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Abstract

The structure of charm jets in deep-inelastic scattering is studied with the H1
detector at HERA using an integrated luminosity of 50 pb−1. The analysis is performed
in the phase space region 2 ≤ Q2 ≤ 100 GeV2 and 0.05 ≤ y ≤ 0.7. Charm events are
tagged by a D∗-meson required to have a transverse momentum pT,D∗ > 1.5 GeV and
a pseudorapidity |ηD∗ | < 1.5. Furthermore, the events are required to have at least
one jet containing the D∗-meson (D∗Jet). If there is a second jet (OtherJet) in the
event, it must have, like the D∗Jet, pT,Jet > 1.5 GeV and |ηJet| < 1.5. The structure
of the D∗Jet and the OtherJet is investigated by measuring jet shape variables and
subjet multiplicities. In addition the angle of subjets with respect to the jet axis of
the D∗Jet and the OtherJet is used to study gluon radiation at the parton level.

Study of the latter distribution as well as the derived one of a characteristic angle
α0EJet as a function of EJet is motivated by the expected suppression of soft gluon ra-
diation from heavy quarks, the so-called ”Dead Cone” effect, predicted by QCD. In all
distributions differences between the D∗Jet and the OtherJet are observed. The data
are found to be well described by the QCD model for charm production, which includes
the suppression of soft gluon radiation, as implemented in RAPGAP 2.8 and JETSET
7.4. Various checks and a further analysis using higher statistics are presented in order
to get a better understanding of the contribution from the ”Dead Cone” effect to the
α0EJet vs. EJet distribution.

Kurzfassung

In dieser Arbeit wird die Struktur von Charm-Jets in der tief-inelastischen Streu-
ung (DIS) mit dem H1 Detektor am HERA Speicherring untersucht. Die verwendeten
Daten entsprechen einer Luminosität von 50 pb−1. Die Analyse wird in dem kinematis-
chen Bereich 2 < Q2 ≤ 100 GeV−2 und 0.5 ≤ y ≤ 0.7 durchgeführt. Die Charm-Quarks
werden durch die Rekonstruktion von D∗-Mesonen mit einem Transversalimpuls von
pT > 1.5 GeV und einer Pseudorapidität |ηD∗ | < 1.5 nachgewiesen. Außerdem muss
es mindestens einen Jet in dem Ereignis geben, der das D∗-Meson enthält. Falls das
Ereignis einen weiteren Jet aufweist, muss dieser Jet (OtherJet), ähnlich dem D∗-Jet,
einen Transversalimpuls pT,Jet > 1.5 GeV und eine Pseudorapidität |ηJet| < 1.5 haben.
Die Struktur von beiden Jets wird mit Hilfe verschiedener Ereignisform-Variablen und
der Subjet-Multiplizität, sowie der Winkelverteilung von Subjets relativ zur Jetachse
untersucht. Jets und Subjets sind so definiert, dass sie mit dem entsprechenden Quark
bzw. dem abgestrahlten Gluon auf Partonniveau möglichst gut korreliert sind.

Die Winkelverteilung der Subjets und die Verteilung des charakteristischen Winkels
α0EJet als Funktion von EJet wurden gewählt, weil die QCD eine Unterdrückung der
Abstrahlung von ’weichen’ Gluonen von schweren Quarks bei kleinen Winkeln vorher-
sagt. Diese Unterdrückung wird als ”Dead Cone Effect” bezeichnet. Die Daten werden
von dem QCD Modell für Charm Produktion, wie es in RAPGAP 2.8 und JETSET
7.4 implementiert ist, gut beschrieben. Um die α0EJet versus EJet Verteilung besser zu
verstehen werden verschiedene Tests und eine erweiterte Analyse mit erhöhter Statistik
präsentiert.
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Résumé

La structure des jets issus de la fragmentation des quarks charmés produits dans les
collisions electron–proton à HERA est étudiée en utilisant les données enregistrées par
le détecteur H1, correspondant à une luminosité intégrée de 50 pb−1. L’espace de phase
de l’analyse est defini par une virtualité du photon dans le domaine 2 < Q2 ≤ 100 GeV2

et une inélasticité 0.5 ≤ y ≤ 0.7. Les événements contenant des particules charmées
sont étiquetées en identifiant un meson D∗ avec une impulsion transverse supérieure
à 1.5 GeV dans le domaine de pseudorapidité |ηD∗ | < 1.5, contenu dans un jet (le
D∗-Jet) dans le même domaine cinématique. La structure du jet contenant le meson
D∗ est étudiée en mesurant les paramètres de forme et la multiplicité des ”sous-jets”,
et comparée á celle des autres jets dans l’événement.

En particulier, la distribution angulaire relative des sous-jets, caractérisée par un
angle α0, est révélatrice de la radiation gluonique du quark initial dans le processus
de fragmentation. D’aprés Chromodynamique Quantique (CDQ), cette radiation glu-
onique est moins intense dans le cas du quark charmé en comparaison avec les quark
légers. Cette supression pourrait être mise en évidence en étudiant la variation de
l’angle α0 en fonction de l’énergie du jet. La simulation Monte Carlo basée sur les
programmes RAPGAP et JETSET est en bon accord avec les données.

Des différences sont observées entre la structure du D∗Jet et celle du OtherJet,
le deuxième jet dans le événement. A fin d’investigeur si la distribution observée de
l’angle α0 pour le D∗Jet est révélatrice de la suppression attendue, cette distribution
est également étudiée sur des échantillons de contrôle.

Kratki� obzor

Predstavleny rezul�taty izuqeni� adronnyh stru� poro�d�nnyh oqaro-
vannym kvarkom v gluboko neuprugom rasse�nii v dannyh, nabrannyh na
ustanovke H1 s summarno� svetimost�� 50 pb−1.

Analiz predstavlen v oblasti fazovogo prostranstva 2 ≤ Q2 ≤ 100 G�V2

i 0.05 ≤ y ≤ 0.7. Sobyti�, soder�awie oqarovanny� kvark vydel�lis� s po-
mow�� rekonstrukcii D∗-mezona s popereqnym impul�som i psevdobystro-
to� udovletvor��wimi uslovi� pT,D∗ > 1.5 G�V, |ηD∗ | < 1.5. Dopolnitel�no
trebovalos�, qtoby sobyti� soder�ali ne menee odno� strui s D∗-mezonom,
D∗Jet. Pri naliqii vtoro� strui (OtherJet) v sobytii e� popereqny� im-
pul�s tak�e dol�en udovletvor�t� uslovi�, pT,Jet > 1.5 G�V, analogiqno
D∗Jet. Struktura D∗Jet i OtherJet issledovana s pomow�� peremennyh
sv�zannyh s formo� stru� i mno�estvennost�� ministru� v strue, a tak�e
uglovogo raspredeleni� ministru� v D∗Jet i OtherJet, da�wego informa-
ci� o korrel�cii s sootvetstvu�wim gl�onom na partonnom urovne. Krome
�togo, poluqeno raspredelenie po harakternomq uglu α0EJet kak funkcii
�nergii strui EJet. Dva poslednih raspredeleni� motivirovany �ffektom
podavleni� izluqeni� m�gkih gl�onov t��elym kvarkom, predskazannym v
KHD.

Vo vseh predstavlennyh raspredeleni�h obnaru�ena raznica me�du harak-
teristikami D∗Jet i OtherJet. Pokazano, qto �ksperimental�nye dannye
horoxo opisyva�ts� KHD model�� ro�deni� oqarovannyh kvarkov v vide,
realizovannom v Monte Karlo programmah RAPGAP 2.8 i JETSET 7.4 .
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Dl� luqxego ponimani� zavisimosti α0EJet ot EJet provedeny dopolni-
tel�nye proverki, a tak�e analiz dannyh bol�xe� statistiki.
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Preface

In everyday life our existence is governed by two questions: why? and how?. For the
first question we never understood exactly where is it coming from, but the second one
appears when the people around us cannot any longer give answers to the first one
at the level of our expectation. This is why the people go to the next stage and ask
themselves how?. Up to some moment in time the why? question has hidden in the
shadow of the how? question.

If one asks why the Earth is moving around the Sun, for some of us, the answer
that this is due to an abstract entity called gravity is just not enough, we are eager
to know how the abstract gravity looks like. Not that we completely understand it
afterwards, but the more often the how? question is asked, the higher the probability
is to get a new idea of explaining how gravity works – not only for the Earth and the
Sun, but also for a quark and an antiquark.

Until now we figured out that there are four types of interactions: the electromag-
netic, the weak, the strong and the gravitational force, as it is presented in the first
chapter. Although for some of them we have already solved most of the how? ques-
tions, the strong and the gravitational interaction still have plenty of questions which
are not yet solved or not even thought of. For the questions why and how the quarks
are produced we do have a theory, but for the question how the quarks look like we
do not have yet the final answer.

In Chapter 1 it is explained why the quarks cannot be seen as all the other particles.
But the fact that the quarks have no freedom makes people ask themselves: if one
cannot see the quarks in a direct way, how one can do this indirectly? Feynman pointed
out that the momenta of the quark system have to be conserved and he introduced
the quark - jet analogy. The particles which are produced in an interaction can be
grouped together, e.g. in space, in objects called jets which should have, within some
approximation, the same momentum and direction as the initial quarks. How one
distinguishes between the different quark flavour jets is presented also in the first
chapter. This is done using so-called jet shape variables. Once the second type of
partons was predicted, the gluons, one could observe that hard gluons with high enough
energy can also produce hadronic jets. For these hard gluon jets, the same jet shape
variables can be used.

A natural question is how the quark mass does influence the quark evolution and
its hadronic jets. For this, the theory uses a model in analogy to electrodynamics: the
emission of quanta by a moving charged particle. If in electrodynamics the quantum
was the photon, in chromodynamics (QCD) the quantum is the gluon. In the heavy
quark case the prediction from QCD suppresses the emission of soft gluons close to the
quark direction. This effect is called the dead cone effect. In the second part of the first
chapter the jet shape variables and the theory of the dead cone effect are presented.

vii
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The study of the soft gluon emission by heavy quarks can be also viewed as a next
generation of variables that can discriminate in a statistical way between parton jets
of different type. This way, another piece of the puzzle how the quarks look like can
be understood.

The data used in this analysis were acquired at the HERA collider with the H1
experiment, therefore in the second chapter an overview of the H1 detector is presented.

The third chapter is dedicated to the event selection. Here it is explained in detail
how the events were triggered and selected in order to make sure that the charm event
sample used for this analysis has the smallest possible background.

A traditional method to study charm jets is to use jets shape variables. In the
fourth chapter the jet shape study of the charm jets is presented. The jets that
reconstruct the two charm quarks in an event are compared. The differences between
them are studied using different jet definitions for the jet that contains the D∗-meson,
the so-called D∗Jet which is used to reconstruct the charm quark. A new definition of
the jet radius and its influences on the jet shape variables are presented too. In the
last part of the chapter the dependencies of the jet shape variables with respect to the
transverse energy, the pseudorapidity and the jet energy are shown. The correlation
between the charm quark and the corresponding jet is shown in Appendix F. Based
on them, the definition of the D∗Jet is chosen.

In the fifth chapter an innovative approach of how to study charm jets, namely using
the angle between the charm jet direction and one of its subjets, which is considered
as coming from a soft gluon radiated by the charm quark, is presented. This technique
allows the direct measurement of the dead cone effect. The specific angle of the dead
cone, α0, is determined using a fit function inspired from QCD theory. The similarities
obtained for the α0EJet vs. EJet distribution in the data and in the MC model, which
has this effect implemented, are astonishing. In order to clarify various influences from
different related effects on the α0EJet variable a long list of checks are performed.
The most conclusive check is the comparison between the charm event sample and a
reference di-jet sample, which is dominated by ∼ 85% of light quarks, as presented at
the end of this chapter. The difference observed in the α0EJet vs. EJet distribution
between the charm jet and the light quark jets becomes clearer when one includes all
the statistics available until now, from 1996 to 2004. This way the puzzle how the
quarks look like reveals a new side of its own, hidden until now.

In order to make a fluent reading of the thesis possible, some chapters are linked
to appendices. In these appendices general information about QCD, the track recon-
struction, the subtrigger efficiencies, the correlations between the charm quark and the
corresponding jets as well as a detailed overview of the systematic errors are presented.

With this overview and the eagerness of knowing how a new piece of QCD can be
understood and probed, the author wishes every reader a pleasant time during reading
of this thesis.



Chapter 1

Theoretical Basis

1.1 General View of the Standard Model

The Standard Model of particle physics (SM) is a theoretical framework [1] where the
particle physics phenomena which have been observed are described within the often
small experimental errors, with the exception of neutrino oscillations and the existence
of dark matter. Behind these experimental errors, everyone hopes for a new theory
which will take over at some moment of time.

The SM describes the interactions of elementary particles. The elementary particles
are defined as being the matter constituents1 with no known2 substructure down to
the present limit of 10−3fm, about 1/1000 of the diameter of a proton.

The units used in particle physics are not the standard S.I. units: m (length), kg
(mass) and s (time). It was found more convenient to use relative units. The length is
expressed using the femtometer or fermi (1 fm = 10−15 m), the mass is measured in
MeV/c2 and has usually the meaning of rest-energy. The energy unit is the electron
volt (1eV = 1.6 · 10−19 J). In order to make calculations easier, a system of units with
� = c = 1 was adopted on the basis of a standard mass3 of 1 GeV.

The elementary particles can be divided into matter particles and intermediate
interaction particles. The first category can be split into leptons and quarks, which are
fermions with spin s = 1/2. The leptons which are known until now are the electron
(e−), the muon (μ−) and the tau (τ−) having the electric charge4 -1 and the neutrinos
νe, νμ, ντ with no charge. The quarks come in six flavours: up (u), down (d), strange
(s), charm (c), beauty (b) and top (t). They have a fractional charge of 2/3, -1/3, -1/3,
2/3, -1/3 and 2/3 respectively.

The quarks have one more quantum number: colour. The colour of a quark can be
red, green or blue. The concept of quark colour has been introduced as an explanation
for the fact that the quarks have not yet been observed as ’free’ entities. Thus they
have to be confined in experimentally observed colourless particles, the hadrons. The
observed hadrons can be classified as baryons and mesons. The baryons are fermions
which contain three quarks as for example the proton (uud) or the neutron (ddu). The
mesons are bosons formed by a quark and an antiquark like for example the π− (dū)
or the D∗+ (cd̄).

1The elementary particles are also called ’point-like’ objects.
2No substructure have been observed for quarks and leptons yet.
3The mass of 1 GeV was used as an approximation of the proton mass mp = 938.28 MeV
4All the charges are expressed in units of the elementary charge e.

1



2 Chapter 1 Theoretical Basis

The intermediate interaction particles, relevant in particle physics phenomena, are
bosons with spin s = 1. There are four types of interactions: electromagnetic, weak,
strong and gravitational5.

The electromagnetic interaction has the photon, γ, as exchange particle. The range
of interaction is infinite. The photon is massless, charge-less and non-self-interacting.
The weak interaction has a short range of about 10−3 fm, corresponding to the exchange
of a massive gauge particle with a mass of Mweak ∼ 100 GeV. The intermediate
interaction particles are the weak bosons W±, with ±1 charge, and Z0, which is neutral.
They are massive6 and self-interacting. The strong interaction has a finite range due
to physical confinement property. The range is of about 1 fm, corresponding to the
typical size of the lightest hadron. Eight gluons gi, i = 1, 8, are mediating the strong
interaction. They have colour and interact with quarks and with themselves.
The strength of the electromagnetic inter-
action is governed by the size of the elec-
tromagnetic coupling e, which can be also
written as αem = e2/4π. At low energies
the coupling strength is given by the fine
structure constant α(Q = me) = 1/137. As
the energy increase so does the electromag-
netic coupling. The weak interaction has
the strength given by the Fermi constant
GF = 1.167 ·10−5 GeV−2 for energies much
lower than the mass of the exchanged boson
mass. The strong interaction has a strength
given by the size of the strong coupling gs,
αs = g2

s/4π. It is called strong because it
is stronger than any of the other interac-
tions. One should note that αs decreases
with increasing of the energy [2], as shown
in Fig. 1.1. This behaviour is referred to as

0.1
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Figure 1.1: Determination of αs from the
inclusive jet cross section.

asymptotic freedom.
The name asymptotic freedom is inspired by the fact that at infinitely large energy

or the equivalently infinitely short distance, the quarks behave as free particles. The
Nobel Prize in Physics was awarded in 2004 to D. Gross, D. Politzer and F. Wilczek
for the discovery of the asymptotic freedom in non-abelian field theory.

The SM is a quantum field theory based on the SU(3)C ⊗ SU(2)L ⊗ U(1)Y gauge
symmetry group7. The SU(3)C is the symmetry group of the strong interactions. The
electroweak interaction is described by the symmetry group SU(2)L ⊗ U(1)Y . The
weak and electromagnetic interactions are unified in the sense that U(1)em, the group
of the electromagnetic interactions, appears as subgroup of SU(2)L⊗U(1)Y in the SM.

The eight gluons which are the gauge bosons of SU(3)C and γ, W± and Z, the
particles which make up the four gauge bosons of SU(2)L ⊗U(1)Y , form the so-called
gauge sector.

The fermionic sector is composed of quarks and leptons which are grouped into

5The gravitational interaction, mediated by the graviton, is the weakest and is neglected in high
energy physics. The graviton, if exists, is expected to have spin 2.

6MW = 80.423 ± 0.039 GeV; MZ = 91.1876 ± 0.0021 GeV;
7The indices refer to: C - colour, L - lepton number and Y - hypercharge.



Sec. 1.1 General View of the Standard Model 3

three families with identical properties, exceptions being the mass, the flavour and the
lepton number. The particle content of each family is:

1st family:
(

νe

e−

)
L

, e−R,

(
u

d

)
L

, uR, dR

2nd family:
(

νμ

μ−

)
L

, μ−
R,

(
c

s

)
L

, cR, sR

3rd family:
(

ντ

τ−

)
L

, τ−
R ,

(
t

b

)
L

, tR, bR

and similarly the corresponding antiparticles. The left-handed and the right-handed
fields, respectively, are given by the chirality operator γ5:

e−L =
1
2
(1 − γ5)e−; e−R =

1
2
(1 + γ5)e−.

The scalar sector is the part of the SM which is not yet confirmed experimentally.
The weak gauge bosons are massive particles. This indicates that SU(2)L ⊗ U(1)Y is
not a vacuum symmetry. The fact that the photon is massless shows that U(1)em is
a vacuum symmetry. Therefore the spontaneous symmetry breaking in SM must be:
SU(3)C ⊗ SU(2)L ⊗ U(1)Y → SU(3)C ⊗ U(1)em. This is implemented in SM by the
Higgs mechanism which provides the proper mass to W±, Z gauge bosons and to the
fermions. The mechanism is based on a scalar, neutral and yet undiscovered, Higgs
boson particle. In the next section the ’place’ of the c quark in SM is presented.

The Gell-Mann-Nishijima law [3] relates the electrical charge Q with the hyper-
charge Y and the third component of the isospin I3 of a particle.

Q = I3 +
Y

2

The hypercharge is defined as the sum of the baryon number B and the flavour
charges: strangeness S, charm C, bottomness B and topness T .

Y = B + S + C + B + T

All mesons and baryons, un-
til the J/Ψ discovery, with the
same spin and parity could be
grouped into irreducible represen-
tations of the flavour symmetry
group, SU(3)F . Every particle can
be labeled with its quantum num-
bers (I3, Y ) and can be grouped
within the elements of these repre-
sentations: triplets, octets, nonets,
decuplets.

The group representations are

s

u

Y

I3

d 1/3

−2/3

−1/2 1/2

Y

I3

s 2/3

−1/2 1/2

−1/3
d u

b)a)

Figure 1.2: SU(3)F group: u, d and s quarks.

built for a fixed spin and parity value, noted JP .
In SU(3)F , the lowest dimensional representation which is irreducible [4] is the

triplet with dimension equal to three. This triplet was not occupied by any known
hadron, in 1964.
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At that time three new entities were proposed: the quarks u, d and s. They were
supposed to fit into the elements of the fundamental representation and to build up
the whole spectrum of hadrons using appropriate compositions.

The antiquarks ū,
d̄ and s̄ fit into the
complex conjugate rep-
resentation which is an
anti-triplet. The quark
triplet and its anti-
triplet can be seen in
Fig. 1.2. Different rep-
resentations of mesons
and baryons, composed
of u, d and s quarks, can
be seen in Fig. 1.3.

The SU(3)F group,
using only three quarks,
has limitations in the
sector of the weak inter-
actions due to the ’pre-
dicted’ flavour-changing
neutral currents. The
idea of lepton-quark uni-
versality in a scheme, in

I3
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ddd uuu

dss uss

sss
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−1/2 1/2 1
(1193 MeV)

Figure 1.3: The SU(3) representations: mesons and baryons.

1964, with 4 leptons (e, νe, μ, νμ) but only 3 quarks (u, d, s) posed a problem.
These theoretical problems were solved introducing a fourth flavour - charm [5].

The existence of the charm quark was confirmed in 1974 [6] with the discovery of the
J/Ψ particle which is interpreted as a cc̄ bound state. The SU(3)F group had to evolve
to SU(4)F to include also the c quark. In Fig. 1.4 the charmed mesons and baryons
are shown, many of which have been seen by now.

In this paper the charm events will be tagged using the reconstructed D∗-meson8

from the decay channel: D∗+ → D0π+
s → K−π+π+

s .
The quark spectrum was improved with the bottom and the top quark bringing the

flavour group to a SU(6)F representation.

1.2 Charm Production in ep Collisions at HERA

1.2.1 The ep Collisions at HERA

The proton (uud) is not an elementary particle. The mass of the proton is much
larger than the mass of the quark constituents. The most appropriate possibility to
investigate the proton structure is to collide the proton with an ”elementary” particle:
the photon, electron or the positron.

HERA (Hadron-Elektron Ring Anlage) [7] is the first lepton-nucleon collider. The
lepton beam at HERA has an energy of 27.5 GeV and the proton beam 920 GeV.

8In this analysis by D∗-meson are understood both charged mesons D∗±. The conjugate charge
channel is: D∗− → D0π−

s → K+π−π−
s .
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Figure 1.4: The SU(4) representations.

The center of mass energy is
√

s ≈ 318 GeV. A detailed description of HERA and a
presentation of the H1 detector can be found in Chapter 2.

In leading order, the ep scattering is mediated by the exchange of a gauge boson
between the incoming lepton and a quark in the proton. The exchanged boson can be
either neutral - γ or Z0, a neutral current (NC : ep → eX) process, or charged - W±,
a charged current (CC : ep → νX) process as indicated in Fig.1.5.

The HERA event kinematics can be described using the following Lorentz invariant
variables:

Q2 = −q2 = −(k − k’ )2;

x =
Q2

2P · q ; y =
P · q
P · k . (1.1)

In the Eq. 1.1 the four-momenta of the incoming lepton is denoted by k and that of
the scattered lepton by k’ . The four-momenta of the proton is marked with P , and
Q2 is the squared four-momentum transfer from the lepton to the proton.

The variables x and y are called Bjorken variables. If one neglects the proton and
the electron mass, the following relation can be written:

Q2 = s · x · y, (1.2)

where s = (k +P)2 ∼= 4EeEp is the center of mass energy with Ee and Ep the electron9

and the proton beam energy, respectively.
The energy of the boson - proton center of mass is equal to the invariant mass W

of the hadronic final state with:

W 2 = (q + P)2 = Q2

(
1
x
− 1
)

+ m2
p = ys − Q2 + m2

p. (1.3)

9Here and later the electron name will be used also for the positrons e+ beam.
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The high Q2 events
were seen as one of the
main goals in the ep col-
lisions. The reason for
this was to achieve a
high resolution to inves-
tigate the proton struc-
ture. This resolution
depends linearly on the
de Broglie wave length
λ = h/|qt| where the
qt is just the transverse
momentum of the

Xp

x P.

−+

Xp

x P.

νee

p

W

e’
e

γ

p

Z0

NC CCa) b)

Figure 1.5: The Feynman diagrams of the ep scattering:
a) neutral current (NC), b) charged current (CC).

exchanged boson
√

Q2. In the end, many interesting physics phenomena proved to be
at low Q2. The physics at low Q2 can be split in two parts.

The regime where Q2 → 0 GeV2 is called photoproduction because a quasi-real
photon is produced.

For the Q2 > 1 GeV2, the regime is called deep (Q2 > m2
p) inelastic (W 2 > m2

p)
scattering (DIS). The analysis presented in this thesis is focused on DIS events with
2 < Q2 < 100 GeV2. Details of the kinematic cuts applied in this analysis can be
found in Chapter 3.

The cross-sections of the NC and CC are given by:

d2σe±p
NC

dxdQ2
=

2πα2

x

[
1

Q2

]2
φ±

NC(x,Q2); (1.4)

d2σe±p
CC

dxdQ2
=

G2
F

4πx

[
M2

W

Q2 + M2
W

]2
φ±

CC(x,Q2), (1.5)

having the structure function terms [8]:

φ±
NC(x,Q2) = Y+F̃2(x,Q2) − y2F̃L(x,Q2) ∓ Y−xF̃3(x,Q2); (1.6)

φ±
CC(x,Q2) = Y+W̃2(x,Q2) − y2W̃L(x,Q2) ∓ Y−xW̃3(x,Q2), (1.7)

where the inelasticity dependence is contained in Y± = 1 ± (1 − y)2. The generalised
structure functions are F̃2, F̃L, xF̃3 for NC and W̃2, W̃L, xW̃3 for CC. One can see
from the Q2 dependence of the two cross-sections that for low Q2 the CC process
is strongly suppressed due to the M2

W /(Q2 + M2
W ) term. The longitudinal structure

function F̃L contributes significantly at high y.
The F̃2 and xF̃3 can be written also as:

F̃2 = F2 − ve

[
κwQ2

(Q2 + M2
Z)

]
F γZ

2 + (v2
e + a2

e)
[

κwQ2

(Q2 + M2
Z)

]2
FZ

2 ; (1.8)

xF̃3 = − ae

[
κwQ2

(Q2 + M2
Z)

]
xF γZ

3 + (2veae)
[

κwQ2

(Q2 + M2
Z)

]2
xFZ

3 , (1.9)

were:

ae = T3e; ve = T3e − 2ee sin2 θw;
aq = T3q; vq = T3q − 2eq sin2 θw; κw = 1/(4 sin2 θw cos2 θw)
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with the weak isospin T3 = ±1/2 and θw - the Weinberg angle. MZ is the mass of the
Z boson.

The NC generalised structure functions are composed of five structure functions
which describe the Z0 exchange, the γ exchange and the γZ0 interference. The NC
cross-sections can be written using the dominant contributions as:

d2σe±p
NC

dxdQ2

 2πα2

x

{
1

Q4
Y+F2 + a2

eκ
2
w

[
1

Q2 + M2
Z

]2
Y+FZ

2

∓ 2aeκw

[
1

Q2(Q2 + M2
Z)

]
Y−xF γZ

3

}
. (1.10)

In the quark parton model (QPM), the F2 and FZ
2 structure functions are related

to the sum of the quark and antiquark densities as:

F2(x,Q2) = x
∑

q

e2
q · (fq/p(x,Q2) + fq̄/p(x,Q2)) (1.11)

FZ
2 (x,Q2) = x

∑
q

(v2
q + a2

q) · (fq/p(x,Q2) + fq̄/p(x,Q2)) (1.12)

and the xF γZ
3 structure function is sensitive to the difference between the quark and

antiquark densities as:

xF γZ
3 (x,Q2) = x

∑
q

2eqaq · (fq/p(x,Q2) − fq̄/p(x,Q2)), (1.13)

where vq and aq are the vector and the axial-vector couplings of the quarks, respectively,
and eq is the quark charge. The sum is over all quark flavours q in the proton. The
quark density fq/p(x,Q2) is giving the probability to find a quark with the flavour q
and the momentum x at a scale Q2 in the proton. The analogous statement for the
antiquark density also applies.

1.2.2 Charm Production at HERA

For Q2 < 100 GeV2, due to large mass of the Z0 exchange boson, the contribution of
FZ

2 and xF γZ
3 related terms in the cross-section is strongly suppressed. Taking this

approximation into account and that the FL contribution is predicted to be negligible
for y not too large, the NC cross-section can be written as:

d2σe±p
NC

dxdQ2

 2πα2

xQ4
· (1 + (1 − y)2

) · F2(x,Q2). (1.14)

The charm cross-section in ep collisions in DIS is related to the charm contribution
F c

2 of the inclusive structure function F2 as follows:

d2σep→e′cX

dxdQ2

 2πα2

xQ4
· (1 + (1 − y)2

) · F c
2 (x,Q2,m2

c). (1.15)

The structure function F c
2 (x,Q2,m2

c) contains the convolution of the partonic hard
cross-section σ̂γ∗i and the parton distribution of the proton fi/p at a scale:

μ2
F = Q2 + m2

c ,
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where the proton is probed. The type of the parton out of the proton, most of the time
a gluon, is indicated with the index i. The structure function F c

2 can be expressed as:

F c
2 (x,Q2) =

∑
i

∫ zmax

zmin

dz

z
eq fi/p

(x

z
,Q2, μF

)
F̂i(z,Q2, μF )) (1.16)

with z being the momentum fraction of a gluon after emitting another parton, having
the upper limit at zmax = Q2/(ŝ + Q2) and the lower limit zmin = (Q2 + 4m2

c)/Q
2,

and where:

F̂i(z,Q2, μF ) =
Q2

4π2α

(
σ̂T

γ∗i(ŝ, Q
2, μF ) + σ̂L

γ∗i(ŝ, Q
2, μF )

)
. (1.17)

Here ŝ is one of the Mandelstam variables. The σ̂γ∗i are the hard parton cross-section
for transversely and longitudinally polarised photons10.

At HERA charm production covers mainly the μ ≈ mc regime. The extremes like
small x or high energies can be also reached. In the dominant HERA regime where the
partonic collision energy is close to threshold and x is moderate, the charm quarks are
treated as heavy objects (the mass is taken into account) which do not occur inside the
proton. For this regime the dominant production mechanism is the flavour creation
usually called the boson gluon fusion process (BGF) and is depicted in leading order
(LO) in Fig. 1.6.

In the regime where the initial colliding particles have a high center of mass energy
(high energy scale μ2 � m2

c) and a moderate x, the mass of the charm quark can be
neglected in comparison to μ and the charm quark is part of the proton and can be
described in a similar way as the light quarks. In this regime the dominant production
mechanism is the so-called flavour excitation, where the charm quark is an active
flavour in the proton.

In the small x regime, the terms ln(1/x) are becoming large and small x resum-
mation is needed. This resummation is performed in the BFKL [9] and CCFM [10]
evolution models11 but not in the DGLAP [11] one. The charm quark treatment is
similar to the one for μ ≈ mc and the moderate x regime.

The incoming lepton interacts
with a gluon from the proton via the
virtual photon γ∗ and a cc̄ pair is pro-
duced. The charm quark is treated
as a particle with mass and the cross-
section calculation is done in the mas-
sive scheme.

Another charm production mech-
anism is pair production via gluon
splitting g → cc̄. At HERA the con-
tribution from this mechanism is

c

c

γ*γ*

g
c

c

g

Figure 1.6: The BGF LO Feynman diagrams.

suppressed, because it is a higher order process in αs. At the pp̄ collider TEVATRON,
the process gg → gQQ̄ gives a sizeable contribution to the gg → QQ̄ ( here Q denotes
a heavy quark).

10More detailed explanations about parton distributions, scale, factorisation and evolution models
can be found in the Appendix A, and about Mandelstam variables in Appendix B.

11BFKL - Balitsky, Fadin, Kuraev, Lipatov; CCFM - Catani, Ciafaloni, Fiorani, Marchesini;
DGLAP - Dokshitzer, Gribov, Lipatov, Altarelli, Parisi. The different evolution models are presented
in the Appendix A.
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In LO the total cross-section for charm production in DIS at HERA has two com-
ponents [12]. One component is due to transversely polarised photons and can be
written as:

σT
γ∗g→cc̄ =

2π α e2
c αs(μ2)

ŝ + Q2

[
−
(

ŝ2 − Q4 + 4ŝm2
c − 8m4

c

(ŝ + Q2)2

)
ln
(

1 + β

1 − β

)

−
(

(ŝ − Q2)2 + 4ŝm2
c

(ŝ + Q2)2

)
β

]
(1.18)

and the second component is due to longitudinally polarised photons:

σL
γ∗g→cc̄ = 8π α e2

c αs(μ2) · Q2ŝ

(ŝ + Q2)3

[
β − 2m2

c

ŝ
ln
(

1 + β

1 − β

)]
(1.19)

where:

β =

√
1 − 4m2

c

ŝ
.

