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Abstract

Azimuthal asymmetries of the hadronic final state in deep inelastic
scattering at HERA provide the opportunity to study the helicity of the
interacting particles. We present a theoretical overview of the origin of
these effects up to leading order in the strong coupling constant, ag. A
review of previous measurements is given and the results are discussed.
The effects of the intrinsic transverse momentum of the partons inside
the proton is investigated and implemented into a Monte Carlo program.
We develop an analysis method insensitive to the intrinsic transverse
momentum, including an unfolding algorithm to correct the data for
detector effects.

The result of the measurement is consistent with the expected sig-
nal in LO and NLO QCD from the CTEQ-4m parameterization of the
structure function in the kinematic region investigated.
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Introduction and acknowledgments.

To investigate the structure of the proton by scattering electrons on a
proton target can be compared to exploring the structure of the sea
surface by studying the sun light which is reflected from it. A glassy
surface reflects all of the sun light into the eyes of the observer, while a
choppy sea reflects almost nothing. We can study how much has been
reflected by comparing with a direct observation of the sun and thus
determine the structure of the surface. By making a detailed study of
the amount of reflected light in different angles as well as an absolute
measurement of the intensity we gain more knowledge.

There is, however, one more thing we can look at. Normal sun
light is said to be transverse unpolarized, which means that the electro-
magnetic wave, making up the light, is oscillating in random direction
(see fig. 1.1 left). When the light is reflected on the surface there will be
some transverse linearly polarized light reflected. This means that the
light is oscillating in a specific plane, in the case of the sea it will oscillate
horizontally (see fig. 1.1 right). This phenomenon can be dangerous to
the eyes and to protect ourselfs we frequently use Polaroid sun glasses,
which simply is a vertical raster filtering out the horizontally oscillating
light.

Figure 1.1: Transverse unpolarized light is pictured on the left and trans-
verse linearly polarized light on the right.
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The proton is a composite object, consisting of quarks and gluons,
whereas the electron according to our present knowledge is elementary.
In deep inelastic scattering, highly energetic electrons are used to probe
the partonic structure of the proton. The reaction can be described as
an exchange of a virtual photon between the electron and one of the
constituents of the proton. The exchanged photon can be polarized
in the same way as normal light. This polarization can be measured
through the azimuthal distributions of the hadronic final state relative
the electrons. For these kind of reactions we have an exact theory,
perturbative Quantum Chromo Dynamics, describing the features of the
reaction including the magnitude of polarization. It will only depend on
whether the electron interacts with a quark or a gluon. We will thus
be able to add some knowledge about the composition of the proton by
determining the ratio of these polarizations.

In contrast to a real photon, which can only be transversely polar-
ized, a virtual photon can also be longitudinally polarized, and therefore
we will in addition to the transverse linear polarization also study a po-
larization related to the longitudinal component.

The thesis is structured as follows:

e Theoretical background; A discussion of semi-inclusive deep in-
elastic scattering, and the contributions to the polarizations from
the leading order QCD processes.

e Previous experiments; Presentation of results, a discussion of non-
perturbative contributions to the signal, and of problems arising
from QED-corrections to the kinematics which can fake a signal.

e Jets; A description of the jet-definition used and results on the
resolution of jet parameters for the relevant kinematic range esti-
mated from a Monte-Carlo simulation, together with a discussion
of the effects of acceptance of the detector.

e Hera and H1; A description of the accelerator complex and the
H1-detector, and a presentation of the efficiencies and resolutions
of the jet parameters on detector level.

e Detector corrections and unfolding; Development of an unfolding
algorithm with comparison to bin-to-bin correction.

e The measurement; Comparisons of key distributions for the mea-
sured data and the simulated Monte Carlo sample, unfolding of
the data to hadron level, and presentation of the final results.



Acknowledgments.
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Theoretical background.

2.1 Introduction.

In this chapter an overview of the theory behind the azimuthal distri-
butions of the hadronic-final state will be given. It will start with an
introduction to deep inelastic scattering (DIS), including definitions of
the various structure functions, appearing in the expression for the cross
section. After that a review of the QCD-corrections up to first order in
the strong coupling constant will be given. In order to illustrate the
analogy between the azimuthal distributions and the ratio between the
two traditional structure-functions, R = Fr/2xpFr, the collinear limit
will be discussed. Finally, by changing the spin of the gluon, it will be
shown that the asymmetries are a consequence of helicity conservation.

2.2 Deep inelastic scattering.

Inclusive deep inelastic scattering of an unpolarized lepton-beam against
a proton-target can be written as: I(e)+p(P) — I'(¢') +2(X). The four-
momenta of the incoming lepton (I) and the proton (p) are denoted e
and P, respectively, whereas those of the scattered lepton (I') and the
hadronic system (z) are €’ and X, respectively. This process, is, for a
fixed total center-of-mass energy s = (P +e¢)?, kinematically completely
defined by two independent variables*. The variables we have chosen are
the negative mass-square of the photon and the scaling variable Bjorken
xp, which can be interpreted as the fraction of the proton energy carried
by the struck parton in the most basic scattering process.

QQ

2 2 2
=—(e—¢€) =— rp = 2.1
@=—le—P=—p ., an= (2.1)
The variable Q? is convenient to use since it is inversely proportional

to the wavelength of the probe squared. Using these variables the total

*In the case of unpolarized beams the cross-section is not depending on the az-
imuthal angle of the scattered lepton.
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invariant mass squared of the hadronic system can be expressed as:

W= X7 = (P4 g = M+ Q2 (2.2)
B
where Mp is the rest mass of the proton.

