}{\sigma^{\pm}(P_R) + \sigma^{\pm}(P_L)}$$

$$\sigma_{\rm pol}^{CC}(e^{\pm}p) = (1 \pm P) \cdot \sigma_{\rm unpol}^{CC}(e^{\pm}p)$$

SM expectation is in agreement with data

Absence of weak right-handed currents verified

Combination of H1 and ZEUS data

• H1 and ZEUS data are fully consistent ($\chi^2/DOF = 637/656$)

 Cross calibrate each other (via correlated systematics)

 Precision improved, reaching 1% in the bulk region

QCD factorisation: $\sigma_{DIS}\sim\sum_a C_a\otimes f_{a/p}$ allows to determine non-pert. pdf, $f_{a/p}(x,Q^2)$

- Perfect desciption of the data by NLO QCD over many orders in x and Q^2
- Good agreement with fixed target data
- Universal parton distribution functions determined with associated error bands

Longitudinal SF: F_L vs QCD predictions

$$\sigma_{NC} = F_2 - (y^2/Y_+) \cdot F_L$$

- good description by QCD for $Q^2 \ge 10 \text{ GeV}^2$
- large spread in predictions for low Q^2
- \Rightarrow F_L data represent a valuable input for QCD fits

HERAPDF for LHC

So far all NC and CC HERA data were in good agreement with SM. Try now to look more carefully at the tails, using two strategies:

- 1. Specific BSM signals search (LQ, LFV, SUSY, ...) guided by theory
- 2. Model independent generic search (data vs SM) guided by data

Search for Contact Interactions at HERA

$$L = L_{SM} + L_{CI}$$
$$L_{CI} = \sum_{i, j=L, R} \eta_{ij}^{eq} (\overline{e_i} \gamma_{\mu} e_i) (\overline{q_j} \gamma^{\mu} q_j)$$
$$\chi_{4 \text{ possible couplings for each q flavor}}$$

$$\frac{d\sigma}{dQ^2} = \frac{d\sigma_{SM}}{dQ^2} \cdot \left(1 - \frac{R^2}{6} \cdot Q^2\right)^2$$

Search for Leptoquarks at HERA

- Identify isolated ($D(\eta\phi) > 1$) particles (objects): e, μ, γ, j, ν
- Select events, having at least two objects with high $P_T > 20 \text{GeV}$ in the detector acceptance $(10^o < \theta < 140^o)$
- Classify into exclusive channels containing from 2 to 5 objects
- Compare with SM predictions
 ⇒ good overall agreement
- Find interesting regions with greatest deviations from SM in kin. distributions $(M_{\rm all}, \Sigma P_T)$
 - \Rightarrow Combine H1 and ZEUS data

Model independent search for New Phenomena

- Identify isolated ($D(\eta\phi) > 1$) particles (objects): e, μ, γ, j, ν
- Select events, having at least two objects with high $P_T > 20 \text{GeV}$ in the detector acceptance $(10^o < \theta < 140^o)$
- Classify into exclusive channels containing from 2 to 5 objects
- Compare with SM predictions
 ⇒ good overall agreement
- Find interesting regions with greatest deviations from SM in kin. distributions $(M_{\rm all}, \Sigma P_T)$
 - \Rightarrow Combine H1 and ZEUS data

HERA as QCD factory

Lots of glue in the proton \Rightarrow long gluon cascade at low x. Perturbative expansion of evolution equations $\sim \sum_{mn} A_{mn} \ln(Q^2)^m \ln(1/x)^n$ hard to calculate explicitly \Rightarrow approximations needed e **DGLAP:** resums $\ln(Q^2)^n$ terms, neglecting $\ln(1/x)^n$ terms Q2 strong k_T ordering in partonic cascade х resums $\ln(1/x)^n$ terms **BFKL:** no k_T ordering in partonic cascade \Rightarrow more hard gluons are radiated far from the hard interaction vertex 000000000000 000000000000 $\mathbf{x}_{0}, \mathbf{k}_{10}^{C}$ angular ordered parton emission \Rightarrow CCFM: reproduces DGLAP at large x and BFKL at $x \to 0$

- How long is partonic cascade at HERA, at small x?
- Do the $\ln(1/x)^n$ terms play a major role in parton dynamics as suggested by BFKL?

 \Rightarrow Look at (multi)jet final states at low x in different configurations

Low $Q^2 : 5 < Q^2 < 100 \, { m GeV^2}$

100 GeV²High $Q^2 : 150 < Q^2 < 15000$ GeV²

Good description by NLO QCD in DGLAP formalizm

Running of α_s in a single experiment

 $lpha_s(M_Z)$ from different measurements

- Remarkable agreement between different datasets and methods
- Precision is limited by theory error \Rightarrow need to include terms beyond NLO

3-jet samples with different topologies

• Large deficit at small x for 2-forward jet topology! There $\mathcal{O}(\alpha_s^3)$ calculation is insufficient \Rightarrow room for non-DGLAP dynamics! Standard Model survived 1 fb⁻¹ of HERA data and is still in a good shape. Next challenge will come from the LHC - stay tuned!

Combining H1 and ZEUS data allowed proton structure to be measured with unprecedental precision

NLO DGLAP is surprisingly successful down to low Q^2 and low x in describing bulk of HERA data. Although some room for parton evolution beyond DGLAP is found at specific phase space corners, there are no unumbiguous evidence for parton saturation at low x yet.

Gained new insights into high energy diffraction: Pomeron under the HERA microscope (large wealth of data)

■ Is this the end of DIS experiments at the colliders? Or what's next?