In order to calculate the hadronic cross-sections, one has to convolute the LO
partonic cross-sections with the corresponding LO parton densities.

The scale μ2 contributes mainly in the lowest
order αs and there is no physical criteria to choose
a certain scale. As a consequence, large varia-
tion of the cross-section are obtained for different
μ2 values. This strong dependence of the cross-
section on the scale can be reduced using the next
to leading order calculation (NLO). One can see
this effect especially for charm quark production,
which (at the threshold and for low Q2) provides
a small scale, and αs is relatively large. The NLO
calculations [13] make use of the virtual correc-
tions shown in Fig. 1.7 and the gluon radiation as
in Fig. 1.8. Including these new elements in the
calculation, one has to take into account also the
ultraviolet, the infrared and the collinear divergen-
cies. To remove the ultraviolet divergencies the
renormalisation prescription is used, loop contri-
butions cancel the infrared ones and the collinear
divergences are absorbed in the definition of the
parton densities.

In the small x regime, a resummation of the
ln(1/x) terms is performed using the BFKL and

Figure 1.7: Feynman diagrams of
the virtual corrections in NLO.

CCFM evolution models. In these models, the so-called kT -factorisation is used. The
cross-section of the hard interaction is calculated off-shell. The off-shell calculation
implies that the gluon out of the proton, which is part of the hard interaction, does
not loose its virtuality. Here the gluon density is unintegrated and depends on kT . A
comparison between the kT -factorisation model and the collinear factorisation is shown
in Fig. 1.9, where the dashed box illustrates the diagram part which is calculated. In
the kT -factorisation some terms of NLO, NNLO are also incorporated.



10 Chapter 1 Theoretical Basis

The transition of the coloured charm quarks into colourless hadrons is called frag-
mentation. The coupling constant rises strongly at large distances, reducing the ap-
plicability of perturbative calculations. Thus for the study
of fragmentation, only phenomenological models are used
until now.

The inclusive cross-section for heavy hadrons produc-
tion is:

dσh(p) =
∑

i∈partons

∫ 1

0

dz

z
dσ̂i

(p

z
, μF

)
Dh

i (z, μF ) (1.20)

where p is the momentum of the parton and σ̂i is the hard
ep cross-section at the factorisation scale μF .

The Dh
i (z, μF ) is the fragmentation function and gives

the probability for an initial parton i to produce a hadron
h having the momentum fraction z at the factorisation
scale μF . For a certain hadron h, the function Dh

i is as-
sumed to be independent of the hard scattering process,
the so-called universality of the fragmentation process.

Figure 1.8: Feynman dia-
grams of the gluon radia-
tion corrections in NLO.

This assumption is partially sustained by the reasonably agreement between dif-
ferent experimental results from ep and e+e− collisions.

The fragmentation function part can
be split into a perturbative part, Di, and
a non-perturbative one, DH , as follows:

Dh
i (z, μF ) =

∫ 1

z

dx

x
Di(x, μF )DH

( z

x

)
.

(1.21)
The Di includes the transition from

the quarks produced at the scale μF to
the quarks on their mass shell via gluon
radiation. In Monte-Carlo generators
Di is described perturbatively via par-
ton showers.

The DH function describes the non-
perturbative transition from the quarks
on mass shell to the hadrons.

For this, non-perturbative functions
as the Peterson fragmentation func-
tion [15] or the Kartvelishvili func-
tion [16] are used to describe the HERA
physics. These functions can be used in

Tk  = 0

NLO

Tk  = 0

LO

resolved
photon

Tk  = 0

Tk  = 0

kT − factorisation

a) b)

c) d)

Figure 1.9: The collinear factorisation
(kT = 0) vs. the kT -factorisation (kT �= 0).

independent fragmentation as well as in the Lund string model.
The independent fragmentation model assumes that a bound meson Qq̄ is created

when a qq̄ pair from the vacuum is formed as illustrated in Fig. 1.10 a) for a light u
quark. The quark with energy Eq fragments into a hadron with energy zEq according
to a distribution function f(z). The process is iterated until no energy to produce a
hadron is left. The baryons are obtained within this model from vacuum fluctuations
qqq̄q̄. While the independent fragmentation model provides a very rough description
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of data, it has several limitations: needs an ad hoc neutralisation of the colour and
flavour with the last quark, is not Lorentz invariant and has limitations for small z.

The DH fragmentation function is expressed in the Peterson model by the transition
amplitude P (Q → h) and the longitudinal phase space factor 1/z, where z = Eh/EQ.
The amplitude P (Q → h) can be written as P ∼ 1/(ΔE)2, where ΔE is the energy
difference between the initial and the final state:

ΔE = EQ − Eh − Eq ≈ m2
Q

2pQ

(
−1

z
− εQ

1 − z
+ 1
)

. (1.22)

The parameter εQ = m2
q/m

2
Q is usually called the Peterson parameter and is ad-

justed to describe the data.
The Peterson fragmentation function is written as:

DH
Q =

NA

z

1[
1 − 1

z − εQ

1−z

]2 . (1.23)

Another fragmentation function is the Kartvelishvili function:

DH
Q = NAzα(1 − z) (1.24)

with NA the normalization of the total probability for hadron formation to unity and
α a free parameter. The fragmentation parameters for charm, obtained from different
data and under various assumptions, have a large spread of values.

The Lund string model illustrated in Fig. 1.10 b) considers the colour field between
a qq̄ pair as one dimensional colour flux tube which is called a string. The energy of
the string is given by:

Estring = κ · r (1.25)

where κ ∼ 1 GeV/fm is the string tension constant or the energy density in the string
and r is the distance between the coloured quark q and antiquark q̄ .

u

d

s

u

d

u

s

π+

Κ0
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(1−z)(1−z’) z" E

q

q

 E

 z E
q

q

vacuum
fluctuation

tim
e

distance r

t

q q

until
Cut−off energy

b)
a)

Figure 1.10: The independent fragmentation model of Feymann and Field, a), and the
Lund string fragmentation model b).

When the string energy is large enough to produce a qq̄ pair, the string breaks up
the colourless qq̄ pair. The process is iterated with the new string until all available
energy is used to form hadrons. In this model the gluon, carrying two colour charges,
is always the end point of two strings. In a qq̄g configuration the gluon appears as a
kink in the colour connection between qq̄ pair. The string model does not suffer from
the defects of the independent fragmentation model mentioned above.
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Both models assume that in the fragmentation process only limited transverse
momenta are produced, usually parametrised with a falling exponential distribution in
p2
T with < p2

T >≈ 440 MeV2.

1.3 Jet Finders and Jet Shape Variables

1.3.1 Jet Finders

The observation of quarks as free particles is not possible due to their colour. The
quarks produced in the hard interaction, e.g. the BGF process, are fragmenting into
hadrons. Due to the limited transverse momenta they produce the so-called jets of
particles. These jets keep some of the kinematical characteristics of the corresponding
quark or gluon, even if they are relatively smeared. The reconstruction of these jets of
hadrons is done using jet algorithms. The resulting jets have to be well correlated in
momentum and angle with the quarks or gluons that produced them.

In 1975 was reported the first ev-
idence [18] of a jet structure in the
final state hadrons in e+e− collisions.
In this report the jet definition was
very intuitive and qualitative, namely
the jet was considered to be a ”large
amount of hadronic energy in a small
angular region”.

The e+e− collisions are charac-
terised by a pure electromagnetic ini-
tial state which creates a qq̄ pair via
the γ or Z0.

In an ep collision the initial state
contains soft radiation of the incom-
ing parton in the hard process. This
is an additional contribution to the
final state hadrons. Only a fraction
of the final hadrons can be associated
with the hard scattering process.

A jet definition should fulfill some
general rules such as to be collinear
and infrared safe, to be measurable in
the experimental analysis using the
hadronic final state as input, and
to be calculable order by order in
perturbation theory, to be as little
as possible sensitive to the effects of
hadronisation, to be insensitive to the
beam remnant, and to provide a good
correlation between the jet and the
corresponding quark in energy and in
angle.

p p

jet axis

p

Parton level

Hadron level

jet axis

R

R R

Figure 1.11: The cone type algorithm problem.

The collinear divergency in pQCD is due to the situation when two massless partons
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are emitted collinear. The infrared divergencies come from the partons which have a
very low energy. In a jet finder algorithm it is very important that the contribution of
these partons do not affect the jet observables.

The many jet algorithms which are existing can be classified into two large cate-
gories. One of them contains the cone-type algorithms which are based on the ideas of
Sterman and Weinberg [19]. The second category includes the cluster-type algorithms,
the first of which was introduced by the JADE collaboration [20].

The cone-type algorithm is based on finding a jet direction, a jet axis, for which
the amount of energy inside a cone with fixed radius R has a maximum. The cone
axis coincides with the jet one. The radius R is defined in a plane given by the
pseudorapidity η, which is invariant with respect to longitudinal boosts in the γ∗p-
frame:

η = − ln
[
tan

(
θ

2

)]
(1.26)

and the azimuthal angle φ. The definition of the radius R is:

R =
√

Δη2 + Δφ2. (1.27)

A known problem of the cone algorithm is the overlapping of two jets when the
distance between the jet axes less than 2R(η, φ). The jet finder should give a good
correlation between a hard parton and the corresponding jet on hadron level. In
Fig. 1.11, the case of a hard parton splitting into another two partons is presented.
At the hadron level two jets may be found, but at the parton level only one. This
result brings ambiguity in getting the kinematical properties of the hard parton. The
problem can be seen also the other way around, when at the parton level are indeed
two hard partons as the two partonic jets suggest, but the jet algorithm finds only one
at the hadron level.

The cluster-type algorithm is defined by: a separation variable dij , which decides
whether the parton or particle i and j are combined or not, using the relative transverse
momentum, and a recombination procedure. The recombination procedure defines how
partons or particles are to be combined and thereby how the jet variables are calculated.

The jet finder algorithm used in this analysis is the longitudinally invariant k⊥
cluster algorithm [21]. As in any jet finder, the input used is a list of partons, hadrons
or particle candidates at the detector level. These particles are described by their
transverse energy ET, i = |�pT, i|, pseudorapidity ηi and azimuthal angle φi.

The jets are found by the iterative k⊥ algorithm in the following steps:
1. a separation variable dij is defined for every pair of particles:

dij = min(ET, i;ET, j)2 · R2
ij (1.28)

with R2
ij = (ηi − ηj)2 + (φi − φj)2; for small opening angles R2

ij  1 and:

min(ET, i;ET, j)2 · R2
ij ∼ min(Ei;Ej)2 · θ2

ij ∼ k2
⊥, ij , (1.29)

where θij is the opening angle between the two particles and k⊥, ij is the transverse
momentum of the particle i with respect to particle j;

2. a similar quantity as the separation variable is defined for every particle with
respect to the beam:

di = E2
T, i · R2

0, (1.30)
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where R0 is a parameter of the k⊥ algorithm which can be steered; the meaning of R0

is similar to the jet radius R(η, φ) of the cone-type algorithm; the R0 value taken in
this analysis is 1. Choosing R0 = 1, the initial and final state radiation are treated on
the same footing;

3. find the minimum between dij and di:

dmin = min(dij , di);

4. if dmin = dij , the two particles i and j are merged together into a pseudopar-
ticle κ, which via the massless recombination procedure is described by the following
variables:

ET, κ = ET, i + ET, j (1.31)

and:
ηκ =

ET, i · ηi + ET, j · ηj

ET, κ
; (1.32)

φκ =
ET, i · φi + ET, j · φj

ET, κ
; (1.33)

5. if dmin = di, the particle i is considered a complete protojet ; particle i is added
to the output list and removed from the list of particles to be considered further.

Then the k⊥ algorithm returns to the first step considering now the already formed
pseudoparticles and the remaining particles. The iteration of the five steps stops when
only protojets are left. The protojets are ordered according to decreasing ET in the
output list. As jets are defined those protojets with an ET, protojet larger than a certain
threshold value:

ET, jet ≥ Emin
T . (1.34)

The invariant k⊥ algorithm is less affected by soft particles than the cone-type
algorithms. As a consequence the hadronisation and detector corrections are smaller.

The purpose of this analysis is to study the structure of charm jets and to identify
soft gluon radiation of the hard charm quark. A useful tool in this study is the k⊥
subjet finder algorithm.

The k⊥ subjet finder consists in re-running the usual k⊥ algorithm over the hadrons
belonging to a found jet with transverse energy ET using a resolution parameter ycut.
In contrast to the usual k⊥ algorithm, the subjet finder is stopped when all values of
dij obey the condition:

dij > ycut · E2
T. (1.35)

The protojets of this output list are called subjets.

1.3.2 Jet Shape Variables

The internal structure of quark jets is different from the one of gluon jets. The gluon
jets are found to be broader than the quark jets [22]. Furthermore the structure of
quark jets depends on the mass of the quarks and on their energy. A charm jet is
much broader than a light quark jet at the same ET, jet. Charm jets are broader at
lower energies than at higher energies. For the charm quark, the fragmentation into a
charm meson that can be experimentally reconstructed plays an important role.

In order to be able to characterize the internal structure of jets, the following
observables are proposed: the jet shape variables and the subjet multiplicity. The jet
shape variables are of two types: the integrated and the differential jet shape.
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Figure 1.12: The integrated jet shape variable a); the differential jet shape variable b).

The integrated jet shape variable 〈Ψ(r,R)〉 is defined as the average fraction of the
jet transverse energy inside an inner cone with radius r in (η, φ) space, concentric with
the jet axis as shown in Fig. 1.12 a):

〈Ψ(r,R)〉 =
1

Njets

∑
jets

Ejet
T (r)

Ejet
T (r = R)

, (1.36)

where Ejet
T (r) is the transverse energy within the cone with radius r. Njets represents

the total number of jets in the sample. R is the ”jet radius” for the k⊥ cluster algorithm
with the usual value of R=1. From the definition: 〈Ψ(r,R)〉 = 1. Narrow jets have
larger values of 〈Ψ(r,R)〉 for r < R compared to broad jets. For low r, the quantity is
sensitive to soft gluon emission and for large r to harder gluon emission.

The differential jet shape variable 〈ρ(r,R)〉 is defined as the average fraction of the
jet transverse energy between two concentric cones with the jet axis, having the radius
r and r + Δr respectively, as in Fig. 1.12 b):

〈ρ(r,R)〉 ≡ 〈dΨ
dr

〉 =
1

Njets

∑
jets

Ejet
T (r, r + Δr)

Ejet
T (r = R)

, (1.37)

with Ejet
T (r, r + Δr) being the transverse energy between the two cones. Narrow jets

compared to broad ones are characterised by large values of 〈ρ(r,R)〉 at small radius
r.

The subjet multiplicity nsbj is defined as the number of subjets obtained after the
k⊥ subjet finder is re-run over the hadrons of a certain jet for a specific resolution
parameter ycut. For a resolution scale ycut ∼ 1, the jet contains only one subjet, the jet
itself, nsbj → 1. If ycut → 0, every hadron from the Nhadrons within the jet is considered
a subjet and nsbj → Nhadrons.

The mean subjet multiplicity is defined as:

〈nsbj(ycut)〉 =
1

Njets

Njets∑
i=1

ni
sbj(ycut). (1.38)
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1.4 Gluon Emission from Heavy Quarks

For light quarks, the cross-section [23] of the e+e− → qq̄g process can be written as:

1
σ

d2σ

dx1dx2
= CF

αs

2π
x2

1 + x2
2

(1 − x1)(1 − x2)
(1.39)

where x1 = 2Eq/
√

s and x2 = 2Eq̄/
√

s are the energy fraction of the final state quark
and antiquark, respectively.

For heavy quarks and s-channel vector exchange the cross-section for e+e− → QQ̄g
can be written as function of the mass m of the quark:

1
σ

d2σ

dx1dx2
=

1
β

CF
αs

2π

[
2(x1 + x2 − 1 − 2γ)

(1 − x1)(1 − x2)
− 2γ

{
1

(1 − x1)2
+

1
(1 − x2)2

}

+
1

1 + 2γ
(1 − x1)2 + (1 − x2)2

(1 − x1)(1 − x2)

]
, (1.40)

where

β =
√

1 − 4γ, γ =
m2

s
≤ 1

4
. (1.41)

The phase space available for gluon emission is reduced due to the mass of the
heavy quarks. An intuitive illustration for the phase space boundary given by the
Eq. 1.40 can be seen in Fig. 1.13. The phase space boundaries are shown for different
quark flavours and energies in various collider types. If one approximates the cross-
section for ep collision, at HERA energies, Ec = 3 GeV and Eb = 9 GeV, where the
heavy quarks are produced close to threshold, a clear phase space suppression for gluon
emission can be seen. At LEP energies, Eb = 45 GeV, the heavy quarks behave as the
light quarks, and no suppression can be observed. For a 300 GeV t quark at LHC the
phase space suppression is clearly seen, but for a 1.8 TeV energy the t quark behaves
also like a light one. When γ → 0, the boundary becomes the massless quark triangle
with x1 = 1, x2 = 1 and x1 + x2 = 1. For γ → 1/4, the threshold of the heavy quarks,
the phase space is reduced to the point x1 = x2 = 1. The collinear divergencies in the
cross-section are regularised by the non zero mass of the quark. In Fig. 1.13 one can
see that the lines x1 = 1 and x2 = 1 are outside the phase space. There is an infrared
divergence for the case when the gluon momentum goes to zero, i.e. for x1 = x2 = 1.
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Figure 1.13: The phase space for different quark flavours in case of the radiation of a
gluon. The corresponding energies are presented in the text.
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The cross-section is suppressed near the phase space boundary, the region where the
soft gluons are approximately collinear with the heavy quarks. The suppression of soft
gluon emission is called the dead cone effect. This can be interpreted as a consequence
of the fact that the angular momentum conservation suppresses the emission, via a
helicity conserving interaction, of a gluon with spin 1 in the same direction as a quark
with spin 1/2.

For soft gluons, z = 1 − x1 + 1 − x2  1 and close in angle α to the direction
of the heavy quark with γ  1, the differential cross-section from Eq. 1.40 can be
approximated with:

1
σ

d2σ

dzdα2
≈ CF

αs

π

1
z

α2

(α2 + 4γ)2
. (1.42)

The gluon radiation is suppressed in a cone with the angle:

α0 ∼ 2
√

γ =
2m√

s
=

m

E
(1.43)

with E the energy of the heavy quark. The direct dependence of the angle α on the
mass shows that the dead cone is broader when the mass of the heavy quark is higher.

1.5 The Dead Cone Effect: from ED to QCD

The theory of the dead cone effect in QCD is built on the analogy with electrodynamics
(ED).

In ED the role of the quark is taken by a
charged particle in motion. The γ radiation
of the moving charged particle has the role of
the gluon in QCD.

A charged particle in motion can be de-
scribed using the four-vector potential A4v(x),
the velocity V 4v(τ) and the position r4v(τ).
Here τ represents the proper time.

The world line of the particle r(τ) crosses
the light cone in only two points, one before
x0 and one after, as shown in the Fig. 1.14.

The time τ0 is defined by the light cone
condition:

[x − r(τ0)]
2 = 0 (1.44)

and the retardation requirement x0 > r0(τ0).

τ0r(   )

����

��
��
��
��

Time

Space

x
r(  )τ

later

earlier

world line

Figure 1.14: The world line of the par-
ticle r(τ).

The four-vector potential can be written as:

A4v(x) =
eV 4v(τ)

V · [x − r(τ)]

∣∣∣∣∣
τ=τ0

. (1.45)

The potentials from Eq. 1.45 are known as the Liénard - Wiechert potentials [24].
The light cone condition implies: x0 − r0(τ0) = |�x − �r(τ0)| ≡ R.

One can write the denominator of the Eq. 1.45 as:

V · (x − r) = V0[x0 − r0(τ0)] − �V · [�x − �r(τ0)] = γcR(1 − �β · �n), (1.46)
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where �n = (�x − �r(τ))/|�x − �r(τ)|, �β = �v(τ)/c and c the light velocity.
The noncovariant form of the potentials from Eq. 1.45 is:

Φ(�x, t) =

[
e

(1 − �β · �n)R

]
ret

; �A(�x, t) =

[
e�β

(1 − �β · �n)R

]
ret

; (1.47)

where the notation ret means that the potential is to be evaluated at the retarded time
τ0 given by r0(τ0) = x0 − R.

The moving charged particle fields that can be derived from the potentials are:

�B = [�n × �E]ret (1.48)

�E(�x, t) = e

[
�n − �β

γ2(1 − �β · �n)3R2

]
ret

+
e

c

[
�n × ((�n − �β) × �̇β)

(1 − �β · �n)3R

]
ret

(1.49)

The two fields can be split into velocity fields, not depending on acceleration, and
acceleration fields, which depend linearly on �̇β.

The energy emitted per solid angle unit and per time unit can be defined as:

dP (t′)
dΩ

= R2(�S · �n)
dt

dt′
(1.50)

with the Poynting vector �S:
�S =

c

4π
(�E × �B) =

c

4π
|Eacc|2�n. (1.51)

The Eq. 1.50 can be re-written taking into account
that Eacc is the acceleration component of the �E field:

dP (t′)
dΩ

=
e2

4πc

|�n × ((�n − �β) × �̇β)|2
(1 − �β · �n)5

. (1.52)

In the simplest case when the vectors �β and �̇β
are parallel, as illustrated in Fig. 1.15, the observed
energy at an α angle from the common direction of
velocity and acceleration vectors is:
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.
β
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R

α

Figure 1.15: The case of �β and
�̇β being parallel.

dP (t′)
dΩ

=
e2v̇2

4πc3

sin2 α

(1 − β cos α)5
. (1.53)

For small angles, sin α → α, and in the relativistic limit the angular distribution
can be approximated by:

dP (t′)
dΩ


 8
π

e2v̇2

c3

α2

(α2 + γ−2)5
(1.54)

with:
γ−1 = α0 =

me

Ee
, (1.55)

where Ee is the energy of the moving charged particle.
The suppression of the photon emission within a cone with angle α0 around the

moving direction of a charged particle is called the dead cone effect.



Sec. 1.6 The Monte Carlo Models 19

In analogy with ED, the dead cone effect can be derived in QCD. The Q → Q + g
cross-section [25] can be written as:

dσQ→Q+g =
αs

π
CF

(2 sin α/2)2d(2 sin α/2)2

[(2 sin α/2)2 + α2
0]2

dω

ω
· [1 + O(α0, ω)], (1.56)

where ω is the energy of the emitted gluon, and the heavy quark is treated relativisti-
cally: EQ � mQ and α0 ≡ mQ/EQ  1.

For the small angle approximation, the cross-section from Eq. 1.56 becomes:

dσQ→Q+g

dα
=

αs

π
CF

dω

ω

α3

(α2 + α2
0)2

(1.57)

with:
α0 = γ−1 =

mQ

EQ
. (1.58)

In Fig. 1.16, the angular depen-
dence αQ−g on mQ, as described
by Eq. 1.57, is shown. The angle
αQ−g is the α angle in Eq. 1.57.

One can observe that for a
quark mass of 1.4 GeV the glu-
ons are not any-longer radiated
close to the direction of the mov-
ing quark. A clear depletion of the
emitted gluons with respect to the
quark can be identified, the dead
cone effect.

This cross-section is calculated
for the case EQ � mQ. However
at HERA, the charm quarks are
produced close to threshold and
EQ � mQ. The Q → Q + g cross-
section in this case is calculated us-
ing different Monte Carlo models.

Figure 1.16: Representation of the gluon emis-
sion as described by Eq. 1.57.

1.6 The Monte Carlo Models

Monte Carlo (MC) generators are used to simulate the different physics processes and
also to determine the detector response.

The MC packages used in this analysis are RAPGAP [26], JETSET [27], HER-
WIG [28] and DJANGO [29]. Besides incorporating leading order (LO) matrix el-
ements, these MC models include parton showers in a coherent leading logarithms
approximation (LLA) as in HERWIG and RAPGAP, or based on the colour dipole
model, cascade parton shower, which are also available in RAPGAP. The fragmen-
tation is performed with the cluster fragmentation model in HERWIG and with the
Lund string model in RAPGAP. The Peterson parametrisation is used for charm quark
fragmentation in charm mesons. In the next lines, HERWIG and RAPGAP models,
which are used in charm jets studies of this analysis, are presented.
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HERWIG

The HERWIG12 generator is a general purpose MC program for hadronic processes
at high energy. The pQCD processes are calculated using LO matrix elements. The
heavy quarks are produced in ep collisions via the BGF mechanism. Colour coherence
effect between the initial and the final partons are taken into account.

In HERWIG a branching formalism based on an extension of the coherent LLA is
used to generate the parton showers. For parton showers a resummation of pQCD,
including all leading logarithmic terms and the dominant part of the sub-leading soft
and collinear gluon contribution, is performed. The main parameters in the parton
shower are ΛQCD and the shower cut-off Qi for the parton i: Qi = mi + Q0 where mi

is the mass of the parton i. Q0 is the virtuality cut-off. After the parton shower, the
gluons are split non-perturbatively into qq̄ pair.

The hadronisation is calculated in a cluster fragmentation model. The colour of
a quark is balanced by the colour of an antiquark close in phase space. This is the
mechanism to construct low mass colour neutral clusters. The hadrons are produced
in a two body cluster decay corresponding to phase space and spin constraints. The
transverse momentum of a hadron is a consequence of the cluster mass spectrum. The
coherence effects are also taken into account in the heavy hadron production.

RAPGAP

The MC generator RAPGAP was initially designed to generate diffractive events. The
diffractive events are characterised by a large rapidity gap, the name is coming from
rapidity-gap, which contains no final state hadrons. The developments of RAPGAP
ended up in a general purpose MC program for ep collisions.

The photon emission of the incoming and scattered electron are called QED ra-
diative effects. These effects are simulated with the HERACLES [32] event generator
which is interfaced with RAPGAP.

The inclusive cross-section for ep in DIS is calculated as in Eq. 1.14 using the struc-
ture function F2 given in terms of parton distribution functions in Eq. 1.11. Different
parametrisations of the parton densities in the proton used in F2 can be selected. The
CTEQ5L [31] proton structure function as implemented in the PDFLIB [31] is used in
this analysis.

For this analysis an important part of the RAPGAP MC is the parton shower
which, as in HERWIG, contains an implementation of the dead cone effect. The BGF
process generated uses the exact LO matrix elements for heavy quarks.

In the light quarks case, a pseudo dead cone effect appears at an invariant mass of
∼ 1 GeV. This is due to the fact that in the parton shower evolution an invariant mass
cut-off is applied with the default value of 1 GeV. Below this mass cut-off, the partons
are not assumed to radiate. This mass cut-off was tuned using e+e+ data. This is the
reason why in the RAPGAP MC, as well as in the experimental data, a pseudo-mass
level of ∼ 1 GeV is observed as shown in detail in Chapter 5. The pseudo-mass level
decreases for the light quarks in the same way as the mass cut-off. This behaviour is
not seen for the heavy quark case.

The fragmentation is done in RAPGAP using the Lund string model as imple-
mented in the JETSET package.

12HERWIG - Hadron Emission Reaction With Interfering Gluons.
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After the charm events are generated, the detector response needs to be simulated.
This simulation is done using the H1SIM package which is based on the GEANT [33]
program. The parameters used for the detector response are determined in test beam
measurements and are further tuned with ep data. The default simulation of the energy
response of the calorimeters is performed in H1FAST which uses a fast parametrisation
of the development of electromagnetic and hadronic showers.

The simulated events are passed to the reconstruction program H1REC which is
used also for the experimental data. H1SIM, H1FAST and H1REC are internal H1
program packages.
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Chapter 2

The H1 Detector at the HERA
Collider

The analysis presented here makes use of the experimental data taken with the H1
detector at the HERA collider. The HERA (Hadron-Elektron Ring Anlage) machine
is the first lepton-nucleon collider. There are four experiments at HERA, two of them
are colliding beam experiments, H1 and ZEUS, and the other two are fixed target
experiments, HERMES and HERA-B. The HERA-B experiment was closed in 2003.

2.1 The HERA Collider

The HERA ep collider is located at the DESY laboratory in Hamburg, Germany. The
HERA collider consists of two separate storage rings, one for leptons (electrons or
positrons), and one for protons, each of which has a circumference of 6.4 km. The
geometry of the collider and the pre-accelerators is shown in Fig. 2.1.
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Figure 2.1: The geometry of the HERA collider a) and its pre-accelerators b).

At HERA there are two 4π detectors H1 and ZEUS situated in the North Hall and
the South Hall, respectively. These two experiments are colliding beam experiments
with the interaction region inside the detectors. The results from H1 and ZEUS, when

23
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covering the same type of physics, can cross check one each other and, eventually, they
can be combined to obtain the best possible precision. The other two experiments are
using only one of the beams due to their fixed target design.

The HERA-B experiment made use of the proton beam halo from HERA. As fixed
target, wires made of C, T i or W were used to produce B-mesons. This experiment
was designed to observe and to measure CP -violation in the decays of B-mesons, like
B → J/Ψ + K0. The complex design delayed the experiment with respect to the
B-factories. Very good data were taken just at the end of the running period.

The HERMES experiment, still running at this time, has the study of the spin
structure of the nucleons as its special challenge. The beam used by HERMES is an
unpolarised or a longitudinally polarised electron beam and as target different gases,
polarised ones (H, D) or unpolarised ones (H, D, Ne, Kr, Xe) are used. To obtain
longitudinally polarised electrons spin rotators are needed, which rotate the naturally
transversally polarised electrons. The success of the spin rotators for HERMES insured
their installation also for collider experiments during the luminosity upgrade of HERA.

The electrons or positrons and the protons are starting to be accelerated in the
so-called pre-accelerators DESY II/III and PETRA before they are injected into the
HERA storage ring. The two beams are further accelerated in the HERA ring until
they reach their nominal values. The lepton beam at HERA has an energy value of
27.5 GeV. The energy of the proton beam was 820 GeV yielding a centre of mass
energy of

√
s 
 300 GeV. The first luminosity was delivered in summer of 1992 using

electrons. In August 1994 the electron beam was replaced by a positron beam. The
switchback to electrons was done in 1998 until mid 1999. The energy of the proton
beam was increased to 920 GeV in 1998 raising the centre of mass energy to

√
s 
 318

GeV. After new experience with electrons, positrons were used for the rest of 1999
and 2000 being a real success in delivered luminosity and data taking. After 2000 an
ambitious upgrade of the collider and the experiments was undertaken to increase the
delivered luminosity by a factor of three to four. After a difficult restart in 2002 with
positrons, HERA returned to good running conditions at the end of 2003 and in 2004.
From the fall of 2004 the electron beam was favoured and used also in 2005.

The design of the beams is to deliver up to 220 bunches with a bunch crossing
interval of 96 ns, corresponding to a 10,4 MHz rate, the so-called HERA-clock. The
bunches consist of about 1010 − 1011 particles. For background studies so-called pilot
bunches, which are non-colliding bunches, are used. The life time of the electrons is
about 6 hours and of the positrons 10 hours. The proton beam has a life time of at
least one or two orders of magnitude larger.

The life of HERA consists of two parts, before and after the luminosity upgrade,
with HERA I until the end of 2000 and HERA II starting from 2002.

2.2 The H1 Detector

The H1 detector is a 4π multi-purpose detector which was designed to measure the
momenta of charged particles and energy in ep collisions. In order to have the best
coverage in particle reconstruction of an ep event, the detector acceptance goes down
close to the beam pipes. Since the energy of the electron and of the proton beam are
substantially different, the design of the collider detectors is asymmetric as shown in
Fig. 2.2. The centre of mass system is shifted in the proton direction due to the higher
energy of the proton beam. The Liquid Argon (LAr) detector has therefore a higher
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granularity in the proton beam direction than in the central region or in the electron
beam direction.
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Figure 2.2: The H1 detector architecture.

