

Search for new physics at HERA using combined H1 and ZEUS data

S. Levonian (DESY)

- HERA Collider and Experiments
- Model Independent Search
- Multi-Lepton Topologies
- Events with Isolated Leptons and Missing Transverse Momentum
- Summary

The HERA Collider

• Motivation

▷ HERA data will remain unique for a long time \Rightarrow Fully exploit their potential (1fb⁻¹ \Rightarrow sensitivity to rare processes, $\sigma \leq 0.1$ pb)

• Benefits

- ▷ statistically limited samples: gain in statistical significance (e.g. searches)
- \triangleright large statistics samples: also further improve systematics by cross calibration of the experiments (e.g. F_2 measurement)

• Strategy (for this combination)

- > perform individual analyses optimally using detector capabilities
- > determine common phase space, unify cuts against bgr, binning
- \triangleright combine data (and SM predictions) bin by bin \Rightarrow look for possible deviations
- > measured cross sections are determined as weighted average

- Perform model independent generic search (data vs SM)
- Identify promising topologies
- Make dedicated detailed analysis on those topologies

General search for New Phenomena

- Identify isolated $(D(\eta \phi) > 1)$ particles (objects): e, μ, γ, j, ν
- Select events, having at least two objects with high $P_T > 20 \text{GeV}$ in the detector acceptance $(10^o < \theta < 140^o)$
- Classify into exclusive channels containing from 2 to 5 objects
- Compare with SM predictions
 ⇒ good overall agreement

General search for New Phenomena

- Identify isolated $(D(\eta \phi) > 1)$ particles (objects): e, μ, γ, j, ν
- Select events, having at least two objects with high $P_T > 20 \text{GeV}$ in the detector acceptance $(10^o < \theta < 140^o)$
- Classify into exclusive channels containing from 2 to 5 objects
- Compare with SM predictions
 ⇒ good overall agreement
- Find interesting regions with greatest deviations from SM in kin. distributions $(M_{\rm all}, \Sigma P_T)$

H1 Coll. PL B674 (2009) 257-268

• Clean signature, precise SM prediction (mainly via $\gamma\gamma$ process) - modelled using GRAPE \Rightarrow High sensitivity to new physics

 SM backgrounds: NC-DIS, QED Compton due to misidentification of h, γ as electrons (also small non-ep bgr from cosmics in multi-muon events) • Clean signature, precise SM prediction (mainly via $\gamma\gamma$ process) - modelled using GRAPE \Rightarrow High sensitivity to new physics

- SM backgrounds: NC-DIS, QED Compton (also small non-ep bgr from cosmics in multi-muon events)
- Lepton selection
 - e: E > 10 GeV (in $5^{\circ} < \theta < 175^{\circ}$), E > 5 GeV (in $\theta > 150^{\circ}$)
 - $\mu: P_T > 2 \text{ GeV}$ in the region $20^o < \theta < 160^o$
- Event selection

At least two leptons must be found in the region $20^{o} < \theta < 150^{o}$ and have $P_{T} > 10, 5 \text{ GeV}$

• Events are classified into mutually exclusive samples: $ee, \ eee, \ \mu\mu, \ e\mu, \ e\mu\mu, \ ...$

7 Multi-lepton Topologies and Measurement of $\sigma(\gamma\gamma \rightarrow l^+l^-)$

Multi-Leptons at HERA (0.94 fb^{-1})									
Sample	DataSMPair Production (GRAPE)NC DIS + QI								
ee	873	895 ± 57	724 ± 41	171 ± 28					
$\mu\mu$	298	320 ± 36	320 ± 36	< 0.5					
$e\mu$	173	167 ± 10	152 ± 9	15 ± 3					
eee	116	119 ± 7	117 ± 6	< 4					
$e\mu\mu$	140	147 ± 15	147 ± 15	< 0.5					
$(\gamma\gamma)_e$	284	293 ± 18	289 ± 18	4 ± 1					
$(\gamma\gamma)_{\mu}$	235	247 ± 26	247 ± 26	< 0.5					

Overall good agreement observed with the SM prediction

use $\gamma\gamma$ selections to measure the cross sections in photoproduction regime

7 Multi-lepton Topologies and Measurement of $\sigma(\gamma\gamma \rightarrow l^+l^-)$

Multi-Leptons at HERA (0.94 fb^{-1})									
Sample	Data SM Pair Production (GRAPE) NC DIS +								
ee	873	895 ± 57	724 ± 41	171 ± 28					
$\mu\mu$	298	320 ± 36	320 ± 36	< 0.5					
$e\mu$	173	167 ± 10	152 ± 9	15 ± 3					
eee	116	119 ± 7	117 ± 6	< 4					
$e\mu\mu$	140	147 ± 15	147 ± 15	< 0.5					
$(\gamma\gamma)_e$	284	293 ± 18	289 ± 18	4 ± 1					
$(\gamma\gamma)_{\mu}$	235	247 ± 26	247 ± 26	< 0.5					