We can distinguish between three different kinds of scattering pro-
cesses. Elastic scattering takes place in the case W? = MI%, or in other
words if the proton recoils elastically. In photo production the wave-
length of the probe is comparable or larger than the proton, but the
proton can break up and the final-state mass W? can be much larger

than the proton mass. Deep inelastic scattering is defined as [Halzen &
Martin 1984]:

Q>> D ~0.05GeV?  and W?2>» M ~1GeV? (2.3)

where Dp = hic/d,, with d, = 1 fm being the size of the proton. The
first criterion ensures that the wave-length of the probe is smaller than
the proton, and the second that one is far away from the elastic peak.
The kinematic regions covered by the previous investigations which are
relevant to this analysis, are indicated in fig. 2.1 together with the range
comprised by this measurement. Lines in Q? and M2 corresponding to
multiples of 10 and 100 of D% and M3, respectively, are also given.

A semi-inclusive DIS event, I(e) + p(P) — I'(¢') + H(h) + z(X), is
sketched in fig. 2.2. One final state hadron (H) of four-momentum A is
detected. In this case, assuming massless hadrons, we need three more
kinematic variables to specify the hadron. We choose the transverse
momentum, pj_2, of the detected hadron relative to the photon direction
and, z, the fraction of the leptonic energy transfer carried by the detected
hadron:

o

-h

*2:h h_ -
by + ) z Pq

(2.4)
where hy indicates the light-cone momenta, F + p, along the z-axis.
The variables are defined in a system where the photon proceeds along
the z-axis. The third variable is ¢*, defined as the angle between the
lepton-plane and the plane spanned by the detected hadron and the
exchanged photon. This variable is here defined using the three-vectors
of the leptons and the hadron.

(2.5)
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Figure 2.1: The kinematic regions covered by three previous ¢* cor-
relation measurements performed at SLAC [Dakin et al. 1972], EMC
[Arneodo et al. 1987] and E665 [Adams et al. 1993], together with the
acceptance of the H1-Spacal calorimeter which will be used in this anal-
ysis. In addition lines where W2 is a multiple of the proton mass squared
M]% and where Q? is a multiple of the proton diameter squared D%) are
drawn. The DIS-region is the lower right part of the kinematic-plane.

The variables Q?, zp and z are invariant under all Lorentz transfor-
mations while pj_2 and ¢* are only invariant when the transformation is
performed along the z-axis.

The cross-section for a semi-inclusive process is given by [Levelt &
Mulders 1994]

5 2
d’o drag,,

= L
dQ*dzpdp2dzdg*  42Q4

MVWMV (26)
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Figure 2.2: A semi-inclusive deep inelastic scattering event, P + e —
e’ +h + X, with one detected hadron in the final-state, is sketched in
the proton rest-frame.

where £, is the leptonic tensor and W is the hadronic tensor. These
two tensors can be written as functions of g"” and the independent four-
momenta of the process. For the leptonic tensor the momenta are e and
e’ and for the hadronic tensor they are P#, h* and g*. We will here only
consider the special case of neutral boson exchange, far below the Zj
peak, with unpolarized lepton-beams and protons. The spin-averaged
leptonic tensor is then given by [Levelt & Mulders 1994]:

L = 2eye, + 2e,€), — Q9w (2.7)

In the hadronic-tensor combinations of the momenta are multiplied
with functions W where we have collected everything we do not know
about the proton, [Halzen & Martin 1984]. There are 7 possible com-
binations of the independent four-momenta but the hadronic tensor has
to be contracted with the leptonic tensor to obtain the cross-section.
This has the consequence that combinations with ¢# have not to be con-
sidered since ¢*L,, = 0 and therefore these terms give no contribution
to the cross section. That leaves us with four linear combinations, g*¥
and three combinations of P* and h*. If we now proceed by choosing
the four combinations as g"”, P*PY h*h” and P*h’!, we can by visual
inspection of the cross section expression note that only combinations
containing h* will produce a dependence on ¢* and it is thus enough to
study those. The contraction of P#h” with the leptonic tensor will pro-
duce terms proportional to cos ¢*. As long as we define our vectors in a

fThe hadronic tensor is symmetric in exchanging x and v, so the last combination
is technically a sum of two, but for the reasoning here we only consider one of them.
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system where the photon and proton collide head-on we have e} = e'f,
and the two first terms in eq. 2.7 will both contain terms e’} p’ cos ¢*.
The contraction of h*h” will produce terms proportional to e’ p’ cos ¢*
and terms proportional to e}?pi?cos® ¢* = e*fp*f%(l + cos 2¢*). The
cross-section can thus be written as a Fourier cosine-series with three
terms, i.e. do = ag+aj cos ¢* + as cos 2¢*. The factors e* p% and e*Zp*?
will be discussed later in this chapter when we analyze the contributions
to the structure-functions

Writing the hadronic tensor in terms of photon polarizations, at least
one of the terms in the Fourier series has to be written as a sum of two
polarizations. It is then natural to split the constant term, ag, in the
transverse and the longitudinal polarizations [Levelt & Mulders 1994].

1
Wr = E(ex-W-ex—{—ey-W-ey) (2.8)
Wi = e -W-ep x p*f (2.9)

where the indices T and L refer to the polarization of the virtual photon,
where T is the unpolarized transverse and L is longitudinal state. The
two polarizations projecting cos ¢* and cos 2¢* out of the hadronic tensor
are the transverse linear (T'T) for cos 2¢* and the interference between
longitudinal and transverse photons (LT') for cos ¢* [Levelt & Mulders
1994].

Wircos¢* = —(ez- W e +er-W-e) xplcosg™ (2.10)
1

Wrr cos 29" = 3 (€W €z —€y - W-¢) x picos2¢* (2.11)
Considering the semi-inclusive structure-functions we define them
such that they after integration over the hadronic variables pf,z and
¢*, can be immediately interpreted in terms of the inclusive structure-
functions F;. The phase-space factor (d3h/2ho =~ dzdp*?d$*/4z in the

deep-inelastic limit) is included in the structure-functions.