The right-handed coordinate system of the H1 detector is oriented such that the
proton direction corresponds to the z-axis and the y-axis is normal to the plane of the
colliding beams as shown in the Fig 2.2. The origin of the H1 coordinate system is
at the nominal interaction point. The region with z > 0 is called the forward region.
The x-axis is oriented towards the centre of the HERA ring. The azimuthal angle φ is
defined with respect to the x-axis in the xy-plane. The polar angle θ is the angle with
respect to the z-axis. The forward region is defined also by θ → 0o and the backward
one by θ → 180o.

The H1 detector components are mounted around the beam axis. A super-conducting
coil is used to produce the magnetic field needed for the momentum measurement. The
tracking system and the LAr calorimeter are centred around the beam axis and inside
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the super-conducting coil. The amount of dead material was minimised in order to
have a proper calorimetric energy measurement.

A brief description of the H1 detector components follows starting from the inside.

The Silicon Tracker Detectors

The silicon tracker detectors are installed in the immediate vicinity of the beam
pipe. The central silicon tracker (CST) [34] was implemented partially in 1996 and
completed in 1997. The CST consists of two cylindrical layers of silicon sensors. The
inner radius is 5.57 cm and the outer radius 9.7 cm and the total length of 44.2 cm.
The CST covers the θ range 30o ≤ θ ≤ 150o. The inner layer is made out of 12 ladders
arranged around the z axis. Each ladder consists of 6 silicon sensors in the z-direction
with read-out electronics at both ends. The outer layer has 20 ladders.

A charged particle passing through the CST produces electron − hole pairs in the
pn junction of the silicon detector. The electrons and the holes are drifted to the inner
or outer side of the sensors due to the voltage applied between the two surfaces. On
the surface of the sensors strips are mounted which are used to read-out the deposited
charge. The strips are perpendicular to each other making possible the measurement of
the rφ-coordinate as well as the z-coordinate. The resolution achieved in rφ is σrφ = 12
μm. The z-resolution depends on the θ angle and reaches up to σz = 22 μm. A hit is
determined taking into account the sensor position and the two measured coordinates.
The CST hits are assigned to tracks and used to improve the track measurements in
the central jet chamber. The CST is used also for the determination of the B-mesons
secondary vertices. The background of the D∗-meson given by the secondary vertices
tracks, which are classified on the base of the CST information, is reduced.

The choice of silicon strip detection was governed by the occurrence of deep inelastic
events at low and high Bjorken x, which leave only the electron for detection as the
hadronic flow is occurring either extremely forward or backward, respectively. In these
events, contrary to the usual situation, the electron track alone determines the vertex
position.

The backward silicon tracker (BST) [35] is measuring the tracks in the angular
range of 162o ≤ θ ≤ 176o. The BST consists of eight planes of silicon detector discs
with 16 wedge shaped four inch wafers per disc. Due to its coverage an approximate
Q2 range between 2 and 100 GeV2 for the nominal vertex position can be measured.
The BST has a strip detector part, with circular strips of 48 μm, and a pad detector
part, with pads of about 1 cm2 size. The strip detector measures the θ angle of the
backward scattered particles.

The Tracking Detectors

The central tracking detector consist of two central jet chambers (CJC1 and CJC2),
two central z drift chambers, the inner (CIZ) and the outer one (COZ), and two
proportional chambers, an inner one (CIP) and an outer one (COP).

The jet chambers are measuring the momentum and the direction of the charged
particles using the ionisation process in a certain gas mixture. The resolutions achieved
are not as good as the ones from the silicon tracker detectors. The rφ-measurement
resolution is σrφ = 170 μm. The z-resolution is σz = 22 mm. The z-coordinate
measurement is improved using the z-chamber information. A resolution of σz =
260 μm is obtained for the CIZ and of σz = 200 μm for the COZ. A more detailed
description of the CJC and the complementary tracking chambers CIZ, COZ, CIP and
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COP can be found in the Sec. 2.3.
For the measurement of tracks in the forward region, the forward tracking detector

(FTD) is used. The FTD is made out of three so-called super modules. The modules
are almost identical and consist of three planar drift chambers, a forward multi-wire
proportional chamber (FWPC), a transition radiator and a radial chamber. The design
of the FTD makes possible a coverage in θ of 7o ≤ θ ≤ 25o, with an rφ resolution of
σrφ = 170 μm. The goal of the FTD is to have a momentum resolution of σp/p < 0.003
and an angular track resolution of σθ, φ < 1 mrad.

For this analysis, the FWPC component of the FTD is used. It consists of three
layers of concentric cathodes separated by two layers of dense parallel wires and which
are perpendicular to the beam line having an y orientation. The proportional chambers
provide signals within less than ∼ 20 ns making the FWPC a useful forward trigger
device.

The backward drift chamber (BDC) is mounted in front of the ”spaghetti” calorime-
ter (SpaCal). The BDC consists of eight octants, each octant having four double layers
of drift chambers along the negative z-direction. The wires of the chambers are ori-
ented perpendicular to the beam pipe such that the drift direction is almost radial.
The double layers are rotated by 11.5o with respect to each other, making possible
the measurement of the azimuthal angle φ. The purpose of the BDC detector is to
provide an accurate θ and φ angles measurement of the scattered electron, as well as to
discriminate between energy clusters in the electromagnetic part of the SpaCal due to
electrons and photons. The angular coverage in θ is 155o ≤ θ ≤ 175o. The resolution
of the BDC in the xy plane is σx, y = 1 mm.

The Calorimeters

A liquid argon calorimeter (LAr) is surrounding the central and the forward track-
ing detectors. It is used to identify electrons, photons and muons, and to measure the
energy depositions. The calorimeter consists of an inner electromagnetic part (EMC)
and an outer hadronic part (HAC). The HAC covers the angular range 4o ≤ θ ≤ 135o

while EMC has an extended coverage in the backward direction up to θ ≤ 153o. A
detailed presentation of the LAr can be found in Sec. 2.4.

The plug calorimeter (PLUG) was designed to cover the gap of acceptance for the
energy flow measurements between the forward part of the LAr and the beam pipe.
The angular opening of the PLUG is 0.6o ≤ θ ≤ 4o. The PLUG information can
be used to minimise the missing part of the total transverse momentum due to the
hadrons emitted close to the beam pipe. The PLUG calorimeter consists of 9 copper
absorber plates interleaved with 8 sensitive layers of detectors [37]. The PLUG is used
for diffractive physics in order to veto events which have no rapidity gap.

The SpaCal consists of an electromagnetic and a hadronic section. The SpaCal
covers the backward region, having a range in polar angle of 153o ≤ θ ≤ 177.5o. The
main purpose of this calorimeter is to measure the energy and the angle of the scattered
electron or positron. The SpaCal is discussed in more detail in Sec. 2.5.

The Solenoid

The superconducting solenoid produces an uniform and longitudinal magnetic field
of 1.15 T in the H1 detector. It encapsulates the LAr and the tracker detectors.



28 Chapter 2 The H1 Detector at the HERA Collider

The Muon System

The muon system is made of two subdetectors covering the central region (CMD)
and the forward region (FMD). The CMD consists of limited streamer tubes (LST),
which are installed in the slits of the iron return yoke of the solenoid. The goal of the
CMD is to measure the penetrating tracks of the muons. The same technology is used
by the tail catcher (TC) to measure hadronic energy leaking from the LAr and SpaCal.
The CMD is divided into four regions: the forward and the backward barrel covering
the range 33o ≤ θ ≤ 137o, and the forward and the backward end-cap with the angular
acceptance of 6o ≤ θ ≤ 33o and 137o ≤ θ ≤ 172o, respectively. Each of these parts of
CMD is made of 16 modules. Each module consists of 10 iron plates with a thickness
of 7.5 cm in the radial direction for the central barrel and in the z-direction for the
end-cap region. In every slit of the iron, one layer of LST is located. Between the
fourth and the fifth iron layer two LST layers are located. In front and behind the
instrumented iron are installed muon boxes, each of them with 3 LST layers. These
muon boxes are used to improve the muon track measurement.

The muon chambers are filled with a gas mixture of Ar/CO2/CH4 in proportion of
92.5/5/2.5. The momentum and the direction of the penetrating muons are measured
via gas ionisation. The resolution of the position measurement given by the wires is up
to σwire = 3 − 4 mm. The resolution for the strips hits is about σstrip = 10 − 15 mm.
The barrel polar angular resolution is σθ = 15 mrad and for φ is σφ = 10 mrad. The
track segments found are fitted using a straight line, and the curvature is obtained
connecting several track segments. The track reconstruction is completed including
the strip information and taking into account energy losses of at least 80 MeV, and
the fact that the magnetic field can vary.

The FMD is a spectrometer consisting of a toroid magnet between double layers
of drift chambers at both sides. It covers an angular range of 3o ≤ θ ≤ 17o. For a 5
GeV momentum muon, the momentum resolution is about 24%, deteriorating to 36%
for a 200 GeV muon.

The Time of Flight and the Veto System

The time of flight system (ToF) consists of scintillators located at both ends of
the detector down to the beam pipe. These scintillators are used to reject the beam
induced background in the H1 detector. There are several ToF counters. The forward
ToF (FToF) is located at z ≈ 7 m. The plug ToF (PToF) is installed in the PLUG
region at z ≈ 5.3 m. The backward ToF (BToF) is situated at z ≈ −3.3 m.

The H1 detector has also a veto-wall system, the outer and the inner veto wall.
The outer veto wall is installed at z = −6.5 m. The inner veto wall is located at
z = −8.1 m. The area covered by the inner veto wall is the near beam area 110 × 90
cm2 down to a radius of 11 cm. A background event is rejected if the event arrives
out of time with respect to the bunch crossing or if the determined z-position of the
ep interaction point is not in the allowed region.

The Luminosity System

The luminosity system is designed to measure the luminosity via the Bethe-Heitler
process ep → epγ. The Bethe-Heitler process has a large and accurately calculable
cross-section. The luminosity determined online is needed by the HERA machine group
to steer the electron beam.
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The luminosity system consists of the photon detector (PD) at z = −103 m and the
electron tagger at z = −33 m (ET33). The ET33 measure the energy of the scattered
electrons with θ 
 180o.

The instantaneous luminosity can be defined as:

L =
Rtot − (Itot/I0)R0

σvis, BH
, (2.1)

where Rtot is the total rate of bremsstrahlung events, and R0 is the rate of bremsstrahlung
events coming from the electron pilot bunches. The corresponding electron currents
are Itot and I0. The Bethe-Heitler cross-section, σvis, BH , is corrected with respect to
acceptance and trigger efficiency.

The main source of background for the Bethe-Heitler process is the electron in-
teraction with the residual gas in the beam pipe eA → eAγ. An estimation of this
background contribution can be obtained using the event rate from the electron pilot
bunches. More about the luminosity measurement can be found in [38].

In the next section the H1 detector components which are primarily used in this
analysis are presented. A more detailed description of the H1 detector can be found
in [39] and of some of its components in [37].

2.3 The Central Jet Chambers

The central jet chambers are two coaxial cylinders situated along the beam axis and
covering in the z-direction the range -1.1 m ≤ z ≤ 1.1 m. The chamber closest to the
beam pipe is the CJC1, with an inner radius of 20.3 cm and an outer one of 45.1 cm.
With these geometrical dimensions the CJC1 covers the θ range 11o ≤ θ ≤ 169o. The
angular coverage of the outer chambers CJC2 is 26o ≤ θ ≤ 154o due to its inner radius
of 53.0 cm. The outer radius of the CJC2 is 84.4 cm. The CJC1 is filled with the gas
mixture Ar/CO2/CH4 in proportion of 89.5/9.5/1. The CJC2 gas mixture is Ar/C2H6

in 50/50 proportion.
The structure of the

CJC1 consists of 30 cells,
each of them containing 24
sense wires. The CJC2
is made out of 60 cells
with 32 sense wires each.
The wires are parallel to
the z direction and dis-
placed in 24 radial layers
in φ, as can be seen in
Fig. 2.3. The drift field
is formed using cathode
wires which separate the
sense wires in φ. The jet
chambers have the wires
arrangement such that the
drift field and the gas am-
plification can be adjusted Figure 2.3: The (x, y) plane wire structure of the CJC .
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almost independently. The cells of the jet chambers are tilted by 30o with respect to
the radial direction. This tilt of the cells allows the charged particles passing through
the CJC to cross a large amount of sensitive wires. In this way a large number of
cells are hit and their information can be used for the track reconstruction. The more
cells are used, the better the reconstruction is. Furthermore, one can avoid this way
the drift chambers ambiguities, the so-called mirror tracks made out of mirror hits
which connect wrongly track segments. Another advantage of the tilt is an almost full
compensation of the angle between the electrical field and the electron drift direction
given by the magnetic field, the so-called Lorentz angle.

The charged particles traversing the chamber ionise the gas molecules. The field
between the cathode wires and the sense ones is almost uniform. The electrons drift
velocity is approximately constant. Close to the anode wires the electric field is pro-
portional to 1/r, the electron at the distance r from the sense wire gains energy which
is sufficient to produce secondary ionisations. The avalanche caused by the charged
particle deposit the charge on the sense wires from where is measured and read out.

Every hit of such charged particle is determined using the drift distance and the
z coordinate. The hits are assigned to tracks and a helix trajectory is fitted for each
track, as it is described in Appendix C.

The drift chamber information about the energy loss per distance dE/dx can be
determined from the total collected charge on a sense wire. The particle type can
be found in terms of probability using the Bethe-Bloch formula [40] which gives the
dependence of the velocity β with respect to the energy loss.

In order to improve the resolution in the z direction, two additional chambers are
used. The inner (CIZ) and the outer (COZ) z chambers have their wire perpendicular
to the z direction. The track momentum measurement is improved including the CIZ
and COZ informations. An additional fit of the track is performed when the track
elements of the z chambers are established.

Another two chambers are complementary to the main tracking system but do not
influence the final track measurement. The inner (CIP) and the outer (COP) propor-
tional chambers are used in combination with FWPC to provide a fast information
about the z vertex position which is used in the level 1 of the trigger system. The
wires of these chambers are parallel to the z axis. The two detectors consists of two
pads layers delimited by three concentric cylinders. The two CIP chambers are tilted
by π/8 in φ with respect to the COP ones, together giving a 16 segments φ structure.

2.4 The Liquid Argon Calorimeter

The main calorimeter of the H1 detector is the liquid argon calorimeter (LAr) [37]. By
design the LAr was supposed to measure the scattered electrons in events with high
Q2 and to measure also the energy of jets in the final state. The LAr is one of the
most stable components of the H1 detector which reached and maintained its designed
performances. The coverage in the θ angle is of 4o ≤ θ ≤ 154o, which corresponds to
an η range of 3.35 ≥ η ≥ −1.43. In azimuthal angle the LAr is fully hermetic. The
LAr consists of two parts: the electromagnetic calorimeter (EMC) and the hadronic
calorimeter (HAC), which are contained within a single cryostat.

A longitudinal section of LAr can be seen in the Fig. 2.4 a). The LAr is located
within the solenoid in order to reduce the amount of dead material that a particle has
to pass through before it reaches the calorimeter. The LAr is made of 8 wheels in η,
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and each of them is divided in octants in φ, as one can see in Fig. 2.4 b). The most
backward wheel has only an EMC.

x

y

a) b)

Figure 2.4: The Liquid Argon calorimeter; a) longitudinal and b) transversal section
in the central region.

The LAr is a sampling calorimeter constructed from plates of absorber material
separated by gaps filled by the sampling material, the liquid argon. A high voltage is
applied across the gaps and the readout pads are grounded. A particle which passes
through the calorimeter is producing a particle shower. The electromagnetic particles,
electrons or photons, interact via the bremsstrahlung and pair production processes.
Hadronic particles interact via elastic and inelastic scatterings with the nuclei of the
material. The secondary particles which are produced are also interacting further,
thus leading to a cascade process resulting in a shower of particles. The energy of the
shower is sampled by the liquid argon. The argon atoms are ionised by the charged
particles of the shower. The number of ions is proportional to the shower energy. The
produced charge is collected at the electrodes and readout. The EMC is made from
2.4 mm thin lead plates with gaps between them of 2.35 mm thickness. The HAC has
steel plates of 19 mm with gaps of 4.8 mm in between. The electrons and the photons
lose almost all their energy in the layers of EMC, while the hadrons are absorbed in
the thicker plates of the HAC.

The EMC has a total thickness which varies from 30 radiation lengths in the forward
direction to 20 radiation lengths in the backward direction. The readout of the EMC
includes 30784 channels and the HAC readout involves 13568 channels. The HAC has
a total thickness of 8 interaction lengths in the forward direction and 5 interaction
lengths in the central barrel. A very important achievement in the maintenance of the
LAr is to keep the number of the noisy (dead) channels around the per mill level, 40-50
channels. The channels of the LAr are combined into 256 trigger towers. The summed
energy of each tower is used by the LAr triggers. The LAr granularity is optimised to
have an almost uniform segmentation in η and φ. This type of segmentation makes an
easier noise reduction possible. The fine granularity is also used to distinguish between
electrons and hadrons, i.e. based on their different shower shapes.

The LAr is non-compensating, the response to electromagnetic and hadronic parti-
cles is different. At the same particle energy, the deposited energy in the liquid argon
is on average ∼ 30% less from hadrons than from electrons. This energy of hadronic
particles is lost due to nuclear excitations or break-up in the absorber. In order to
compensate for this loss, the energy of the hadronic clusters is corrected during the
reconstruction.

Beam tests at CERN and DESY [41] were done in order to measure the energy
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resolution of the LAr. The EMC has an energy resolution for electrons of:

σE

E
=

(11.5 ± 0.5)%√
E/GeV

⊕ (1.0 ± 0.1)%. (2.2)

The energy resolution for hadrons in the HAC is:

σE

E
=

(50.7 ± 0.7)%√
E/GeV

⊕ (1.6 ± 0.1)%. (2.3)

2.5 The Spaghetti Calorimeter - SpaCal

At the start, the H1 detector included in the backward region (−z) a conventional
electromagnetic lead scintillator sandwich
calorimeter (BEMC) [37]. It provided a
coverage in squared four-momentum trans-
fer of 5 ≤ Q2 ≤ 100 GeV2. To improve the
acceptance towards lower Q2 and thereby
allow access to the proton structure func-
tion at low x, the BEMC was replaced in
the winter shut down of 1994/1995 with
a spaghetti calorimeter (SpaCal) [42], see
Fig. 2.5 a). The name spaghetti derives
from using scintillating fibers in an ab-
sorber. With this upgrade the angular cov-
erage was extended down to the beam pipe
from 151o ≤ θ ≤ 176o for the BEMC to
153o ≤ θ ≤ 177.5o for the SpaCal. This al-
lows to access Q2 values down to 0.4 GeV2

and x values down to 10−5. In comparison
with the BEMC, the SpaCal detector has a
better granularity and an improved electro-
magnetic and hadronic energy resolution.

The SpaCal consists of two parts: an
electromagnetic part (EM) and a hadronic
(HAD) part. Both parts, EM and HAD,
have the same spaghetti type technology,
using scintillating fibers embedded in lead.
When a particle hits the calorimeter, sec-
ondary particles are produced in the inter-
actions with the lead atoms. This kind of
process leads to a particle shower. The en-
ergy of the secondary particles is measured
in the scintillating fibers. The position and

a)

b)
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Figure 2.5: The SpaCal; a) longitudinal
and b) transversal section.

the energy of the primary particle are determined combining the energy and the spatial
distribution of the secondary particles.

The granularity of the SpaCal detector is given by 1192 electromagnetic and 136
hadronic cells. For the EM part of the SpaCal, 2 cell modules having 52 lead matrices
are used. The cross-section of one cell is 40.5 × 40.5 mm2 and there are 2340 fibers
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collected at the cell end and readout by a single photomultiplier. The readout is done
after the scintillation light is mixed using an acrylic light mixer. Eight 2 cell modules
are grouped together to a 16 cell module as can be seen in Fig. 2.5 b). The orientation
of the 2 cell modules within the 16 cell one is done such that the channeling effect
is minimised. The channeling effect shows the degradation of the energy resolution,
which occurs when the fibers or the lead sheets are aligned with the particle trajectory.

The HAD part of the SpaCal has cells of the size 119.3 × 119.3 mm2. They are
made of 65 lead plates, each with 54 fibers. The EM and the HAD parts have an active
length of 25 cm each. This active length corresponds to 27.8 radiation lengths for the
EM and 29.4 for the HAD part of the calorimeter.

Test beam measurements performed at CERN and at DESY [43] concluded that
the energy resolution of the EM section of the SpaCal is for electrons:

σE

E
=

(7.1 ± 0.2)%√
E/GeV

⊕ (1.0 ± 0.1)%. (2.4)

From the SpaCal operation in the H1 detector studies of the energy spectrum of
the scattered electron showed at the kinematic peak (27.5 GeV electrons) an energy
resolution of 1% and for scattered electrons of 7 GeV a resolution of 2.5%.

For the HAD part of the SpaCal the hadronic energy resolution is:

σE

E
=

(56.0 ± 3.0)%√
E/GeV

⊕ 7%. (2.5)

The good resolutions in energy and polar angle of the scattered lepton are funda-
mental for a precise measurement of Q2 and y using the electron method described in
Chapter 3. The fine granularity of the EM section gives a polar angle resolution of
σθ = 2 mrad.

2.6 The H1 Trigger System

The electron and proton bunches are colliding every 96 ns at HERA which corresponds
to a frequency of 10.4 MHz. From the crossing bunches only a small amount out of
∼ 100 kHz gives an ep reaction. One frequent problem in a collider experiment is that
the background processes have a rate several orders of magnitude higher than the ep
events of interest. One can identify as a main source of background the collisions of
the beam protons with the rest gas atoms within the beam pipe, the so-called beam-gas
background. Another source of background is coming from the off-orbit protons that hit
the accelerator or the detector components producing beam-wall background events. In
addition to these major contributions, cosmic muons and synchrotron radiation make
the background rate higher.

The short time interval of only 96 ns between two bunch crossings makes the
readout of the whole detector information for each bunch crossing not possible. It
would make the dead time too high. In order to minimise the dead time, a trigger
system is used. The trigger system needs to take a decision whether an event is of
interest to be readout in the shortest possible time. The trigger system needs to be
highly efficient in discriminating interesting ep events from background or to be able
to reduce the rate of the events which have a too high rate.

The H1 trigger system has a four level structure as can be seen in Fig. 2.6. The
input rate is about 100 kHz at the first level (L1) and is reduced to 50 Hz at the fourth
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level (L4). The amount of time available for a decision to be taken increases from 2.4
μs on L1 to 100 ms on L4.

Level One Trigger - L1

The detector information of every bunch crossing is stored in buffers, the so-called
pipeline, due to the time needed to have trigger information available from all detector
components. The storage of the detector information in the pipeline avoids dead time
until L1 decision is made.

The length of the pipeline is 2.4 μs (25
bunch crossings), thus giving the time limit
for a L1 decision. In case of a decision to
keep the event, the pipeline is stopped and
the dead time starts. The L1 decision is
mainly given by certain trigger signals of
the detector components, the so-called trig-
ger elements (TE). There are 208 TE used
out of 256 available possibilities. The TE
are logically combined into 128 subtriggers
(ST). If at least one of the ST accepts an
event, then the trigger decision is positive.
Depending on the background conditions,
a ST can be prescaled in order to get an
acceptable rate. A prescale factor n would
mean that only every nth event that gives a
positive trigger decision is accepted by L1.
The first trigger level reduces the rate from
100 kHz to 1 kHz, the input rate for the
next trigger level.

Level Two Trigger - L2

If the L1 decision is positive, the event
passes to the second level of the trigger sys-
tem (L2). L2 makes use of two systems, the
neural networks (L2NN) and the topologi-
cal triggers (L2TT), in order to reduce the
rate. The time for a L2 decision is 20 μs.
If L2 gives a negative decision, the readout
is stopped and the L1 pipelines are cleared
and can again store detector signals. If a
L2 positive decision is taken, the detector
read out starts. From the 1 kHz input rate

50 Hz

50 Hz

time

0.02 ms

200 ms

L2

L3

L4

0.002 ms

offline

100 kHz
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topologies
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raw data
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Figure 2.6: The H1 Trigger System.
L2 reduces the rate to 50 Hz. The third trigger level (L3), where more detector
information can be used to perform a decision, was not implemented.

Level Four Trigger - L4

At L4 a computer farm is used to perform a full event reconstruction. The purpose
of L4 is to verify if the events are of interest for physics or not, to provide monitoring
of ST’s and to perform calibrations of the detector components. Until 1997, this veri-
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fication was similar to the L1 subtriggers conditions. From 1997, L4 has implemented
finder algorithms to trigger on specific physics processes of interest. There are also
events which are recorded without L4 verification, e.g. events with a high transverse
momentum track or a high energy cluster in LAr. The largest amount of events are
verified. The so-called open heavy flavour finder reconstructs D-mesons and so called
wrong charged background events. In 1998 the finder conditions were made harder,
and the events had to be attributed to a class. If an event on L4 is assigned to a
physics class, like class 15 for D-mesons, then it is accepted by L4 without a prescale.
In case of a prescale, an L4 weight is attributed to the event.

The Offline Reconstruction

The last level (L5) is used to perform a complete offline reconstruction on the
accepted L4 events using the H1REC package and the final calibration. This level was
classifying the events in classes until 1998. The events with a D∗-mesons candidate
were assigned to the class 16. The events were stored on tape, the physics output tape
(POT), only if they were belonging to at least one class. This reduced the rate by a
factor of 2. The data used in this analysis are stored in a compressed way on disk, the
data summary tape (DST). From 1998, the classification was already done on L4 and
no event was rejected any longer on L5.
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Chapter 3

Event Selection

The analysis presented here follows two directions in the study of the charm jets. A
charm jet is defined here as the jet found in an event which has a reconstructed D∗-
meson within its particle content. This is called the D∗Jet. If additional jets are
reconstructed in an event, the one with highest ET is called the OtherJet1. It has a
high probability to contain the ”second” charm quark.

One of the study’s directions is more traditional. It makes use of the well known
jet shape observables. Nevertheless, new definitions of the D∗Jet and of the concentric
jet energy fraction, as described in the Chapter 4, are also introduced.

The second direction of the analysis is more innovative. Here the jet structure is
investigated using the angle between the jet direction, which approximates the heavy
quark direction, and the direction of a subjet found within this jet, which approximates
the direction of a soft gluon radiated by the heavy quark. The distribution of this angle,
called the soft gluon angle, in bins of the jet energy, is fitted. From the fit parameters
another characteristic angle, called the dead cone angle α0, is obtained. The angle α0

multiplied by the energy of the quark jet is a measure of the quark mass as predicted
by the theory, see Sec. 5.3.1.

The experimental data used in the study of the jet shape observables were taken
with the H1 detector at the HERA collider during the HERA I periods: 1999 (e+) and
2000 (e+), with an integrated luminosity of 50 pb−1. For the study of the dead cone
effect, the data taken in 1996 (e+), 1997 (e+), 1999 (e−) of HERA I and 2003 and 2004
(e+) of HERA II are also used in order to reduce the statistical errors.

The event selection used for the 1999 (e+) and 2000 (e+) data sample is presented in
this chapter. The differences in selection for the other years are presented in Sec. 5.3.7.
The selection is based on requirements for the DIS regime and for the reconstructed D∗-
mesons. Charm events are defined by containing a reconstructed D∗-mesons candidate.
For different checks used in the dead cone effect study also a 2Jet sample, with charm
content suppressed, is obtained, which is regarded as a light flavour event sample due
to its content of light quarks of 70 − 80% according to MC simulation. The selection
principles and the cuts are described in Sec. 5.3.6.

3.1 Charm Events Tagged with a D∗-meson

The principle of charm quark tagging using a D∗-meson is presented in Fig. 3.1. The
second charm can be tagged using the OtherJet but with a lower efficiency. The

1The jets used in this analysis are massless, thus ET, Jet = pT, Jet.

37
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probability to have a gluon which forms the OtherJet (at the hadron level) increases
with the η of the OtherJet.

For the D∗-meson2 reconstruction the following decay channel is used:

D∗+ → D0π+
s → K−π+π+

s (3.1)

The MC studies presented in Sec. 4.2 show that
the charm quarks which are tagged by these D∗-
mesons are very well approximated in energy and
in the (η, φ) plane by the D∗Jet. Even though
the branching ratio of this decay channel is very
small, the small combinatorial background of the
D∗-meson reconstruction, using the good mass res-
olution obtained with the Δm - technique (see
Sec. 3.3.5), is favouring this choice.

The D∗-meson has a mass of

mD∗ = 2010.0 ± 0.5 MeV [46] (3.2)

and is made out of a charm quark and a down
antiquark in the positive charged state D∗+, or
of a charm antiquark and a down quark in the
negative charged state D∗−.

The probability that a charm quark fragments
into a D∗-meson is [47]:

P (c → D∗X) = 0.235 ± 0.007 ± 0.007. (3.3)

In the decay channel used in this analysis, see
Fig. 3.2, the D∗-meson decays via the strong inter-
action into a D0-meson and a charged pion with

c

K −

π+

π+
s

OtherJet

~3.8%

D*+
~ 67%

~23%

γ g

c
fragmentation

D0

Figure 3.1: The charm quark
tagging with a D∗-meson.

a branching ratio of [46]:

BR(D∗+ → D0π+) = 67.7 ± 0.5 %. (3.4)

The life time of the D∗-mesons is of the order
of 10−23 − 10−24 s due to the decay via the strong
interaction decay. Within the H1 detector, these
decay vertices cannot be separated.

The D0-meson mass is

mD0 = 1864.6 ± 0.5 MeV. (3.5)

The decay of a D∗-meson into a D0-meson

_
d

_
u

_
d

_
u

D*+

πs
+

K−

π+

*+W

c

u

_
d

u

c s
D0

Figure 3.2: The D∗-meson decay
channel used in this analysis.

offers a big advantage in achieving a good signal to background ratio due to the small
mass difference between the D∗ and D0-meson:

ΔM = mD∗ − mD0 = 145.42 ± 0.01MeV, (3.6)

2D∗ refers to both D∗+ and D∗− states. For the D∗−-meson the conjugate decay channel is used.
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which is only slightly larger than the pion mass mπ = 139.57 ± 0.00 MeV, restricting
this way the phase space for the decay into D0-mesons. A better reconstruction of the
mass difference ΔM in comparison with the individual masses of the D∗ and D0-meson
is achieved [48]. The charged pion of the D∗ → D0πs decay is named slow pion, πs,
due to its small kinetic energy.

The D0-meson decays via the weak interaction into a kaon and additional particles.
The charm quark transforms into a strange quark via the radiation of a charged W
boson. Since the smallest combinatorial background is given by the minimum number
of decay products, in this analysis the decay D0 → K−π+ is used. This decay channel
has a branching ratio of:

BR(D0 → K−π+) = 3.83 ± 0.09 %. (3.7)

The overall branching ratio of the decay channel D∗+ → K−π+πs is:

BR(D∗ → K−π+π+
s ) = BR(D∗ → D0πs) · BR(D0 → K−π+) = 2.59 ± 0.06 %. (3.8)

As it can be seen in Fig. 3.1, one charm can be tagged using the D∗-meson and the
second by the OtherJet. The reconstruction of the second charm using the OtherJet
is not so efficient as the one with the D∗-meson.

3.2 The Online Selection

This analysis has two selection levels: an online selection, where efficient H1 detector
components, triggers and stable beam conditions are needed, and an offline selection,
where the track reconstruction and background reduction is performed in more detail.

3.2.1 The General Event Selection

The event selection is based on a good run selection. A run is defined as the collection
of a sequence of events over a time period with relatively stable beam, detector and
trigger conditions. The run selection performed in this analysis takes into account the
following factors which lead to data sample with very good quality.

The first requirement of a good run is that the beam and the magnet parameters
are stable and in the appropriate range. The energy of the electron beam should fulfill
the condition Ee = 27.5 ± 0.5 GeV, the proton beam energy Ep = 920 ± 5 GeV and
the magnetic field B = 1.15 ± 0.05 T.

