

Moscow, Russia, July 26 - August 2, 2006

- Hadronic final states in NC DIS
- Azimuthal asymmetries and subjet distributions
- Event shape analysis
- Summary

The hadronic final state in NC DIS

Asimuthal asymmetry in NC DIS

★ The NLO is closer to the data as compared to LO Monte Carlo programs

Subjet distributions

Aim: study QCD parton radiation and transition from partons to jets of hadrons

 \star NLO (DISENT) predictions describe all features of the data within $\pm 10\%$

Event shape variables

- Inclusive jets in the Breit frame are $\mathcal{O}(\alpha \alpha_s)$ at lowest order (current quark has no E_T)
- Provides clearest separation between particles from hard scattering and p-remnant. Allows for easy comparison with e^+e^- data
 - In this analysis sums extend over all particles in current hemisphere of the Breit frame (for K_{out} the region extended to $\eta < 3$)

Event shape variables, F

$$au=1\!-\!T_\gamma$$
 with $T_\gamma=rac{\sum_h |ec{p}_{z,h}|}{\sum_h |ec{p}_h|}$

 $au_C = 1 - T_C$ - thrust along the axis maximising T (like in e^+e^-)

$$B = \frac{\sum_{h} |\vec{p}_{t,h}|}{2\sum_{h} |\vec{p}_{h}|} - \text{Jet Broadening}$$

$$\rho = \frac{(\sum_{h} E_{h})^{2} - (\sum_{h} \vec{p}_{h})^{2}}{(2\sum_{h} |\vec{p}_{h}|)^{2}} - \text{Jet inv. mass}$$

$$C = \frac{3}{2} \frac{\sum_{h,h'} |\vec{p}_{h}| |\vec{p}_{h'}| \sin^{2} \theta_{h,h'}}{(\sum_{h} |\vec{p}_{h}|)^{2}}$$

- $egin{aligned} K_{out} &= \sum_h |p_h^{ ext{out}}| & (2+1) ext{ jet is} \ && ext{minimal nontrivial} \ && \chi &= \sum_{h,i} (\pi \cdot |\phi_h \cdot \phi_i|) & ext{configuration} \end{aligned}$
- $F \rightarrow 0$ for Born level, F > 0 in case of multijets

★ Introduce effective non-pert. coupling $\alpha_0 = \frac{1}{\mu_I} \int_0^{\mu_I} \alpha_{eff}(k) dk$ ($\alpha_0 = \alpha_s$ at $\mu_I = 2$ GeV) (theory predicts universal $\alpha_0 \simeq 0.5$)

\star PC (Dokshitzer at al.): non-pert. corrections (suppressed by powers of 1/Q) obtained from first principles

• for distributions
$$\frac{1}{\sigma} \frac{d\sigma(F)}{dF} = \frac{1}{\sigma} \frac{d\sigma^{\text{pQCD}}(F - a_F \mathcal{P})}{dF}$$

• for mean values $\langle F
angle = \langle F
angle^{\mathrm{pQCD}} + a_F \mathcal{P}$

(with universal PC term \mathcal{P})

\star Complete description for F: NLO+NLL+PC

Recent progress in theory (as compared to previous round of event shape analyses in DIS) – resummation of large log terms and matching it to fixed order NLO (DISRESUM package by Dasgupta and Salam, 2002)

★ Limitations: very low F ($F \le a_F \mathcal{P} \sim \mu_I / Q$) and very high F (substantial HO corr.)

Main aim of the analysis: check the validity of PC concept and universality of α_0 By product: yet another method/observables to extract $\alpha_s(M_Z)$

Fits to distributions

- H1 and ZEUS data are in agreement, but somewhat different fit range used
- Not all points are used in the NLO+NLL+PC fit: theory has limited range of applicability

(1 σ contours denote experimental errors alone; not shown are theoretical errors, $\sim 10\%$, which dominate)

- different error treatment in case of H1 and ZEUS
- extracted values of α_s are in good agreement with world average (shown by yellow band)
- $lpha_s(M_Z) = 0.1198 \pm 0.0013 (ext{exp})^{+0.0056}_{-0.0043}(ext{th})
 onumber \ a_0 = 0.476 \pm 0.008 (ext{exp})^{+0.018}_{-0.059}(ext{th})$

α_s and α_0 from the fits to mean values

- Bigger spread in α_s as compared to fits to distributions \Rightarrow indirect indication of the success of resummed theory
- With exception of thrust, H1 and ZEUS results display similar pattern: universal α_0 within $\pm 10\%$

3-jet event shape observables

★ No complete theoretical calculations for these variables available yet
 ★ MC models give fair description in the bulk of the phase space

High statistics HERA data on HFS in DIS provide stringent tests of pQCD.

- In most of the observables NLO effects give sizeable contribution.
- In many cases the dominant systematics comes from theory \Rightarrow need for NNLO.

Event shape means and distributions have been measured and analysed by both H1 and ZEUS collaborations.

- The measurements themselves are in good agreement between the experiments
- Obtained values of $\alpha_s(M_Z)$ are in agreement with world average
- 3-jet event shapes, sensitive to higher orders and non-perturbative effects, have been measured as well and are waiting for theoretical calculation.
- \star The observed universality of α_O gives strong support for the concept of power corrections.

BACKUP SLIDES...

Fits to mean values

- Reminder: resummation is not applicable, as means contain 'forbidden' regions
- Significant positive PC values for all observables (except thrust along γ^* axis in case of ZEUS)

Running $\alpha_s(Q)$

 $lpha_s(M_Z) = 0.1178 \pm 0.0015(ext{exp})^{+0.0081}_{-0.0061}(ext{theo})$

(α_s, α_0) from fits to distributions in different matching schemes