~ ~ 1
F = =M 2.12
1 T=1 pPWr (2.12)
. Fr, 1
== —_M 2.13
2zp ! 2z 4z 2447 ( )
~ ~ 1
= =M 2.14
4 L= Wit (2.14)
~ ~ 1

6 = TT:*ZMPWTT (2.15)



14 2. Theoretical background.

Thus, an integration over all hadrons results in the inclusive defini-
tion of the structure functions (F;) times the average number of hadrons,
(np,(Q?, z)), produced at (Q? zp) [Levelt & Mulders 1994].

(nh(Q2)IB)>Fi(Q27xB) :/ddequS*E(Qz)IB)Z:pj_z) (216)
1,2,4,6

where ©= or
L,T,LT,TT

The semi-inclusive neutral-current cross-section, for unpolarized beams
and targets, can then be written in terms of the structure-functions F;
[Hagiwara, Hikasa & Kai 1983, Levelt & Mulders 1994]

5
ngdeddedqus* =k[(1+(1—yp)")Fr+2(1- yB)QFTLB +
ap/k
V1 =yp(2 - yp)Frrcos ¢* + 2(1 — yp) Frr cos 2¢*] (2.17)
a1/k az/k

where yp is the energy fraction of the electron energy carried by the
exchanged photon in the rest frame of the proton.
4 2 2 P-

KR = ﬂ-aem , yB = Q = q‘

Q* sxg P-e

(2.18)

We will, in this chapter, discuss the results in two different ways. In
the first a detailed analysis of these structure-functions will be made,
and in the second the more practical view, where the cross-section is
seen as a Fourier-expansion which leads to the observable modulations
in ¢*, will be taken. If we consider do = ag + a1 cos ¢* + ag cos 2¢*,
it is common to present the results as the mean values (cos¢*) and
(cos 2¢*). To calculate these averages we need the norm [ dod¢* = 2mag
and the first moments of the observables, i.e. [ do cos ¢p*d¢p* = wa; and
[ do cos2¢*d¢* = may. The averages are then:

(cos ¢*) = 2a—a10 and  (cos2¢*) = ;%0. (2.19)
The individual structure-functions will be reviewed up to first order in
as, but the main emphasis of this thesis is on the measurement of the
averages in eq. 2.19.
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2.3 Historical background.

Already in 1965 azimuthal distributions were discussed by Jones in con-
nection with lepton nucleon scattering where one pion was detected,
N+e — N +¢e + 7 [Jones 1965]. Here the angular distribution was
calculated in terms of the matrix element as given by the leptonic and
hadronic tensors, much in the same way as has been presented above.
By inserting the helicity formalism into the matrix element the con-
tributions from final states of different spin and parity to the angular
distribution of pions were extracted.

In 1972, Ravndal treated the same topic now based on the structure
functions and their relations [Ravndal 1973]. His article was written as a
comment to Callan and Gross’s findings concerning the relation between
the longitudinal and transverse cross-sections [Callan & Gross 1969]. In
the naive quark parton model F7j, is identical to zero i.e. the photon
is interacting with a point-like spin 1/2 constituent of the proton, and
no further processes takes place. If this constituent emits one or more
spin 1 particles in a bremsstrahlung process, as described by QCD and
QED, F, would get a non-zero value. Ravndal pointed out that the
bremsstrahlung process would produce a non-zero value also for Frp
and FTT He furthermore pointed out that the structure of FLT and
FTT is very similar to F .. We will later study the collinear limit of the
cross-section to check this statement.

During the 70’s QCD was formulated in it’s current form. The basic
idea of QCD follows the theory of QED in which the interaction between
spin 1/2 fermions, carrying electric-charge, takes place via the exchange
of a photon, which is a spin 1 bosons without electric charge. In QCD
the interaction between fermions carrying colour charge is described.
This interaction is mediated by gluons which themselves carry colour
charge and therefore may couple to each other e.g. ¢ — g+ g. The fact
that the force mediator in QED does not carry electric charge whereas
the force mediators in QCD do carry colour charge, is the reason for the
different properties of the electro-magnetic- and the strong-force.

In the early 80’s, when QCD was an established theory a number of
articles concerning the perturbative treatment of leading order processes
in oy where written. The most elaborate was by presented Hagiwara et
al. where a complete treatment of polarized beams and v, Z° and W+
exchange is done [Hagiwara et al. 1983]. In the following we restrict the
discussion to -y exchange for unpolarized beams. Using deep inelastic eP
scattering to investigate the proton there are two leading order processes:
A quark, stemming from the proton, interacts with the virtual photon
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and emits QCD bremsstrahlung (QCD-Compton), or a gluon splitting
in a quark and an anti-quark from which one is interacting with the pho-
ton (Boson-gluon-fusion or in shorthand BGF). Both of these processes
produces a non-zero p’ of the hadron which will result in contributions
to Frp and Fpp. The QCD specific process, g — ¢ + g, only occurs
in next to leading order calculations since one of the gluons will have
to split in a quark anti-quark pair in order to interact with the photon,
Y49 — q+G+g, and we will not treat this case except for using a numer-
ical NLO-calculation to estimate the total effect of NLO QCD [Catani
& Seymour 1997]. It is also worth mentioning that an approximative
treatment of the higher-orders in a; was done by I. Knowles using a par-
ton shower approach introducing spin-density matrices [Knowles 1988],
where the helicity is conserved for up to five final-state partons.

In 1994 Levelt and Mulders discussed azimuthal asymmetries due
to non-perturbative effects using twist calculations [Levelt & Mulders
1994]. This work has been followed up during the 90’ [Mulders &
Tangerman 1996, Boer, Jakob & Mulders 1999] with an emphasis on
experiments using polarized beams and targets. There is a way of es-
timating the effects of the twist using the intrinsic p* of the partons
in the proton. This turns out to be a special case of the calculation of
Levelt and Mulders.