The second factor of importance is the trigger phase, which has to be larger than 1
and less than 5. Values in this range denote good background conditions, which allow
to have the CJC1 and the CJC2 High Voltage (HV) turned on, and the H1 detector
status, the trigger system and the beam conditions are optimal for data taking. Larger
values of the trigger phase are used for dedicated studies of the detector, e.g. phase
12 means that the trigger settings are tuned for cosmic runs.

The next condition is that the events are produced by the colliding bunches and
not by the satellite ones.

A quality factor is attributed to every run. The levels of the run quality are poor,
medium, good and unknown. Only runs with medium and good quality are accepted.
The quality is determined mainly online taking into account the type and the number
of operational detector components during the run time.
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This analysis makes use of the following detector components: the jet chambers
CJC1 and CJC2, the proportional chambers CIP and COP, the z-chambers CIZ and
COZ, the silicon tracker CST, the calorimeters LAr, SpaCal, the drift chamber BDC,
and the ToF and the Veto systems. They have to be operational and included in the
readout. In addition, it is required also for the FWPC and the luminosity system
(Lumi) to be operational.

Another important factor is the position of the primary vertex, the ep collision
point in the z-direction, the so-called z-vertex. Due to the satellite bunches from the
electron and proton beam, an important source of background is the overlap with
the ep events. In order to suppress background events from interactions of nominal
with satellite bunches, the z-vertex position has to be less than 35 cm away from the
nominal interaction point in both directions.

From the events passed so far, only the ones triggered by subtrigger 61 (ST61) on
L1 and L4 of the trigger system are selected. If the ST61 conditions are fulfilled, the
event is stored.

The luminosity of the event sample used in this analysis is about 50 pb−1.

3.2.2 The Subtrigger Description

The L1 dedicated subtrigger for the D∗-meson analysis in the DIS regime is the ST61.
The ST61 decision is based on the information delivered by several essential detector
components in form of trigger elements (TE). The logical structure of ST61 on L1 in
terms of TEs for the 1999 and 2000 (e+) data taking periods was the following3:

(DCRPh THig && zVtx sig && (SPCLe IET > 2 ‖ SPCLe IET Cen 3))
&& (! SPCLh AToF E 1 && ! SPCLh ToF E 2 && ! VETO inner BG &&

VETO Outer BG && ! VLQToF BG)
&& (! (DCRPh NL many && DCRPh NH many && DCRPh PL many &&

DCRPh PH many))
&& ((FToF IA ‖ FIT IA) ‖ (! FToF BG && ! FIT BG))

The ST61 can be split into two main parts. The first part:

(DCRPh THig && zVtx sig && (SPCLe IET > 2 ‖ SPCLe IET Cen 3))

is the one which selects events with high momentum tracks – DCRPh THig, a good
z-vertex position – zVtx sig, and a scattered electron candidate above a certain energy
threshold, selected with SPCLe IET. The second part contains veto conditions which
reduce the number of background events that might fake the events with a D∗-meson
in DIS.

The DCRPh trigger makes use of the CJC information. Out of the 56 wire layers
in total, the signals from 10 layers, 7 from CJC1 and 3 from CJC2, are digitised and
used by the trigger. The drift time information from them is compared with predefined
masks in the (r, φ) plane. Tracks are classified according to two momentum ranges, a
low pT range 400 < pT < 800 MeV and a high pT one with pT > 800 MeV. Information
about the track charge is also obtained and used by the trigger. The DCRPh trigger
elements are shown in Table. 3.1.

3The signs ”&&”, ”||” and ”!” are logical operators in C++.
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ST61 requires at least one high momentum track using the DCRPh THig TE.
In addition, a veto condition is obtained by combining the following TEs:

(! (DCRPh NL many && DCRPh NH many && DCRPh PL many &&
DCRPh PH many)).

This veto condition makes sure that events with a too high multiplicity of positive
(P), negative (N) tracks of low (L) and of high momentum (H), which are coming from
non ep events are rejected.

DCRPh TE DCRPh trigger condition
DCRPh T0 at least one validated t0 mask fired
DCRPh Ta at least one mask fired
DCRPh Tb at least b (=2) masks fired (b programmable)
DCRPh Tc at least c (=3) masks fired (c programmable)
DCRPh TPos at least x (=1) positive masks
DCRPh TNeg at least x (=1) negative masks
DCRPh THig at least x (=1) pT > 800 MeV masks
DCRPh TLow at least x (=1) 400 < pT < 800 MeV
DCRPh NL many at least 20 negative low momentum track candidates
DCRPh NH many at least 20 negative high momentum track candidates
DCRPh PL many at least 20 positive low momentum track candidates
DCRPh PH many at least 20 positive high momentum track candidates

Table 3.1: The DCRPh trigger elements and their conditions.

The TE zVtx sig information is provided by the zVtx trigger subsystem, see
Table. 3.2.

zVtx TE zVtx trigger condition
zVtx T0 At least one ray (track)
zVtx T0 nextbc At least one ray in the next Bunch Crossing
zVtx mul coding number of entries in the z vertex histogram
zVtx Cls all histogram entries within 4 neighbouring bins
zVtx sig histogram peak significance:

= 0 : no significant peak
> 0 : significant peak in the z-vertex histogram found

Table 3.2: The zVtx trigger elements and their conditions.

The zVtx trigger combines information from the CIP, COP and the first two
layers of the FWPC. The time resolution of these proportional chambers (
 20 ns)
allows identification of the bunch crossing to which an event belongs to. All possible
tracks from the combination of 2 × 2 signals are reconstructed by the zVtx trigger.
In addition, these tracks need to have pT > 150 MeV in order to cross the CIP and
COP or the CIP and FWPC. The intersections of these reconstructed tracks with the
z-axis are filled into a histogram as indicated in Fig. 3.3. Real tracks will all intersect
the z-axis around a common vertex position. The wrong combinations will lead to
randomly distributed entries in the histogram. The zVtx sig value will be larger than
0, if a bin within the indicated range values contains significantly more entries than
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the average of the other bins. The event then fulfills the TE condition. With this TE
proton induced background (beam halo) can be reduced.

COP

CIP

z−axis

FPC

+z

+
43.9 cm

15

−
43.9 cm

0

Figure 3.3: Sketch of the online determination of the zVtx sig trigger element.

The first step in having a scattered electron in the event makes use of the SpaCal
inclusive electron trigger system (IET). The IET starts by finding all energy cluster.
Energies deposited in 4× 4 electromagnetic cells, which are combined to trigger tower
(TT), are summed. The energy of a TT is compared with three different thresholds,
which can be set by the trigger software, and the result of this comparison is stored
in three cluster bits of each TT. The 320 TTs are overlapping in size in the x and the
y-direction to avoid trigger inefficiencies due to TT edge effects concerning the impact
point of the scattered electron. TE are formed for the inner (IET Cen, R < 16 cm)
and the outer (IET, R > 16 cm) region of the SpaCal. The definitions of the SpaCal
TEs important for this analysis are given in Table. 3.3.

SPCL(IET) TE SPCL(IET) trigger condition
SPCLe IET Cen 1 cluster in central region of the SpaCal with E > 0.5 GeV
SPCLe IET Cen 2 cluster in central region of the SpaCal with E > 2 GeV
SPCLe IET Cen 3 cluster in central region of the SpaCal with E > 6 GeV
SPCLe IET > 0: cluster SpaCal with E > 0.5 GeV

> 1: cluster in SpaCal with E > 2 GeV
> 2: cluster in SpaCal with E > 6 GeV

SPCLh AToF E 1 energy cluster in hadronic Spacal
SPCLh ToF E 2 sum of the energy in hadronic Spacal

Table 3.3: The SPCL(IET) trigger elements and their conditions.

ST61 uses the following TEs combination: (SPCLe IET > 2 ‖ SPCLe IET Cen 3),
which requires the scattered electron candidate to have an energy of at least 6 GeV in
the outer or the inner region of the SpaCal.

The energy deposition in the SpaCal HAD is used as a veto condition with the
TEs:

(! SPCLh AToF E 1 && ! SPCLh ToF E 2),

where the hadronic energy of the electron candidate cluster (AToF) is more than 0.6
GeV and the sum of all energies in HAD is above 12 GeV. This condition makes sure
that the scattered electron is not faked by a hadron.

Informations from the ToF and VETO systems are also used as veto conditions.
The TEs of these systems needed for ST61 are listed in Table. 3.4 and Table. 3.5.
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VETO TE VETO trigger condition
VETO inner BG Inner Veto Wall, p related background timing
VETO Outer BG Outer Veto Wall, p related background timing

Table 3.4: The VETO trigger elements and their conditions.

ToF TE ToF trigger condition
FIT IA Forward Interaction Timing hit in proton time window (p)
FIT BG F.I.T. hit background or late p-satellite time window (!p & !e)
FToF IA Forward ToF hit in main proton time window (p)
FToF BG Forward ToF hit in late satellite time window (!p & !e)
VLQToF BG VLQ ToF hit proton time window (p)

Table 3.5: The ToF trigger elements and their conditions.

The TEs indicated with ” BG” are set when a subdetector answer is arriving outside
the ep interaction time window. The ones with ” IA” termination are indicating that
the answers of the subdetectors are within the interaction time window.

3.2.3 The ST61 Efficiency

It is important for this analysis that ST61 has a high efficiency and that it is well
described by the MC simulation. The physics model used for the MC simulation was
RAPGAP. The efficiency of a ST is checked using a second ST as monitor which is
independent of the one used in the analysis. Generic, the efficiency can be written as:

εST =
NTrigger

NAnalysed
=

NTrigger

NTrigger + N!Trigger
. (3.9)

NAnalysed is the number of events selected by the analysis chain when instead of
ST61 a monitor ST is used. From these, the number of events triggered by the ST61
is given by NTrigger. The error of the efficiency determination is calculated using the
formula [49]: (

σ(ε)
ε

)2

=
(

σ(NAnalysed)
NAnalysed

)2

+ (1 − 2ε)
(

σ(NTrigger)
NTrigger

)2

, (3.10)

which includes the correlations between NAnalysed and NTrigger.
As it can be seen in Sec. 3.2.2, ST61 consists of various TEs. In order to find a

ST monitor independent of ST61, one has to make sure that the TEs used by the two
STs are also independent. Unfortunately, there is no ST completely independent of
the TEs from the ST61. Due to this the TE efficiency is calculated. For a TE one can
easily find a ST which is independent of it.

The algorithm used in the TE efficiency calculation is the following: in data, for
every TE an independent ST monitor is chosen. The analysis is performed once more,
but this time triggering the events with the chosen monitor ST. The NAnalysed is as
before the number of the events that pass the analysis chain and are triggered by the
monitor ST. From these events, the NTrigger would be the number of events in which
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the TE was on – its condition was fulfilled. The ratio of these two numbers will give
the TE efficiency.

In the next paragraphs the efficiency of ST61 TEs is presented. The bins used in
the ED∗Jet distribution are used afterwards in the analysis.

The SPCLe IET Efficiency

The TEs from ST61 given by the SPCLe IET are used in the combination:

(SPCLe IET > 2 ‖ SPCLe IET Cen 3).

A ST that is independent is ST9 which uses the TE combination:

(SPCLe IET > 1) && ( !SPCLh AToF E 1 && !SPCLh ToF E 2 ...)

and continues with other VETO and zVtx TEs. The SPCLe IET > 1 condition is
requiring that the energy deposition in SpaCal is larger than 2 GeV.
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Figure 3.4: The SPCLe IET efficiency for the D∗Jet measurements.
The errors are the statistical ones.
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This TE can be considered independent, in a first approximation, of the combina-
tion used in ST61, which accepts only energy depositions above 6 GeV. The efficiency
of the SPCLe trigger elements from ST61, relevant for this analysis, is shown in Fig. 3.4
for the ED∗Jet, ET, D∗Jet, ηD∗Jet and φD∗Jet. Good agreement with the MC model can
be observed.

The efficiencies for the control variables such as Q2
e, ye, E′

e, θe, pT, D∗ and ηD∗ can
be found in the Appendix D.

The DCRPh THig Efficiency

The ST monitor independent of DCRPh THig is ST0. The ST0 composition as the
follows:

(SPCLe IET> 2) && ( !VETO inner BG && !VETO Outer BG && !VLQToF BG)

&& (((FToF IA || FIT IA) || (!FToF BG && !FIT BG)) && (PToF IA || !PToF IA)).
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Figure 3.5: The DCRPh THig efficiency for the D∗Jet measurements.
The errors are the statistical ones.
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One can observe that no TE of the DCRPh trigger subsystem is used. The
efficiency of the DCRPh THig is presented in Fig. 3.5, for the control observables
see Appendix D.

The zVtx sig Efficiency

As it can be seen from the previous discussion of the DCRPhi THig, ST0 is also
independent of zVtx sig. Therefore, ST0 can again be used as monitor trigger. The
efficiency of zVtx sig is shown in Fig. 3.6. The φD∗Jet distribution shows a systematic
shift from −180o to 40o of ∼ 4% between the MC model and the data. The same shift
can be observed for the φD∗ distribution. In Appendix D the efficiency plots in bins of
the control observables as well as of φD∗ can be found. This systematic shift as well as
the loss in efficiency observed for ηD∗Jet in the lower and the upper bins are included
in the systematic error calculation.
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Figure 3.6: The zVtx sig efficiency for the D∗Jet measurements.
The errors are the statistical ones.

The efficiencies of the ToF trigger elements are discussed in [50], where an efficiency
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of 99.2 ± 0.4% has been determined for them.
Under the assumption that all TEs of ST61 are independent, the ST61 efficiency

can be determined by multiplying the efficiencies of the TEs for the measured physical
quantities, as shown in Fig. 3.7. In MC, the trigger efficiency is calculated taking
into account all events which pass the analysis selection, without requiring an ST61
condition, yielding NAnalysed. From these events the fraction triggered by ST61 yields
NTrigger. ST61 is not simulated in MC, but rather its TEs, therefore it has to be
reconstructed from them.
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Figure 3.7: The ST61 efficiency for the D∗Jet measurements.
The errors are the statistical ones.

3.2.4 The D∗-meson Online Selection

The open charm finder implemented at L4 is called HQSEL (Heavy Quark SELection).
The HQSEL global requirements imply the selection of events with a well defined z-
vertex position, a minimal energy for the SpaCal cluster of the scattered electron and
a maximal radius of its cluster.

Since 1999, the D∗-meson finder requires that the kaon and the pion tracks fulfill
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the nominal track quality requirement and the slow pion at least the minimal track
quality requirement. Based on the decay channel from Eq. 3.1, the D∗-meson finder
uses additional selection cuts applied on the pT of the daughters and on the ΔM of
the reconstructed mass of the D0 and D∗-mesons. The conditions of the L4 D∗-meson
finder are summarised in the Table. 3.6.

Global condition Threshold
z position of the event vertex |z| < 40 cm
Energy of the scattered electron > 5.5 GeV
Radius of the scattered electron < 4 cm
cluster in the Spacal
Nominal track quality
z chamber flag 1 (use)
d′ca of the track < 4 cm
track length > 15 cm
pT of the track > 0.15 GeV
Minimal track quality
track length > 10 cm
pT of the track > 0.10 GeV
Additional conditions
mKπ lower limit > 1.464 GeV
mKπ upper limit < 2.264 GeV
pT (Kππs) > 1.4 GeV
pT (Kππs) for |mKπ − MD0| < 0.100 GeV > 1.0 GeV
Δm = mKππs − mKπ < 0.180 GeV

Table 3.6: The L4 D∗-meson finder requirements.

3.3 The Offline Selection

Events on DST are used as input in this analysis. Not all of these events are DIS
events and have a ”real” D∗-meson candidate.

In order to reduce the background contributions, e.g. photoproduction events with
Q2 < 1 GeV2 and where a hadron has been misidentified as the scattered electron, an
offline selection is applied. The DIS selection cuts use the kinematic variables Q2

e and
ye, where the index ”e” means that Q2 and y are calculated using the electron method.
In order to select a clean DIS event sample, one should make sure that misidentified
electron candidates are removed. Moreover, not all D∗-meson candidates reconstructed
at L4 are ”real”. One has to apply quality cuts on the daughter particle tracks in order
to minimise the contributions of misidentified D∗-mesons.

3.3.1 The DIS Selection

The DIS selection rejects two important sources of background. The background from
non-ep events due to beam wall background interactions, is rejected by applying a cut
on the z-position of the event vertex. The second major source of background are the
photoproduction events. They are rejected by requiring an identified scattered electron
and a cut on the quantity E − pz. The low Q2 DIS regime, used in this analysis, is
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selected by cutting on the kinematic variables Q2
e and ye. They are calculated using

the electron method as will be explained later in this section. The energy calibration
of the SpaCal is checked using the double angle method. A third method, which can
be used to calculate the kinematic variables, is the sigma method. The sigma method
takes into account possible QED radiation emitted by the incoming electron. Due to
the scattered electron selection cuts, the effect of the QED radiation is minimised. The
sigma method is presented in Appendix E for completeness.

The z-Vertex Position

The design-orbit of the proton and electron beam bunches ensures that the collision
point of the two beam bunches is well defined inside the H1 detector. The approx-
imative Gaussian profile of the proton bunches in the longitudinal direction gives a
distribution of the collision points around the nominal interaction point.

In contrast, events coming from beam
gas and wall interactions are equally dis-
tributed along the z-axis. Also events
given by the interaction of the electron
bunches with the proton satellite bunches
have a large absolute value of the z-vertex
position. In order to reject these non-ep
events, the following limit is chosen:

|zvtx| < 35 cm. (3.11)

A comparison of the zvtx distribution
of data with MC simulation is shown
in Fig. 3.8. The MC events had to be
reweighted to the z-vertex distribution of
the data, in order to remove a systematic
shift between data and MC. All other MC
distributions shown are reweighted with a
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Figure 3.8: The zvtx distribution.

zvtx-weight that is calculated from the ratio of the Gaussian fit applied independently
to data and MC.

Rejection of Photoproduction Events

In the HERA frame of reference for DIS events the following relation can be established
between the energies and the longitudinal momenta of the incoming beams:

E − pz = (Ee + Ep) − (pz, e + pz, p) = 2Ee = 55 GeV. (3.12)

Due to energy and momentum conservation and because particles which escape
through the beam pipe in the forward direction do not contribute, the same quantity
can be determined from the final state hadrons and the scattered electron:

E − pz = (E′
e +
∑
hads

E) − (p′z, e +
∑
hads

pz) = 55 GeV. (3.13)

In Eq. 3.13 all particles measured in the LAr, SpaCal and CJC contribute. The
photoproduction, γp, events are characterised by the fact that the scattered electron
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escapes in the beam pipe in the backward direction. Due to the missing contribution
of the scattered electron in γp events, the quantity E − pz will strongly deviate from
the expected value of 55 GeV. The distributions from γp and DIS events can be seen
in Fig. 3.9.
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Figure 3.9: The comparison of E − pz from γp and DIS events. The dashed line shows
the minimum cut applied on E − pz to select DIS events.

The γp events are selected using ST83 and the DIS events using ST61. For the
DIS events no D∗-meson is required yet.

The γp events can be suppressed ap-
plying the following cut:

E − pz > 40 GeV. (3.14)

The E − pz spectrum of the events
selected for this analysis is shown in
Fig. 3.10. Here the D∗-meson selec-
tion is applied and the background from
misidentified D∗-meson candidates is sub-
tracted as presented in Sec. 3.3.5.

In addition, the E−pz cut suppresses
also events with QED radiation from the
incoming electron, when the emitted en-
ergetic photon leaves the H1 detector
through the beam pipe.

The Electron Method
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Figure 3.10: The E − pz spectrum.

Knowledge of the energy of the scattered electron, E′
e, its angle θ′e, and the electron

beam energy Ee allows the determination of the full event kinematics. At HERA beam
energies the mass of the proton and electron can be neglected. The kinematic variables
are given by:

Q2
e = 4EeE

′
e cos2

(
θ′e
2

)
; ye = 1 − E′

e

Ee
sin2

(
θ′e
2

)
; xe =

Q2
e

s · ye
. (3.15)
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The advantages of the electron method are its simplicity, the best resolution for y
not too small and the independence of hadron final state measurement. In order to
have an accurate determination of the kinematic variables, one needs a good resolution
of the scattered electron energy and its θ angle.

The Q2
e and ye kinematic variables, as well as the electron variables E′

e and θ′e,
are shown in Fig. 3.11. The MC model describes the data reasonably well without
applying any other reweighting except for the zvtx.
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Figure 3.11: The event kinematics and the electron variables. The dashed line illus-
trates the cut applied in the analysis.

The Double Angle Method

The double angle method makes use just of angle measurements of the hadrons and of
the scattered electron to determine the energy of the scattered electron and the event
kinematics.

With this method the calibration of the scattered electron energy can be checked
due to fact that it is independent, in first order, of the hadron energy resolution.
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The angle γ of the hadronic final state is given by:

cos γ =

(∑
hads

px

)2

+

(∑
hads

py

)2

−
(∑

hads

(E − pz)

)2

(∑
hads

px

)2

+

(∑
hads

py

)2

+

(∑
hads

(E − pz)

)2 . (3.16)

The kinematic variables in terms of γ
and θe are given by:

Q2
DA =

4E2
e sin γ · (1 + cos θ′e)

sin γ + sinθ′e − sin(γ + θ′e)
;

yDA =
sin θ′e · (1 − cos γ)

sin γ + sinθ′e − sin(γ + θ′e)
;

xDA =
Q2

DA

s · yDA
(3.17)

The energy calibration can be checked
using E′

DA:

E′
DA =

Ee(1 − yDA)
sin2
(
θ′e/2
) (3.18)

which is the scattered electron energy.
The results of the double angle method

are expected to be good for the inelastic-
ity range 0.05 < y < 0.3, as it can be seen
from Fig. 3.12.
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Figure 3.12: The correlation between yDA

at the detector level and yGen at the hadron
level.

The ratio E′
e/E

′
DA is plotted in

Fig. 3.13 for the range 0.05 < y < 0.3.
For this range, as well as for the entire
statistics - not shown here, a nice peak
close to the value of 1 is observed and the
data are reasonably described by the MC.

For this analysis, the low Q2 DIS
regime is defined as follows:

2 < Q2
e < 100 GeV2; (3.19)

0.05 < ye < 0.7. (3.20)

The selection criteria used for the scat-
tered electron identification are presented
in the next section.
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Figure 3.13: The E′
e/E

′
DA ratio.

3.3.2 The Scattered Electron Selection

For events with Q2 ≤ 100 GeV2 the SpaCal and the BDC are used to identify the scat-
tered electron. The measurement of the scattered electron is input for the calculation
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of the kinematic variables Q2
e and ye . Two aspects are important for the selection of

the scattered electron: the energy and the polar angle θ′e to be measured with a good
resolution and the rejection of misidentified electron candidates to be very efficient. As
explained in Sec. 2.5, the electron resolution is very good. A charged hadron, which in
photoproduction events is frequently found going into the backward direction, may be
misidentified as the scattered electron. Such ”fake” candidates are rejected by applying
a number of cuts which are explained in the following paragraphs.

The Energy of the Scattered Electron

The scattered electron showers in the EM part of the SpaCal. The resulting cluster,
consisting of cells with energy depositions from the shower, is used to calculate the
energy of the electron candidate. If in an event there are two scattered electron can-
didates within the SpaCal acceptance, then the one with the highest pT is chosen as
being the ”true” one. The scattered electron is accepted if the following conditions are
fulfilled:

E′
e > 8 GeV; θe < 178o. (3.21)

The threshold of 8 GeV is chosen in order to remove almost all misidentified electron
candidates. The angle θ = 178o is the upper limit of the SpaCal acceptance.

The Energy in the VETO Layer

SpaCal cells

An (x, y) view of the SpaCal inner
part, is shown in Fig. 3.14. If the
scattered electron is emitted with a
too large angle and enters close to the
beam pipe, a part of its energy will be
deposited into the VETO layer cells
and another part will leak into the
beam pipe. Due to this leakage, the
energy of the electron will not be fully
reconstructed.

In order to avoid migration of
events in Q2

e due to a wrong en-
ergy measurement, these events are
rejected applying the following cut:

EV ETO < 1 GeV. (3.22)

This cut also rejects a fraction of
events where the incoming electron
radiates a photon, which may deposit
energy in the cells of the VETO layer.

Shielding
Tantalum

Veto Layer

6.5 cm

5.7 cm

4.05 cm

16.2 cm

Figure 3.14: The (x, y) view of the SpaCal inner
cells and the VETO layer.

The Energy in the HAD Part of the SpaCal

As already mentioned, a charged hadron, in γp and to less extent in DIS events, may
shower in the SpaCal EM part such that it can fake a scattered electron. A typical
hadron shower, however, does not end in the EM but rather in the HAD part of the
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SpaCal. The charged hadrons detected in the SpaCal have a high probability to deposit
a fraction of their energy in the HAD part. The determination of the hadronic energy
of the scattered electron candidate makes possible the rejection of those which are
actually hadrons. The cut applied is:

E′
e, HAD < 0.5 GeV. (3.23)

Even with this cut, there are cases when for a scattered electron energy of e.g. 9
GeV, the fraction of the hadronic energy can be larger than 5%. To further reduce the
probability of a ”fake” scattered electron candidate, an additional cut is used:

E′
e, HAD/E′

e < 3%. (3.24)

The Energy Fraction from the Isolation Cone

The isolation cone of the electron cluster is defined as the cone having a radius R in
(η, φ) space which fulfills the condition:

Risocone =
√

(ηcl − ηcell)
2 + (φcl − φcell)

2 < 0.25 (3.25)

The energy difference between the isolation cone energy and the scattered electron
energy, the so-called Eaif quantity, has to obey the following cut:

Eaif/E
′
e < 10%. (3.26)

The geometrical description of the electron candidate cluster in SpaCal can also be
used to reject the ”fake” candidates.

The z-Position of the Cluster

The front face of the EM part of the SpaCal starts at z = −150.5 cm and the HAD
part at z = −202 cm. The active length of the EM part is 25 cm. A cluster which lies
behind the EM part of the SpaCal cannot be attributed to an electron but rather to a
hadron. Therefore the scattered electron candidate has to pass the cut:

zclus > −180 cm. (3.27)

The Energy Weighted Cluster Radius

The shower of the electron in the EM part of the SpaCal does not have a uniform
energy deposition in the cells. This can be used to calculate the cluster radius, Ecra,
using as weight for the cell position the logarithm of the ratio between the cell energy
and the cluster energy. The cluster radius of a hadron is much larger than the one for
an electron. Another rejection of the ”fake” scattered electrons is therefore achieved
with the cut:

Ecra < 4 cm. (3.28)

The Radial Cluster Position in the SpaCal

Between the beam axis and the SpaCal z-axis there is a tilt which can shift the cluster
position much closer to the beam pipe than the position read out from the SpaCal
geometry alone. This effect is taken into account by cutting on:

Rtilt > 9.1 cm. (3.29)
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The Cluster R Position Without Corrections

The electron cluster has to lie within the limits of the SpaCal radial coverage. If a
cluster is at the extreme limits of the SpaCal, its barycentre can point outside of the
SpaCal geometry and then the energy reconstruction is clearly not complete. These
cases can be rejected by applying a cut on:

8.7 < Rcluster < 74 cm, (3.30)

where the Rcluster position of the cluster in the SpaCal (x, y) plane is calculated without
considering the tilt correction.

The DCLSP Cut

The cluster of the scattered electron is also described by the so-called second radius,
DCLSP. In fact the DCLSP is the sigma of the cluster xy position which has to fulfill
the condition:

DCLSP =
√

σ2
x, cluster + σ2

y, cluster < 4 cm. (3.31)

The Distance to the BDC Extrapolation

The backward drift chamber helps the electron identification by rejecting background
due to π0 decay into two photons, which showers in the EM part of the SpaCal. The
requirement is to have a track in the BDC which, when extrapolated to the SpaCal,
has a small projected distance from the centre of the cluster. The cut applied is:

ΔrBDC < 1.5 cm. (3.32)

The Number of Selected BDC Hits

In order to ensure a good extrapolation of the track using the BDC, a minimum number
of hits is required:

Nhits, BDC ≥ 4. (3.33)

A summary of the selection criteria used for the scattered electron can be found in
Table. 3.7. The analysis presented in this paper was performed in the object oriented
analysis environment of H1 (h1oo). As in any new computing environment, not all the
cuts and codes were implemented at the beginning. The scattered electron candidate
selection as well the D∗-meson selection presented in Sec. 3.3.3 were updated and
implemented in h1oo from the Fortran environment used until then [45].

The BDC Efficiency

For the scattered electron selection two cuts are used combining BDC information.
One of them requires that the BDC track extrapolated to the SpaCal has a pro-

jected distance to the centre of the cluster of less than 1.5 cm. Due to the dead material
between the interaction point and the BDC, the electron may start to shower. This
has an impact on the BDC tracking, giving a high track multiplicity. Only one of
these tracks is the scattered electron track, and one has to be sure that it is efficiently
reconstructed in order to reject only clusters due to photons.
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Scattered Electron Variable Threshold
Energy of the SpaCal electron > 8 GeV
θ angle of the SpaCal electron < 178o

Energy of the LAr electron > 11 GeV
Energy in the VETO layers < 1 GeV
Energy in HAD behind the electron < 0.5 GeV
Hadronic fraction of the electron energy < 0.03
Energy fraction in the isolation cone < 0.1
z-position of the SpaCal cluster > −180 cm
Energy weighted cluster radius < 4 cm
Radial cluster position in SpaCal > 9.1 cm
The radius of the cluster 8.7 cm < Rcluster < 74 cm
without corrections: Rcluster

DCLSP < 4 cm
Distance between the SpaCal cluster < 1.5 cm
position and BDC extrapolation
Number of selected hits in BDC ≥ 4

Table 3.7: The selection criteria used for the scattered electron.

One can define the BDC efficiency as being the probability of finding the BDC
electron track within 1.5 cm of the elec-
tromagnetic cluster in the SpaCal, when
extrapolated there. The algorithm is
based on the analysis chain excluding the
BDC track extrapolation cut for the scat-
tered electron candidate.

The BDC efficiency is plotted in
Fig. 3.15 as a function of the cluster ra-
dius Rcluster.

A large fraction of the events charac-
terised by QED radiation are rejected ap-
plying this laborious list of cuts for the
scattered electron candidate as can be
seen from the good description of the MC
model without QED radiation and the
data shown in Fig. 3.11.

Therefore, in this analysis the very

 (cm)clusterR
0 10 20 30 40 50 60 70 80

B
D

C
∈

60

70

80

90

100

110

120

 (cm)clusterR
0 10 20 30 40 50 60 70 80

B
D

C
∈

60

70

80

90

100

110

120
- ’00+Data ’99e

RAPGAP 2.8

Figure 3.15: The BDC efficiency.

small QED radiative corrections are neglected, particularly since they do not influence
the structure of charm jets.

3.3.3 The D∗-meson Offline Selection

The offline selection makes use of a D∗-meson finder in the h1oo environment. The
principle of this finder is the same as for the D∗-meson finder on L4. D∗-mesons are
reconstructed using the CJC tracks located in the central region of the H1 detector
only:

−1.5 < ηtrack < 1.5. (3.34)
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All tracks are attributed the pion mass as a first hypothesis. In the loop over the
tracks assumed to be kaon candidates, the pT requirement is:

pT, K > 0.25 GeV. (3.35)

After a kaon candidate is found, the pion candidate has to pass the following cuts:

pT, π > 0.25 GeV; QK · Qπ = −1. (3.36)

From these two tracks, the invariant mass mKπ is calculated and the following wide
cut on the mass difference is applied:

|mKπ − mD0| < 0.25 GeV. (3.37)

Among the remaining tracks, the one which fulfills the following pT and charge criteria
is chosen as the πs candidate:

pT, πs > 0.12 GeV; QK · Qπs = −1. (3.38)

Once a D∗-meson candidate is found, additional selection cuts are applied in order to
reduce the background:

pT, D∗ > 1.5 GeV;
|ηD∗ | < 1.5;

mKππs − mKπ < 0.17 GeV. (3.39)

The D∗-meson finder is rejecting also those candidates which are considered as ”bad”
for the reconstructed D∗-meson as well as for D0-meson:

(|mKπ − mD0 | < 0.10 GeV) and (mKππs − mKπ < 0.152 GeV). (3.40)

As one can see from the D∗-meson finder algorithm, the method used in this analysis
to identify the D∗-meson is the mass difference method. This method makes use of the
advantage that the mass of the D∗-meson is very close to the sum of the D0-meson and
pion mass and therefore the signal is having a falling background distribution close to
the phase space boundary. In addition, part of the measurement errors of the K and
π cancel in the mass difference, the error is dominated by the error of the πs track.
The mass difference distribution is given by Δm:

Δm = mKππs − mKπ. (3.41)

Nevertheless, some background remains under the signal. The background in the
Δm distribution is combinatorial and has contributions from charm ∼ 15% and light
quark events ∼ 85%, according to MC estimations. For higher pT cuts applied on the
daughters tracks, the background can be suppressed, but then also the D∗-meson phase
space is reduced. An alternative is to fit the combinatorial background with a similar
one that does not have a D∗-meson signal. Since the background is combinatorial, it
can be estimated using the so-called wrong charge combination (WrCh):

” D∗+ → K+π+π−
s ” (3.42)

as well as the charge conjugate combination. The WrCh background has the same
shape as the one given by the right charge combination (RiCh). A fit is applied
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simultaneously to both Δm distributions to obtain the number of reconstructed D∗-
mesons. More details are given in the Sec. 3.3.5.

