

Luminosity Measurement at the LHeC

S. Levonian, DESY

Future of DIS, April 22, 2010

• optimisation and tuning of ep-collisions $dL_{stat} = 1\%/sec$, overall scale $\sim 5\%$ is Ok $\Rightarrow 20$ kHz

- mid-term variations of instantanious L $dL_{stat} = 1\%$ per run (10 min - few hours) $\Rightarrow 20$ Hz
- absolute integrated \mathcal{L} for physics normalization $dL_{tot} = 1 - 2\%$ per sample (week-month) $\Rightarrow 0.02$ Hz

3 Mission
$$L_{\rm LHeC}(ep) = 10^{31} - 10^{33} \, {\rm cm}^{-2} {\rm s}^{-1}$$
 $\sigma_{\rm vis}^{\rm lumi}$

- optimisation and tuning of ep-collisions $dL_{stat} = 1\%/sec$, overall scale $\sim 5\%$ is Ok $\Rightarrow 20$ kHz > (0.02-2) mb
- mid-term variations of instantanious L $dL_{stat} = 1\%$ per run (10 min - few hours) $\Rightarrow 20$ Hz $> (0.02-2) \mu$ b
- absolute integrated \mathcal{L} for physics normalization > (0.02-2) nb $dL_{tot} = 1 2\%$ per sample (week-month) $\Rightarrow 0.02$ Hz

All cross sections in this talk are estimated for the case $70 \times 7000 \text{ GeV}$

Processes

B-H process: $\sigma(E>8)=112$ mb (poles in both e^* and γ^* propagators)

B-H with "internal conversion" $\sigma \simeq 1/200 \sigma_{BH}$

QED Compton: $\sigma_{\rm el}(\theta < 179^o) = 6$ nb (poles in γ^* propagator, but large e^* mass) F2 (NC DIS): $egin{array}{c} \sigma(Q^2>~10)=300 {
m nb} \ \sigma(Q^2>100)=~25 {
m nb} \end{array}$

Processess

Dedicated (tunnel) detectorsB-H process: $\sigma(E > 8) = 112$ mbB-H with "internal conversion"(poles in both e^* and γ^* propagators) $\sigma \simeq 1/200\sigma_{BH}$

Main detector							
QED Compton: $\sigma_{ m el}(heta < 179^o) = 6$ nb		$\sigma(Q^2>~10)=300$ nb					
(poles in γ^* propagator, but large e^* mass)	F2 (NC DIS).	$\sigma(Q^2>100)=~25$ nb					

Two setups for Main Detector (low Q^2 vs high Q^2)

Detector options

Low Q^2

7

E.

Detector options

Examles from HERA

9

Examles from HERA

LHeC MC study: (using H1 analysis strategy)

Generator:	DJANGOH $(0.05 < y < 0.6)$			
high Q^2 setup:	$\sigma_{vis}\simeq~10$ nb			
low Q^2 setup:	$\sigma_{vis} \simeq 150$ nb			
Rate (stat.err):	$1.5-10$ Hz ($\delta \mathcal{L}{\simeq}1\%$ /hour)			

COMPTON MC (elastic part) $\sigma_{vis} \simeq 0.025 \text{ nb}$ $\sigma_{vis} \simeq 3 \text{ nb}$ $0.025 - 0.03 \text{ Hz} (\delta \mathcal{L} \simeq 0.5\%/\text{month})$

Challenges in Linac-Ring and Ring-Ring options

IR Layout

- crossing angle at IP
- large SR flux
- \Rightarrow Challenge: difficult to catch zero-angle γ 's

RR scheme

IR Layout

- crossing angle at IP
- large SR flux
- \Rightarrow Challenge: difficult to catch zero-angle γ 's

- Head-on collisions. Similar to HERA, γ 's travel along the p-beam
- Lumi monitor located after proton dipole at z = 100m
 - \Rightarrow Challenge: large aperture required for proton magnets at z = 60 - 80m

