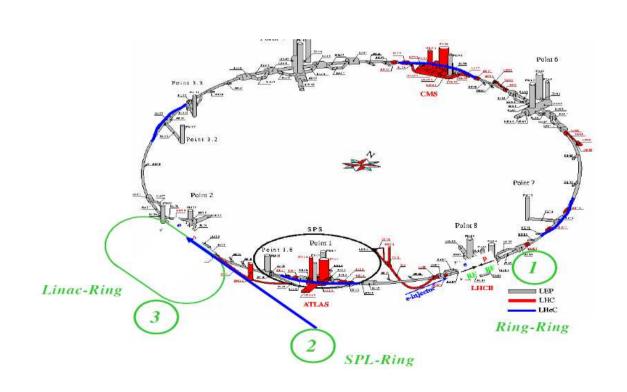


3rd CERN-ECFA-NuPECC Workshop on the LHeC


LHeO

12-13 November 2010 Chavannes-de-Bogis, Switzerland

Luminosity Measurement and e-tagging at the LHeC

S. Levonian, DESY

- Brief preview
- Mission
- Challenges
- Possible options
- Conclusions

This presentation is based upon my report on DIS-2010 with few updates:

- \triangleright some changes in optics at IP (crossing angle, etc.); $E_e: 70 \Rightarrow 60 \text{ GeV}$
- \triangleright additional option of VLQ/BPC at z=6m is considered ("QEDC tagger")

Active SR absorber at 22m

- □ good geometrical acceptance, up to 90% (for latest RR optics update)
- \triangleright increased dipole field at IP \Rightarrow bigger $E_{critical} \Rightarrow$ bgr from SR tail to B-H photons?

Electron tagger(s)

- > detector's dipole field so far ignored; this will change acceptance somewhat (not critical)
- > ET at 62m looks most promising
- \triangleright application for γp physics: triggering might be an issue (good γ_{BH} veto efficiency required)

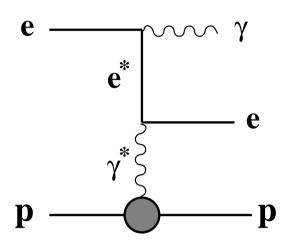
Realistic precision estimate:

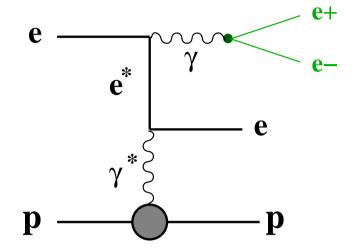
- ho fast monitoring: $\delta \mathcal{L} \simeq 3-5\%$ seems to be within reach
- \triangleright absolute lumi for physics: $\delta \mathcal{L} \simeq 2\%$, could be achieved by utilizing QEDC
- hinspace > no proven solution for $\delta \mathcal{L} = 1\%$ so far

3 Mission

- ullet optimization and tuning of ep-collisions $dL_{stat}=1\%/sec$, overall scale $\sim 5\%$ is Ok $\;\Rightarrow\; 20$ kHz
- ullet mid-term variations of instantaneous L $dL_{stat}=1\%$ per run (10 min few hours) \Rightarrow 20 Hz
- absolute integrated $\mathcal L$ for physics normalization $dL_{tot}=1-2\%$ per sample (week-month) $\Rightarrow 0.02$ Hz

Mission

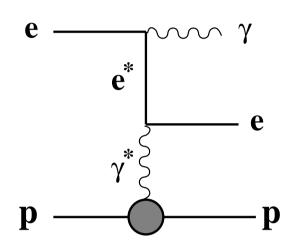

$$L_{
m LHeC}(ep) = 10^{31} - 10^{33}~{
m cm}^{-2}{
m s}^{-1}$$

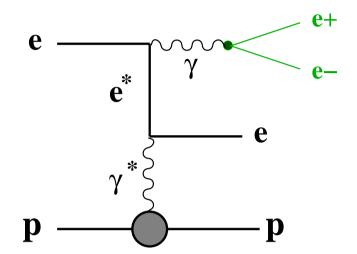


- ullet optimization and tuning of ep-collisions $dL_{stat}=1\%/sec$, overall scale $\sim 5\%$ is Ok $\ \Rightarrow\ 20$ kHz >(0.02-2) mb
- ullet mid-term variations of instantaneous L $dL_{stat}=1\%$ per run (10 min few hours) ullet 20 Hz $>(0.02-2)~\mu$ b
- ullet absolute integrated $oldsymbol{\mathcal{L}}$ for physics normalization > (0.02-2) nb $dL_{tot}=1-2\%$ per sample (week-month) $\Rightarrow 0.02$ Hz