In Sec. 3.3.4 the tracks selection criteria are presented. This is an elaborated list
of cuts inherited and improved, which are applied to the daughters tracks such that
more than 50% of the combinatorial background is reduced. These selection cuts are
used in the selection of both types of charge combinations.

3.3.4 Track Quality Cuts

The signal to background ratio in the Δm distribution, as well as the resolution, can be
substantially improved, if the tracks considered for the D∗-meson daughter candidates
are well measured. An improvement of the signal to background ratio is obtained by
applying the criteria presented in this section.

The first step is to make sure that only tracks which are fitted with respect to the
primary vertex are accepted. This way, tracks from a secondary vertex of a B-meson or
even longer lived resonance, e.g. K0, are rejected. The observables that characterize a
track are explained in detail in Appendix C. A combination of the two track segments
of CJC1 and CJC2 gives a good track quality if the total length fulfills the condition:

Ltrack ≥ 10 cm. (3.43)

An enhancement of the signal with respect to the background is obtained when the
radius of the track starting point is required to be:

RS, track ≤ 50 cm, (3.44)

which is equivalent to having the track start in the inner chamber, CJC1.
The probability that short track segments, which are not part of the same track, are

linked together is reduced by requiring a minimum number of CJC hits contributing
to the final fit of the track:

Nhits ≥ 10. (3.45)

The cuts presented until now allow the selection of tracks which have an accurate
determination of the helix parameters. Tracks not coming from the event vertex but for
example from the beam pipe or cosmic are rejected by the cut on d′ca, see Appendix C:

d′ca ≤ 1.0 cm. (3.46)

The cuts applied on |d′ca · sin θtrack|, as well the ones applied on |dz0| and |dz0 ·
sin θtrack|, reject tracks fitted to the primary vertex, but which are found not to point
to the accepted vertex area. These cuts are presented in Table 3.8.

Due to the correlation between the pT, D∗ and the pT sum of the kaon and the pion,
shown in Fig. 3.16, the cut:

pT, K + pT, π > 2.0 GeV (3.47)

reduces considerably the combinatorial background. The contributions of the kaon and
the pion pT sum below 2 GeV, which are not so well correlated, are rejected by this
cut.

From the D∗-meson candidates that pass the track quality cuts of the daughters,
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only those found in the best understood
H1 detector acceptance are used in the
analysis:

|ηD∗ | < 1.5 (3.48)
pT, D∗ > 1.5 GeV (3.49)

A summary of the quality cuts used to
select the D∗-meson candidates is given
in the Table 3.8.

More stringent values for some of the
cuts are used for certain run periods de-
pending on the criteria of the L4 finder
selection, see Appendix C.

Another very efficient tool for back-
ground reduction is particle identification
via energy loss: dE/dx. The charged par-
ticles passing through the CJC loose en-
ergy in the gas. The energy loss results
from the scattering of the charged parti-
cles off atomic electrons.
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Figure 3.16: The correlation between pT, D∗

and the sum pT, K + pT, π. The dotted line
shows the cut applied in this analysis.

Track Quality cuts K π πs

Transverse momentum: pT, track > 0.25 GeV > 0.25 GeV > 0.12 GeV
Pseudorapidity: |η track| < 1.5
Primary vertex condition fulfilled
Track length ≥ 10 cm
Track starting radius ≤ 50 cm
Number of hits in CJC ≥ 10
The distance of closest approach: d′ca ≤ 1.0 cm
|d′ca · sin θtrack| ≤ 0.5 cm ≤ 0.7 cm
|dz0| = |zd′ca − zvtx| ≤ 40 cm
|dz0 · sin θtrack| ≤ 18 cm
Additional cuts Threshold
pT, K + pT, π > 2.0 GeV
pT, D∗ > 1.5 GeV
|ηD∗ | < 1.5

Table 3.8: The track quality cuts applied in this analysis for the D∗-meson selection.
For heavy charged particles the energy loss dE per path dx is described by the

Bethe-Bloch formula [46] :

−dE

dx
= κ · z2 · Z

A
· 1
β2

[
1
2

ln
(

2mec
2γ2β2Tmax

I2

)
− β2 − δ

2

]
(3.50)

with
κ = 4π · NA · r2

emec
2. (3.51)

In the Bethe-Bloch formula, NA denotes the number of Avogadro, re is the classical
electron radius and me is the electron mass. The variable z represents the charge of
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the incident particle. Z and A are the atomic and the mass number, respectively. I
gives the mean excitation energy. The maximum kinetic energy that can be transfered
to a free electron in a single collision of a particle with mass M is given by:

Tmax =
2mec

2γ2β2

1 + 2γ
me

M
+
(me

M

)2 . (3.52)

The Lorentz variables are defined as:

β =
p

M
; γ =

1√
1 − β2

. (3.53)

The term δ/2 is the density effect correction, which is introduced to account for polari-
sation effects that are truncating the electric field extension of high energetic particles.

The value of dE/dx depends only on β of the particle and therefore only on the
ratio p/M . As a consequence, the dE/dx curves of particles with different mass are
shifted with respect to each other, if they are plotted as a function of momentum p.

The track dE/dx is determined from the values of the dE/dx attributed to its
hits. The track has to fulfill the quality requirements presented previously. A mean
dE/dx value of a track is calculated by transforming the energy deposition of single
hits as dE/dx → 1/

√
dE/dx. This is due to the fact that the dE/dx measurement has

a Landau distribution. The mean of this new symmetric distribution is transformed
back and multiplied with sin θ to consider also the path length that contributes to the
collected charge of each hit.

The dE/dx values measured in the CJC do not satisfy the Bethe-Bloch formula ex-
actly. The dE/dx values are improved using run dependent constants and the following
parametrisation [51]:

−dE

dx
= a1 · z2

βa2

(
1 + a3 · e−a4 log(0.25+βγ)

)
, (3.54)

with a1 = 1.4139, a2 = 1.6504, a3 = −0.4610 and a4 = 0.56924. The values of dE/dx
are normalised using the condition dE/dx = 1 for minimum ionising particles (m.i.p.).

In order to have a reliable dE/dx determination, i.e. a small error on the average
value, a minimum number of hits is required:

Nhits, dE/dx ≥ 10. (3.55)

The dE/dx vs. ptrack for the tracks in the events used by this analysis are shown
in the Fig. 3.17. The variable used for the particle identification is the likelihood of a
track to be a specific particle:

lh =
1√
2π

∫ ∞

χ2

dt e−t/2 · 1√
t

(3.56)

where χ2 is the density for one degree of freedom.
In this analysis, the cuts for particle identification are applied to the so-called

normalised likelihoods, which are defined, e.g. for K, as:

Nlh, K =
lhK, K

lhK, K + lhK, π + lhK, p
, (3.57)
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Figure 3.17: The dE/dx vs. ptrack distribution in data, left, and in the MC simulation,
right. The expectation is given by Eq. 3.54 for different particle masses.

where lhK, K is the likelihood that a K candidate is a ”real” K. The lhK, π and lhK, p

terms are the likelihoods for the K to be a π or a proton p, respectively.
The normalised likelihood cuts applied to the D∗-meson daughter tracks, depending

on the momentum range, are shown in Table 3.9 together with the minimum number
of hits used in the dE/dx measurements.

dE/dx cuts K π πs

Nlh for: ptrack < 0.7 GeV ≥ 0.2 ≥ 0.05 ≥ 0.05
Nlh for: 0.7 GeV< ptrack < 1.2 GeV ≥ 0.05 ≥ 0.05 ≥ 0.05
Nlh for: 1.2 GeV< ptrack ≥ 0.02 ≥ 0.02 ≥ 0.05
Number of track hits used for dE/dx ≥ 10

Table 3.9: The dE/dx requirements on normalised likelihoods for particle identifica-
tion.

3.3.5 The Δm Reconstruction

In the previous section, the cuts which are used for the D∗-meson daughters tracks
selection were presented. These cuts are applied in order to reduce the combinatorial
background. Even if the background is minimised and the signal to background ratio
is very good, the contributions given by the non D∗-mesons candidates in the final
distributions are not negligible. This background can be statistically subtracted using
the right charge (RiCh) combination, K−π+π+

s , and the wrong charge (WrCh) ones,
K+π+π−

s . The charge conjugate combinations are also considered.
The best resolution for the D∗-meson measurement is obtained using the Δm dis-

tribution. The background coming from the D0-mesons reconstructed using the K and
the π, e.g. reflections, is partially suppressed using the mass window:

|mKπ − mD0| ≤ 0.07 GeV. (3.58)

The Δm = mKππs − mKπ distributions of the RiCh and the WrCh combinations
have to pass all the quality cuts, as well as to be in the D0-meson mass window. The
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shape of the two distributions, except for the D∗-meson signal, is the same due to the
fact that the phase space of the WrCh is only slightly smaller than the one for the
RiCh. If N+ and N− are the number of positive and respectively negative tracks, for
the D0-meson reconstruction N+N− possible combinations are used in the RiCh case.
For the WrCh there are N+(N+ − 1) combinations, due to the fact that the opposite
charge combinations for the D0-meson signal, e.g. K−π+, are missing.

A combined fit is applied simultaneously to the two Δm distributions, for RiCh
and WrCh. The fit function consists of a Gaussian function for the D∗-meson signal:

fD∗(Δm) =
ND∗

σ
√

2π
· e
−
(

(Δm − μ)2

2σ2

)
, (3.59)

where ND∗ is the number of D∗-mesons given by the fit, μ is the mean value of the signal
from the Δm distribution and σ is the signal width, and of a fit function describing
the shape of the combinatorial background for RiCh and WrCh:

fbg(Δm) = p · (Δm − mπ)α (3.60)

where p and α are two free parameters.
The ratio between the RiCh and the WrCh combinatorial background is given by

an additional parameter kN . The total fit function used in this analysis is:

ftotal(Δm) = bsize · (fD∗(Δm) + fbg(Δm) + kN · fbg(Δm)) , (3.61)

where bsize is the bin size of the Δm histogram. The RiCh and the WrCh distributions
are fitted simultaneously. The parameter kN , which gives the ratio between the WrCh
and the RiCh, will be used for the statistical background subtraction, as described in
Chapter 4 and Chapter 5.

The mean value of the signal in the Δm distribution signal from the fit for the full
event sample is:

μ = 145.44 ± 0.03 MeV
σ = 1.07 ± 0.04 MeV. (3.62)

In this analysis, events with D∗-meson candidates which have a Δm value within
μ ± 3σ are studied. The Δm spectrum is presented in Fig. 3.18b). The shaded dis-
tributions in Fig. 3.18 show the WrCh background. After the jet selection, the main
effect is a decrease in statistics and a different value of the normalisation parameter
kN between the RiCh and the WrCh combinations is obtained from the new fit and
used in the analysis part concerning the jets.

The results of the fit performed on the data collected during the 1999 and 2000 e+

running periods are listed in Table. 3.10.

Fit results Data 1999e+ Data 2000 Data 1999e+ and 2000
ND∗ 621 ± 36 2154 ± 72 2768 ± 81
ND0 591 ± 34 1978 ± 67 2574 ± 79

Table 3.10: The number of ND∗ and ND0 mesons obtained from the fit.



Sec. 3.3 The Offline Selection 63

 (GeV)πKM
1.4 1.6 1.8 2 2.2

)
-1

 (
G

eV
π

K
d

n
/d

M

0

500

1000

: ’99 - ’00+Data e

RiCh
WrCh

a)

 (GeV)πK - m
sππK m= mΔ

0.13 0.14 0.15 0.16

)
-1

 m
) 

(G
eV

Δ
d

n
/d

(

0

200

400

600

800

: ’99 - ’00+Data e

RiCh
WrCh

b)

Figure 3.18: The Δm and the MD0 spectra. The WrCh combinations are shown by
the coloured histogram.

For a cross-check of the fit used to determine the number of D∗-mesons, the D0-
mesons are investigated. In Fig. 3.18 a) the D0-meson mass spectrum is presented for
the candidates which fulfill the following condition:

|mKππs − mKπ − (mD∗ − mD0)| < 2.2 MeV. (3.63)

The fit used for the D0-meson mass distribution consists of two Gaussian functions
for the signals and an exponential falling function for the background. The D0-meson
signal for the decay channel D0 → K−π+ is fitted with the function:

fD0(MKπ) =
ND0

σD0

√
2π

· e
−(MKπ − μD0)2

2σ2
D0 . (3.64)

The second signal, which is usually called the S0 signal, corresponds to the decay
channel D0 → K−π+π0 and is lying around the mD0 −mπ0 mass difference of 1.6 GeV,
due to the missing π0. The fit function for the S0 signal is:

fS0(MKπ) =
NS0

σS0

√
2π

· e
−(MKπ − μS0)2

2σ2
S0 . (3.65)

The background of the D0-meson mass distribution is fitted with the function:

fbg, D0(MKπ) = a · (MKπ)αD0 + b (3.66)

where a, b and αD0 are free parameters. The parameter αD0 has negative values.
The total function used to describe the D0-meson mass spectrum is then:

ftotal, D0(MKπ) = bsize, D0 · (fD0(MKπ) + fS0(MKπ) + fbg, D0(MKπ)) (3.67)

and the following D0-meson mass value is obtained:

mD0 = 1859.4 ± 0.89 MeV, (3.68)
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which is in good agreement with the Particle Data Group (PDG) value. The number
of D0-mesons found is included in Table 3.10.

Fig. 3.18 a) indicates that the decay channels such as D0 → K−π+π0 are also
contributing inside the D0-meson mass spectrum. This type of contribution is called
reflection.

The effect of the reflections is giving in the D0-meson mass spectrum contributions
shifted from the nominal mass due to the K and π mass assumption. Overall, the
reflections contribution [52] in the Δm spectrum is of the order of ∼ 3%. Despite the
fact that they are not coming from the D0 → K−π+ decay channel, these contributions
are accepted, if they pass the Δm cut:

0.142 GeV < Δm < 0.149 GeV. (3.69)

The limits of the Δm window are given by the μ ± 3σ where μ and σ are obtained
from the fit of the Δm distributions.
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Figure 3.19: The ηD∗ , left, and φD∗ , right, distributions in the data and the MC model.

The ηD∗ and the φD∗ distributions can be seen in Fig. 3.19 and the pT, D∗ distri-
bution is shown in Fig. 3.20. The MC model describes the data reasonably well.
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Figure 3.20: The pT, D∗ distribution in data and the MC model.



Chapter 4

Measurements of the Jet Shape
Variables

In this chapter the results of the studies of the jet shape observables are presented.
The classical approach to investigate the structure of jets is to study variables like
〈Ψ(r,R)〉 and 〈ρ(r,R)〉, which are called jet shape variables. An additional observable
of interest is the mean subjet multiplicity 〈nsbj(ycut)〉. These jet observables have been
presented in detail in Sec. 1.3. In this analysis, a different definition of the inner radius,
which is closer to the k⊥ jet finder concept, is used for the first time. The inner radius
defines the radius of a concentric area in which the ET of the hadrons is summed up.

A new type of differential jet shape variable, 〈ρ∗(r,R)〉, is defined and studied for
the jet which contains the reconstructed D∗-meson, the D∗Jet. The second charm
of the boson-gluon fusion (BGF) event can be tagged with a high probability by the
OtherJet, which is the second jet in the event and fulfills the selection criteria presented
in Sec. 4.2. The D∗Jet and the OtherJet are compared. The differences between the
two types of charm jets are studied. Different definitions of the D∗Jet are also used.

These studies of the charm jet structure are continued in Chapter 5 with an inno-
vative method to analyse the emission of soft gluons by a heavy quark.

4.1 Hadronic Final State Objects

The particles produced in an ep event can be detected as tracks in the tracking detectors
or as energy depositions in the calorimeters (LAr and SpaCal). Both measurements
have advantages and disadvantages. The tracks can be measured precisely, especially
in the region of coverage by the CJC, for transverse momenta pT up to about 25 GeV.
The precision decreases with increasing pT [39] :

σ(pT)
pT

= 0.005 · pT

GeV
⊕ 0.015 . (4.1)

Only charged particles leave tracks in the detector. Neutral particles are not detected
by the tracking system and, on average, about one third of the produced particles are
not included if only the trackers are used. The calorimeters can detect both types of
particles except neutrinos. The uncertainty of the energy measurement decreases with
increasing energy, as can be seen in Sec. 2.4.

In order to make the best use of the full momentum and energy range, the informa-
tion from the trackers and calorimeters are combined. The algorithm that reconstructs

65
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the particle candidates, used in this analysis, is called HADROO2 [53]. The main fea-
ture of this algorithm is that the source of the information, which will be used for
the reconstruction of a particle, is chosen on the basis of a comparison of the energy
resolution of the track and the corresponding cluster. Due to this feature, the most
important condition for the algorithm is to avoid double counting of energy. The dou-
ble counting problem appears for those particles which are detected as tracks in the
CJC and also as clusters in the calorimeters. In this situation the information with
the smallest uncertainty of the energy resolution is used.

The HADROO2 algorithm defines the hadronic final state (HFS) objects. HFS
objects may consists of appropriate combinations of track and cluster energy informa-
tion or of only track or only cluster information. The algorithm decides if the HFS
objects are determined from the four-vector defined by the transverse momentum, pT,
of the track or by the cluster energy. In the next lines a description of the HADROO2
algorithm is presented.

The first step is to select the input, the tracks and the clusters, for the algorithm.
The tracks used by the algorithm are from the central region having the angular
coverage 20o ≤ θ ≤ 160o, the so-called central tracks, and from the forward region, the
forward tracks with 6o ≤ θ ≤ 25o. The third class of tracks are the combined tracks
which are linking segments from central and forward region in the 6o ≤ θ ≤ 40o range.
The tracks can be from the primary vertex or from a secondary vertex. The order
of preference for assigning one class of track to be an HFS object or to be combined
with a cluster is as follows: central, combined and forward tracks. Due to the final cut
on the pseudorapidity, η, of the particle candidates which are used to define the HFS,
only central tracks are allowed in this analysis. Thus only the quality criteria to select
central tracks are shown in the Table 4.1.

Central Track Selection
pT > 0.12 GeV
20o ≤ θ ≤ 160o

d′ca < 2 cm
RS, track ≤ 50 cm

RE, track − RS, track > 10 cm for θ < 150o

RE, track − RS, track > 5 cm for θ > 150o

Table 4.1: The central track selection criteria used by the HADROO2 algorithm.
RE, track is the radius of the track ending point and RS, track is the radius of the track
starting point. The d′ca parameter is presented in Appendix C.

It has to be mentioned that the scattered electron candidate is searched for by the
electron finder before the HADROO2 algorithm is executed. Its cluster and track are
locked and are not used by the HFS algorithm. The muon candidates given by the
specific finder are also locked.

The position of the cluster is aligned taking into account the geometrical position of
the calorimeters with respect to the CJC. This is very important in order to make sure
that the track extrapolation to the calorimeter surface will point to the corresponding
cluster. One of the limitation of this algorithm is that only the clusters from LAr
and SpaCal are used. The Iron and the PLUG clusters are not considered, due to
their insufficient energy resolution and their non-negligible contribution of noise. For
clusters which have their barycentre in the LAr, but cells also in Iron or PLUG, only
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the LAr cells are used.
As a first particle hypothesis, the pion mass is used for tracks. The energy squared

of a track is given by:

E2
track = p2

track + m2
π =

p2
T

sin2 θ
+ m2

π (4.2)

and the uncertainty σEtrack
is calculated from error propagation:

σEtrack

Etrack
=

1
E2

track

· pT

sin θ
·
√

σ2
θ · p2

T

sin4 θ
· cos2 θ +

σ2
pT

sin2 θ
, (4.3)

where σθ and σpT
are the errors in pT and θ of the track. The correlations between

these two track parameters are neglected.
The error of the energy measurement in case that the particle is detected in the

calorimeter is estimated by:

σELAr, est.

Etrack
=

0.5√
Etrack/GeV

. (4.4)

A track is considered to be of good quality if:

σEtrack

Etrack
<

σELAr, est.

Etrack
. (4.5)

For the central region the track measurement is better than a corresponding cluster in
the calorimeter up to ∼ 25 GeV.
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Figure 4.1: An illustration of the combination algorithm, in the r − φ view, applied
in the HFS finder. The parameters dlong, d′ca−cl. and Rcylinder are used to select the
clusters corresponding to the track.

Each track is extrapolated to the surface of the calorimeters as a helix, as illustrated
in Fig. 4.1. Inside the calorimeter, the track is extrapolated as a straight line. The
calorimetric energy Eclus−tr is calculated as the sum of all cluster energies for clusters
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overlapping with the volume of a cone with opening angle α = 67.5o and a cylinder
with radius of 25 cm for the EMC part and 50 cm for the HAD part1.

The energies of the track Etrack and its associated cluster Eclus−tr, including possible
fluctuations of both measurements within their standard errors, are compared. For:

Eclus−tr < Etrack ·
⎡⎣1 + 1.96

√(
σEtrack

Etrack

)2

+
(

ELAr, est.

Etrack

)2
⎤⎦ (4.6)

the track is used to define the HFS object and the associated clusters are discarded.
For Eclus−tr−Etrack > 0, there is the hypothesis that one of the clusters is coming from
the charged particle track and the second one from a neutral particle or another track
which is extrapolated into the same calorimetric volume. The difference in energy is
considered further in the algorithm as a new cluster.

If the condition of Eq. 4.5 is not fulfilled and:

Eclus−tr − 1.96 · σEclus−tr
< Etrack < Eclus−tr + 1.96 · σEclus−tr

, (4.7)

where σEclus−tr
= 0.5

√
Eclus−tr/GeV (GeV), the track energy is considered to be com-

patible with the calorimetric energy deposition. In this case the cluster energy is used
to compute the four-vector that defines the HFS object.

After all tracks are extrapolated, the remaining clusters are used to form the neutral
HFS objects. If more than 95% of the cluster energy is deposited in the EMC part
and more than 50% of the energy in the
first two layers of the EMC, then the clus-
ter is most likely due to a photon. In this
case, the electromagnetic energy scale is
used for the cluster energy, otherwise the
hadronic energy scale is applied.

The presented HFS algorithm de-
scribes the DIS charm events particles
well due to the fact that they are mainly
produced in the central detector region
by selection and that they are dominated
kinematically by relatively low energies.

In Fig. 4.2 one can observe a good
correlation between the sum of the ener-
gies of generated particles and the recon-
structed sum of the HFS objects at the
detector level. In Appendix G more stud-
ies on HFS can be found.
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Figure 4.2: The correlation between the∑
EHFS on detector and the particle en-

ergies on hadron level.

HFS reconstruction algorithm is the ratio between the pT of the HFS objects and
the pT of the scattered electron. This distribution is usually called the pT balance
distribution.

In Fig. 4.3 the pT balance distribution is shown at the reconstructed level. One can
observe that the peak position is at the value of 1 and that the MC model describes
the data reasonably well.

1In the Fortran environment the opening angle was 135o while in h1oo it is 67.5o
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In this analysis the jet finder is run only over HFS objects in the central region of
the H1 detector, which ensures high resolution and which is best understood:

pT, HFS > 0.12 GeV; (4.8)
|ηHFS | < 2.0 . (4.9)

4.2 Jet Selection

The HFS objects, selected as presented
in Sec. 4.1, are stored in the particle can-
didates array. From the HFS objects, the
ones used to reconstruct the D∗-meson
are discarded.

The D∗-meson, treated as a stable par-
ticle, is added to the selected particle can-
didates array.

The jets used in this analysis are found
with the k⊥ cluster algorithm described
in Sec. 1.3. The k⊥ jet finder is applied
to the selected particle candidates in the
laboratory frame. The advantage of using
the laboratory frame is that the errors due
to the boost of particle candidates into
the centre of mass frame, the γ∗p-frame,
are avoided.
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Figure 4.3: The pT balance distribution.

For this classical part of the analysis
the events are selected if a D∗Jet is found
and fulfills the criteria:

pT, Jet > 1.5 GeV; (4.10)
|ηJet| < 1.5 . (4.11)

The events which have a D∗Jet form a
first event sample.

The OtherJet is the remaining jet with
the highest transverse momentum which
fulfills the same pT, Jet and ηJet require-
ments as above.

The azimuthal opening angle between
the D∗Jet and the OtherJet found in the
laboratory frame and then boosted into
the γ∗p-frame shows the expected back-
to-back topology as observed in Fig. 4.4.
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Figure 4.4: The back-to-back topology of
the D∗Jet and OtherJet boosted into the
γ∗p-frame.

A typical event is shown in Fig. 4.5.
The control plots for the found jets are presented in Fig. 4.6 and Fig. 4.7. The MC

model describes the data very well in the EJet, the ηJet and the φJet distributions.
Another important aspect of the jet finding algorithm is the correlation between

the energy and direction of the parton and the corresponding jet. The jet on detector
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Figure 4.5: A typical event in the side view a) and the radial view b).

level is in general expected to provide a good representation of a corresponding quark
or gluon on parton level. The correlations between the D∗Jet and the OtherJet and
the c and the c̄ quark are illustrated in Appendix F.
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Figure 4.6: The energy distributions for the D∗Jet and the OtherJet.

4.3 Background Subtraction

In Sec. 3.3.3 the reconstruction of the D∗-mesons used to select the event sample for
this analysis was presented. As one can observe in Fig. 4.8 a) and b), the event sample
contains also background from non-charm and charm events. This background has
to be statistically subtracted for the determination of the jet shape variables. The
measured observables for the jet shape variables are average values obtained from the
total jet sample:

〈xmeas〉 =
1

Njets

jets∑
j=1

xj . (4.12)

The relation between the background (WrCh) and the signal (RiCh) contributions
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Figure 4.7: The η and the φ distributions for the D∗Jet and the OtherJet.

can be written as:

〈xmeas〉 = (1 − f∗
bg) · 〈xsig〉 + f∗

bg · 〈xbg〉, (4.13)

where f∗
bg = Nbg/Ntotal is the fraction of the background jet sample to the total one.

The 〈xsig〉 and 〈xbg〉 are averages over the signal and background jet sample variables,
respectively, where x stands for Ψ(r,R), ρ(r,R), ρ∗(r,R) and nsbj(ycut).

Ntotal represents the total number of jets (separately for D∗Jet and OtherJet) given
by the right charge (RiCh) combinations. Nbg is calculated using:

Nbg =
1

kN
· NWrCh, (4.14)

where NWrCh is the number of jets from the wrong charge (WrCh) combinations and
kN provides the normalisation in the Δm distribution fit between the RiCh and the
WrCh spectra.

The signal value is obtained by subtracting the background contribution from the
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Figure 4.8: The Δm distribution for events with a D∗Jet, a), and for events with an
additional OtherJet, b). The side bands used in estimating the systematic error in the
determination of the background are shown by the two rectangles on both sides of the
signal peak.

measured one as follows:

〈xsig〉 =
〈xmeas〉 − f∗

bg · 〈xbg〉
1 − f∗

bg

. (4.15)

4.4 Error Calculation

The errors on the jet shape observables are given by the quadratic sum of the statis-
tical and the systematic errors. The statistical errors introduced by the background
subtraction procedure are taken into account. The sources of the systematic errors are
presented in Sec. 4.4.1.

The statistical errors of the RiCh and the WrCh combinations together with the
normalisation factor kN are considered to be independent. This approximation ap-
pears reasonable since kN is given by a simultaneously fit of the RiCh and the WrCh
combinations and does not depend on the total number of jets from the two samples.
The error of the signal is calculated using the standard formula for error propagation
applied to Eq. 4.15. The final formula is:

σ〈xsig〉 =
1

1 − f∗
bg

·

√√√√σ2
〈xmeas〉 +

(
f∗
bg · σxbg

)2
+

(
〈xmeas〉 − 〈xbg〉

1 − f∗
bg

)2

· σ2
f∗
bg

(4.16)

where the f∗
bg error is given by:

σf∗
bg

=
1

kN · NRiCh
·
√

σ2
NWrCh

+ σ2
NRiCh

·
(

NWrCh

NRiCh

)2

+ σ2
kN

·
(

NWrCh

kN

)2

(4.17)

and σkN
is the error of the normalisation factor given by the fit function.
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4.4.1 Systematic Errors

An essential component of a measurement is the estimation of the systematic errors.
The jet shape variables, as well as the mean subjet multiplicity, are measured and

presented in this paper at the hadron level. In order to correct the data obtained at the
detector level to the hadron level one has to make use of a MC model and detector
simulations. These are two classes of systematic errors that contribute to the result
presented here. A third class of errors is related to the selection cuts which are used
to reject the background and to enhance the signal.

In this section the systematic error contributions of the detector simulation and of
the selection cuts are discussed. In Sec. 4.6 the contribution to the systematic error
due to imperfections of the physics model of the MC are presented.

Systematic Errors Due to Detector Simulations

In order to calculate the influence of the detector simulation on the result, one has
to estimate within which limits the reconstructed MC quantities can be varied so that
they can still describe the data.

The most important quantities are the energy and the θ angle of the scattered
electron and of the HFS objects.

For the possible uncertainty in the en-
ergy of the scattered electron and the
HFS objects, the limits are obtained from
the so-called double ratio distributions.

For the electron it is provided by the
E′

e/EDA distribution of the ratio between
the values obtained in data and MC. In
Fig. 4.9 one can observe that the MC sim-
ulation describes the data within ±2%.

The uncertainty in the energy of the
HFS objects is given by the pT balance,
see Fig. 4.3, more precisely by the ratio
between data and MC. If the HFS object
is formed using only cluster information,
a variation of ±4% in energy [54] is ap-
plied to obtain the systematic error. For
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Figure 4.9: The E′
e/EDA double ratio dis-

tribution vs. E′
e.

the HFS objects using only track information, a ±2% variation in energy is used, which
is a reasonable approximation of Eq. 4.1. The objects formed after a track and a cluster
are combined, as presented in Sec. 4.1, have a variation of ±3% in energy.

The θ angle [54] of all type of objects is varied within ±3 mrad. For the scattered
electron the θ angle variation is done within ±2 mrad.

A summary of the systematic error sources given by the detector simulation and
their range of variation range is presented in Table 4.2.

The mathematical formalism used to calculated the systematic error given by
the detector simulations is described in the following.

Let in general x be a function which depends on the parameter p. A jet observable
(e.g. subjet multiplicity) depends on the reconstructed quantities (e.g. energy of the
HFS objects).
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Measured Observable Variation Range
Energy of the scattered electron ±2%
θ angle of the scattered electron ±2 mrad

Energy of the HFS object: track/cluster/track-cluster ±2/4/3%
θ angle of the HFS object ±3 mrad

Table 4.2: Systematic error sources due to the detector simulation and their range of
variation.

The experimental results obtained at the detector level are transformed to the
hadron level as follows:

xhad = xDet · xMC, Gen

xMC, Rec
, (4.18)

where xMC, Rec is the radiative MC model result at the reconstructed (detector) level,
xDet represents the data (at detector level) and xMC, Gen is the MC result obtained at
the generator level. Details about the correction procedure of the data to the hadron
level can be found in the Sec. 4.6.