RR scheme

LR scheme

LR option

F. Willeke, May 2008

Crossing angle = 1.5 mr

Magnetic separation = 0.75 mr \Rightarrow 40 mm beam separation at 22m

B. Holzer / B. Nagorny, Sept 2008

BH flux in SR absorber at 22m

• BH spot at the hottest place

15

BH-photon detector integrated into SR absorber

- Cooling system with 10-15 cm long water bath acting as Čerenkov radiator for BH γ 's
- Radiation hard, (almost) insensitive to SR
- Optimisation of crossing angle might be useful: Version A: acceptance $\simeq (84 \pm 2)\%$ Version B: acceptance $\simeq (10 \pm 1)\%$
- Exact BH counter design and R/O still to be worked out
- Accurate acceptance control requires precise beam tilt monitoring (10-15% of the x-angle)

 $\delta L = 3 - 10\%$

Options for Electron Taggers

IR Layout

- ET-6m requires some dipole field ⇒ not possible for low luminosity setup
- An option: split separator dipole and position ET at z = 13 - 14m?

Options for Electron Taggers

- ET-6m requires some dipole field ⇒ not possible for low luminosity setup
- An option: split separator dipole and position ET at z = 13 - 14m?

⇒ No acceptance for oppositely charged leptons (Internal Conversion process is not detectable)

ET-62m Acceptance variations

- e-taggers are also useful to enhance physics programme (tagged γp). Note however, that triggering might be problematic due to inefficient γ -veto
- ET-6m has small acceptance, but can access largest $W_{\gamma p}$ ET-14m, ET-22m may suffer from SR, ET-62m is most promissing (good acceptanse, small SR, available space)
- Energy calibration might be a problem (leakage, abs.scale)
- Reliable geometrical acceptance determination (to 3-5% precision) requires good knowledge/control of beam optics at IP (tilt, offset of e-trajectory)

Can one rely on Water Counter and *e*-taggers for online lumi measurement? \Rightarrow Look at HERA experience

Typical HERA Luminosity fill

22

Rates at HERA (H1 Lumi system)

Dominant systematics

Method	Stat. error	Syst.error	Systematic error	COI	mponents	Application
BH (γ)	0.1%/sec	3 - 10%	x-section	=	0.5%	Monitoring, tuning,
			acceptance, A	=	$10\%(1\!-\!A)$	Absolute L (?),
			E-scale, pileup	=	0.5-3%	short term variations
BH (<i>e</i>)	1-3%/sec	5-6%	x-section	=	0.5%	Monitoring, tuning,
			acceptance, A	=	4-5%	Relative L
			background	=	1%	
			E-scale	=	1%	
QEDC	1-2%/week	1.5-2%	x-section (el/inel)	=	1%	Absolute \mathcal{L} ,
			acceptance	=	1%	Global normalisation
			event vertex eff.	=	1%	
			<i>E</i> -scale	=	0.3%	
F2	0.5 - 1.5%/h	2.5%	x-section ($y < 0.6$)	=	2%	Relative \mathcal{L} ,
			acceptance	=	1%	mid. term variations
			event vertex eff.	=	1%	
			E-scale	=	0.3%	

- Luminosity measurement at the LHeC is a non-trivial task.
 HERA experience: surprises are possible ⇒ prepare several scenarios
- Precise integrated \mathcal{L} for physics is possible with main Detector (QEDC, F2) $\delta \mathcal{L} = 2\%$ is within reach
- Fast instantaneous *L* monitoring is challenging, but few options do exist
 - \triangleright Photon Detector for LR option requires large p-beampipe at z = 80m
 - In case of RR option B-H photons can be detected using water Čerenkov counter integrated with SR absorber (this also requires relatively large crossing angle)
 - > Electron tagger at 62 m is very promissing for both LR and RR schemes
- Good control of the e-beam optics at the IP is essential to monitor acceptances of the tunnel detectors at 5% level