

Two approaches to Strong Interactions

2. Quark-Parton Model \Rightarrow QCD

 $egin{aligned} A(s,t) &= & m{\sigma}_{ab} = \ g_1(m_1,M_1,t)g_2(m_2,M_2,t)rac{s^{lpha(t)}\pm(-s)^{lpha(t)}}{\sin(\pilpha(t))} & \int f_{i/a}(x_i,\mu^2)\cdot f_{j/b}(x_j,\mu^2)\cdot \hat{\sigma}_{ij}(x_i,x_j,\mu^2) \end{aligned}$

hadronic language

sub-hadronic language

Ultimate goal: derive (1) from (2)

- Hadronic degrees of freedom
- Validity: large $s \gg t$
- \mathbb{I} dominates: $\alpha_{\mathbb{I}}(0) > \alpha_{\mathbb{I}}(0)$ $ightarrow \sigma_{
 m tot} \propto s^{lpha_{I\!\!P}(0)-1}$
- Unitarity corrections unavoidable $(\sigma_{\text{tot}} \leq \ln^2(s/s_0) \text{ at } s \to \infty)$
- When? $s_{sat} = ?$

- Partonic degrees of freedom
- Low x: $W^2 \gg Q^2$, $t (Q^2/W^2 \simeq x \ll 1)$
- gluons dominate: $xq(x) \gg xq_{val}(x)$ $F_2(x,Q^2) \propto xq(x) \sim x^{-\lambda}$
- Saturation of the xq(x)(non-linear effects, shadowing, ...)

• $x_{sat}(Q_{sat}) = ?$

- First to be seen in diffraction: $\sigma_D \propto s^{2(\alpha-1)}$ First to be seen in diffraction: $\sigma_D \propto |xg(x)|^2$
- \Rightarrow Diffraction \equiv Physics of the Pomeron, \Rightarrow Diffraction \equiv Gluodynamics, the essence of strong interactions the essence of QCD (in high energy limit)

Diffraction at HERA

- Fundamental aim: understand high energy limit of QCD (gluodynamics; CGC ?)
- Novelty: for the first time probe partonic structure of diffractive exchange
- Practical motivations: study factorisation properties of diffraction; try to transport to hh scattering (e.g. predict diffractive Higgs production at LHC)

$$x_{I\!\!P} = \xi = rac{Q^2 + M_X^2}{Q^2 + W^2}$$

(momentum fraction of colour singlet exchange)

$$eta = rac{Q^2}{Q^2 + M_X^2} = x_{q/I\!\!P} = rac{x}{x_{I\!\!P}}$$

(fraction of exchange momentum, coupling to γ^*)

$$t=(p-p^{'})^{2}$$

(4-momentum transfer squared)

$$egin{aligned} &rac{d^4\sigma}{dx_{I\!\!P} \;dt\;deta\;dQ^2} = rac{4\pilpha^2}{eta Q^4} \left(1-y+rac{y^2}{2}
ight)\sigma_r^{D(4)}(x_{I\!\!P},t,eta,Q^2) \ &\sigma_r^{D(4)} = F_2^{D(4)} - rac{y^2}{2(1-y+y^2/2)}F_L^{D(4)} & \Rightarrow & F_2^{D(3)} = \int dt F_2^{D(4)} \end{array}$$

Factorisation properties in diffraction

QCD factorisation

(rigorously proven for DDIS by Collins et al.):

Regge factorisation

(conjecture, e.g. RPM by Ingelman, Schlein):

$$\sigma_r^{D(4)} \propto \sum_i \hat{\sigma}^{\gamma^*i}(x,Q^2) \otimes f_i^D(x,Q^2;x_{I\!\!P},t)$$

- $\hat{\sigma}^{\gamma^* i}$ hard scattering part, same as in inclusive DIS
- f_i^D diffractive PDF's, valid at fixed $x_{I\!\!P}, t$ which obey (NLO) DGLAP

$$F_2^{D(4)}(x_{I\!\!P},t,eta,Q^2)=\Phi(x_{I\!\!P},t)\cdot F_2^{I\!\!P}(eta,Q^2)$$