All cross sections in this talk are estimated for the case $60 \times 7000~\text{GeV}$

5 Processes


B-H process: $\sigma(E>8)=102 \mathrm{mb}$ (poles in both e^* and γ^* propagators)


B-H with "internal conversion" $\sigma \simeq 1/200 \sigma_{BH}$

QED Compton: $\sigma_{
m el}(heta < 179^o) = 5{
m nb}$ (poles in γ^* propagator, but large e^* mass)

F2 (NC DIS): $egin{array}{ll} \sigma(Q^2>10)=300 {
m nb} \ & \ \sigma(Q^2>100)=25 {
m nb} \end{array}$

Processes 6

Dedicated (tunnel) detectors ($heta_{\gamma,e} < 0.5$ mrad)

B-H process: $\sigma(E>8)=102$ mb

B-H with "internal conversion"

(poles in both e^* and γ^* propagators)

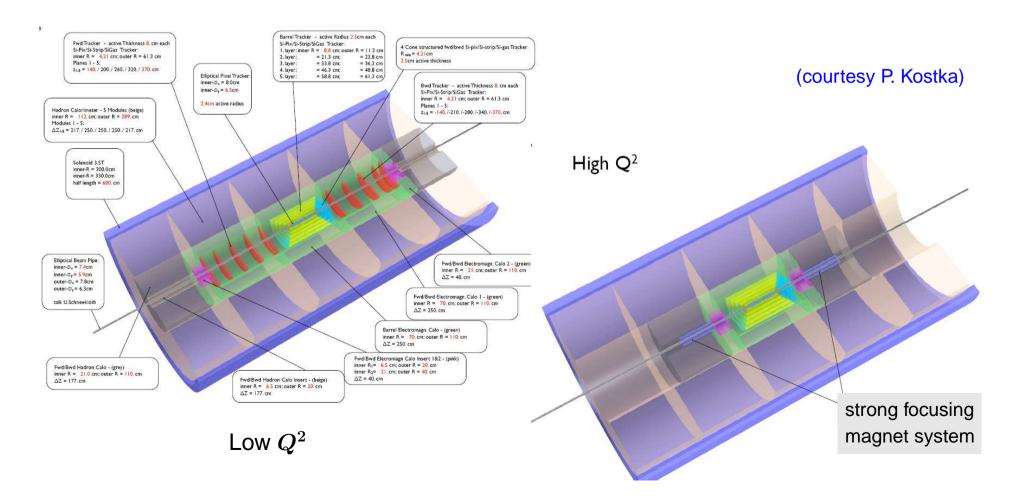
 $\sigma \simeq 1/200\sigma_{BH}$

Main detector

QED Compton: $\sigma_{
m el}(heta < 179^o) = 5{
m nb}$

(poles in γ^* propagator, but large e^* mass)

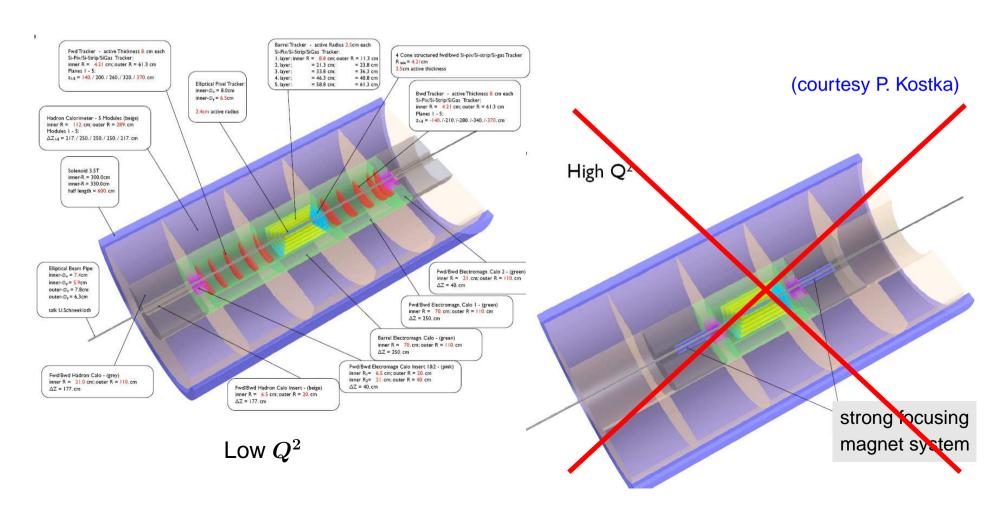
F2 (NC DIS): $egin{array}{ll} \sigma(Q^2>10)=300 ext{nb} \ \sigma(Q^2>100)=25 ext{nb} \end{array}$

