

Hard Probes 2008

Illa de A Toxa, Spain, June 8-14, 2008

Jet production at low Bjorken-x from HERA

S. Levonian

- \bullet HERA and low x physics
- Inclusive Forward jets
- Forward jets in multijet configurations
- Azimuthal correlations in dijet system

$$\operatorname{Low} x \leq 5 \cdot 10^{-3}$$

The HERA Collider

HERA-1 (1993-2000) $\simeq 120 \text{ pb}^{-1}$ HERA-2 (2003-2007) $\simeq 380 \text{ pb}^{-1}$

last 3 months - low E_p run to measure F_L^p ($E_p = 460; 575 \text{ GeV}, \quad \mathcal{L} = 20pb^{-1}$)

- HERA upgrade: $\mathcal{L} \times 3$, Polarised e^+/e^- (Exp. improvements: silicon trackers, triggering, ...)
- Final Data samples H1+ZEUS: $2 \times 0.5 \text{ fb}^{-1}$

Small *x* **domain of HERA**

- ep DIS: clean QCD laboratory with high resolving power $Q^2 \Rightarrow 0.001$ fm
- Low x ≤ 10⁻³: new kinematic domain at HERA
 ⇒ any sign of novel parton dynamics?

Small *x* **domain of HERA**

- ep DIS: clean QCD laboratory with high resolving power $Q^2 \Rightarrow 0.001$ fm
- Low x ≤ 10⁻³: new kinematic domain at HERA
 ⇒ any sign of novel parton dynamics?
- NLO DGLAP is still perfectly OK for F_2^p (too inclusive?)

Small *x* **domain of HERA**

 $\sigma_r(x,Q^2) \ge 2^i$

- ep DIS: clean QCD laboratory with high resolving power $Q^2 \Rightarrow 0.001$ fm
- Low x ≤ 10⁻³: new kinematic domain at HERA
 ⇒ any sign of novel parton dynamics?
- NLO DGLAP is still perfectly OK for F_2^p (too inclusive?)
- There is a lot of glue in proton at low x! \Rightarrow gluodynamics in high energy limit of QCD ($W^2 \approx Q^2/x$)

Lots of glue in the proton \Rightarrow long gluon cascade at low x. Perturbative expansion of evolution equations $\sim \sum_{mn} A_{mn} \ln(Q^2)^m \ln(1/x)^n$ hard to calculate explicitly \Rightarrow approximations needed e **DGLAP:** resums $\ln(Q^2)^n$ terms, neglecting $\ln(1/x)^n$ terms Q2 strong k_T ordering in partonic cascade х resums $\ln(1/x)^n$ terms **BFKL:** no k_T ordering in partonic cascade \Rightarrow more hard gluons are radiated far from the hard interaction vertex 000000000000 $\mathbf{x}_{0}, \mathbf{k}_{10}$ angular ordered parton emission \Rightarrow CCFM: reproduces DGLAP at large x and BFKL at $x \to 0$

- How long is partonic cascade at HERA, at small x?
- Do the $\ln(1/x)^n$ terms play a major role in parton dynamics as suggested by BFKL?

 \Rightarrow Look at (multi)jet final states at low x in different configurations

Low x phenomenology

Forward jets

Forward jets

 $\begin{array}{ll} \mbox{Strategy} & (E_t^{jet})^2 \approx Q^2 \Rightarrow \mbox{suppress phase space} \\ \mbox{for DGLAP evolution} \\ \mbox{large } x_{jet} >> x_{Bj} \Rightarrow \mbox{enhance BFKL evolution} \\ \mbox{Event} & 10^{-4} < x < 4 \cdot 10^{-3} & 5 < Q^2 < 85 \mbox{GeV}^2 \\ \mbox{selection} & E_t^{jet} > 3.5 \mbox{GeV} & 7^o < \theta_{jet} < 20^o \\ & x_{jet} > 0.035 & 0.5 < (E_t^{jet})^2/Q^2 < 2 \end{array}$