The contributions to the structure functions are depending on the
spin of the participating partons. So far, we have only considered pro-
cesses where one parton from the proton is participating in the hard
scattering, but it is of course possible to have processes with multi par-
ton interaction. One example is diffractive scattering for which there
exist alternative models to describe the interaction. One- and two
gluon exchange has been calculated, [Bartels, Ewerz, Lotter, Wusthoff
& Diehl 1995], and it was predicted that Frpp for two gluon exchange
would have opposite sign to that of one gluon exchange. Thus, a mea-
surement of the average azimuthal dependence would provide a strong
test of such models.

2.4 Contributions to the structure-functions in zeroth order
in ag.

In order to calculate the contributions to the individual structure-functions
in eqs. 2.12-2.15 we will take the complete matrix-elements from the lit-
erature and expand those in the kinematic variables. We then proceed to
identify the contributions in the expansion by comparing the kinematic
factors involving yp in front of the structure-functions in eq. 2.17.
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These calculations are most easily carried out in the Breit-frame
which is defined by

pP= \/@(1 0,0,1), ¢= (0,0,0,—\/&) (2.20)

2zp

This frame is reached from the proton rest frame, fig. 2.2, through a
boost along the photon-axis, and is thus not changing any of the def-
initions given above. The Breit-system four-vectors of the leptons and
partons are listed in appendix A.

Using this reference frame, DIS processes of zeroth order in as, I(e) +
q(pi) = U'(¢")+4q(py), can be described as a head on collision between the
virtual photon and the interacting parton. The four-momentum of the

incoming parton is p; = x P = —"2Q2 (1,0,0,1) and that of the outgoing

S D = b _ V@2 _ . .
Pr=pi+4q 5— (1,0,0,—1). Thus, the momenta of the incoming
and outgoing partons are of the same magnitude but they are oppositely
directed, which is the reason why the Breit-system is also known as the
brick-wall frame.

According to [Ellis, Stirling & Webber 1996] the cross-section can be
written as:

o =T Z 5(p
dQ2%dz gdp*>dzdg*

5(1 —2)0(¢*) fi(zp, Q%)
x|Mz? (2.21)
with

b
r= s (2.22)

and the matrix-element

.. 0)2 AV
Ms|? = 3272202 (pi-e)” +(pi-€)”

€q%em (e e (2.23)

Using the four-vector expressions from appendix A renders the standard
result

d°c
dQ%dz gdp*>dzdg*

= 25 d(1 —2)0(d%)

2

xe—;fi(xB, P+ (1-yp))  (229)
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where the parton-density f;(zpg,Q?) is the probability to find a parton i
carrying a fraction zp of the proton momentum at the four-momentum
transfer squared Q?. The cross-section is independent of ¢*. Comparing
with eq.2.17 tell that only Fr gets contributions in this order. The ¢*
dependence, and thus the contributions to the other three structure-
functions, only appears in higher-order processes.

Calculations of the zeroth order process will be revived in chapter
3, where the intrinsic Fermi motion of partons inside the proton will be
included.

2.5 Corrections to the cross-section from leading order o
processes.

Leading order contributions to the DIS cross section come from boson-
gluon-fusion processes et (e) + g(k) — eT(e') + @(p1) + q(p2) and QCD-
Compton scattering e™(e) + q(p1) — et (e’) + q(p2) + g(k), which usu-
ally are calculated separately. If we, however, notice that the matrix-
elements for these processes can be derived from e (e) + et (¢') —
q(p1) + q(p2) + g(k), shown in fig. 2.3, by using crossing symmetry* we
can shorten the calculation [Seymour 1995]. Thus we need to redefine
the incoming positron as an outgoing electron, and in the BGF case the
outgoing gluon as an incoming gluon whereas for QCD-Compton the
outgoing anti-quark is redefined as an incoming quark.

In leading order processes the variable xp no longer corresponds
to the fractional parton momentum in the proton but is related to the
parton momentum at the photon vertex after additional parton emission.
In this case it is convenient to use the partonic scaling variable z; to
make the final cross-section expression shorter.

Q%*2(1 - 2)

Ty=—F5—-—""—
P T Q- 2)

(2.25)

The fractional energy carried by the struck parton, xp/z,, eq. A.7 can
now be larger than zp.

The cross-section can be written [Seymour 1995]:

ddo

= . :C_B 2 <12
dQ2dz pdp*dzd¢* F3Zi:fz (wp @ ) X |[Ms|*/N (2.26)

*L.e. CPT-invariance, which allows any incoming particle to be redefined as an
outgoing anti-particle or vise versa
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Figure 2.3: The tree-level diagrams for electron-positron annihilation
et(e)+e (e') = q(p1) +q(p2) +g(k). The corresponding DIS diagrams,
et (e)+a(~p1) > e+ (=€) ++a(p2)+(k) and e* (e)+g(—k) — e (—e')+
d(p1) + q(p2), can be derived using crossing-symmetries.

where )
1 YB 1
I's = = 2.27
$ = 198(2m) Q2 p + Q{1 = 7)’ (227)
and the matrix-element
R N2 RY: N2
|W3|2 _ 240}5‘636493 (pl e) + (p1 € ) + (p2 6) + (p2 € ) (228)

(e-e)(p1-k)(p2 k)
N being the DIS colour averaging factor (3 for Compton scattering,

and 8 for BGF).
Inserting the Breit frame four-vectors from appendix A and separat-
ing out the factor « in front of eq.2.17 leads to:

d°o 4ra?,, 63 T 9\ Qs 1
- T XK (229
dQ%dzpdpldzdd® . QF 2 i\, 9 ) e K (229)

i
where the phase-space factor is
d=p?4+Q%2(1 - 2) (2.30)

and the K;—.’s for BGF and QCD-Compton, respectively, contains
the pieces of the cross-section which the two processes do not have in
common. They are separately calculated, again using the four-vectors
in appendix A.