For the systematic errors which are due to the detector simulation, one should
vary the parameter p only in data or in MC, not in both. Usually, due to higher
statistics, the variation in MC is chosen. From the variation of the parameter p the
following result is obtained:

xMC, Rec
p = xMC, Rec · (1 + εMC, Rec), (4.19)

and the new value of the xhad will be:

xhad
p = xDet · xMC, Gen

xMC, Rec(1 + εMC, Rec)
, (4.20)

where εMC, Rec is the relative difference obtained for the variation of the parameter p
in MC at the reconstructed level.

The variation of the xhad value will be:

σxhad = xhad
p − xhad = xDet · xMC, Gen

xMC, Rec︸ ︷︷ ︸
xhad

· εMC, Rec

1 + εMC, Rec
. (4.21)

The relative systematic error is given by:

εxhad
=

σxhad

xhad
=

εMC, Rec

1 + εMC, Rec
. (4.22)

Systematic Errors Due to Selection Cuts

Another class of systematic errors is given by the selection cuts, which show if the
events migrate in or out of the selected phase space, and the parameter RJet of the k⊥
jet finder algorithm, which limits the search range in the (η, φ) plane for the hadrons
attributed to a certain jet.

Due to the fact that the variation of these cuts cannot be done in both directions,
positive and negative, e.g. |ηHFS | < 2.25, it is assumed that the same systematic
deviation is obtained for the symmetric variation of the cut.
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The following selection cuts have been modified as described in Table. 4.3.

Measured Observable Initial Cut Varied Cut
η of the HFS object |ηHFS| < 2 |ηHFS | < 1.75

η of the D∗-meson daughters |ηK,π,πs| < 1.5 |ηK,π,πs| < 1.25
Transverse momentum of K and π pT, K,π > 0.25 GeV pT, K,π > 0.3 GeV

Transverse momentum of πs pT, πs > 0.12 GeV pT, πs > 0.15 GeV

Table 4.3: Systematic errors due to selection cuts.
The mathematics behind the calculation of these systematic errors is different

from the one used for the detector simulations class.
For the systematic errors given by the selection cuts the function x, which de-

pends on the parameter p, the variation with the same amount of the parameter p has
to be done in data and in MC, in order not to overestimate the errors. The following
equations are obtained:

xDet
p = xDet · (1 + εDet) (4.23)

xMC, Rec
p = xMC, Rec · (1 + εMC, Rec),

where εDet and εMC,Rec are the relative differences of the results obtained for the
variation of parameter p in the data and in the MC model at the reconstructed level,
respectively. This treatment of the errors can be used when there is enough statistics
in data such that the contribution from statistical fluctuations is negligible.

If the results differ by an amount Δε:

εDet = εMC, Rec + Δε (4.24)

the variation of the ”had” values would be:

σxhad = xDet · xMC, Gen

xMC, Rec︸ ︷︷ ︸
xhad

· Δε

1 + εMC, Rec
. (4.25)

The relative systematic error will be
given by the following formula:

εxhad
=

εDet − εMC, Rec

1 + εMC, Rec
. (4.26)

The parameter which limits the jet
”radius” belongs to same class as the se-
lection cuts. This parameter, RJet, see
Sec. 1.3, is correlated with the charm
quark that produced the jet. As a mea-
sure of this correspondence between the
jet and the charm quark, the energy ra-
tio Ec/ED∗Jet and the number of ”re-
constructed” charm quarks, Nc, with the
D∗Jet are used.

The Ec/ED∗Jet distribution should
have its mean value, μEc/ED∗Jet

(RJet), at
the value of 1.

JetR
0.8 0.9 1 1.1 1.2

ξ
1/

N
 

0

0.01

0.02

0.03

0.04

0.05

RAPGAP 2.8
D*Jet/EcEμ: ξ

c: Nξ

Figure 4.10: The μEc/ED∗Jet
(RJet) and the

Nc(RJet) dependences normalised to 1. The
two curves cross is at: RJet = 1 ± 0.02.
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The variation of the jet ”radius” RJet of ±2% is used to determine a systematic
error. These limits in the variation of RJet are motivated by the uncertainty of defining
the value where the mean value dependence μEc/ED∗Jet

(RJet) crosses the number of
reconstructed charm quarks Nc(RJet), as can be seen in Fig. 4.10.

Another source of systematic errors is due to the non-uniqueness of the background
subtraction. The normalisation factor between RiCh and WrCh combinations, intro-
duced in Sec. 3.3.5, can be determined also using the so-called side bands, shown in
the Fig. 4.8.

The kSB normalisation factor is calculated using the summation procedure:

kSB, sum =

N1f∑
j=N1i

Nj, WrCh +
N2f∑

j=N2i

Nj, WrCh

N1f∑
j=N1i

Nj, RiCh +
N2f∑

j=N2i

Nj, RiCh

. (4.27)

N1i = 0.140 GeV and N1f = 0.142 GeV are the boundaries of the first side band
and N2i = 0.149 GeV and N2f = 0.153 GeV are the limits for the second side band.
The boundaries are selected to be outside of the signal window but close enough to
it, such that the background estimation does not need a large extrapolation. The
difference kN − kSB gives the systematic variation of the normalisation factor:

εk =
|kN − kSB|

kN
. (4.28)

For the D∗Jet event sample εk, D∗Jet = 3% is obtained and for the OtherJet event
sample the value is εk, OtherJet = 0.6%. The variation will consider both signs of εk,
positive and negative.

For the jet shape variables also the systematic errors due to the MC physics model
can be estimated. This is explained in detail in Sec. 4.6. The negative and positive
contributions of the different systematic errors are separately added in quadrature.

In Fig. 4.11 the total systematic errors due to the detector simulation and selection
cuts for the mean subjet multiplicity of the D∗Jet and OtherJet respectively, are
presented.
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Figure 4.11: The relative systematic errors of the mean subjet multiplicity 〈nsbj〉.
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One can observe that the total systematic error, for the detector level, is around
±2% for both jets. The main contribution is given by the variation of the parameter
RJet of the k⊥ jet algorithm and the variation of the πs selection cuts.

A complete overview of the various contributions can be found in Appendix H.
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Figure 4.12: The relative systematic errors of the integrated jet shape variable
〈Ψ(r/R)〉 where R = 1.

The systematic errors for the integrated jet shape variable, 〈Ψ(r/R)〉, are shown
in Fig. 4.12. On average, the systematic errors at the detector level for 〈Ψ(r/R)〉 of
the D∗Jet is around 1%. For the inner part of the jet, the systematic error reaches
∼ 2.5% and decreases to ∼ 0% at the upper limit of the jet radius because 〈Ψ(r/R)〉
approaches 1 for r → R by definition. For the bins with r/R < 0.9, the energy of
the jet particles and their direction can vary and a systematic shift is observed. The
shift decreases from the inner part to the outer side because 〈Ψ(r/R)〉 is summing the
energy bin after bin.
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Figure 4.13: The relative systematic errors of the differential jet shape variable
〈ρ(r/R)〉 where R = 1.

The main contributions are given by the parameter RJet, the πs selection cuts and
the normalisation factor kN . For the OtherJet, the systematic errors are doubled due
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to the fact that the precision of the D∗-
meson energy measurement is missing.

The systematic errors for the differ-
ential jet shape variable, 〈ρ(r/R)〉, are
shown in Fig. 4.13. The average of the
systematic errors for the D∗Jet and the
OtherJet is ∼ 8%. The main contribu-
tions are given by the RJet, the πs selec-
tion cuts, the η range of the K and the π,
as well as kN .

The systematic errors for the jet shape
variable 〈ρ∗(r/R)〉, with an average of
∼ 12%, are presented in Fig. 4.14. The
main contributions are given by the same
parameters as for the 〈ρ(r/R)〉 jet shape
variable.
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Figure 4.14: The relative systematic errors
of 〈ρ∗(r/R)〉 where R = 1.

4.5 Results at the Detector Level

In this section the jet shape observables at detector level are presented. The statistical
and systematic errors are added in quadrature.

In the Fig. 4.15 the results of the mean subjet multiplicity, 〈nsbj〉, at the detector
level, are presented as a function of ycut.
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Figure 4.15: The mean subjet multiplicity 〈nsbj〉 at the detector level as a function of
ycut.

The boundaries of the concentric jet fraction, used for the measurement of jet shape
variables, are given by the parameter r which is defined as:

r =
√

(ηh − ηJet)
2 + (φh − φJet)

2 (4.29)

where the index h is used for the hadrons which are forming the Jet.
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The integrated and the differential jet shape variables are shown in Fig. 4.16 and
Fig. 4.17, respectively.
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Figure 4.16: The integrated jet shape variable 〈Ψ(r/R)〉 at the detector level (R = 1).

One can observe that the MC model used in this analysis, RAPGAP 2.8, describes
the data reasonably well for the classical jet shape observables. Another important
observation is that although the two jets are coming from charm or anti-charm quarks
they are quite different in shape. A study of these differences is presented in Sec. 4.8.
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Figure 4.17: The differential jet shape variable 〈ρ(r/R)〉 at the detector level (R = 1).

An additional differential jet shape variable, 〈ρ∗(r/R)〉, can be defined for the
D∗Jet by excluding the D∗-meson candidate from the sum over the hadrons. The ET

of the D∗Jet is kept unchanged. This variable shows the flow of the ET around the
D∗-meson within its jet, see Fig. 4.18.
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4.6 Correction of the Data

to the Hadron Level

In order to make these results avail-
able for comparison with theoretical pre-
dictions or with the results from other ex-
periments, one has to correct them for
different detector effects, such as detec-
tor efficiency and resolution, geometrical
acceptance, interactions with dead mate-
rial, and effects of the trigger and event
selection.

Before the corrections are performed,
particularly when applying bin by bin cor-
rections, one should check the stability
and purity of the distributions.

They are defined as:
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Figure 4.18: The 〈ρ∗(r/R)〉, (R = 1).

S =
Nhad & det

Nhad
and P =

Nhad & det

Ndet
, (4.30)

where Nhad and Ndet are the number of events found within a given bin using the
selection criteria on hadron and on detector level, respectively. The Ndet is often
referred to as Nrec, the number of events at the reconstructed level; the detector and
the reconstructed level are the same. Nhad & det is the number of events which pass
the selection cuts on both levels simultaneously for the given bin.

The stability is a measure of how many events from hadron level are reconstructed
on detector level within the same bin. For events populating a given bin at detector
level, the fraction of events which are found in the same bin at hadron level is defined
as purity.
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Figure 4.19: The purity, stability and the correlation for the mean subjet multiplicity,
〈nsbj〉, between hadron and detector level for the D∗Jet and the OtherJet, in bins of
ycut.

The values of purity and stability are in general above 50% in each bin of the
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various distributions, which is a reasonable requirement in order to apply the so-called
bin-by-bin correction. The additional condition that the data are reasonably described
by the MC simulations is also fulfilled.

In Fig. 4.19, the correlation between 〈nsbj〉 at hadron level and at the detector
level is presented. The closer the point is in a ycut bin to the first bisecting line, the
better the results of 〈nsbj〉 at hadron and detector level are correlated. Parallel with
the x-axis, the stability, in percent, is plotted in bins of ycut. The purity is plotted
parallel with the y-axis.

The purity, the stability and the hadron-detector level correlation for the integrated
jet shape variable, 〈Ψ(r/R)〉, are illustrated in Fig. 4.20.
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Figure 4.20: The purity, stability and the correlation for the integrated jet shape
variable, 〈Ψ(r/R)〉, between hadron and detector level for the D∗Jet and the OtherJet,
in bins of r/R.
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Figure 4.21: The purity, stability and the correlation for the differential jet shape
variable, 〈ρ(r/R)〉, between hadron and detector level for the D∗Jet and the OtherJet,
in bins of r/R.
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For the differential jet shape variable, 〈ρ(r/R)〉, one observes in Fig. 4.21 a general
reduction of stability and purity to the ∼ 60% level compared to 〈Ψ(r/R)〉, where only
the first three bins of r/R indicate a slight reduction.

For 〈ρ(r/R)〉 also the correlation
becomes slightly worse, and the error in-
creases in the larger bins of r/R, where
only a small fractional energy of the jet is
found at the edge of the cone.

In Fig. 4.22 the same quantities as be-
fore are presented for 〈ρ∗(r/R)〉. One ob-
serves that stability decreases below 40%
for the first two bins in r/R.

The corrected data are given by:

xhad = xdet · fcorr , (4.31)

where
fcorr =

xhad

xdet

∣∣∣∣∣
MC

. (4.32)

The value of xhad is calculated using
the MC model at hadron level, apply-
ing the same selection as for the detector
level. The correction factors fcorr are cal-
culated individually for each bin and are
shown in Fig 4.23.
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Figure 4.22: The purity, stability and the
correlation for 〈ρ∗(r/R)〉 between hadron
and detector level for the D∗Jet, in bins
of r/R.

For the first two bins of 〈ρ∗(r/R)〉 the correction factors are relatively large due to
removing of the dominant D∗-meson contribution. Here the distribution is sensitive
to small energies.
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Figure 4.23: The correction factors for the jet shape observables.
The relative difference of the results obtained with two MC models, HERWIG

and RAPGAP, is included in the estimation of the systematic errors of the corrected
distributions:

εmodel =
xcorr, H − xcorr, R

xcorr, R
. (4.33)
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The systematic errors of the jet shape observables including the MC model sys-
tematic errors are presented in Fig. 4.24. The various sources of systematic errors
are assumed to be independent. For the differential jet shape variable, the errors for
the D∗Jet and the OtherJet are anti-correlated due to the fact that the ET sum is
performed over a much larger number of particles for the OtherJet than for the D∗Jet
in the range of r/R ∈ (0.2; 0.5).
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Figure 4.24: The systematic errors for jet shape observables.

4.7 Results at the Hadron Level

The results at the detector level, presented in the Sec. 4.5, are now shown corrected
to the hadron level and compared to the QCD based model of RAPGAP 2.8 for direct
charm production in DIS. The systematic error from the MC model is also added in
quadrature to the total error.

Fig. 4.25 shows the 〈nsbj〉 distribution.
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Figure 4.25: The mean subjet multiplicity 〈nsbj〉 corrected to hadron level.
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Figure 4.26: The integrated jet shape variable 〈Ψ(r/R)〉 corrected to hadron level
(R = 1).
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Figure 4.27: The differential jet shape variable 〈ρ(r/R)〉 corrected to hadron level
(R = 1).

Fig. 4.26 and Fig. 4.27 show that the differences between the D∗Jet and the
OtherJet, already observed at detector level, remain at hadron level. Studies of these
differences are presented in Sec. 4.8.

The variable 〈ρ∗(r/R)〉 corrected to hadron level is shown in Fig. 4.28.

4.8 Investigation of the Difference between the D∗Jet and

OtherJet

In previous sections, clear differences between the D∗Jet and the OtherJet, at detector
and hadron level, have been observed.
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It is interesting to establish the nature
of these differences given that both jets are
assumed to be predominantly charm jets
produced in the process of boson-gluon
fusion to a cc̄ pair.

In this section various D∗Jet defini-
tions are presented. In addition, an in-
novative definition for the boundaries of
the concentric jet fraction is introduced.
This new definition makes use of a more
k⊥ like radius, r∗.

In the last part of this section the jet
shape observables are shown as a function
of different ηJet, EJet and ET,Jet ranges.
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Figure 4.28: The 〈ρ∗(r/R)〉 variable cor-
rected to the hadron level (R = 1).

4.8.1 Different D∗Jet Definitions

One possible reason for the differences between the D∗Jet and the OtherJet could be
the selection criteria for the jet which contains the D∗-meson.

For this check an alternative definition of the D∗Jet, which was already used in a
previous analysis [56], was considered. Not the D∗-meson is used as a stable particle
within the HFS objects, but rather its stable daughter particles.

From the jets found with this new HFS configuration, the jet closest in the az-
imuthal angle φ to the D∗-meson direction and with a Δφ angle less than 60o, is
considered as D∗Jet:

min |Δφ(D∗, jet)| <
π

3
. (4.34)

A third possibility is to use a new definition which requires a match of the D∗Jet
with a D∗-meson also in η, making use of the above HFS objects.

The jet closest in (η, φ) space to the D∗-meson direction and with rjet < 1 is called
the D∗Jet:

min rjet(D∗, jet) < 1 , (4.35)

where
rjet =

√
(ηjet − ηD∗)2 + (φjet − φD∗)2. (4.36)

Results using these two new definitions and the standard D∗Jet definition of this
analysis are compared in Fig. 4.29. The data are corrected to hadron level and the
errors include systematic errors. One can observe that the differences between the two
charm jets become smaller.

However, even if the D∗-meson is not included in the HFS objects as a stable
particle, some differences remain. They are probably due to the fact that the OtherJet
is not always fully reconstructing the charm quark jet and that in addition it has a
significant probability, 
 20%, to be due to a hard gluon instead of a charm quark, as
indicated by the MC studies, see Fig. F.4 and F.5 in Appendix F.

The correlations between the charm quarks and the corresponding jets are presented
in Appendix F. Distributions of the purity, stability, correction factors to hadron level
and systematic errors of the new D∗Jet definition are shown in Appendix H.



86 Chapter 4 Measurements of the Jet Shape Variables
>

sb
j

<n

0

1

2

3

4

5

6

-410 -310 -210 -110 1
-410 -310 -210 -110 1

-410 -310 -210 -110 1 1  1 cuty

D*Jet
OtherJet

 D*Jet∈D* 

:’99-’00+Data e
RAPGAP 2.8

/3π(D*, jet)| < φΔmin| (D*, jet) < 1
jet

min r

(r
/R

)>
Ψ<

0

0.2

0.4

0.6

0.8

1

(r
/R

)>
ρ<

0

0.1

0.2

0.3

0.4

0.5

r/R
0 0.2 0.4 0.6 0.8 1

r/R
0 0.2 0.4 0.6 0.8 1

r/R
0 0.2 0.4 0.6 0.8 11 0 1 0

Figure 4.29: The jet shape observables for different D∗Jet definitions corrected to
hadron level (R = 1). The default definition used in this analysis is D∗ ∈ D∗Jet.

D∗ ∈ D∗Jet min |Δφ(D∗, jet)| < π/3 min rjet(D∗, jet) < 1

4.8.2 Alternative Radius Definition

The jet shape variables are defined summing the ET of the hadrons in concentric cones
around their respective jet axis using the following radius definition:

r =
√

(ηjet − ηh)2 + (φjet − φh)2 , (4.37)

which is historically related to the cone algorithm concept.
Nowadays, the k⊥ cluster algorithm is mostly used to perform the jet finding, see

Sec. 1.3. For this algorithm a more natural definition would be:

r∗ = ph · sin αh−jet, (4.38)

where ph is the momentum of the HFS object contained in the jet. The angle between
the HFS object and the jet direction is αh−jet. The variable r∗ has the meaning of a
relative transverse momentum.
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The results of the jet shape observables using this new definition are illustrated
in Fig. 4.30 at the hadron level. The D∗Jet definition used is the default one from
this analysis, the D∗-meson is used as a stable particle and the jet which contains it is
called the D∗Jet. The correction factors to hadron level, the purity, stability as well
as systematic errors are presented in Appendix H.
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Figure 4.30: The jet shape variables using a k⊥-like radius r∗ corrected to hadron level.
Here R = 1 GeV.

With this new r∗ definition, the two charm quark jets are more similar in 〈Ψ〉.
This is a new vision of the jet shape variables which makes use of a k⊥-like radius that
is consistent with the jet finder. The differences, especially in the first two bins, are
due to the gluon jet contributions which confirm previous observations of the fact that
gluon jets are broader than the quark ones.

4.8.3 Dependence of Jet Shape Variables on Jet Kinematics

In this section the jet shape variables are studied as a function of ET, jet, Ejet and ηjet,
in order to observe if the reconstructed jets have a quark or a gluon signature.

In Fig. 4.31, the jet shape variables are plotted in different bins of ET, jet at the
hadron level and their errors include the systematic errors. The higher ET, jet is, the
higher is the probability to reconstruct a charm quark using the OtherJet.

The shape of the OtherJet distributions for the highest ET, jet bin are similar to
the one in the backward ηjet bin, presented in Fig. 4.32:

−1.5 < ηjet < −0.5 (4.39)

even if the charm quark is in this case not completely reconstructed. This is supported
by the correlation plots shown in Appendix F, where one can observe that in the
backward direction the charm quark contributions are approximatively the same for
the D∗Jet and the OtherJet.
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Figure 4.31: The jet shape observables for different bins in ET,jet corrected to hadron
level (R = 1).

ET, jet ∈ (1.5; 4]GeV ET, jet ∈ (4; 8]GeV ET, jet > 8GeV

The distributions of jet shape variables for different bins in Ejet, shown in the
Fig. 4.33 also confirm the ET, jet observation.

One can conclude from the various comparisons and the correlations shown in
Appendix F that for low energies of the charm jets only the D∗Jet can reconstruct
the charm quark properly and the OtherJet is affected by hard gluon contributions,

 20%, as well as by the missing reconstructed energy of the charm quark.

The purity, stability, correction factors to hadron level and the systematic errors
corresponding to the distributions shown in Figs. 4.31, 4.32 and Fig. 4.33 are presented
in Appendix H.

Having understood the parton likely contributions resulting in differences between
the two types of charm jets, in the next chapter an innovative perspective is explored:
a subjet of the charm jet, subjet assumed to originate from a soft gluon radiated by
the charm quark that generates the jet, is used to measure the dead cone effect, which
is a step further in understanding the structure of the charm jets.
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Figure 4.32: The jet shape observables for different bins in ηJet corrected to hadron
level (R = 1).
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Figure 4.33: The jet shape observables for different bins in Ejet corrected to hadron
level (R = 1).
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Chapter 5

The Dead Cone Effect

In this chapter an innovative method to investigate the structure of charm jets is
presented. The idea of this method is to use a specific angular distribution and its
dependence on the jet energy. The method is expected to be sensitive to the suppression
of soft perturbative1 gluons emitted by heavy quarks close to their flight direction. For
these gluons, the differential cross section [25] is written as:

dσQ→Q+g

dα
≈ C

α3

(α2 + α2
0)2

(5.1)

with:
α0 =

MQ

EQ
, (5.2)

where MQ is the mass of the heavy quark and EQ its energy.
The angle between the radiated gluon and the primary heavy quark momentum is

denoted by α. From Eq. 5.1 it follows that the emission of soft gluons is suppressed
in the region of small α. Therefore this region is called the ”dead cone”. The dead
cone effect is characterised by an opening angle α0 which depends on the mass and
energy of the heavy quark. In Sec. 5.2 an attempt is made to define an experimentally
accessible angle which should approximate the parton level angle α.

In this chapter the nomenclature is as follows. The charm quark coming from
the hard BGF process is called the primary heavy quark or the BGFQ. The gluon
radiated by the BGFQ is called BGFg. The charm quark after gluon radiation is
named aBGFQ, as illustrated in Fig. 5.1.

Indirect evidence for the presence of the dead cone, based on comparing multiplic-
ities in light-quark and heavy-quark jets has been reported by the DELPHI collabora-
tion [55].

At HERA, in ep collisions at
√

s 
 318 GeV, the charm quarks are produced mainly
via the boson-gluon fusion process, as described in Sec. 1.2. The charm quarks are
produced in pairs and, in contrast to e+e− experiments, close to kinematic threshold.
This allows to study the effect of the charm mass on the jet structure at low jet
momenta, in a region of phase space where these effects are expected to be measurable
with the detector resolution of the H1 experiment.

In the next section the possible approaches to study the dead cone effect are dis-
cussed. The motivation for choosing the Energy Variation approach is also presented.

1The gluon radiation, to which this analysis is referring, can still be calculated perturbatively. Only
its soft part, close to quarks direction, is studied.
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Figure 5.1: The representation of the radiated soft gluon by the BGFQ.

5.1 Two Approaches to Study the Dead Cone Effect

On the basis of Eq. 5.2, two approaches can be used to study the dead cone effect.
One of them is to keep the energy of the quarks constant and to compare two

quark flavours that have significantly different masses. This will be called the Mass
Variation approach, and it is explained in detail in Sec. 5.1.1. In the second approach
the quark mass is kept the same, making use of one quark flavour only, and the energy
of the quark is varied. This approach will be referred to as the Energy Variation. It is
presented in Sec. 5.1.2.

A third possibility is to combine the two approaches in the following fashion. The
Energy Variation can be applied to the c and b-quarks and their results can be com-
pared to see the difference due to the mass of the two quarks, as in the Mass Variation
approach.

5.1.1 The Mass Variation Approach

Two quark flavours with a significant
mass difference are the u and the c-
quarks. Due to the fact that it is difficult
to discriminate the BGF processes for u,
d and s production, respectively, one can
include, for a comparison with charm, all
three of these flavours in one class.

This is possible since their mass is
of order 10 to 100 MeV and is signif-
icantly smaller than the charm quark
mass of 1400 MeV. Therefore, the u, d
and s-quarks are grouped together as
light quarks.

The Mass Variation approach is
based on a comparison of light quarks
with charm quarks.
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Figure 5.2: The Monte Carlo predictions
for the dead cone effect for light and charm
quarks.
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The α0 angle can be written for the two classes as:

αc
0
∼= mc

Ec
and αl

0
∼= ml

El
. (5.3)

The relation between the quark masses is mc � ml which implies that:

αc
0 � αl

0. (5.4)

This can be nicely observed in the MC model at the parton level, see Fig. 5.2.
An experimental method [57] for the Mass Variation approach compares the an-

gular distribution of the hadrons around the highest ET jet direction. Fig. 5.3 shows
the results of MC simulations for the proposed method.

The difference between the full line
(u-quarks) and the dashed one (c-
quarks) is considered as evidence of the
dead cone effect.

The dashed line in Fig. 5.3, which
includes also the D∗-meson, is different
from the one obtained in [57].

The red histogram shows the same
distribution as the dashed one but ex-
cluding the D∗-meson and it is in
good agreement2 with the dashed one
from [57].

The difference which could be consid-
ered evidence for the dead cone effect is
rather small. Another problem with this
comparison of light and heavy quark jets
is that for the D∗Jet the daughter parti-
cles are discarded and the D∗-meson is
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Figure 5.3: Cross-check of experimental
method proposed for the Mass Variation
approach.

used while for the light-quark jets no such procedure can be performed. Therefore the
light and heavy quark jets cannot be compared in this way on the same footing. An
alternative is to study only one flavour type of quarks.

5.1.2 The Energy Variation Approach

In Fig. 1.13 it was observed that the phase space for gluon emission is suppressed
for charm and bottom quarks at HERA production energies. At HERA the cross
section for charm production is at least two orders of magnitude higher than the one
for bottom production. For reasons of statistics the appropriate quark flavour for this
study is charm.

The idea of the Energy Variation approach is to keep the quark mass constant and
to vary the energy of the quark jet. For two bins in the energy of the quark EQ,i and
EQ,j one can write:

αQ
0, i

∼= mQ

EQ, i
and αQ

0, j
∼= mQ

EQ, j
. (5.5)

2Unfortunately in the legend of Fig.7 of [57] an error, confirmed by the author, occurred and +D∗

became −D∗.
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If the relation between the energies is:

EQ, j > EQ, i ⇒ αQ
0, j < αQ

0, i (5.6)

the following relations can be written:

αQ
0, i · EQ, i

∼= αQ
0, j · EQ, j

∼= mQ. (5.7)

The distribution αQ
0, i ·EQ, i vs. EQ, i is expected to be a flat distribution with a constant

value which is a reasonable measure of the quark mass.
The predictions of the MC model at the parton level are shown in Fig. 5.4 for the

charm and the bottom quarks.
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Figure 5.4: The MC predictions at the parton level for the Energy Variation approach
in case of c-quarks, left, and b-quarks, right.

For the light quarks u, d and s one can observe in Fig. 5.5 a constant level, which
will be called pseudo-mass level of around 1 GeV, indicating a pseudo dead-cone effect.
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Figure 5.5: The MC predictions for light
quarks compared with those for c-quarks
for the Energy Variation approach.

 (GeV)QE
2 4 6 8 10 12 14

 (
G

eV
)

Q
 E.  0α

0

0.5

1

1.5

2

2.5

3

3.5

4
RAPGAP 2.8 Parton

0 min = 1.4 GeV; Qcm
0 min = 1.8 GeV; Qcm
0 min = 1.0 GeV; Qcm

QCDΛ = 2.2 0 minQ

Figure 5.6: The MC predictions for the c-
quarks in the Energy Variation approach
when using Q0 min instead of Q0 def .



Sec. 5.2 The Experimental Method 95

The flatness and the 1 GeV level of the distribution is due to the invariant mass
cut-off, Q0, where typically the parton shower development is stopped in MC and the
non-perturbative fragmentation starts. The default value of the invariant mass cut-off
is Q0 = 1 GeV. Its value and the fragmentation parameters have been tuned to e+e−

data. Below this mass cut-off, the partons are assumed not to radiate.
The pseudo-mass level of the light quarks decreases to the same level of the mass

cut-off when the latter is lowered. This behaviour is not seen for the charm quark
as one can see in Fig. 5.6. The lower limit of the invariant mass cut-off is given
by Q0 min = 2.2 ΛQCD, where ΛQCD = 0.29 GeV. However, the level of charm quark
slightly deviates for low energies due to lower threshold of Q0 when larger mc are used.

This approach makes use of one quark flavour only, and the comparison in different
energy bins at hadron and at detector level is on the same footing. If not all the energy
of the quark is reconstructed by its jet, or the jet is not well correlated with the quark
direction, these should appear in the αjet

0, i · Ejet, i vs. Ejet, i histogram as deviations
from the normal flat distribution.

5.2 The Experimental Method

The event sample for the study of the dead cone effect is approximately the same as
the one used for the study of the jet shape variable. The kinematical regime and the
D∗-meson selection are identical. The jets are found using the k⊥-jet algorithm, and
the jet which contains the D∗-meson is called D∗Jet. The differences in the event
selection are due to the D∗Jet requirements:

pT, D∗Jet > 1.5 GeV and |ηD∗Jet| < 1.5. (5.8)

An additional criterium to be fulfilled is:

Nhadrons ≥ 3, (5.9)

where Nhadrons is the number of hadrons, HFS objects, required for the D∗Jet.
A BGF charm quark (BGFc) radiates a BGF gluon (BGFg) and the charm quark

(aBGF) then fragments into a D∗-meson. The BGFg splits further, perturbatively or
non-perturbatively, into a qq̄-pair. The two quarks from the BGFg are fragmenting
into hadrons as illustrated in Fig. 5.7.

qh  , ...

qh  , ...

α 0

.....

BGF g q

.....

.....

q

BGF c

Jet

aBGF c
D*

D*

−meson

Figure 5.7: An illustration of the principle of the method.
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By requiring that the D∗Jet, which should have reconstructed the original BGFc,
contains at least two hadrons in addition to the D∗-meson, one allows for the possibility
of the D∗Jet to be a signature of a BGF charm quark and a soft gluon. After the new
jet selection is applied, the particles which compose the D∗Jet are used further in the
analysis.

On this array of particles, the k⊥-jet algorithm is rerun varying the resolution
parameter ycut such that only two subjets are found. The D∗Jet is approximating the
BGFc and one of the found subjets the BGFg.

The selection criteria for the subjet assumed to be the gluon, the gluon subjet, are
different for the D∗Jet and the OtherJet. They are presented in Sec. 5.2.1 and in
Sec. 5.2.2, respectively.

Once the gluon subjet is established, a new variable can be defined to study the
dead cone effect. This variable is called the gluon subjet angle α, which is defined as
the angle between the direction of the D∗Jet and the direction of the gluon subjet. An
analogous angle is defined for the OtherJet.

5.2.1 The Gluon Subjet of the D∗Jet

For the D∗Jet case, the selection of the gluon subjet is simple. Out of the two subjets
found, the one which does not contain the D∗-meson is assumed to be due to the BGFg
and is named the gluon subjet.

α0

sj gluon

α
BGF c

BGF g

aBGF c

sj D*

D*Jet

Figure 5.8: The relation between the partons and the D∗Jet with its subjets.