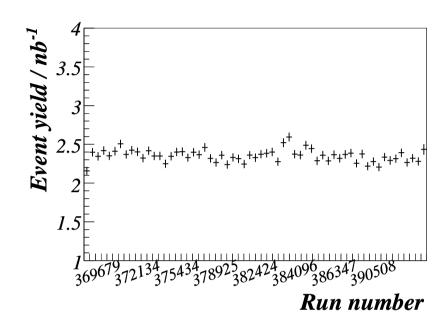

Detector options

Two setups for Main Detector (low Q^2 vs high Q^2)

 $1^o - 179^o$ acceptance (9 units in η)

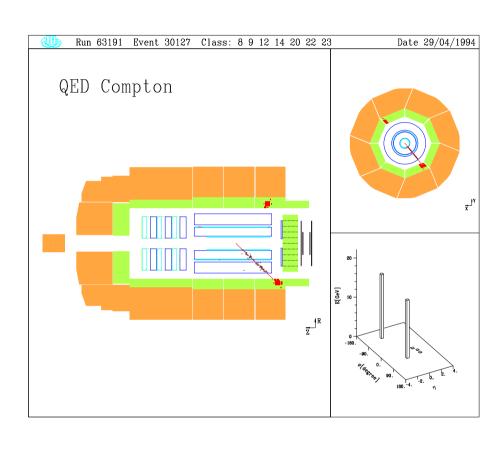
at
$$L = 10^{31} \text{cm}^{-2} \text{s}^{-1}$$


 $10^{o} - 170^{o}$ acceptance (5 units in η) at $L = 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$



Detector options

Two setups for Main Detector (low Q^2 vs high Q^2)


 $1^o - 179^o$ acceptance (9 units in η) at $L = 10^{31} \mathrm{cm}^{-2} \mathrm{s}^{-1}$ $10^{o} - 170^{o}$ acceptance (5 units in η) at $L = 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$

 $\mathsf{High}\ Q^2\ \mathsf{NC}\ \mathsf{DIS}$

Precision: 1-2% (F_2), 2% (QEDC)

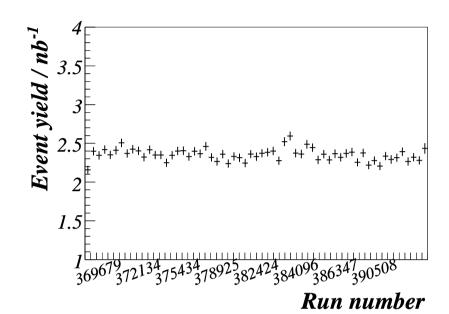
LHeC MC study: (using H1 analysis strategy)

Generator: DJANGOH (0.05 < y < 0.6)

high Q^2 setup: $\sigma_{vis} \simeq ~10~ ext{nb}$

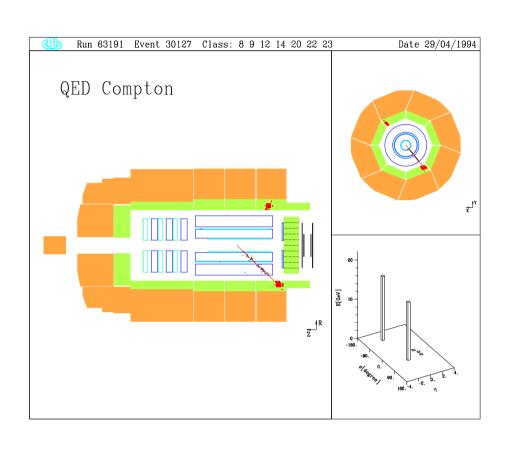
low Q^2 setup: $\sigma_{vis} \simeq 150 \; ext{nb}$

Rate (stat.err): $1.5-10 \text{ Hz} (\delta \mathcal{L} \simeq 1\%/\text{hour})$


COMPTON MC (elastic part)