• In this case shape of diffractive PDF's is independent of $x_{I\!\!P}, t$ while normalization is controlled by Regge flux $\Phi(x_{I\!\!P}, t)$

Selecting Diffractive Events at HERA

- provides *t* measurement
- limited statistics (beam cond., x_{IP}, t acceptance)
- integrate over $t > -1 \text{ GeV}^2$
- some dissociative admixture remains in sample: $M_Y < 1.6 \text{ GeV}$ $M_Y < 2.3 \text{ GeV}$

Strategy

Data Samples

 obtain NLO DPDFs from inclusive DDIS 	PDFs from Sample Q^2		Q^2 rar	range	
(and test Regge factorisation)	LPS (ZEUS)	0.03 2	$< Q^2 < \ < Q^2 < \ < Q^2 <$	0.6 GeV ² 100 GeV ²	3.6 pb ⁻¹ 12.8 pb ⁻¹
 predict final states to NLO, or model them using MC technique (charm, jets) 	FPS (H1)	2	$< Q^2 <$	$50~{ m GeV^2}$	28.8 pb ⁻¹
	M_X	2.2	$< Q^2 <$	$80~{ m GeV^2}$	4.2 pb^{-1}
 confront to the data (test QCD factorisation) 	LRG	1.5 6.5 200	$< Q^2 < < < Q^2 < < Q^2 < < < Q^2 <$	12 GeV ² 120 GeV ² 1600 GeV ²	3.4 pb ⁻¹ 10.6 pb ⁻¹ 63 pb ⁻¹

NLO QCD: DIS: HQVDIS, DDISENT γp : Frixione, KK

All data analysed so far are from HERA-1 run

Inclusive diffraction: H1 vs ZEUS

- ullet All data are scaled to $M_Y < 1.6~{
 m GeV}$
- All data are transported to H1 LRG bin centers

- Reasonable agreement between data sets
- Differences: (a) at low M_X , (b) Q^2 dependence

Related via Optical theorem: $\sigma^{tot} \sim W^{2(\alpha_{I\!\!P}(0)-1)} \sigma^{el/diff} \sim W^{4(\alpha_{I\!\!P}(0)-1)}$

 $\Rightarrow \text{ in DIS region } \alpha_{I\!\!P}(0) \text{ is incompartible with soft } I\!\!P$ $\Rightarrow \text{ indication for Regge factorisation breaking}$ $\Rightarrow \alpha_{I\!\!P}^{diff}(0) - 1 \simeq \frac{1}{2}(\alpha_{I\!\!P}^{tot}(0) - 1) \rightarrow \text{UC } ??$

Pomeron intercept in inclusive, elastic and diffractive DIS

Understanding of colour singlet exchange remains a major challenge in QCD: It is a complicated interplay between soft and hard phenomena

H1 $F_2^D(eta,Q^2)$

- Regge factorisation approx. holds for $x_{I\!\!P} < 0.01 \rightarrow \text{simplifies QCD}$ fit
- positive scaling violation except largest $\beta \rightarrow$ gluon dominance

NLO DGLAP QCD fit and Diffractive PDF's

QCD fit technique

- Regge factorisation with **I**P, **I**R terms (pion PDF (Owens) are used for **I**R)
- Singlet Σ and gluon g in $I\!\!P$ parametrized at $Q_0^2 = 3 \text{ GeV}^2$
- NLO DGLAP evolution for $Q > Q_0$
- Fit 313 data points for $Q^2 > 6.5 \text{ GeV}^2$ and $M_X > 2 \text{ GeV}$ (7 free par.)
- Propagate exp. and theor. uncertainties to obtain <u>PDF's with error band</u>

Resulting diffractive PDF's

- Gluon dominated
- Singlet part is well constrained
- Substantial (theor.) uncertainty for gluon at highest fractional momenta z