For convenience the four vectors used will now be denoted v;y,,v1
and vy (see appendix A), corresponding to the incoming and the two
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outgoing partons, respectively. Where both processes can be written as
e+ vy = € + vy + v2. For BGF vy, is the incoming gluon and v; and
vy are the outgoing quark and anti-quark. For QCD-Compton v;), is the
incoming quark, vy is the outgoing gluon and vy is the outgoing quark.

For boson gluon fusion this renders the following expression for Kjp:

s = e e

If we now consider the Breit system we know that the two leptons, the
incoming and outgoing, have the same transverse momentum and we
define them as being in the xzz-plane. The third term can be expanded
as follows:

(v2-€)® = ((vhy,vipco86",vT,5in 6", vly) - (ef, €1,0,¢€2))* =
= ([ve5 — vigel] = vigel cos ¢7)* =
[v626 — viael] — 2[vgyeq — visellvlge] cos ¢ +

viiei? cos? o =

1
_ * % * %12 *2 %2
= <[U02€0_U22ez] +§Uu€¢ -

1
* % *x %]k * * *2 %2 *
2[vgaeq — vizez]viqe] cos ¢ + 9 U126l €08 2¢

We further know that the momenta of the two quarks, v{ and v3, must
balance,.i.e vy, = —vzy = —viyco8¢” and vy = —vyy = —v],sin¢".
All of the squared scalar-products in the nominator of the matrix element
can thus be written in the general form af + a) cos ¢* + ah cos 2¢* where
¢* is the azimuthal opening angle between the quark and the lepton. It

is consequently possible to write Kj in the following way:

Ky = ky(bo + by cos o™ + ba cos 2¢) (2.32)
with
2z(1 -z

The full expressions for the factors, bo,1 2, are rather lengthy so we will
here just notice that the expression for Kj had the predicted form. The
full expressions can be found in appendix B. In order to simplify the ex-
pressions and make an interpretation possible, the collinear limit will be
taken in the next section and some interesting features of these equation
will then be pointed out.
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For QCD-Compton scattering the factor K. can be written

K. = 4yh (vin - €)% + (vin - €)% + (v2-€)2 + (v2 - €)?
e = (2.34)
3 (v1 - vin) (V1 - v2)

where, in the Breit frame, the incoming quark, v;y,, is collinear with
the proton and is thus independent of the azimuthal angle. Only the
two terms containing ve are depending of ¢*. This means that we have
two constant terms and two which, just as for BGF, can be written as
ap + af cos ¢* + ah cos 2¢*, and that the matrix-element also in this case
can be written in the expected form:

K, = kc(co + 1 cos ¢* + c¢a cos 2¢%) (2.35)
where 2( )
162°(1 — z

=, 2.36

¢ 3pj_2d ( )

The expressions for the mean values (cos ¢*) and (cos2¢*) can, in
terms of these variables, be written as (neglecting the zeroth order con-
tributions to Fr):

1 fokuby + Xy fakeer

ose™) = 3 fokvbo + 32, fqkeco (2.57)
o L fgkiby 5, fykeen
(cos2¢*) = 2 fykybo + 5y faheco (2.38)

where the parton densities f; and f; are functions of zg/x), and Q?. This
result is independent of the strong-coupling constant, which only enters
in higher order processes where it just contribute a correction while the
dependence on the parton-densities is retained. Thus a measurement
of these moments provides a linear independent way of obtaining the
parton-densities of the proton with only a second order dependence on
the coupling constant. The sensitivity to the gluons and quarks, respec-
tively, is of course depending on the exact shape of the factors &k, b and
c as a function of the kinematic variables and we will investigate that in
the next section.

2.6 Leading-order corrections in the collinear limit.

We would now like to simplify the expressions for the leading-order cor-
rections obtained above, but preferably in a way where we can separate
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Figure 2.4: The kinematic factors \/¢(1 + ¢)/2 (dashed line) and ¢ (full
line) in the expressions for (cos ¢*) and (cos 2¢*), respectively, as func-
tion of yp.

out the p¥’ 2 dependence since we already obtained such factors when we
contracted the hadronic- with the leptonic-tensor. It turns out that in
the collinear limit, given by z — 1, this is fulfilled.

If we take the collinear limit of the explicit expressions for the matrix
elements in eqs. B.2-B.6, and identify the contributions using the kine-
matic factors in eq. 2.17 we reach the following leading-order corrections
to the structure-functions:

2 _ 2
Fr = n% 1-2 (a? (1—xp) fg + Zﬁ R pfq (2.39)
DY 2y,

F
ﬁ = <4xp p) fy +Z O o fq> (2.40)
Q

Frr = o (2(1 zp) (22, — 1) f, +Z ;cpfq> (2.41)
L

FTT

K (2%(1 —xp)fy + Z g%fq) (2.42)

where we have collected the electric charge, coupling constant, phase-
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space factors and various constants in k.

_ﬁasl
D)

g (2.43)

The p*f dependence has for convenience been separated out of the
expressions for the structure functions.
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Figure 2.5: The functions Dg, D1 and Dy versus z,, plotted separately
for gluons (full line) and quarks (dashed line).