 $\sigma_{vis} \simeq 0.025 \; ext{nb}$

 $\sigma_{vis} \simeq 3 \; {\sf nb}$


0.025-0.03 Hz ($\delta\mathcal{L}\simeq0.5\%$ /month)

Examples from HERA

 $\mathsf{High}\ Q^2\ \mathsf{NC}\ \mathsf{DIS}$

Precision: 1-2% (F_2), 2% (QEDC)

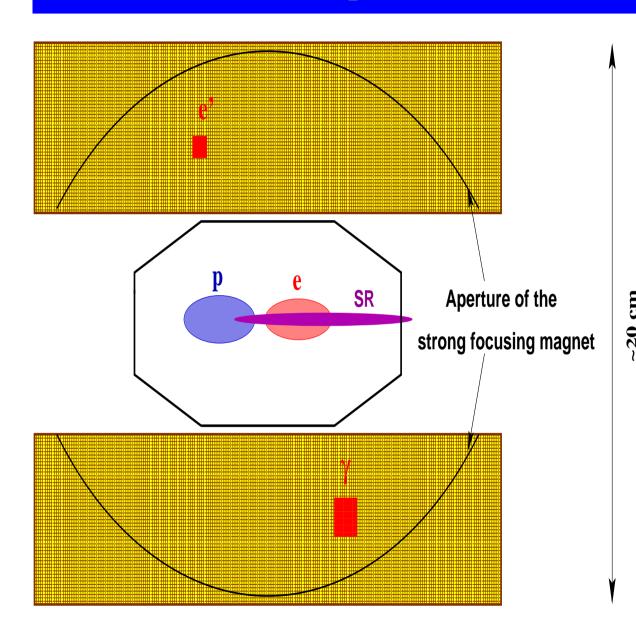
LHeC MC study: (using H1 analysis strategy)

Generator: DJANGOH (0.05 < y < 0.6)

high Q^2 setup: $\sigma_{vis} \simeq ~10~ ext{nb}$

low Q^2 setup: $\sigma_{vis} \simeq 150 \; ext{nb}$

Rate (stat.err): $1.5-10 \text{ Hz} (\delta \mathcal{L} \simeq 1\%/\text{hour})$

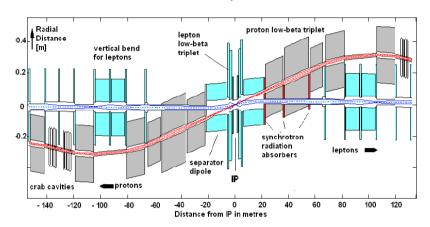

COMPTON MC (elastic part)

 $\sigma_{vis} \simeq 0.025 \; \mathsf{nb}$

 $\sigma_{vis} \simeq 3 \; {\sf nb}$

+ VLQ (6m)?

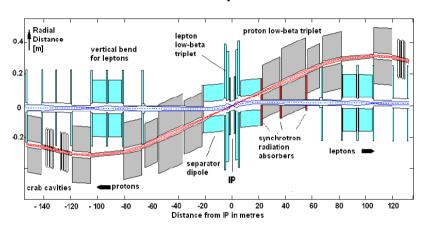
0.025-0.03 Hz ($\delta\mathcal{L}\simeq0.5\%$ /month)



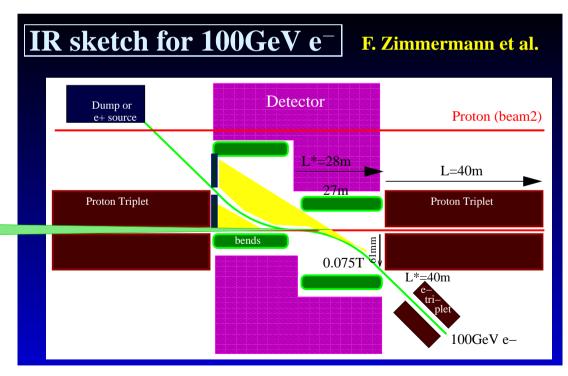
 $ullet \sigma_{
m vis}^{QEDC} = 4.3 \pm 0.2 \
m nb$ $\Rightarrow 4 \
m Hz \ @10^{33}
m cm^{-2}
m s^{-1}$

ullet Elastic QEDC: no vertex $(heta'=0.5^o-1^o)$ precision of $heta \Rightarrow \delta \sigma_{
m vis}$?