- Huge improvement from LO to NLO, but still insufficient at low x
- Resolved γ component in DGLAP MC helps ("breaks" k_t ordering)
- CDM and RG(d+r) provide similar description
 ⇒ inconclusive

Forward jets against CCFM Monte Carlo

- extended forward range
 - $2 < \eta^{jet} < 4.3$ $E_t^{jet} > 5 ext{GeV}, x_{jet} > 0.036$

- Jet rate is OK, but shapes of the distributions are not described
- Clear sensitivity to uPDF

Jet multiplicity

 $5 < Q^2 < 80 \, {
m GeV^2}$ $10^{-4} < x < 10^{-2}$ Jets: $E^*_{t,jet} > 4 \, {
m GeV}$ $-1 < \eta < 2.5$

 $N_{jet} \geq 3$

- Gluon radiation is frequent at low \boldsymbol{x}
- $\mathcal{O}(\alpha_s^3)$ QCD can only predict up to 4 jets
- RG d+r (DGLAP type of MC) underestimates high jet multiplicities
- CDM (BFKL like MC) is just perfect!

• NLO QCD is OK in this domain ($x > 2 \cdot 10^{-4}$, $E_t^{j1} > 7 \text{GeV}$, $E_t^{j2(3)} > 5 \text{GeV}$) \Rightarrow Try even higher jet multiplicities and look for specific jet topologies

3-jet samples with different topologies

• Large deficit at small x for 2-forward jet topology! There $\mathcal{O}(\alpha_s^3)$ calculation is insufficient

3- and 4-jet distributions vs LO+PS Monte Carlo

• CDM describes well all distributions except high p_T tail where it is too hard

• DGLAP MC (RG dir+res) fails both in shapes and normalization $(3j \times 1.55, 4j \times 2.9)$

Azimuthal correlations in di-jet system

Collinear factorisation scheme:

jets are back-to-back at LO, hence $\Delta \Phi^* < 180^o$ are only possible at higher orders

 k_t factorisation scheme:

 $\Delta\Phi^* < 180^o$ already at LO

Sensitive to details of parton dynamics

<u>ZEUS vs NLO DGLAP</u> $\mathcal{O}(\alpha_s^3)$ calculations describes the data reasonably well (although with still large scale uncertainty)

Azimuthal correlations vs CCFM

H1 data vs CCFM based MC

- Although Cascade fail to describe the shape of ΔΦ*, 2 sets of uPDF (both describing HERA F₂) essentially cover the data
- large sensitivity to uPDF

ZEUS data vs CCFM based MC

- "collinear approach" (HERWIG) fails
- Cascade based on k_t factorisation describes data much better

- Large part of LHC phase space is at low *x*
- Tevatron is at large x
- ⇒ SM predictions based on fixed order calculations and on DGLAP MC may not work even if tuned to Tevatron data
- Low *x* dynamics has to be implemented
- CDM and Cascade MC after additional tuning are promissing tools for LHC

There is a lot of gluon radiation at small x. Hard gluons are often radiated forward, with large rapidity separation from hard interaction vertex. This has an important implications for LHC!

Fixed order QCD predictions based on DGLAP approach give large improvement with every order in α_s . Presently available calculations describe basic properties of multijet production in DIS, however it still fails at lowest x and for specific configurations with very forward jets.

Color Dipole Model gives best description of jet production at HERA down to lowest x while models with k_t -ordered gluon radiation fail completely. This provides a substantial indication for unordered gluon radiation at small x as expected from $\ln(1/x)$ terms in evolution equations.

Forward jet data and azimuthal correlations in dijet system show sensitivity to unintegrated PDFs and therefore can be used for their extraction.

BACKUP SLIDES...

H1 Forward jets: triple differential cross sections

H1 Forward jets vs NLL BFKL

21

• NLO 3-jet is not in agreement with H1 data