

NEW TRENDS IN HIGH-ENERGY PHYSICS (experiment, phenomenology, theory) Alushta, Crimea, Ukraine, September 23 - 29, 2013

HERA: The World's Only ep Collider

Deep-Inelastic Scattering at HERA

 Testing all basic ingredients of the Standard Model

 Probing structure of a proton down to 10⁻¹⁸ m

DIS: Cross sections and Structure Functions

HERA-2 vs HERA-1

ZEUS

Combined Measurement and QCD Analysis of the Inclusive DIS at HERA JHEP 01 (2010) 109 \Rightarrow HERAPDF 1.0

HERA-2

HERA-1

CC e^-p – EPJ C61 (2009) 223 NC e^-p – EPJ C62 (2009) 625 CC e^+p – EPJ C70 (2010) 945 NC e^+p – PRD 87 (2013) 052014

NC+CC *e*[±]*p* – *JHEP* 09 (2012) 061

(also combination with H1 HERA-1 data is performed \Rightarrow H1PDF 2012)

Longitudinally polarized leptons $\mathcal{L}(e^+) = 3 imes$ HERA-1 $\mathcal{L}(e^-) = 10 imes$ HERA-1

breakdown of there data samples		
	R	L
e^-p	$\mathcal{L} = 47.3 \mathrm{pb}^{-1}$	$\mathcal{L} = 104.4 \mathrm{pb}^{-1}$
	$P_e = (+36.0 \pm 1.0)\%$	$P_e = (-25.8 \pm 0.7)\%$
e^+p	$\mathcal{L} = 101.3\mathrm{pb}^{-1}$	$\mathcal{L} = 80.7\mathrm{pb}^{-1}$
	$P_e = (+32.5 \pm 0.7)\%$	$P_e = (-37.0 \pm 0.7)\%$

breakdown of HERA-II data samples

Unpolarized Reduced NC Cross Sections - H1

Final H1 (HERA I+II) NC data (854 points \rightarrow 413 σ_{NC} values; $\chi^2/NDF = 412/441$)

Precision 1.5% for $Q^2 < 500 \text{ GeV}^2$ (factor 2 reduction in error wrt HERA-I)

Extended reach at high x

At high Q^2 difference between e^+ and $e^$ due to Z-exchange term xF_3

H1PDF2012 (NLO DGLAP) describes data well

Final ZEUS (HERA II) high Q^2 NC results

x-dependence: strong scaling violation due to high density of sea quarks at low x

Data well described by DGLAP NLO QCD

NC Polarization Asymmetry

★ A direct measure of parity violation in NC DIS (at low $Q^2 A^{\pm} \approx 0$, at high $Q^2 A^{\pm} \approx -A^{-}$) ★ Access to u_v/d_v ratio: at large x $A^{\pm} \propto \frac{1+d_v/u_v}{4+d_v/u_v}$

First ever direct measurement of $F_2^{\gamma Z}$ (all 4 NC cross sections are needed: LH/RH, e^-/e^+) *x*-behavior reflects parton composition: $F_2^{\gamma Z} \sim q + \bar{q}$

NC - $xF_3^{\gamma Z}$ Structure Function

 $xF_3 \propto (\sigma_{
m NC}^- - \sigma_{
m NC}^+) pprox xF_3^{\gamma Z}$ (pure Z-term negligible for unpolarized cross sections)

From combined HERA I+II H1 data

HERA II only

 $xF_3 \sim xq - xar{q} = xq_v \Rightarrow ext{Constrain valence quarks} \left(2u_v + d_v
ight)$

- ★ Strong polarization dependence (parity violation)
- ★ Provides unique flavour decomposition of the proton structure strong (5 - 10%) constraint on d_v at high x (further gain after final H1+ZEUS combination)

$$\sigma^{CC}_{
m pol}({
m e}^{\pm}{
m p}) = (1\pm{
m P}_{
m e})\cdot\sigma^{
m CC}_{
m unpol}({
m e}^{\pm}{
m p})$$

Electroweak Unification

H1: Combined HERA I+II result ZEUS: HERA II measurement

Typical precision: NC $\sim 1.5\%$ CC $\sim 4\%$

Impact of New HERA-2 Data on Proton PDFs

Comparison of PDF uncertainties for H1 fits with and without final HERA-II data

H1PDFs obtained with HERAFitter based on QCDNUM (v17.04), NLO (MSbar scheme, RT HF-mass scheme)

Large improvement in xd_v and xD \Rightarrow driven by more precise CC data Improvement in xu_v from NC at high xHigh-x gluon also improved from scaling violation

Further improvements – after final H1+ZEUS combination

HERAPDF versions

HERA

 \mathbf{x}^{1}

10⁻¹

10⁻²

10⁻³

10-4

H1 and ZEUS completed their final Inclusive DIS measurements

- polarized lepton beams at HERA-2 allowed measurement of parity violation effects with improved accuracy
- ho right handed W boson with mass below 200 GeV ruled out
- \triangleright structure function $F_2^{\gamma Z}$ measured for the first time
- \triangleright improved constraints on the partonic content of the proton especially at high x

Standard Model provides an excellent description of the data

- ▷ in electroweak sector
- \triangleright for QCD phenomena

New combination of final HERA DIS data is underway

- \triangleright ultimate precision (~ 1% in bulk region for 1 fb⁻¹ H1+ZEUS combined data)
- ightarrow QCD fit \Rightarrow HERAPDF 2.0 (LO, NLO, NNLO)
- ▷ stringent pQCD tests:
 - is DGLAP sufficient to describe high precision HERA data over 5 orders in x and Q^2 ?