• Inelastic events: precise vertex from HFS \Rightarrow extended capability for low $Q^2/\gamma p$ physics

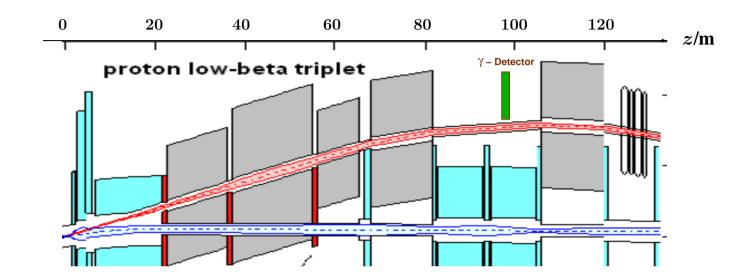

IR Layout

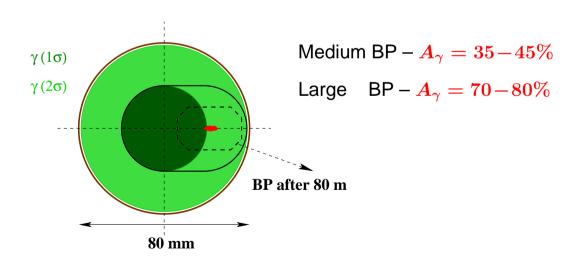
- crossing angle at IP
- large SR flux
- \Rightarrow Challenge: difficult to catch zero-angle γ' s


Challenges in Linac-Ring and Ring-Ring options

IR Layout

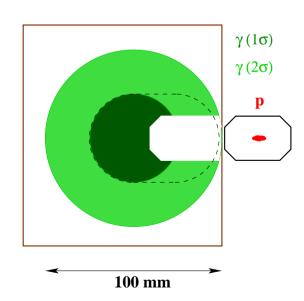
- crossing angle at IP
- large SR flux
- \Rightarrow Challenge: difficult to catch zero-angle γ' s


- Head-on collisions. Similar to HERA, γ' s travel along the p-beam
- ullet Lumi monitor located after proton dipole at $z=100{
 m m}$
 - \Rightarrow Challenge: large aperture required for proton magnets at z=60-80m

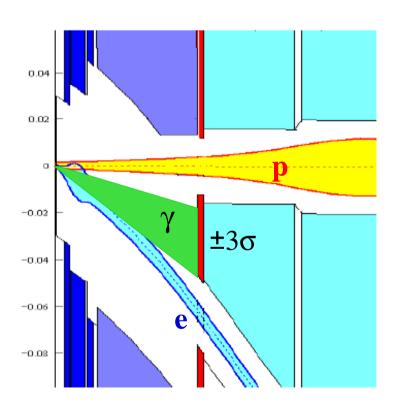


RR scheme

LR scheme

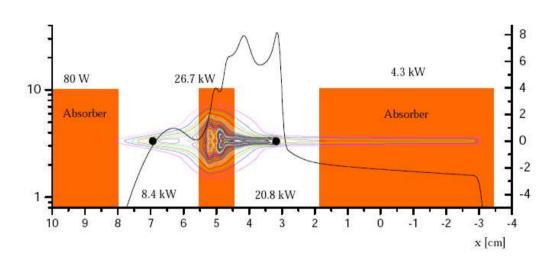

LR option

$$\delta L = 2.5 - 6.0\%$$


Photon Detector at z=100m

IP optics for RR option?

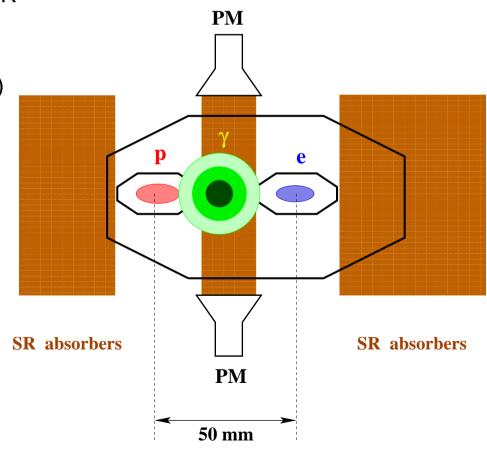
Crossing angle = 2 mr


A Magnetic separation = 2 mr \Rightarrow 60 mm beam separation at 22m Crossing angle = 1.5 mr