In Fig. 5.8 the analogy between the partons and the jet, respectively the subjets,
is illustrated for the D∗Jet case. One can write the following:

D∗Jet → sjD∗ + sjgluon

BGFc → aBGFc + BGFg , (5.10)

where ”sj” stands for subjet.
The gluon subjet angle is given by:

α = �(D∗Jet, sjgluon). (5.11)

With the requirement of two subjets, the ycut distribution shown in Fig 5.9, is
found to peak at ∼ 2 · 10−3, which is a good value for the resolution parameter. For
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ycut > 10−2 the resolution of the found subjets is worse and one can observe in Fig. 4.25
that on average only one subjet is found. The ycut distribution has to be checked in
order to make sure that the method is not suffering from a worse resolution given by
a high mean value of the ycut.
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Figure 5.9: The distribution of resolution parameter ycut for the D∗Jet and the
OtherJet.

5.2.2 The Gluon Subjet of the OtherJet

The OtherJet has to fulfill the same criteria as the D∗Jet. The subjets of the OtherJet
are found applying the same algorithm.

The gluon subjet in case of the OtherJet is selected on the basis of the following
analogy with the D∗Jet. In the D∗Jet two subjets are found and the one containing the
D∗-meson has always the highest energy, as was observed in MC studies. Therefore,
in case of the OtherJet, the subjet with the highest energy is taken to be the charm
subjet (aBGFc), while the gluon subjet is the subjet with the lowest energy.

α0
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α
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BGF g
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Other Jet

Figure 5.10: The analogy between the partons and the OtherJet with its subjets.
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This is illustrated in Fig. 5.10. For the OtherJet the following relations can be
written:

OtherJet → sjhighestE + sjgluon

BGFc → aBGFc + BGFg (5.12)

and for the gluon subjet angle:

α = �(OtherJet, sjgluon). (5.13)

5.3 Results

The gluon subjet angle, α, measured as described in the previous section, is plotted in
bins of jet energy. The background subtraction procedure is similar to the one used
for the jet shape observables. The α distribution given by the wrong charge (WrCh)
combinations is subtracted from the one given by the right charge (RiCh) combinations
as:

xsig = xRiCh − 1
kN

· xWrCh, (5.14)

where kN is determined using the fit function of Eq. 3.61. The fit function is applied
to the new Δm distributions, shown in Fig. 5.11 a) for the D∗Jet and in b) for the
OtherJet event samples, respectively.
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Figure 5.11: The Δm spectrum for the D∗Jet and OtherJet event sample used to
study the dead cone effect.

The statistical errors of the signal determination, xsig, are calculated using the
standard error propagation. The error calculation is performed with the formula:

σsig =
1

kN
·
√

σ2
xRiCh

· k2
N + σ2

kN
· x2

WrCh

k2
N

+ σ2
xWrCh

. (5.15)

The systematic errors for this measurements are presented in Sec. 5.3.2. The final
errors are calculated adding the statistical and systematic errors in quadrature.
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5.3.1 The α0 Determination

Once the gluon subjet angle, α, is measured in different bins of the jet energy the dead
cone angle, α0, can be determined.

The α distribution is fitted with the following function:

fitα = p1 · α3

(α2 + p2
2)2

, (5.16)

where p1 and p2 are free parameters of the fit. One can observe the analogy with the
theoretical cross section of Eq. 5.1. The parameter p2 is exactly the α0 angle. The α
distributions and the fit used to determine the α0 angle are shown in Fig. 5.12 for the
first four bins of the jet energy and in Fig. 5.13 for the last three bins.

The range where the fit applies is given by the applicability of the function fitα
from Eq. 5.16 which is an approximation of the cross section for small angles.
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Figure 5.12: The α distributions and the fit function fitα in the first bins of jet energy.
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In order to estimate the systematic error of the α0 measurement, a second method,
which is a very intuitive one, is used.
For every α distribution the peak posi-
tion can be established. The α value at
the fraction fr of the peak height is con-
sidered as the corresponding α0 in the jet
energy bin. The fraction fr of the peak
is determined in the first bin in jet en-
ergy as follows: the peak position, max,
is found, than, using the α0 given by the
fit method, the value of fitα is calcu-
lated. The ratio:

fr = fitα(α0)/max (5.17)

is used afterwards for the α0 determina-
tion in the rest of the energy bins.

To avoid statistical fluctuations, the
MC model was used. The α0 value is
given by the point where the horizontal
line fr · max crosses the α distribution
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Figure 5.14: The second method used to
determine the α0.

as shown in Fig. 5.14 for the second bin in jet energy. Similarly, the fraction3 fr is
determined in a higher bin in the jet energy and is then used to find α0 for the first bin
in jet energy. The difference obtained in α0 from the two methods is used as systematic
error.

5.3.2 The Systematic Errors

The sources of the systematic errors are similar to the ones considered for the jet shape
measurements.

The energy of the HFS objects is varied from 2% to 4 % as presented in Sec. 4.4.1.
The θ angle of the HFS objects is varied within ±3 mrad.

The sensitivity of the measured distributions to detector cuts is considered as a
source of systematic errors. The selection cuts are shown in Table 4.3. Also the
background subtraction given by the kN term is considered as a source of systematic
errors. The parameter that limits the jet ”radius” R and the MC model are also
included in the systematic error calculation. Due to the lower statistics in the data
only the MC model at the detector level was used. No corrections to hadron level are
performed.

The calculation of the systematic uncertainty is based on the description presented
in Sec. 4.4.1. The negative and positive contributions are added in quadrature sep-
arately. The dead cone angle, α0, determination is giving an additional source of
systematic errors. The difference between the results of the two methods for the α0

determination, see Sec. 5.3.1, are used to estimate the systematic error.
In Fig. 5.15 the total systematic errors, including the MC model systematic uncer-

tainty, for α0EJet as a function of EJet for the D∗Jet and the OtherJet, respectively,
are presented.

3The value of fr obtained from the fitα derivative is compatible with the one of the method
presented here.
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For the D∗Jet in the laboratory frame
the main contribution to the systematic
errors are given by the method to deter-
mine α0 (∼ 6%), the MC model (∼ 5%),
the RJet (∼ 2%) and the cut on the ηπs

(∼ 2%).
For the OtherJet the systematic er-

ror has as main contributions the cut on
ηHFS (∼ 8%), the method to determine
α0 (∼ 6%), the MC model (∼ 5%) and
the RJet (∼ 3%).

In the nγ∗p frame, see Sec. 5.3.3, the
D∗Jet systematic errors are dominated
by the MC model (∼ 7%), the method
to determine α0 (∼ 6%), RJet (∼ 4%)
and the energy of the scattered electron
E′

e (∼ 2%), due to the boost of the HFS
objects into this frame.
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Figure 5.15: The systematic errors of
α0EJet as function of the jet energy EJet.

The systematic contributions are shown in detail in Appendix H.

5.3.3 The Distribution of α0EJet vs. EJet.

The distribution used to conclude about the dead cone effect makes use of the cor-
relations with the distributions on parton level shown in Sec. 5.1.2. The assumed
correlation is the following:

EQ, i ⇔ EJet, i

αQ
0, i ⇔ αJet

0, i (5.18)

where ”Jet” refers to the D∗Jet and OtherJet, respectively, and the heavy quark Q to
the charm quark.

The distribution of α0EJet vs. EJet can be seen in Fig. 5.16.
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Figure 5.16: The distributions of α0EJet vs. EJet for the D∗Jet and the OtherJet in
the laboratory-frame.
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The MC model which contains an implementation of the dead cone effect describes
the data reasonably well. The yellow band indicates the statistical error from the MC
model. When comparing the two charm jets one notices a clear difference in the lower
bins in jet energy.

This difference at low jet energies can be understood to be due to a deteriorating
correlation of the c-quark with the charm jet and to the the fact that hard gluons can
be the ”real” partonic nature of the OtherJet, as it can be observed in the Appendix F.

According to the theory of the dead
cone effect, the suppression of soft glu-
ons emitted by heavy quarks is indepen-
dent from the frame of reference [58].
To check this, the distribution of α0EJet

vs. EJet is obtained in a frame different
from the laboratory one, e.g. in a frame
where the respective jet is always nor-
mal to the γ∗p-direction.

This frame is referred to as nγ∗p-
frame [58], and it is defined by boosting
the respective jet and its subjets first to
the γ∗p-frame and then in the −pz,Jet

direction. An illustration of the nγ∗p-
frame is shown in Fig. 5.18. The re-
sults in the nγ∗p-frame are presented in
Fig. 5.17, confirming the frame indepen-
dent behaviour.

 (GeV)JetE
2 3 4 5 6 7 8

 (
G

eV
)

Je
t

E 0α

0

0.5

1

1.5

2

2.5

3

 (GeV)JetE
2 3 4 5 6 7 8

 (
G

eV
)

Je
t

E 0α

0

0.5

1

1.5

2

2.5

3
D*Jet

* pγn          - frame

:’99 -’00+Data e
RAPGAP 2.8

Figure 5.17: The distribution of α0EJet vs.
EJet for the D∗Jet in the nγ∗p-frame.

Based on Eq. 5.2 one can consider α0EJet as a measurement of the charm quark
mass. In Table 5.1 the charm mass obtained from the data and the MC model at
detector level are presented.

Data MC

Jet mc σstat σsys mc ± σmc
stat ± σmc

sys mc σstat mc ± σmc
stat

(GeV) (GeV) (GeV) (GeV) (GeV) (GeV) (GeV)
1.33 0.19 0.16 1.19 0.07
1.44 0.19 0.06 1.24 0.06
1.36 0.16 0.11 1.37 0.06

D∗Jet 1.44 0.17 0.11 1.36 0.05
1.35 0.14 0.12 1.46 0.06
1.23 0.11 0.12 1.39 ± 0.05 ± 0.03 1.48 0.04 1.40 ± 0.02
1.54 0.20 0.18 1.47 0.11
1.31 0.12 0.21 1.31 0.11

OtherJet 1.44 0.18 0.09 1.39 0.06
1.46 0.14 0.10 1.45 0.05
1.55 0.20 0.16 1.54 0.07

Table 5.1: The α0EJet ≈ mc values from data and the MC model at detector level.
The input value mc = 1.4 GeV was used in the MC model. The rows represent the
measurements from different jet energy bins and mc is the weighted average.



Sec. 5.3 Results 103

The mass used in the MC model simulations for the charm quark was:

mc = 1.4 GeV. (5.19)

A dedicated study of heavy quark mass measurement can be considered using this
method. The mass of the heavy quarks like charm, bottom or top could be determined
using certain jets energies and, of course, enough statistics, as presented in the MC
study shown in Sec. 5.3.5 and Sec. 1.4.

In the next section, a series of checks that have been performed in order to discrim-
inate the influence of different effects and assumptions on the distribution of α0EJet

vs. EJet are presented.
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Figure 5.18: An illustration of the nγ∗p-frame.

5.3.4 Checks of the Experimental Method

Checks were performed in order to establish the influence of other effects besides the
dead cone effect on the distribution of α0EJet vs. EJet:
a) the jet energy profiles for the D∗Jet and the OtherJet;
b) the influence of a fixed ycut

c) the influence of the fragmentation;
d) the colour flow effect;
e) a possible constant pT of the gluon subjet with respect to the D∗Jet;
f) the influence of the phase space.

a) The motivation to look at the jet energy profiles as a function of η and φ was
that the depletion around the jet axis could have been produced by a wrong description
of the particles in the jet. As it can be seen in Fig. 5.19, the distributions for the two
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energy ranges shown here are similar and the MC model describes the data reasonably
well.
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Figure 5.19: The jet energy profiles for the D∗Jet and the OtherJet in two ranges of
jet energy. The difference Δφ is expressed in radians.

The η range of the D∗Jet was split into two ranges: a forward region, 0 < η < 1.5,
and a backward region, −1.5 < η < 0. The distribution of α0EJet vs. EJet was com-
pared for the two ranges.
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Figure 5.20: The distributions of α0EJet vs. EJet for the D∗Jet in the forward region,
left, and in the backward region, right.

A difference between the two distributions might indicate a problem in the reconstruc-
tion of the HFS objects for the two regions of the detector. The results are shown in
Fig. 5.20.

b) Due to the principle of the method, the resolution parameter ycut is chosen
such that exactly two subjets are identified. Another interesting check is performed
by studying the influence of a fixed ycut on the distribution of α0EJet vs. EJet when
more than two subjets are found. In this case the angle α is plotted between the D∗Jet
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and all subjets which do not contain the D∗-meson. The histograms are presented in
Fig. 5.21 for two different ycut values. The observed variation for ycut = 2 · 10−3 in low
jet energy bins is due to those subjets which have only one HFS object.
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Figure 5.21: The distributions of α0EJet vs. EJet of the D∗Jet for two different fixed
ycut values.

c) Another concern is the influence of the fragmentation model on the comparison
of data and MC. For this the HERWIG MC model was used and the results shown in
Fig. 5.22 when compared to Fig. 5.16 indicate that the distribution of α0EJet vs. EJet

do not depend significantly on the fragmentation model.
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Figure 5.22: The α0EJet vs. EJet distribution using the HERWIG MC model for the
D∗Jet and the OtherJet.

d) The distribution of α0EJet vs. EJet could be also influenced by the colour flow
effect, also called colour drag effect, which is illustrated in Fig. 5.23. The charm meson
from the string made of the c̄ and one of the light quarks from the proton should not
be influenced by the colour flow. For the other charm quark, which forms the string
with the remaining pair of light quarks from the proton, one might expect the emitted
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soft gluon to be dragged more towards the proton direction than the c-quark. If this
would be the case, a clear difference should be observed in the MC model when one
compares the D∗−-meson with the D∗+-meson contribution.

g’

 

u, d

STRING

g ~no effect STRING

uu, ud

g’

γ

−

+c (D*  )

c (D*  )

colour drag effect

Figure 5.23: An illustration of the colour flow for the D∗-mesons.

This comparison is presented in Fig. 5.24. One observes a small difference between
the positive and the negative D∗-mesons at low energy bins, but within the errors of
the MC model one can conclude that there is no significant influence from the colour
flow spoiling the interpretation of this distribution in terms of the dead cone effect.
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Figure 5.24: The distributions of α0EJet vs. EJet of the D∗Jet for the D∗−-mesons,
left, and for the D∗+-mesons, right.

e) There is also another hypothesis to explain the distribution of α0EJet vs. EJet

for the D∗Jet: if the relative pT of the gluon subjet to the jet direction is a constant of
1.5 GeV, this leads to the flatness of the distribution of α0EJet vs. EJet. The results
shown in Fig. 5.25 do not support this hypothesis.
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Figure 5.25: The distribution of the rela-
tive pT of the gluon subjet to the D∗Jet in
different bins of jet energy for the MC.
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Figure 5.26: Illustration of cc̄g produc-
tion according to phase-space.

f) The MC model was modified to
generate cc̄g events according to phase-
space as indicated in Fig. 5.26.

In Fig. 5.27, the distribution of α0EQ

vs. EQ for the phase-space generated
events is presented. One can observe
that when the gluon is not radiated by
the BGF heavy quark, the distribution
is no longer flat.

Another observation is that gluons
of the events generated according to
phase-space are in general mainly hard
gluons which produce their own jet on
the hadron level and they cannot be
found anymore as subjets. The inves-
tigation of these jets is not relevant for
the experimental method proposed in
this analysis.
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Figure 5.27: The distribution of cc̄g events
α0EQ vs. EQ generated according to phase-
space.

5.3.5 Monte Carlo Study of b-jets vs. c-jets

A Monte Carlo study using c-quarks and b-quarks4 with their respective masses on
parton and hadron level was also performed. In the c-quark case the distribution of
α0EJet vs. EJet at hadron level for the D∗Jet is presented in Fig. 5.28.

The bins in energy of the b-quark were chosen according to the ratio:

mc

Ec
=

mb

Eb
. (5.20)

4In principle one can increase artificially the charm mass. But the charmed mesons masses and the
fragmentation need relative adjustments. Therefore this study is done with b-quarks.
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If the energy of the b-quark becomes
too large, the soft gluon radiation phase
space becomes similar to the light quark
one, see Sec. 1.4.

At hadron level, the B0-meson was
assumed to have been reconstructed
from its decays and therefore chosen for
the b quark jet reconstruction.

The OtherJet, with a similar defini-
tion as in case of the c-quark jets, was
used to reconstruct also the second b-
quark from the BGF process.

For the OtherJet, the reconstruction
of the b-quark is more complete than for
the c-quark.

As a consequence, the distribution of
α0EJet vs. EJet for the OtherJet is sim-
ilar to the one from the B0Jet.
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Figure 5.28: The distribution of α0EJet vs.
EJet at hadron level for the D∗Jet.

The results of the MC model simulation for the b-quark at parton level are shown
in Fig. 5.4 for a b-quark mass of 5 GeV.

The distribution of α0EJet vs. EJet at hadron level for the B0Jet and the OtherJet
are presented in Fig. 5.29.
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Figure 5.29: The distributions of α0EJet vs. EJet for the B0Jet and the OtherJet for
the b-quark generated events.

More, for the charm quark the correlation in the (η, φ) plane between the radiated
BGF gluons and the corresponding subjets are presented in Fig. 5.30. One can observe
that the correlation between the gluon radiated by the BGFQ and the gluon subjet
found in the D∗Jet is better than the one for the OtherJet, as expected.

In the next section, the distribution of α0EJet vs. EJet for charm jets and jets for
a di-jet (2Jet) sample are compared. The latter is dominated by light quarks. For
comparison the ”fake” D∗Jet is used for to reconstruct the light quark.
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Figure 5.30: The correlations at hadron level between the BGF gluon and the corre-
sponding gluon subjet for the D∗Jet, left, and the OtherJet, right.

5.3.6 A Comparison of Charm Jets with Jets from a 2Jet Sample

One can also plot the distribution of α0EJet vs. EJet for the side bands of the spectrum
of the RiCh combinations, as well as for the WrCh combinations5. The idea behind this
comparison is that the background in the Δm distribution should be mainly dominated
by light quark events contributions. This comparison would also clarify the influence
of using the D∗-meson as a stable particle in case of the D∗Jet. The results can be
seen in Fig. 5.31.
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Figure 5.31: The distributions of α0EJet vs. EJet for the D∗Jet for the side bands in
the Δm background of WrCh, the left plot, and the RiCh, the right plot. The side
bands are defined here as Δm ∈ (0.14; 0.142) GeV and Δm > 0.149 GeV.

One can see a small difference between the distribution of α0EJet vs. EJet from the
Δm signal region, see Fig. 5.16, and the distribution from the Δm side bands.

The expected level for the side bands distribution is the one from the pseudo-
mass of the light quarks at the parton level, see Fig. 5.5, due to the fact that the

5In both cases the side bands shown in Fig. 5.11, i.e. close to the Δm peak of the D∗-meson, are
used.
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background in the Δm distribution was assumed to be dominated by the contribution
of light quarks.

The reason why the distributions of α0EJet vs. EJet for the side bands of the Δm
spectrum are above the pseudo-mass of the light quarks is that the charm contributions
in the Δm spectrum, which is obtained with the selection presented in Sec. 3.3.4, is
still of the order of ∼ 33%, as can be seen in Fig. 5.32.

The MC model DJANGO 62 was used to generate fully inclusive DIS events. The
charm contribution is significant and the level of the distribution of α0EJet vs. EJet

increases.
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Figure 5.32: The Δm spectra for the RiCh, left, and the WrCh, right, obtained from
events generated events with the inclusive MC model DJANGO.

A solution to this problem is to make use of a 2Jet event sample. The 2Jet events
were selected from the 1999 and 2000 e+ data taking periods using the cuts presented
in Table 5.2.

The 2Jet sample cuts:
ST0 || ST3 || ST61

2 GeV2 < Q2
e < 100 GeV2

0.05 < ye < 0.7
E′

e > 8 GeV
40 GeV < E − pz < 75 GeV

Njets ≥ 2
|ηjets| < 1.5

pT, jets > 1.5 GeV

Table 5.2: The selection criteria for the 2Jet event sample.

The Δm distribution for the 2Jet event sample, without the selection cuts for
the D∗-meson candidates that enrich the signal with respect to the background, is
presented in Fig. 5.33. One can observe that the signal is swamped by the background.
MC studies show that the Δm distribution in this case is dominated by light quarks,
� 85%, see Fig 5.34.

In order to compare the charm jets with the jets from the 2Jet event sample on the
same footing, the ”fake” D∗-meson candidates which contribute in the Δm ranges:

0.140 < Δm < 0.142 GeV or Δm > 0.149 GeV (5.21)
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were used. Outside the signal window, the light quark contributions to the Δm spectra
increase.
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Figure 5.33: The Δm spectra for the 2Jet
event sample.
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Figure 5.34: The Δm spectra for
the 2Jet event sample in MC model
DJANGO.

After a fake D∗-meson candidate was
found, the inclusive k⊥ jet finder algo-
rithm is run in the same manner as for
the charm jets, see Sec. 5.2. From the
jets found, the one which contains the
fake D∗-meson is called ”fake” D∗Jet.
For the 2Jet sample, only the ”fake”
D∗Jet is studied in order to establish
whether there are two different α0EJet

levels: for the charm jets and respec-
tively the light quark jets.

With this method one can compare
the charm jet event sample with a light
quark jet dominated event sample on
the same level.

The systematic errors were esti-
mated using the DJANGO MC model.
In Fig. 5.35, the systematic errors of the
distribution of α0EJet vs. EJet for the
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Figure 5.35: The systematic errors for the
distribution of α0EJet vs. EJet for the
”fake” D∗Jet in the 2Jet sample.

”fake” D∗Jet of the 2Jet event sample are presented. The systematic error sources are
the same as for the charm sample.

In Fig. 5.36 the α distributions of the 2Jet sample in bins of the ”fake” D∗Jet
energy are presented. The MC model describes the data reasonably well as one can
observe from Fig. 5.37. Finally the comparison between the charm jets (D∗Jet) and the
light quark jets (”fake” D∗Jet) from the 2Jet event sample is presented in Fig. 5.38.

In the first four bins of Fig. 5.38, a difference between the charm jets and the light
quark jets from the 2Jet event sample can be seen. In the last three bins the statistical
and systematic errors are larger. Also for the 2Jet event sample, the influence of the
energy is dominant and the α0EJet values in the last three bins are getting larger with
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Figure 5.36: The α distributions and the fit function fitα in bins of jet energy for the
”fake” D∗Jet of the 2Jet sample.

increasing energy. Starting with the last bin the method is probably no longer sensitive
to α0EJet product but rather to EJet alone.

The value for the weighted average pseudo-mass level of the ”fake” D∗Jet of the
2Jet event sample is presented in Table 5.3.

The weighted average value obtained for the pseudo-mass level is consistent with
the default value of the Q0 in MC if one considers that the 2Jet event sample still has
contributions from the charm quarks of about ∼ 10%. Q0 is the invariant mass cut-off
which gives the level of α0EQ at parton level, see Sec. 5.1.2. The result obtained for
mc − 3σmc is different from the one of mpseudo + 3σmpseudo :

(mc − 3σmc) − (mpseudo + 3σmpseudo) = 0.08 (5.22)

where σ =
√

σ2
stat + σ2

sys.

Jet mpseudo σstat σsys mpseudo ± σ
mpseudo

stat ± σ
mpseudo
sys

(Data)
e+ : ’99 - ’00 (GeV) (GeV) (GeV) (GeV)

1.01 0.03 0.04
1.02 0.02 0.02
1.06 0.02 0.04

”fake” D∗Jet 1.16 0.01 0.09 1.07 ± 0.01 ± 0.02
1.22 0.02 0.05
1.28 0.02 0.10
1.33 0.02 0.12

Table 5.3: The α0EJet ≈ mpseudo values from data of ”fake” D∗Jet of the 2Jet event
sample. The rows represent the measurements from different jet energy bins. The
mpseudo is the weighted average.

In order to establish this difference more clearly, one needs to use larger statistics
for the charm jets. This is presented in the next section.
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Figure 5.37: The distribution of α0EJet vs.
EJet for the ”fake” D∗Jet in the 2Jet sam-
ple.
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Figure 5.38: The comparison between
the D∗Jet of the charm event sample
and the ”fake” D∗Jet of the 2Jet sam-
ple.

5.3.7 Higher Statistics ’96-’04

To reduce the statistical errors, all available statistics was analysed. For the years 1996
and 1997 the subtrigger was chosen according to the corresponding trigger setup. A
similar selection to the one used for the 1999 and 2000 e+ data taking periods was
applied to the entire data sample. The Δm spectrum can be seen in Fig. 5.39. The
distribution of α0EJet vs. EJet is presented in Fig. 5.40.
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Figure 5.39: The Δm spectrum for the
event sample from ’96-’04 used to study the
dead cone effect (ND∗ = 4126 ± 127).

 (GeV)JetE
2 4 6 8 10 12 14

 (
G

eV
)

Je
t

E 0α

0

0.5

1

1.5

2

2.5

 (GeV)JetE
2 4 6 8 10 12 14

 (
G

eV
)

Je
t

E 0α

0

0.5

1

1.5

2

2.5

2Jet
c Jet

D*Jet Data ’96 - ’04

Figure 5.40: The comparison between
the ’96-’04 charm event sample and the
2Jet sample.

With this, the difference between distribution of α0EJet vs. EJet for the charm
from the one for the 2Jet event sample can be seen rather clearly.

The difference becomes even clearer when one applies the following correction. As



114 Chapter 5 The Dead Cone Effect

mentioned above, the 2Jet sample still contains a charm contribution of ∼ 10%. One
can perform the analysis using only light quark events from MC. The ratio between the
α0EJet values obtained from the light event sample and the total event sample, light
and charm events, can be considered a correction factor for the 2Jet data sample:

fcorr =
α0EJet, light

α0EJet, light & charm
. (5.23)

With this correction, based on the reasonably good description of the data by MC,
one can obtain a prediction for a light quark jet sample only, 2Jetlight. In Fig. 5.41
the correction factors obtained from the MC model are shown. They are also given in
Table 5.4.

EJet (2.5;3.5) (3.5;4.5) (4.5;5.5) (5.5;6.5) (6.5;8) (8;10) (10;14)
(GeV)
fcorr 0.99 1.00 1.00 0.99 0.97 0.94 0.94

Table 5.4: The correction factors for the 2Jetlight distribution.

The comparison between the charm event sample and the 2Jetlight event sample is
presented in Fig. 5.42.
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Figure 5.41: The correction factors for a
2Jetlight event sample obtained from the
MC model.
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Figure 5.42: The comparison between
the ’96-’04 charm event sample and the
the 2Jetlight event sample.

Including this correction, the result obtained for the difference defined in Eq. 5.22
between the two data sets, the D∗Jet and the ”fake” D∗Jet of the 2Jetlight event
sample, is:

(mc − 3σmc) − (mpseudo + 3σmpseudo) = 0.15, (5.24)

which corresponds to more than 5σ deviation.
One can conclude that differences between the charm jets and the light quark jets

can be observed in data and that the MC model prediction describes these differences
reasonably well. The distribution of α0EJet vs. EJet can provide a nice and unique
possibility to observe dead cone effect, the effect of the mass on the gluon radiation,
in a direct way.



Chapter 6

Conclusions

The subject of this thesis is the study of charm jets in DIS. Charm quarks can be
investigated using the corresponding jet, called charm jet, which is made out of the
hadronic final state objects. Charm jets are traditionally described by jet shape vari-
ables and the mean subjet multiplicity. An innovative way to study charm jets is to
make use of the soft gluon radiation of the quarks as explained in the first chapter of
this thesis.

In analogy with electrodynamics, the theory of quantum chromodynamics stipu-
lates that soft gluon radiation of heavy quarks is suppressed towards the quark direc-
tion. This suppression is called the dead cone effect.

The data used in this analysis were taken with the H1 detector at the HERA
collider as described in the second chapter.

The selection of charm events is presented in the third chapter. A careful and
detailed selection of the electron and the D∗-meson candidates ensures that background
is highly suppressed.

In the fourth chapter, the study of the charm jets using the jet shape variables and
the mean subjet multiplicity is presented. The jet selection and the HFS algorithm
which uses the reconstructed hadrons of the final state are described. For the recon-
struction of the two charm quarks from a boson gluon fusion event, two different jet
requirements are employed: the D∗Jet and the OtherJet. Jets are found using the k⊥-
jet algorithm. The D∗Jet is the jet which contains the reconstructed D∗-meson which
is treated as a stable particle. If additional jets are found, the one with the highest
pT, excluding the D∗Jet, has a high probability to be the second charm quark in the
event. This jet is called the OtherJet. Interesting differences between the two types of
charm jets are observed for the jet shape variables and the mean subjet multiplicity.

In order to investigate if the observed differences depend on the way the D∗Jet is
defined, two alternative definitions are also studied. The differences between the two
types of charm jets do not vanish if the D∗Jet definition is changed.

In another systematic study a new definition of the ET jet fraction radius, r∗, which
enters the calculation of jet shape variables is used. The r∗ is defined in the spirit of
the inclusive k⊥ finder:

r∗ = ph · sin αh−Jet.

In this case, the observed differences are rather small. Therefore the choice of using
the reconstructed D∗-meson candidate as a stable particle is not the major source of
the observed differences between the two types of charm jets. On the other hand this
definition ensures the best correlation in terms of energy and direction between the
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charm quark and its corresponding jet, as one can observe from MC studies presented
in Appendix F. A reasonable good correlation is even observed for low energetic jets
in the energy range between 2.5 and 4 GeV.

The dependence of these differences between the D∗Jet and the OtherJet as a
function of EJet, ηJet and ET,Jet is also studied. These distributions and the correla-
tion with the charm quarks show that the main sources of these differences are the
incomplete reconstruction of the charm quark by the OtherJet plus the fact that the
parton that generates the OtherJet is in some regions of phase space a hard gluon.

Using the definition of the D∗Jet, which, as demonstrated, gives the best charm
quark - jet correlation, the dead cone effect is studied in the fifth chapter. The Energy
Variation approach, presented in Sec. 5.1, is used to study this effect. This approach
is based on the equation:

α0EJet 
 mQ. (6.1)

The experimental method used to measure the dead cone angle, α0, is presented
in Sec 5.2.1 and Sec 5.2.2 for the D∗Jet and the OtherJet, respectively. The depen-
dence of the variable α0EJet on EJet is well described by the MC model used in this
analysis, which includes the dead cone effect. The results for the two types of charm
jets show differences only in the energy range where the OtherJet cannot reconstruct
the properties of the charm quark as well as the D∗Jet. This can be observed in the
correlation plots from the MC studies.

The possible influences of other effects than the dead cone effect on the distribution
of α0EJet vs. EJet are studied showing however only small contribution to it. A
MC study showed a nice consistency of the method, when bottom quarks and their
corresponding jets containing a B0-meson are used instead of charm quarks and their
D∗Jet.

A comparison of the charm quarks with light quarks is also performed. In order to
perform the analysis for both quark flavours on the same footing, the following method
is used. In a di-jet (2Jet) event sample D∗-meson candidates are selected without
applying the requirements which enhance the signal with respect to the background.
This way, the light quark contribution in the Δm spectrum of the D∗-meson candidates
is increased to above 85%. Furthermore, the Δm signal region is excluded from the
analysis and only the side bands are used for the distribution of α0EJet vs. EJet. The
”fake” D∗-meson is considered as a stable particle, like in the standard analysis, and
the corresponding jet is called the ”fake” D∗Jet, such that the same criteria are used
for the jets of both flavours. Comparing the results of charm and light flavour jets, a
difference between the two distributions of α0EJet levels is observed.

Finally, including HERA-II data in the analysis the statistical error can be fur-
ther reduced and the differences between light quarks and charm quarks become even
clearer. The difference obtained in weighted averages between the two distributions
of α0EJet is more than 5 σ. These differences can be interpreted as being due to the
dead cone effect : the α0 angle yields a measure of the size of the angular region of
suppressed gluon emission close to the quark direction and it is seen to depend on the
heavy quark energy as predicted by QCD.



Appendix A

QCD Environment

The strong interaction is mediated by the gluons. The name of Quantum Chromody-
namics (QCD) is coming from the colour of the quarks and the gluons, which has the
role of an elementary charge in the strong interactions. QCD is a non-Abelian group
and the gluons can couple also to each other.