The calculation of R = FL/%EBFT is straight-forward using the
above expressions while the calculation of (cos ¢*) and (cos 2¢*) requires
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some considerations. The observable (cos ¢*) is the fraction of the first
term in the Fourier expansion divided with two times the zeroth term
(see eq. 2.19). This means that the nominator is Fy7 times the kinematic
factor (2 —yp)v/1 — yp (see eq.2.17), and the denominator is two times
the sum of Fp and Ff, multlphed by their respective kinematic factors.
Fy is much smaller than Fp if p is small compared to Q2 and we will
therefore neglect it in the calculations here. The resulting expression
for (cos ¢*) then becomes just the ratio of Frr and Fp multiplied by
the fraction of the kinematic factors. In the same way an approximate
expression can be obtained for (cos2¢*) giving a ratio of Frp and Fp.
If we collect the partonic scaling variable z, and the parton-densities f;
in the functions Dg, D1 and Dy we can write R ,(cos ¢*) and (cos 2¢*)
in the following way:

*2
R = Q2 Dr(fi,zp) (2.44)

1 2
<COS (}S*) — # % D1 (fz, 'Tp) (245)

*2
(cos2¢%) = % % Ds(fi, p) (2.46)

with 2(1 )
__“U=¥YB)

e=15 0= y)? (2.47)

The equations now contain a kinematic factor, depending on yp, a
factor depending on p%?, and finally a function D describing how the
individual observable varies as a function of the parton densities and z,.

In fig. 2.4 it can be seen that the kinematic factors vary from 1 at
low yp to zero at high yp. These factors stem from the contraction of
the tensors we did earlier and are not process dependent.

The p*2-factor is p* /Q for (cos ¢*) and p*2/Q? for (cos 2¢*). These
can also be found in the tensor equations and are common for the dif-
ferent partons (quarks and gluons).

The disparity between different partons are contained in the D func-
tions, where contrasting behavior will be seen depending on the spin of
the participating particles. The explicit expressions for these functions
can be found in appendix B. In fig. 2.5 we have separated quarks and
gluons, ie. setting f; = 1 and f; = 0 for the gluon curves and vice
versa for the quark curves. It can be seen that gluons and quarks show
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quite different behaviors, especially for (cos ¢*) where the gluons even
changes sign at x, = 0.5.

The similar structure of R, (cos¢*) and (cos24*) is emphasized
by the observation that in leading order the following relation holds:
Fr [2xp = 2Fpr. This is however due to a degeneracy of the matrix-
element,[Kramer 2000], and is not true when higher order corrections
are added.

2.7 Helicity conservation.

To confirm that the underlying reason for the azimuthal asymmetries
really is helicity conservation, a simple test is to change the spin of one
of the participating partons.

From [Plehn 1998] the matrix-element for e™(e) + e~ (¢/) — q(p1) +
q(p2) + g(k) for scalar gluons is

(k-e)?+ (k-e)?
(e-e)(p1-k)(p2-k)
As explained in section 2.5 crossing-symmetries can be used to derive

the BGF process e™(e) + g(k) — €' (e) + q(p1) + q(p2):

|M;|? = 24Cpeget (2.48)

(vin - €)% + (vin - €)?

Ms|%ap o
Ms[sar (v1 - Vin) (V2 - Vin)

(2.49)

If we now follow the reasoning in section 2.5, where we deduced the

contributions from BGF for vector gluons, and look at the terms in the
nominator we can see that, since the gluon is collinear with the proton,
none of the terms will exhibit any ¢* dependence. If we insert the four-
vectors from appendix A we get the explicit factors:

bo =2 (e5” + €*) pi (2.50)

= (1+(1-yp)*) Q°p% (2.51)
by =0 (2.52)
by =0 (2.53)

Looking at the kinematic factor and compare to eq. 2.17 we see that only
the transverse structure-function Fp gets a contribution, and there is no
dependence on ¢* at all.

This demonstrates that the azimuthal asymmetries are related to the
helicities of the partons participating in the scattering process.
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2.8 Monte Carlo models.

We will in the rest of this thesis make extensive use of Monte Carlo
models. In the next chapter such models are used for comparison to
previous experimental results and in chapter 4 to develop an analysis
method. In chapter 5 and chapter 7 they will first be used to unfold the
data to hadron-level and then for a comparison with the final results.

The models which have been used to simulate deep inelastic scatter-
ing are the so-called MEPS (matrix-element with parton-shower) mod-
els. They are based on calculations of the exact matrix-elements up
to leading order in o, with the addition of parton-showers to approxi-
mate the contribution from higher-order a; processes [Sj6strand 1994].
In order to produce final-state-hadrons they use the Lund string frag-
mentation [Sjostrand 1994]. The Monte Carlo generators which we used
also contains an interface to a program which provides calculations of
QED corrections[Kwiatkowski, Spiesberger & Mohring 1992, Charchula,
Schuler & Spiesberger 1994]. This includes virtual-corrections to the
photon-vertex as well as the possibility to emit one extra real photon.

The two models we will use are Lepto 6.5 [Ingelman, Edin & Rathsman
1997] and Rapgap 2.06 [Jung 1995]. The main difference is that Rapgap
in addition allows for the possibility to use experimental fits to diffractive
data and is therefore the main choice for the H1 collaboration, whereas
we have implemented a number of modifications in Lepto, like the inclu-
sion of the Fermi-motion in the proton. We will use Rapgap to correct
for detector effects and Lepto for comparison and interpretation of the
result.

For the detailed final comparison with data a second-order ag cal-
culation (NLO) will be used [Catani & Seymour 1997]. It contains one-
loop virtual corrections and the possibility to emit one extra parton to
produce a three parton final-state. It does, however, not contain any
non-perturbative hadronization.

Details about the parameters and settings used in the different pro-
grams are listed in appendix C.