B Magnetic separation = 0.75 mr $\Rightarrow 40 \text{ mm beam separation at } 22 \text{m}$

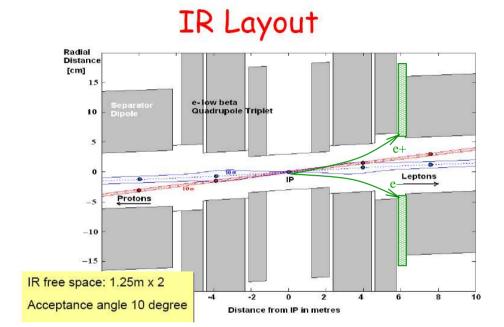
F. Willeke, May 2008

SR power profile at 22m

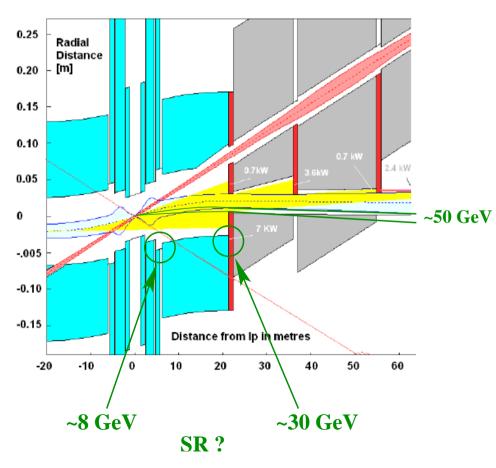

B. Holzer / B. Nagorny, Sept 2008

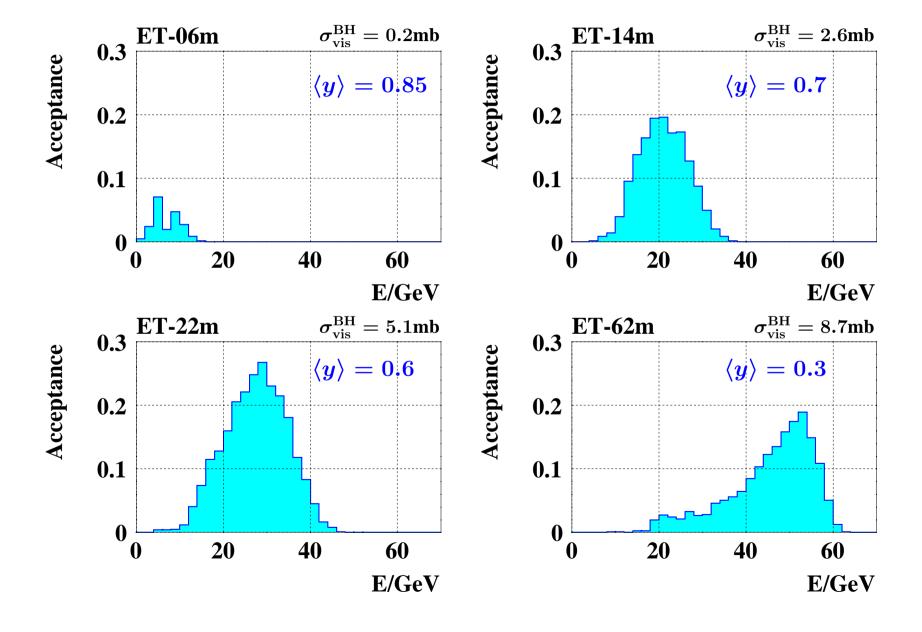
BH spot at the hottest place!