The cross-sections can be calculated in perturbative QCD (pQCD) as power series
in the strong coupling constant αs. The calculations have different levels of accuracy.
In the so called leading order (LO) calculations, the internal loops as the ones shown
in Fig. A.1 are neglected, but these are giving additional contributions in the next to
leading order (NLO) ones.

a) b)

Figure A.1: Loops in QCD: a) the gluon loop and b) the fermion loop.

The contributions of a particular loop are calculated integrating over all particle
momenta p in the loop. For p → ∞ the ultraviolet divergences are reached. In a
renormalisation these divergences are absorbed into the running of the strong coupling
constant. A new arbitrary renormalisation scale μR needs to be introduced.

The μR scale can be interpreted as the momentum for which the subtraction that
removes the divergences is performed.

Taking into account the arbitrariness of the scale μR, the physical observable which
has to be calculated to all orders in αs needs to be independent of μR. From the
mathematical point of view, the upper condition is given be the renormalisation group
equation (RGE):

μ2
R

dR

dμ2
R

= μ2
R

∂R

∂μ2
R

+ μ2
R

∂αs

∂μ2
R

∂R

∂αs
= 0 (A.1)

where R is the independent observable of μR.
One can re-write the differential equation as a power series in αs(μ2

R) and the β
functions in the following way:

μ2
R

∂αs

∂μ2
R

= αsβ(αs) = −β0α
2
s − β1α

3
s − O(αs) (A.2)
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with

β0 = 11 − 2
3
· nf ; β1 = 102 − 38

3
· nf . (A.3)

The number of active flavours is indicated by nf .
For the one loop approximation when only the β0 term is considered the following

relation is obtained for αs:

αs(μ2
R) =

1

β0

4π · ln
(

μ2
R

Λ2
QCD

) (A.4)

The ΛQCD is the scale where αs gets large enough and the perturbative series in αs

no longer converges. At this scale the pQCD is not applicable any longer. The ΛQCD

is experimentally determined to be about 200 MeV. A more convenient estimation of
αs is at the Z0 mass scale. The experimental value [14] is:

αs(MZ) = 0.119 ± 0.004. (A.5)

Another type of divergences that appear in the NLO calculations are the infrared
divergences which are also a consequence of the αs behavior (for small scales μ2, αs is
large). A typical example of divergency is the collinear gluon radiation. The transverse
momentum of the emitted gluon k⊥ → 0 leads to a divergency due to dσ/dk2

⊥ ∼ 1/k2
⊥.

This type of divergences are removed in the integration over the k⊥ making use of an
artificial cut-off limit μF . The scale μF is a non-perturbative scale where the pQCD
breaks down. These divergences are absorbed into the parton densities. One could say
in analogy with the running of the αs that
here one has a running of the parton den-
sities fi/p(x, μF ). For hard processes with
μ2 > μ2

F , the pQCD can be applied due
to small αs, but the soft processes with
μ2 ≤ μ2

F are absorbed in fi/p(x, μF ) which
are also called renormalised parton densi-
ties. This classification in hard and soft
processes is called factorisation. The μF

is factorisation scale. An intuitive draw-
ing of the factorisation principle is shown
in Fig. A.2.

The treatment of the singularities is
given by the factorisation scheme, but the
one of the finite terms is arbitrary. Never-
theless the factorisation scheme determines
the amount of finite terms which factorise
into renormalised quark distributions. For
the DIS scheme all finite contributions are
absorbed in the quark density. The struc-
ture function F2 in this case is given by:

Q2

x

e

p

γ

i

fi/p

μF

e’

Figure A.2: The factorisation principle
with μF the factorisation scale.

F2(x, μ2
F ) = x

∑
q

e2
q ·
(
fq/p(x, μ2

F ) + fq̄/p(x, μ2)
)
. (A.6)
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The ep cross section is the convolution between the renormalised parton density
function fi/p(μ2

F ), which depends on the factorisation scale μ2
F , and the hard boson

parton cross section σ̂i(ŝ, αs(μR), μR, μF ), which is calculable in pQCD:

dσep→e′X =
∑

partons

∫ 1

0
dxfi/p(μ

2
F ) · σ̂i (ŝ, αs(μR), μR, μF ) . (A.7)

An important observation is, as the factorisation theorem says, that the renor-
malised parton density functions depend only on the hadron type and they are uni-
versal. Once the parton densities of the proton are determined at HERA, they can be
plugged in descriptions of all type of proton collisions, e.g. at Large Hadron Collider
(LHC).

The renormalised parton densities depend on scale due to the included soft pro-
cesses up to factorisation scale μF . For μ2

F in DIS a commonly used value is the Q2,
but for heavy quarks another choice is needed because the mass itself can be large
enough to be considered as a scale. There is no fundamental prediction for the parton
densities. Once the parton densities are known at an arbitrary scale μ0, they can be
determined at any other scale using the QCD evolution equations. The models used
for QCD evolution are DGLAP, BFKL and CCFM. The input of the initial parton
densities are provided by experimental results.

The evolution models consider the gluon radiation and the gluon splitting processes
as shown in Fig. A.3. The splitting function Pij(z) gives the probability of a parton
j, with four-momentum k and longitudinal momentum fraction x, to radiate another
parton carrying the momentum fraction (1 − z)x and to continue as parton i with
momentum fraction zx. For the situation shown in Fig. A.3 a), the cross section
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Figure A.3: The splitting function Pij(z).

dσq→qg/dk2 ∼ 1/k2 and has a singularity for k2 → 0. In Fig. A.3 d) the gluon splits
into two gluons and dσq→qg/dk2 ∼ 1/k2 · 1/z has two singularities for k2 → 0 and
z → 0. The three evolution models treat these singularities differently.

The DGLAP model performs the parton densities evolution in k2 assuming that
the emission of gluons is ordered in k2. This assumption implies that the emitting
partons should be ordered at small z in the square transverse momentum k2

⊥ as well
as the emitted partons in p2

⊥.
The gluon ladder in DGLAP approach is shown in Fig. A.4 a). The DGLAP model

is based on a collinear factorisation.
The DGLAP evolution equations can be applied for large scales μ2 and moderate

Bjorken x and can be written as:

∂fqj/p(x, μ2)
∂ ln(μ2)

=
∫ 1

x

dz

z

αs

2π

(
P̂qq(z) fqj/p

(x

z
, μ2
)

+ P̂qg g
(x

z
, μ2
))

(A.8)
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∂g(x, μ2)
∂ ln(μ2)

=
∑
q,q̄

∫ 1

x

dz

z

αs

2π

(
P̂gg(z) g

(x

z
, μ2
)

+ P̂gq fqj/p

(x

z
, μ2
))

(A.9)

The BFKL model has an evolution in x and can be used for moderate μ2 and small
x. The model assumes that the momentum fraction carried by the parton, z, after
emission is very small. The leading contribution is given by the 1/z term and the
model needs a resummation of the ln(1/x) terms. In the gluons ladder of the BFKL
model the partons are unordered. The hard scattering cross-section is calculated off-
shell. This means that the virtuality of the parton contributing to the cross-section
cannot be neglected as in DGLAP model where the hard cross-section is calculated
on-shell. The BFKL model is based on the k⊥ factorisation. The gluon density in
BFKL F (x, k2

⊥, μ2
0) can be related to the DGLAP one g(x, μ2) as:

xg(x, μ2) 

∫ μ2

0
F (x, k2

⊥, μ2
0)

dk2
⊥

k2
⊥

. (A.10)

The CCFM model combines the DGLAP and BFKL approaches such that for large
scales μ2 and moderate x it is equivalent with DGLAP, and for moderate μ2 and small
x is equivalent with BFKL. The model is based on the resumation of the singularities
in z and in k2 without requiring a strong k2

⊥ ordering. This leads to a hard cross-
section which depends on k⊥. The CCFM model is based on a k⊥ factorisation as the
BFKL one. The gluon emission is performed in a region where the emission angle is
increased, an evolution in angle as shown in Fig. A.4 b).
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The gluon density A(xg, k⊥, q̄′t) in CCFM depends on the maximum angle allowed
for any emission q̄′t which has the meaning of the factorisation scale μ2

F .
The CCFM evolution equation [10] is:

q̄′t
d

dq̄′t2
xA(x, k⊥, q̄′t)
ΔS(q̄′t, μ0)

=
∫

dz
dφ

2π

P̃
(
z,

q̄′t
z , k⊥

)
ΔS(q̄′t, μ0)

x′A(x′, k′
⊥,

q̄′t
z

) (A.11)

where x′ and k′
⊥ are the momentum fraction and the transverse momentum before the

last gluon emission. The ΔS is the Sudakov form factor:

ΔS(μ2) = e
− R μ2

μ0

dμ′2
μ′2

R
dz αs

2π
eP (z) (A.12)

with P̃ being the gluon splitting function in the CCFM model.
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Appendix B

Mandelstam Variables

In a scattering process with two particles in the initial state and two in the final state,
as in the Fig. B.1, one identifies the following types of channels:

i) 1 + 2 → 3 + 4;
ii) 1 + 3̄ → 2̄ + 4;
iii) 1 + 4̄ → 3̄ + 2.

where the numbers stand for the particles and the over-lined numbers for the an-
tiparticles. The particle labeled 2 is in the first channel in the initial state. In the

2

1 3

4

Figure B.1: The process with two initial state particles and two final state particles.

second channel it is in the final state which implies that the temporal component of
the four-vector has changed the sign, actually it is the corresponding antiparticle.

For all the three channels, the energy-momentum four-vector as well as the charge
and other quantum numbers have to be conserved:

p1 + p2 + p3 + p4 = 0. (B.1)

One can define the following quantities:

s = (p1 + p2)
2 = (p3 + p4)

2 (B.2)
t = (p1 + p3)

2 = (p2 + p4)
2 (B.3)

u = (p1 + p4)
2 = (p2 + p3)

2 (B.4)

which are called the Mandelstam variables [59]. The three variables are related via:

s + t + u = m2
1 + m2

2 + m2
3 + m2

4 (B.5)

where mi with i = 1, 4 are the masses of the particles.
The variable s represents the total energy of the system in the centre of mass

reference system of the channel i). The same physical meaning have t and u for the
channels ii) and iii) respectively.
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For this reason the three chan-
nels are usually called s, t and u
channels as in the Fig. B.2. These
variables initially introduced by
Mandelstam are now used to de-
scribe kinematics of the multi-
body final states interpreted as two
incident and two outgoing systems.

A graphical representation of
the Mandelstam variables and
their values domain are shown in
Fig. B.3.

channels
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channel
u

2

1 3

4

Figure B.2: The s, t and u channels.

The coordinate system of this representation is a triangular one in a plane. The
axes of the system are given by the three sides of an equilateral triangle. The s, t
and u coordinates are positive if they point to the interior of the triangle and negative
otherwise.

A

B

C

P

P’

s = 0
u = 0
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u
s

s

t

t

− u

Figure B.3: The representation of the Mandelstam variables using the triangular co-
ordinates in plane.

One should mention also the existence of a fourth type of channel reaction, a decay
channel:

iv) 1 → 2̄ + 3 + 4 (B.6)

which takes place if the following mass condition is fulfilled:

m1 > m2 + m3 + m4.

For this channel, one can write in the system of the decaying particle:⎧⎨⎩
s = m2

1 + m2
2 − 2m1E2;

t = m2
1 + m2

3 − 2m1E3;
u = m2

1 + m2
4 − 2m1E4.

(B.7)



Appendix C

The Track Reconstruction

In the uniform longitudinal magnetic field of the H1 solenoid, charged particles move
on helical trajectories due to the Lorentz force. Therefore track finding and track
reconstruction are based on a helical track model.

The five helix parameters used in
the reconstruction are:
— the signed curvature |κ| = R−1,
which is defined to be positive if the
direction Φ coincides with a counter
clockwise propagation along the circle
in the (x, y) plane;
— the signed distance of closest ap-
proach from the origin in the (x, y)
plane, dca, which is positive if the vec-
tor from the origin to the point of clos-
est approach and the trajectory direc-
tion form a right handed system;
— the azimuthal angle Φ, which is the
angle between the x axis and the trans-
verse momentum vector at the point of
closest approach;
— the θ angle at the point of closest
approach defined as the angle between
the z-direction and the momentum vec-
tor at the point of closest approach;
— the z value of the track at the point
of closest approach, z0.

The helix parameters dca and z0 are
defined with respect to the nominal
event vertex position (0, 0, 0). A more
appropriate definition of these two pa-
rameters is with respect to the actual
event vertex position (xac, yac, zac),
this being different from event to event
with respect to the nominal one, see
Fig. C.1.
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Figure C.1: Definition of track parame-
ters in the (x, y) plane and of d′ca.
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The first three parameters of the helix can be determined by a circle fit to the CJC
hits in the (x, y) plane using the Karimäki algorithm [44].

The equation of a circle with radius R and centre (x0, y0) describing the projection
of the trajectory in the (x, y) plane is given by:

(x − x0)2 + (y − y0)2 = R2 (C.1)

where (x0, y0) is the centre of the circle which describes the projection of the trajectory
in the (x, y) plane.

If one wants to use the track parameters, one should perform the following variable
transformation:

R,x0, y0 → |κ| =
1
R

, d′ca,Φ and x, y → ri, ϕi (C.2)

where R and ri are not related one to each other. The ri is the distance of a hit to the
ep event vertex position in the (r, φ) plane. The ϕi is defined as the angle between the
x direction and the ri direction, as shown in Fig C.2.

R= 1
| κ |

Φ’

ψi

ϕ
i

yacxac

ca

(    ,    )

r

p

r
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t
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ϕ
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A B

D

F

Φ
α β

x

y

(0,0)

y

x

y

x

(   ,    )

xo(    ,    )C

d’

0

0

Figure C.2: The track geometry using the ri and the ϕi coordinates.

From the Fig C.2 one can observe the following relations:

ΔADF : m(�ADF ) = π/2 ⇒ α + β = π/2
A,F,B : collinear points ⇒ β + Φ = π

}
⇒ α = Φ − π/2

ΔACB : m(�ABC) = π/2 ⇒ α + Φ
′
= π/2

⎫⎬⎭⇒ π

2
−Φ

′
= Φ−π

2
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⇒ Φ
′
= π − Φ (C.3)

and also:
sin Φ

′
=

x0

d′ca + R
and cos Φ

′
=

y0

d′ca + R
. (C.4)

From Eq. C.3 and Eq. C.4, the x0 and y0 coordinates of the circle centre of the
track projection in the (x, y) plane can be written as:{

x0 = (d′ca + R) sin Φ
y0 = −(d′ca + R) cos Φ

(C.5)

where the trigonometrical relations:{
sin(π − Φ) = sinΦ
cos(π − Φ) = − cos Φ

(C.6)

have been used.
At this point one can write the relations between x, y ↔ ri, ϕi:{

x = −ri cos ψ
′
i where ψ

′
i = π − ϕi

y = ri sin ψ
′
i

⇒
{

x = ri cos ϕi

y = ri sin ϕi
.

(C.7)
The Eq. C.1 can be written using the helix parameters as follows:

(ri cos ϕi − (R + d′ca) sin Φ)2 + (ri sin ϕi + (R + d′ca) cos Φ)2 = R2. (C.8)

Using the trigonometrical relation: sin2 a + cos2 a = 1,
the circle equation becomes:

⇒ r2
i +
(
R + d′ca

)2 − R2 − 2
(
R + d′ca

) · ri (sin Φ cos ϕi − cos Φ sin ϕi)︸ ︷︷ ︸
=sin(Φ−ϕi)

= 0; R =
1
|κ|

⇒ r2
i + 2

d′ca
|κ| + d′2ca + R2 − R2 − 2

(
1
|κ| + d′ca

)
· r2

i sin(Φ − ϕi) = 0. (C.9)

If one divides the Eq. C.9 by |κ|/2, then the trajectory projection in the (x, y) plane
can be fitted using:

|κ|
2
(
r2
i + d′2ca

)
+ d′ca −

(
1 + |κ| · d′ca

) · ri · sin (Φ − ϕi) = 0 (C.10)

The other two parameters of the track helix are determined by a linear least-
squares fit of the track projection to a (r, z) plane which is a right line described by
the equation:

zi = z0 + Sxy
i

(
dz

dS

)
(C.11)

where Sxy
i is the track length for the point zi in the (x, y) plane, with Sxy = 0 corre-

sponding to the d′ca plane shown in the Fig. C.1.
The slope parameter dz/dS is giving the θ angle by:

θ = arctan
(

1
dz/dS

)
. (C.12)
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The tangent of the θ angle is:

tan θ =
ri − rs

zi − z0
(C.13)

where:

ri − rs = Sxy
i ⇒ zi − z0 =

Sxy
i

tan θ
. (C.14)

One can write the same thing for i + 1:

zi+1 − z0 =
Sxy

i+1

tan θ
. (C.15)

Subtracting i from i + 1 one obtains:

zi+1 − zi =
Sxy

i+1 − Sxy
i

tan θ
and at the limit: tan θ =

dS

dz
. (C.16)

At the H1 experiment there are two versions of track finding and fitting algo-
rithms [37]. One version is fast and efficient for tracks with momentum ptrack > 100
MeV which originate from the primary vertex. This version, H1FAST, is implemented
on the L4 trigger farm to reject the background and to classify the events. This first
version is ∼ 10 times faster than the standard version, H1REC, which has higher
efficiency and is used in the final reconstruction.

In the first phase of the track finding, the search for short track elements is per-
formed independently in the angular cells of the CJC wires. The curvature of these
short track elements is negligible and they do not depend, within angular sectors, on
the Lorentz angle or on the drift velocity. The track finding is based almost exclusively
on the drift time data in the (x, y) plane. In the fast finding version it is sufficient to
determine the t0 bunch crossing time of an event from the threshold of the drift time
histogram.

The short track elements are defined by three hits within angular cells found on
three wires that are at two wire distance. The pairs of hits at wire n± 2 with the wire
index n are tried first. Possible values of drift distances d̄n at the wire n are calculated
by (dn−2

i + dn+2
k )/2 and |dn−2

i − dn+2
k |/2 where i, k are the hits indices. If the direction

of the pair does not deviate too strongly from the radial direction, the drift distances
are stored in a list. Regions with too many hits are not analysed at this stage. The
list is compared with measured values dn

j and the indices of the hits at the three wires
for which |dn

j − d̄n| is small are stored as a possible track element. The curvature κ
and the angle Φ can be determined from the hit triplets assuming dca ≡ 0. The drift
sign ambiguity is not solved at this stage. If the values of |κ| are too large, the triplets
hits are rejected. At this point the charge information of the two wire ends is used to
calculate a z value and a dE/dx one are assigned to the triplets. The circle fit in the
(x, y) plane using the helix parameters as described in Fig. C.2 is performed and also
a z fit in order to obtain the triplets coordinates. After the fit values are obtained,
the track elements are clustered and a first track definition is obtained. The track
candidates are checked in the order of decreasing number of triplets. The tracks which
have triplets already used by other track candidates are rejected. Now the drift sign
ambiguities are solved.

The standard track finding uses as input the results of the fast algorithm. In the
standard algorithm the steps are similar to the fast track finding. The first step is to
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search for track elements defined also by three hits, but this time they should be on
adjacent wires. The dense regions are again rejected. The triplets with common hits
are connected and they are extracted when all hits of an angular cell are analysed.
These chains of hits are checked and the drift sign ambiguities are solved for the long
ones. A merging algorithm is applied to connect the short track elements using a χ2 fit
in the (x, y) plane. In order to improve the track finding efficiency and precision, the
expected drift length is calculated for all possible wires and also for the track elements
ordered by their length. The hits at the expected wires which are not used by another
track are collected. The difference between the measured and the expected drift length
is used to reject the incompatible hits. The fits are performed once more using all the
accepted hits. The track candidates which are very short are rejected excepting the
case when they are starting from the first few wires on a ring. The energy loss dE/dx
for a given track is determined from the mean of single hits values not including the
ones close to another track.

The tracks used for D∗-meson selection in this analysis had to fulfill the L4 trigger
conditions depending on the running time periods. Due to these changes of the L4
D∗-meson finder, in the offline selection harder requirements, than the ones shown in
Table 3.8, have to be fulfilled by the tracks, as it is shown in the Table C.1.

L4 Track cuts Threshold
K π πs

Track starting radius ≤ 50 cm
for 212884 ≤ Run ≤ 236646 ≤ 25 cm ≤ 50 cm
Track length ≥ 10 cm
for 212884 ≤ Run ≤ 236646 ≥ 25 cm ≥ 10 cm
for 236646 ≤ Run ≤ 238955 ≥ 15 cm ≥ 10 cm
for 244968 ≤ Run ≥ 15 cm ≥ 10 cm
The distance to closest approach: d′ca ≤ 1.0 cm
for 212884 ≤ Run ≤ 236646 ≤ 0.4 cm ≤ 1.0 cm
|dz0| = |zd′ca

− zvtx| ≤ 40 cm
for 212884 ≤ Run ≤ 236646 ≤ 12 cm ≤ 40 cm
for 238955 ≤ Run ≤ 244968 ≤ 20 cm ≤ 40 cm

Table C.1: The adjusted track quality cuts for D∗-meson selection depending on L4.
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Appendix D

The ST61 Efficiency

In this appendix the trigger element (TE) efficiencies as well as the subtrigger (ST61)
one for the control distribution are presented. The efficiencies are of the order of ∼ 90%
and the MC model agrees reasonable well with the data within the errors.

The efficiencies are used just to control the data selection and different variables
that can have a high influence on the results of this analysis.

Due to the reasonable good agreement between the data and the MC model, no
corrections are needed for the results concerning the trigger efficiency.

In the Fig. D.1 one can see that the main influence for the ST61 efficiency is coming
from the TE zVtx sig which can be considered the weakest in efficiencies from the
TE used.
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Figure D.1: The efficiency of the ST61 and the zVtx sig for the φD∗ distribution.
The shift seen in the range −180o ≤ φ ≤ 40o of ∼ 2% is propagated also in the φD∗Jet

distribution.

The SPCLe IET efficiencies are presented in the Fig. D.2, the DCRPh THig
efficiencies in the Fig. D.3 and the zVtx sig efficiencies in the Fig. D.4.

The ST61 efficiency for several control variables can be seen in Fig. D.5.
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Figure D.2: The SPCLe IET efficiency for the control variables Q2
e, ye, E′

e, θe, pT, D∗

and ηD∗ . The errors are the statistical ones. The dotted lines show the cuts applied
in this analysis.
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Figure D.3: The DCRPh THig efficiency for the control variables Q2
e, ye, E′

e, θe,
pT, D∗ and ηD∗ . The errors are the statistical ones. The dotted lines show the cuts
applied in this analysis.
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Figure D.4: The zVtx sig efficiency for the control variables Q2
e, ye, E′

e, θe, pT, D∗

and ηD∗ . The errors are the statistical ones. The dotted lines show the cuts applied
in this analysis.
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Figure D.5: The ST61 efficiency for the control variables Q2
e, ye, E′

e, θe, pT, D∗ and
ηD∗ . The errors are the statistical ones. The dotted lines show the cuts applied in this
analysis.
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Appendix E

The Sigma Method

The sigma method calculates the kinematic variables Q2
Σ and yΣ taking into account

the QED radiation emitted by the incoming electron. Due to the electron energy loss,
related to the QED radiation, the energy
of the electron beam is replaced in this
method by the electron energy at the event
vertex position. The value of the later en-
ergy is given by:

Ee =
E − pz

2
(E.1)

where E − pz is calculated using the
Eq. 3.13.

In the sigma method, the Ee calculated
from the Eq. E.1 is replaced in the Eq. 3.15
as follows:

Q2
Σ = 4

E − pz

2
E′

e cos2
(

θe

2

)
;

Σ/yey
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Figure E.1: The ye/yΣ distribution.

yΣ = 1 − E′
e

E − pz

2

sin2

(
θe

2

)
; xΣ =

Q2
Σ

s · yΣ
. (E.2)

where the most appropriate choice for s would be s = 2(E − pz)Ep.
Due to the errors of the quantities used to calculate E − pz, for s the definition

from the electron method (s = 4EeEp) is used. In this analysis only a check is done
using the sigma method. The yΣ can be written also as:

yΣ = 1 − E′
e

E − pz

2

sin2

(
θe

2

)
=

E − pz − E′
e(1 − cos θe)

E − pz
=

Ehad − pz, had

E − pz
(E.3)

from where the:

Q2
Σ =

(E′
e sin θe)2

1 − yΣ
and xΣ =

Q2
Σ

yΣ · 4EeEp
(E.4)

can be used.
The ratio ye/yΣ is shown in the Fig. E.1. The MC model describes the data.

The distribution has a nice peak at the value of 1, showing that the QED radiative
correction can be neglected.
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Appendix F

The c ⇔ Jets Correlations

In the Chapter 4 the jet shape observables are presented. Because both jets, the D∗Jet
and the OtherJet, are charm jets, it is important to know how well are they correlated
with the corresponding c quarks.
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Figure F.1: The energy correlations between the Jet and the corresponding c quark.
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One can observe that the correlation in energy, shown in the Fig. F.1, between the
OtherJet and the corresponding c quark is not as good as the one between the D∗Jet
and its corresponding c quark.

The correlation in η and φ are better than the E one, see the Fig. F.2 and the
Fig. F.3, respectively. Nevertheless, the quality of the D∗Jet ⇔ c quark correlation is
still not achieved in the OtherJet case.

The profiles, showed in the dashed histograms, have also large tails for the OtherJet
correlations.

This hint concerning the c quark reconstruction can partly explain the differences
in jet shape variables observed between the D∗Jet and the OtherJet.
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Figure F.2: The pseudorapidity correlation between the Jet and the corresponding c
quark.

The asymmetric peak for the η correlations is due to the non fully invariance of
the η with respect to the longitudinal boost.

In the φ correlation distributions, a symmetric peak at the zero value can be seen.
This is due the invariance of the azimuthal angle φ to the longitudinal boost in the z
direction.
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Figure F.3: The φ correlation between the Jet and the corresponding c quark.
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Figure F.4: The jet shape observables for different ηJet bins corrected to the hadron
level (R = 1).
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HFS and Jet Control
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Figure G.1: The total energy and the contributions from clusters, tracks and combined
cluster-track objects to the total hadronic final state (HFS) energy.
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Figure G.2: The energy fraction contributions from clusters, tracks and combined
cluster-track objects to HFS.
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Figure G.3: The total energy and the contributions from clusters, tracks and combined
cluster-track objects to the total D∗Jet energy.
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Figure G.5: The total energy and the contributions from clusters, tracks and combined
cluster-track objects to the total OtherJet energy.
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The Systematic Error
Contributions
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Figure H.1: The systematic errors of the jet shape variable from the kN variation, see
Sec. 3.3.5.
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Figure H.2: The systematic errors of the mean subjet multiplicity 〈nsbj〉 for the D∗Jet.
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Figure H.3: The systematic errors of the mean subjet multiplicity 〈nsbj〉 for the
OtherJet.
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Figure H.4: The systematic errors of the integrated jet shape variable 〈Ψ(r/R)〉 for
the D∗Jet where R = 1.
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Figure H.5: The systematic errors of the integrated jet shape variable 〈Ψ(r/R)〉 for
the OtherJet where R = 1.
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Figure H.6: The systematic errors of the differential jet shape variable 〈ρ(r/R)〉 for
the D∗Jet where R = 1.
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Figure H.7: The systematic errors of the differential jet shape variable 〈ρ(r/R)〉 for
the OtherJet where R = 1.



158 Appendix H The Systematic Error Contributions

 2%± eE’D*Jet  2 mrad± eθ  2%± JetR

 4%± HFSE  3 mrad± HFSθ | < 1.75HFSη|

 > 0.3 GeVT, Kp  > 0.3 GeVπT,    p  > 0.15 GeV
SπT,    p

| < 1.25 Kη| | < 1.25πη| | < 1.25
Sπη|

R: RAPGAP 2.8
H: HERWIG 64

 (
%

)
>

h
ad

*ρ< ε

-5

0

5

 (
%

)
>

h
ad

*ρ< ε

-10

-5

0

5

10

 (
%

)
>

h
ad

*ρ< ε

-10

0

10

 (
%

)
>

h
ad

*ρ< ε

-5

0

5

 (
%

)
R *ρ

)/
R *ρ

 -
 

H *ρ(

-20

-10

0

10

20

r/R

0 0.2 0.4 0.6 0.8 1

r/R

0 0.2 0.4 0.6 0.8 1

r/R

0 0.2 0.4 0.6 0.8 1

0    0.2    0.4    0.6    0.8    1  0

Figure H.8: The systematic errors of the differential jet shape variable 〈ρ∗(r/R)〉 for
the D∗Jet where R = 1.
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Figure H.9: The systematic errors of the α0EJet in bins on jet energy, EJet, for the
D∗Jet in the laboratory frame.
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Figure H.10: The systematic errors of the α0EJet in bins on jet energy, EJet, for the
OtherJet in the laboratory frame.



161

 2%± eE’
D*Jet  2 mrad± eθ  2%± JetR

 4%± HFSE  3 mrad± HFSθ | < 1.75HFSη|

 > 0.3 GeVT, Kp  > 0.3 GeVπT,   p  > 0.15 GeV
SπT,   p

| < 1.25 Kη| | < 1.25πη| | < 1.25
S

πη|

0α method nd2

 1.6 %± Nk

R: RAPGAP 2.8
H: HERWIG 64

 (
%

)
Je

t
E

0α ε

-5

0

5

 (
%

)
Je

t
E

0α ε

-5

0

5

 (
%

)
Je

t
E

0α ε

-5

0

5

 (
%

)
Je

t
E

0α ε

-5

0

5

 (
%

)
Je

t
E

0α ε

-10

-5

0

5

10

 (GeV)JetE
2 4 6 8

 (GeV)JetE
2 4 6 8

 (GeV)JetE
2 4 6 8

 (
%

)
Je

t
R

E
0R

α
)/

Je
t

R
E

0R
α

 -
 

Je
t

H
E

0H
α(

Figure H.11: The systematic errors of the α0EJet in bins on jet energy, EJet, for the
D∗Jet in the nγ∗p - frame.
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the OtherJet where R = 1 GeV.
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Figure H.16: The systematic errors of the differential jet shape variable 〈ρ(r∗/R)〉 for
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Purity and Stability
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Figure H.17: The purity and the stability of the jet shape observables using
min |Δφ(D∗, Jet)| < π/3 as D∗Jet definition, see Sec. 4.8.
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Figure H.18: The purity and the stability of the jet shape observables using
min rJet(D∗, Jet) < 1 as D∗Jet definition.
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Figure H.19: The purity and the stability of the jet shape observables using the new
definition r∗ = ph · sin αh−Jet where D∗ ∈ D∗Jet.
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Figure H.20: The purity and the stability of the jet shape observables using for the
D∗Jet definition: D∗ ∈ D∗Jet in ET,Jet ∈ (1.5; 4) GeV bin.
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Figure H.21: The purity and the stability of the jet shape observables using for the
D∗Jet definition: D∗ ∈ D∗Jet in ET,Jet ∈ (4; 8) GeV bin.
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Figure H.22: The purity and the stability of the jet shape observables using for the
D∗Jet definition: D∗ ∈ D∗Jet in ET,Jet > 8 GeV bin.
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Figure H.23: The purity and the stability of the jet shape observables using for the
D∗Jet definition: D∗ ∈ D∗Jet in ηJet ∈ (−1.5;−0.5) bin.
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Figure H.24: The purity and the stability of the jet shape observables using for the
D∗Jet definition: D∗ ∈ D∗Jet in ηJet ∈ (−0.5; 0.5) bin.
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Figure H.25: The purity and the stability of the jet shape observables using for the
D∗Jet definition: D∗ ∈ D∗Jet in ηJet ∈ (0.5; 1.5) bin.
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Figure H.26: The purity and the stability of the jet shape observables using for the
D∗Jet definition: D∗ ∈ D∗Jet in EJet ∈ (2.5; 4.5) GeV bin.
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Figure H.27: The purity and the stability of the jet shape observables using for the
D∗Jet definition: D∗ ∈ D∗Jet in EJet ∈ (4.5; 10) GeV bin.
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Figure H.28: The purity and the stability of the jet shape observables using for the
D∗Jet definition: D∗ ∈ D∗Jet in EJet ∈ (10; 14) GeV bin.
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