Overall good agreement observed with the SM prediction

use $\gamma\gamma$ selections to measure the cross sections in photoproduction regime

Total visible cross section measured 0.66 ± 0.03 (stat.) ± 0.03 (sys.) pb in good agreement with SM prediction 0.69 ± 0.02 pb (from GRAPE MC)

Multi-lepton Events at High Mass and High ΣP_T

Multi-Leptons at HERA (0.94 fb^{-1})					12 events in high mass region found						
0 1	D (C) /	$M_{12} > 100 \text{ GeV}$			nado región loana					
Sample	Data	<u>SM</u>	Pair Production (GRAPE)	NC DIS + QEDC	9 from H1 and	3 from ZEUS					
		<i>e</i> ' <i>p</i>	collisions (0.56 fb ⁻¹)		7						
ee	4	1.68 ± 0.18	0.94 ± 0.11	0.74 ± 0.12							
$\mu\mu$	1	0.32 ± 0.08	0.32 ± 0.08	< 0.01		۸ E					
$e\mu$	1	0.40 ± 0.05	0.39 ± 0.05	< 0.02	eee • H1+ZEUS (0.94 fb ⁻¹)	θ θ μμ • H1+ZEUS (0.94 fb ⁻¹)					
eee	4	0.79 ± 0.09	0.79 ± 0.09	< 0.03	SM Pair Prod						
$e\mu\mu$	2	0.16 ± 0.04	0.16 ± 0.04	< 0.01							
		e^-p	collisions (0.38 fb^{-1})		10	10					
ee	0	1.25 ± 0.13	0.71 ± 0.11	0.54 ± 0.08							
$\mu\mu$	0	0.23 ± 0.10	0.23 ± 0.10	< 0.01							
$e\mu$	0	0.26 ± 0.03	0.25 ± 0.03	< 0.02							
eee	0	0.49 ± 0.07	0.49 ± 0.07	< 0.03	10 ¹	10 ¹					
$e\mu\mu$	0	0.14 ± 0.05	0.14 ± 0.05	< 0.01							
		A	ll data (0.94 fb^{-1})		10 ⁻² 0 20 40 60 80 100 120 140 160 180	10^{-2} 0 20 40 60 80 100 120 140 160 180					
ee	4	2.93 ± 0.28	1.65 ± 0.16	1.28 ± 0.18	M ₁₀ [GeV]	M ₄ , [GeV]					
$\mu\mu$	1	0.55 ± 0.12	0.55 ± 0.12	< 0.01	12	12					
$e\mu$	1	0.65 ± 0.07	0.64 ± 0.06	< 0.02							
eee	4	1.27 ± 0.12	1.27 ± 0.12	< 0.03							
$e\mu\mu$	2	0.31 ± 0.06	0.31 ± 0.06	< 0.01		E 10 ³ E P SM					
					SM Pair Prod.	SM Pair Prod.					
					₽́/////↓						
		N 1.1 T			10						
		Multi-L	eptons at HERA (0.94 fb^{-1})			1					
Data or	ample	Doto SM	$\sum \Gamma_T > 100 \text{ GeV}$	r) NC DIS + OFDC							
e^+n (0.5	6 fb^{-1}	$7 1.94 \pm$	$1.17 1.52 \pm 0.14$	0.42 ± 0.07	10 ⁻¹	101					
e^{-n} (0.3	8fb^{-1}	$1.34 \pm$	1.52 ± 0.14	0.42 ± 0.01 0.29 ± 0.05							
All (0.94	4 fb^{-1}	$7 3.13 \pm$	0.26 2.42 ± 0.21	0.20 ± 0.00 0.71 ± 0.10	10 ⁻² 0 20 40 60 80 100 120 140 160 18	10^{-0} 0 20 40 60 80 100 120 140 160 1					
)			0 ± 0.10	Σ Ρ_τ [GeV]	Σ Ρ_τ [GeV]					

Events at high mass and high ΣP_T are observed by both H1 and ZEUS, but only in e^+p data. There the excess over SM has significance of 2.6 σ

• The main SM process in ep interactions leading to the event topology with high P_T isolated lepton in conjunction with large missing transverse momentum in the final state is single W production:

- W's are predominantly produced in NC reactions, but CC contributes as well at smaller level Even smaller ($\sim 3\%$) contribution to signal topology comes also from $Z^o \rightarrow \nu \bar{\nu}$ production
- Total W production cross section at HERA, as predicted by SM, is ~ 1.3 pb with $\sim 11\%$ of W decaying to each lepton flavour. It is modelled using EPVEC MC with NLO QCD corrections, leading to 15% uncertainty
- Main SM backgrounds are NC-DIS, CC-DIS and lepton pair production processes

- Common H1+ZEUS analysis phase space is defined as events with isolated e or μ satisfying $P_T > 10$ GeV, in the range $15^o < \theta < 120^o$ and $P_T^{\text{miss}} > 12$ GeV
- Electron and muon channels are exclusive, and are combined in the measurement and in the *W* production cross section determination
- Set of cuts applied to further reduce SM background, rejecting e.g. back-to-back topologies in NC and lepton pair production processes
- The overall H1(ZEUS) efficiency to select SM $W \rightarrow e\nu$ events is 30%(31%) and to select $W \rightarrow \mu\nu$ events is 11%(9%), as calculated using EPVEC

 $\mu + P_T^{Miss}$ event in ZEUS

	H1+ZEUS 1994–2007 e^+p 0.59 fb ⁻¹ Electron Total		Data	SM		S	Other SM			
				Expec	ctation	Sig	Processes			
			37	38.6 =	± 4.7	28.9	± 4.4	9.7	±	1.4
	-	$P_T^X > 25~{\rm GeV}$	12	7.4 =	± 1.0	6.0	± 0.9	1.5	±	0.3
	Muon	Total	16	11.2 =	± 1.6	9.9	\pm 1.6	1.3	±	0.3
		$P_T^X > 25~{\rm GeV}$	11	6.6 =	± 1.0	5.9	± 0.9	0.8	\pm	0.2
17 H1 + 6 ZEUS	Combined	Total	53	49.8 =	£ 6.2	38.8	± 5.9	11.1	\pm	1.5
events at high P_T^X		$P_T^X > 25 \text{ GeV}$	23	14.0 =	E 1.9	11.8	\pm 1.9	2.2	\pm	0.4

- 2.4 σ excess in the data event yield at large P_T^X seen in H1 analysis is not confirmed in the ZEUS analysis
- Only about 1.9σ excess remains in the common phase space of the combined H1+ZEUS analysis

H1+ZEUS Isolated Leptons: $e^{\pm}p$ Data

H1+ZEUS		Data	SM			SM			Other SM		
1994–2007		Expectation			Signal			Processes			
Electron Total		61	69.2	±	8.2	48.3	±	7.4	20.9	±	3.2
$P_T^X > 25 \mathrm{GeV}$		16	13.0	\pm	1.7	10.0	\pm	1.6	3.1	\pm	0.7
Muon	Total	20	18.6	\pm	2.7	16.4	\pm	2.6	2.2	\pm	0.5
	$P_T^X > 25 \mathrm{GeV}$	13	11.0	±	1.6	9.8	\pm	1.6	1.2	±	0.3
Combined	Total	81	87.8	\pm	11.0	64.7	\pm	9.9	23.1	\pm	3.3
	$P_T^X > 25 \mathrm{GeV}$	29	24.0	±	3.2	19.7	±	3.1	4.3	±	0.8

Overall good agreement is observed with the SM expectation

Extract σ_W

- Determination of the Single *W* cross section is performed in the common analysis phase space, then extrapolated to the full phase space using EPVEC
- Branching ratio of W decays to leptons used to calculate the full W production cross section
- As there is no measurement in the $P_T^X < 12$ GeV bin in the muon channel, the electron channel is used under the assumtion of lepton universality:

 $\sigma_l^{all P_T^X} = \sigma_e^{P_T^X > 12} + \sigma_\mu^{P_T^X > 12} + 2\sigma_e^{P_T^X < 12}$

• The total single W cross section (at $\sqrt{s} = 317 \text{ GeV}$) = 1.06 ± 0.16(stat.) ± 0.07(sys.) pb in good agreement with SM prediction 1.26 ± 0.19 pb (from EPVEC at NLO) Combined H1 + ZEUS analyses have been performed to take advantage of full HERA statistics. 'The final word from HERA' is published on

- Multi-leptons: JHEP 0910:013 (2009)
- Isolated Leptons + P_T^{miss} : (JHEP 2/2010), arXiv:0911.0858 [hep-ex]

Cross sections of rare processes measured with greater precision as compared to individual publications. A good agreement with the Standard Model is observed

Although interesting events are observed at high P_T and high mass in e⁺p data, both in H1 and ZEUS, no evidence for new physics above 3σ is found

Standard Model survived full HERA dataset and is still in a good shape. Perhaps next challenge will come from the LHC ...