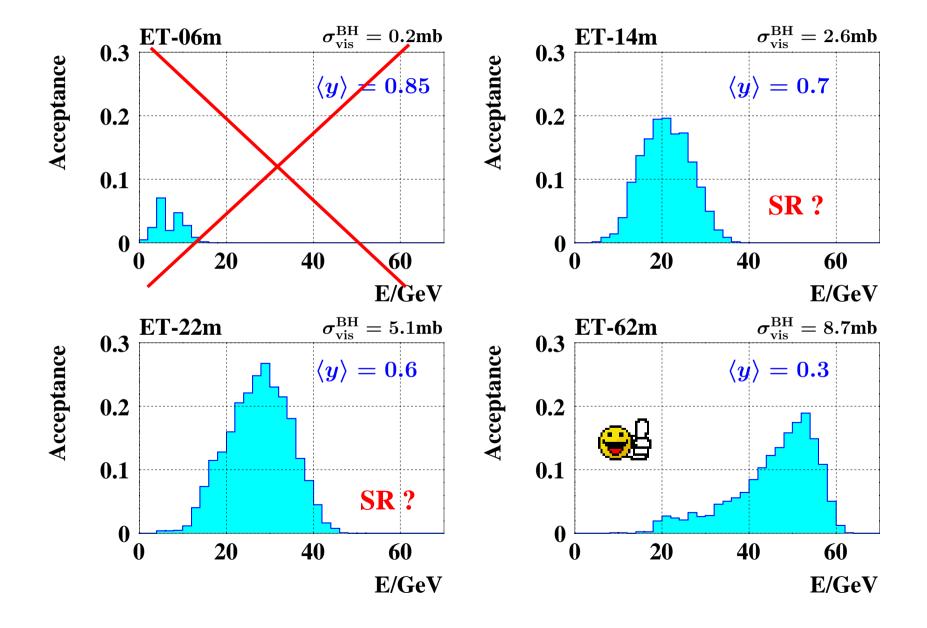
BH-photon detector integrated into SR absorber


- ullet Cooling system with 10-20 cm long water bath acting as Čerenkov radiator for BH γ' s
- Radiation hard, (almost) insensitive to SR (but: high $E_{crit} \Rightarrow$ effect of the tail?)
- For latest optics (1 mrad crossing angle)
 acceptance is up to 90%
- Exact BH counter design and R/O still to be worked out
- Accurate acceptance control requires precise beam tilt monitoring (10-15% of the x-angle)

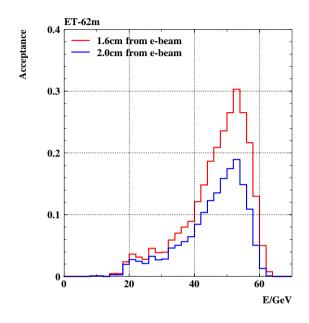
 $\delta L=3\%$ within reach

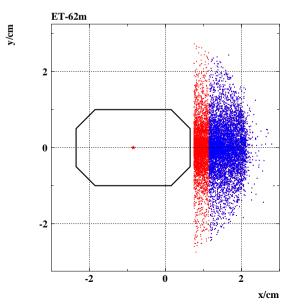

17

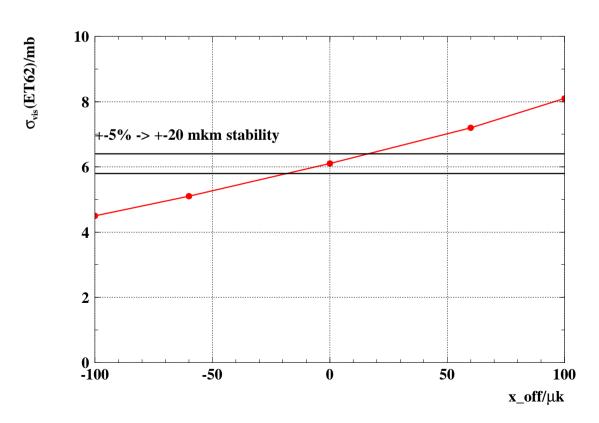

Options for Electron Taggers



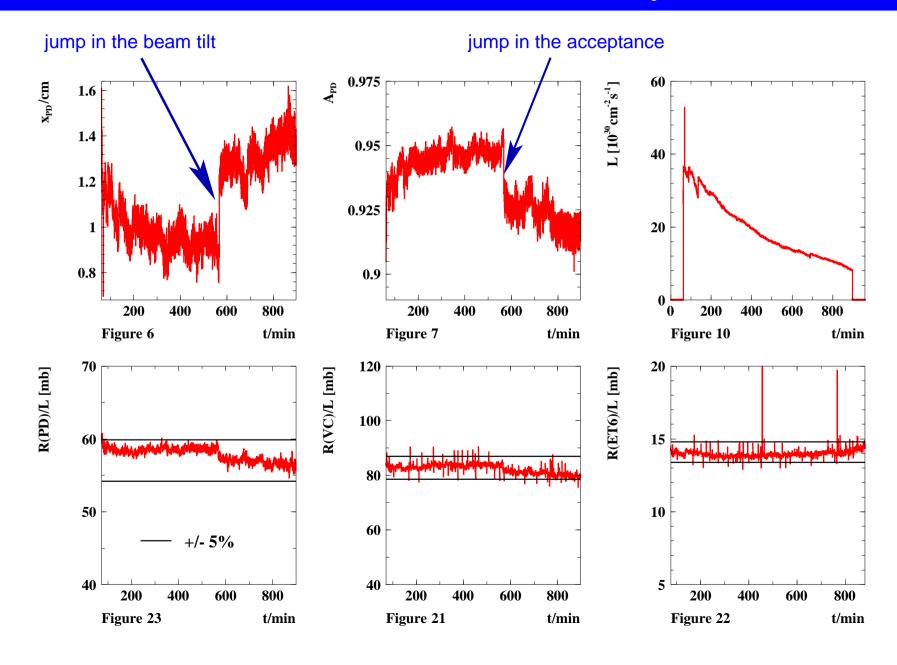
- ET-6m requires some dipole field ⇒ not possible for low luminosity setup
- This place perhaps better siuted for vertical VLQ stations ("QEDC tagger")