2.9 Summary.

We have calculated the cross-section for semi-inclusive deep inelastic
scattering where we found that, in a system where the proton and the
photon collide head-on, it can be written as a Fourier cosine-series with
three terms: do = ap + a1 cos ¢* + az cos 2¢* (eq.2.17), where ¢* is the
azimuthal opening angle between the detected hadron and the lepton-
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plane. The first term, ag is a function of the traditional transverse- and
longitudinal structure-functions, whereas the second and third term can

be written as:
a) = \/l_yB)(2_yB)F~1LT (254)
ag = (1 - yB)FTT (255)

where F’LT is the interference between longitudinal and transverse pho-
tons and FTT is the transverse linear polarization. We furthermore found
that FLT and I:’TT are non-zero only beyond zeroth order in as.

We investigated the observable azimuthal asymmetries:

ay

(cos ¢*) = Yag (2.56)
(cos2¢") = 2% (2.57)

and found that they are sensitive to the parton-densities in leading-order
in ayg, while the value of the strong coupling itself only effects them in
higher orders.

In the rest of this thesis we will concentrate on the asymmetries and
first investigate previous measurements of them, before we develop an
analysis method suited to our detector.
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Previous measurements.

3.1 Fixed target experiments.

Three previous measurements of the ¢*-asymmetries have been per-
formed by fixed target experiments. The kinematic regions covered by
these are displayed in fig.2.1. No signal was observed by the SLAC
[Dakin et al. 1972] experiment whereas the two pu* P scattering experi-
ments, EMC [Arneodo et al. 1987] and E665 [Adams et al. 1993], both
concluded that the signal measured could not be explained by perturba-
tive QCD alone. Instead it was interpreted as an effect of the intrinsic
momentum, p,, of the partons inside the proton.

In this chapter the measurement of the E665 experiment will be
discussed by implementing the intrinsic p; in a Monte Carlo model and
tuning it to fit the E665 results. The contribution from QED-effects will
also be estimated.

3.2 The measurement from E665.

The E665 experiment used a 490 GeV' pu-beam on proton and deuterium
targets to measure the structure of protons and neutrons. Deep inelas-
tic scattering events used in the ¢*-asymmetry analysis were selected
according to the following criteria:
300 GeV2 < W% < 900 GeV?
60 GeV < v < 500 GeV
3GeV? < @
0.003 < =zp
0.1 < yp < 0.85
where W? is the invariant mass of the hadronic system squared, v is the
energy loss of the lepton, Q2 is the square of the momentum transferred
by the virtual photon, and zp and yp are the Bjorken scaling variables.
These variables were calculated from the energies of the incoming and
the scattered muon together with the scattering angle.
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The tracks used in the measurement were required to have xg > 0,
where zg = 2pj /W is defined in the hadronic center-of-mass system.

The angle ¢* is defined as the azimuthal opening angle between the
measured charged particle and the plane spanned by the two leptons in a
system where the proton and the exchanged boson collide head-on. The
definition is the same in the proton rest-system, the hadronic-center-of-
mass system and the Breit-system, since these are connected through
Lorenz transformations along the photon-proton axis.

The average cos¢* of the detected charged particles was measured in
the hadronic center-of-mass system as a function of a p*, -cutoff applied to
the charged particles, where p* was measured relative the photon-proton
axis. The results, shown in fig. 3.1, are taken from [Adams et al. 1993].

0.2

oA r . E665
g r - Lepto matrix element.
¢ 01 - —— Leptohadron level.
0t —_— =
: ’ .
01 - + + +
_0_2:HHmH‘\HH\HH\HH\HH\HH

-0.5 0 0.5 1 15 2 2.5 3
prcutoff  GeVic

Figure 3.1: (cos¢*) as measured by E665, compared to a MEPS
model(Lepto 6.5) on matrix element level (dashed-dotted line) and
hadron level (full line).

The Lepto Monte Carlo (see section 2.8 and appendix C) is used
for comparisons. The default version used in fig.3.1 contains zeroth
and leading order processes in «s. The intrinsic p; was set to zero
for the default version since the intrinsic motion is implemented using
an azimuthally flat random distribution and thus only has the effect of
smearing the detected signal. This Monte Carlo cannot reproduce the
signal measured by E665.

E665 explained the signal they measured with non-perturbative ef-
fects which has been discussed in a number of papers by introducing an
intrinsic p; [Cahn 1978],[Ko6nig & Kroll 1982],[Cahn 1989],[Chay, Ellis
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& Stirling 1991],[Chay, Ellis & Stirling 1992] and [Seymour 1995]: In
the collinear approximation, the partons are assumed to be parallel to
the proton. If one, however, takes the proton-size into consideration
two extra degrees of freedom appears. We will here choose these two
to be the transverse momentum, p7, , of the incoming parton and its
azimuthal angle relative the lepton plane, ¢},. A proton-size of = 1 fm
allows for a Fermi motion of the partons corresponding to a momentum
of about 200 MeV. We will in this chapter see that if we introduce an
intrinsic p; of that order as input, that the detected ¢* distribution is
non-uniform, resulting in a measurable negative (cos ¢*). This has been
pointed out in the articles above and has been used as the explanation
for the effect seen in fig.3.1. E665 used the model from Chay et al.to
estimate a value of 0.5 GeV for the intrinsic p; to describe their data.

We will in the following sections introduce an intrinsic p, , following
these ideas, into Lepto to study if we can improve the description seen
in fig. 3.1.

In the last section we will address a different problem: The momen-
tum transfer squared of the exchanged virtual boson can be calculated
from the energies of the incoming and scattered leptons, and the scat-
tering angle. However, since the energy of the incoming lepton is not
measured but assumed to be equivalent to the nominal beam energy, ini-
tial state radiation which escapes undetected, would introduce an error
in the calculation. This kind of radiation will cause any Lorenz transfor-
mation to be systematically wrong and thereby give rise to a systematic
effect which will produce a negative (cos ¢*} signal. The effect turns out
to be large and special care has to be taken not to introduce errors in
the analysis.