NLO QCD fit to ZEUS M_X data

 Q^2 [GeV²] $\Sigma(z,Q^2)$ z g(z,Q²) Similar fit as for H1. Differences: Singlet Gluon 2 • Only **IP** term, no meson component 0.2 6.5 (including one does not improve the fit) ► 0 • Fit 138 data points for $Q^2 > 4 \text{ GeV}^2$ 0.2 15 Common Pomeron intercept fitted 0.2 90 $\alpha_{I\!\!P}(0) = 1.132 \pm 0.006$ (exp.) 0 10⁻² 10⁻² 10 ⁻¹ 10 ⁻¹ Ζ Ζ NLO fit to ZEUS Mx (exp. error) H1 2002 NLO fit (prel.) • Gluon: factor of ~ 2 smaller than H1 gluon (exp. error) (exp.+theor. error)

NLO QCD fits to H1 and ZEUS data

 \Rightarrow Need more direct access to diffractive gluons

together with pdf's

 $\chi^2/ndf = 90/131$

Resulting diffractive PDF's

• Singlet: similar at low Q^2

Diffractive D^* in **DIS** regime

Diffractive dijets in DIS regime

H1: Consistent picture of diffractive DIS to NLO QCD!

Diffractive dijets in DIS: sensitivity to DPDFs

New ZEUS NLO analysis using different DPDF sets:

GLP: fit to ZEUS M_X data ZEUS-LPS: fit to LPS data and charm fraction in $F_2^{D(3)}$

 \Rightarrow low GLP prediction due to small gluon at large z

ZEUS: "Better understanding of DPDFs and their uncertainties is required before a firm statement about validity of QCD factorisation can be made"

More factorisation tests: from DIS via γp to Tevatron

 $Q^2 pprox 0$: can secondary interactions fi ll the gap? e e'

Factorisation breakdown by factor of ~ 7

(Gap survival probability; soft physics, hence hard to calculate precisely) $\mathbf{x}_{\gamma} = 1 - \text{direct photon coupling,}$ DIS-like

 $\mathbf{x}_{\gamma} < 1 -$ "resolved" photon, hadron-like

Compare γp with DIS via the ratio data/NLO using the same DPDFs:

 γp suppressed by factor ~ 2 wrt DIS \Rightarrow look in more detail...

Suppression of H1 γp dijets

Data:

 k_T jets with $E_{T1} > 5, \; E_{T2} > 4 \; {
m GeV}$ $Q^2 < 0.01 \; {
m GeV^2}, \;\; 0.3 < y < 0.65$ $x_{I\!\!P} < 0.03$

$$x_{\gamma} = rac{\sum_{jets}(E-p_z)}{2yE_e}$$

Results:

- "direct" unsuppressed does not describe x_γ shape
- global suppression describes data within uncertainties

Suppression of ZEUS γp dijets

Data:

 k_T jets with $E_{T1} > 7.5, \; E_{T2} > 6.5 \; {
m GeV}$ $Q^2 < 1 \; {
m GeV^2}, \;\; 0.2 < y < 0.85$ $x_{I\!P} < 0.025$

Results:

- data/NLO is flat in x_{γ}
- global suppression by ~ 0.6 is clearly preferred over "resolved"-only suppression

Summary

Inclusive diffraction

- $> Q^2$ dependence of $\alpha_{I\!\!P}(0)$ suggests Regge factorisation breaking in DIS regime
- \triangleright Energy dependence: $\alpha_{I\!P}^{diff}(0) 1 \simeq 0.5 \cdot (\alpha_{I\!P}^{tot}(0) 1)$ implies either severe failure of Regge picture in $\gamma^* p$, or unitarity corrections at work
- ightarrow H1 vs ZEUS: despite measured F_2^D are in fair agreement remaining differences lead to approximately 2 times different gluon in diffractive PDFs \Rightarrow to be clarified with new data

Diffractive final states

- NLO predictions strongly depend upon specific choice of DPDFs
- When using H1 DPDFs both diffractive charm and dijets in DIS regime support QCD factorisation
- \triangleright In diffractive photoproduction QCD factorisation is broken, showing at the moment global x_{γ} independent suppression factor of ~ 2 , contrary to (naive) theoretical expectation

Although an important progress is made recently, understanding of colour singlet exchange remains a major challenge in QCD