ullet An option: split separator dipole and position ET at $z=13-14 \mathrm{m}$?




ET-62m Acceptance variations

Acceptance control requirements


- ET position wrt e-beam: $<\pm 0.5$ mm
- $-\,e$ -orbit offset at IP $<\pm20~\mu$ k

- e-taggers are also useful to enhance physics programme (tagged γp). Note however, that triggering might be problematic due to inefficient γ -veto
- ullet Can be used to control γp background in DIS samples
- ET-62m is most promising (good acceptance, no/small SR, available space)
- Energy calibration might be a problem (leakage, abs.scale)
- Reliable geometrical acceptance determination (to 3-5% precision) requires good knowledge/control of beam optics at IP (tilt, offset of e-trajectory)

Can one rely on Water Counter and e-taggers for online lumi measurement? \Rightarrow Look at HERA experience

Rates at HERA (H1 Lumi system)

Dominant systematics

Method	Stat. error	Syst.error	Systematic error components			Application
$\overline{BH\left(\gamma ight)}$	0.1%/sec	3 - 6%	x-section	=	0.5%	Monitoring, tuning,
			acceptance, A	=	$10\%(1\!-\!A)$	Absolute L (?),
			$oldsymbol{E}$ -scale, pileup	=	1-4%	short term variations
$BH\left(e ight)$	1-3%/sec	5-6%	x-section	=	0.5%	Monitoring, tuning,
()			acceptance, A	=		Relative L
			background	=	1%	
			E-scale	=	1%	
QEDC	1-2%/week	1.5 - 2%	x-section (el/inel)	=	1%	Absolute \mathcal{L} ,
			acceptance	=	1%	Global normalization
			event vertex eff.	=	1%	
			$oldsymbol{E}$ -scale	=	0.3%	
F2	0.5-1.5%/h	2.5%	x-section ($y < 0.6$)	=	2%	Relative \mathcal{L} ,
			acceptance	=	1%	mid. term variations
			event vertex eff.	=	1%	
			$oldsymbol{E}$ -scale	=	0.3 %	

- Luminosity measurement at the LHeC is a non-trivial task.
 HERA experience: surprises are possible ⇒ prepare several scenarios
- Precise integrated \mathcal{L} for physics is possible with main Detector (QEDC, F2) $\delta \mathcal{L} = 2\%$ is within reach
- ullet Fast instantaneous L monitoring is challenging, but few options do exist
 - \triangleright Photon Detector for LR option requires large p-beampipe at $z=80 \mathrm{m}$
 - ▷ In case of RR option B-H photons can be detected using water Čerenkov counter integrated with SR absorber at 22m
 - ▷ Electron tagger at 62 m is very promising for both LR and RR schemes
- ullet Good control of the e-beam optics at the IP is essential to monitor acceptances of the tunnel detectors at 3-5% level

- Update ET-62m acceptance with full and final IP optics
- Clarify p-beamline aperture for head-on LR option
- ullet Study the effect of high $m{E}$ tail of SR on B-H photon detection: fraction of SR flux above Čerenkov threshold?
- Detailed design of active SR absorber: shape, water flow/supply, light collection, readout
- Triggering for γp physics: γ veto efficiency for the condition e(ET) && ! $\gamma(PD/ASRF)$
- ullet Continue to look for bright ideas capable of $\delta {\cal L} \le 1\%$