3.3 Some comments on the implementation of the intrinsic
yIR

To ensure a continuous transition from zeroth to leading order processes
we will here calculate the corrections for the intrinsic p; in both or-
ders. For the zeroth order we will use the matrix-element in eq. 2.23
and for the two leading order processes the matrix-elements are: BGF
in eq.2.31 and QCD-Compton in eq.2.34. The implementation will be
done through a modification of an existing Monte Carlo program, Lepto
6.5 [Ingelman et al. 1997], and will be done to secure a minimum of
change to the authors version. We will only calculate and change the az-
imuthal distribution and reorient already generated events. Technically
the intrinsic-p; also changes the scattering amplitude but precautions
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will be taken to minimize this effect so that we can neglect it.

3.4 Intrinsic p; in zeroth order a; processes.

Including the possibility for a p7,, in the zeroth order matrix-element
(eq.2.23) simply means that we replace the incoming quark eq.A.5,
which until now has been collinear with the proton, with one having
a transverse momentum.

LV

v = 9 (170707 1) - (52*0:1’11'11 cos ¢;n7piin sin ¢:n57~)z*z) (31)

where ¢}, is defined as the azimuthal angle of the plane spanned by the
incoming quark and the photon with respect to the lepton plane. The
scattered quark has the same transverse momentum and the same ¢*
angle as the incoming quark. o}, is kept at V/Q2%/2. Both partons are
set to be mass-less.

To calculate the matrix-element we start by inserting this modified
four-vector into the terms in the nominator of eq.2.23.

B B 5 1
(Uin ' 6)2 = (U;Oea - UZZEZ)Q + ipj_zinej_z

2565 — eI Line 05 G + gpTinel o526, (3.2
(Fin - )7 = (3iacly — 070+ pTe'?
2Tl — e’ O G+ et 05265,
= (il + 71e2)? + 5pTe?

. N 1
_2(1);063 + v;ze:)pjinei cos ¢;kn + ip)finef cos 2¢Zn (33)

Evaluating the matrix-element using these terms renders:

|Ma|? o g + a1 cos ¢f, + da cos 2 ¢F, (3.4)
where

a0 = 20jges’ +0i7el”) +pTinel (3:5)

ar = —40peppT el

ay = pliyel? (3.7)
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The denominator and the factors in front of the matrix-element are
left untouched. Upon implementing this we can just add the p? ;. to the
outgoing quark and reorienting it azimuthally.

The behavior we saw already in the tensor-contraction in section 2.2
can also be found here: a1 o p*;, and a2 x p*fm.

3.5 Intrinsic p; in leading order processes.

As mentioned above events are generated without intrinsic p; by the
Lepto generator and the effect on the event by the intrinsic p; is im-
posed in a second step. The modified scattering process in principle has
a different scattering amplitude and thus a different cross section than
the originally generated event. The difference is, however, small except
under specific kinematic conditions. The problems arise when the emit-
ted radiation is very soft or collinear with the emitting parton which
leads the denominator in eq. 2.28 to go to zero. Cutoffs have been intro-
duced in the generator to avoid these divergences. The denominator of
the matrix element can, for QCD-Compton (i.e. gluon brems-strahlung),
be written as (1 —z,) (1 — 2,), and for BGF (i.e. photon-gluon-fusion)
as 24 (1 — z4) where

QQ

o ﬁin ' 172
27~Jin -q

Uin * q

and  z; = (3.8)

Zp
where ¢ is the four-vector of the virtual photon. These two variables are
used in the Lepto program to regulate the divergences of the matrix-
elements so as to ensure that the leading-order cross-section is smaller
than the total cross-section. Since these variables are intrinsically impor-
tant to the program we cannot allow them to change in spite of the fact
that we by implementing the intrinsic p; have changed the event. This
constraint will fortunately lead to very small changes in the scattering
amplitude.

A 2 — 3 process has 5 degrees of freedom, and by introducing the
intrinsic-p; we add two more: the transverse momentum and the az-
imuthal angle of the incoming parton.

By introducing the intrinsic-p; the two outgoing partons have no
longer the transverse momenta balanced in a reference system where
the photon and proton collide head-on. The strategy is to calculate
the transverse momentum, p ,, of the outgoing quark which has been
related to z; in eq. 3.8, under the constraint that the value of z; is not
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changed by the influence of the transverse momentum. The tilde here
indicates that the intrinsic p; has been included. The p; of the other
parton, the other quark for BGF and the gluon for the QCD-Compton
case, is given by momentum conservation.

The four-vectors of the partons can be expressed as:

Ui = (030, PlLin COS By PLi SIN G5, 0 ) (3.9)
07 = (0fp0, P'Lin COS B, — P2 COS B3,

PlLin SN ¢j, — Plosin ¢3, 07, (3.10
Uy = (U0, Pl 2 COS $3, P o Sin 3, 3 ) - (3.11)

Inserting these into the expression of x;, shows that we can determine
the longitudinal momentum ;,,,

Lk = Bin 4 = T |/ Q2 (3.12)

2z,

The expression for z; renders:
Zq ('f)m ' Q) = Ujp * Vg =

Sk ~x2 ~%2 ~k * * * : s * ~k o~k
= Ufp0\/ P15 + 037 — P 9P iy (COS @5 cOs ¢, +sin @3 sin ¢, ) — 07,03, =

ok ~x2 ~ %2 ~ok * * * Sk ok
= Ufp0\/ P15 + 037 — P oD cOS(03 — ¢5,) — 07,05,

This equation can now be solved for p* ,,

ﬁj_ _ Apj_m COS(QS; — :n)
2 T ~x2 2
v;nO - piin COS2(¢§ - :n)

*2 2 k2 ~%2 ~*2 ~*x2, *2 2( Ak Lk
\/ Um0 (A? — 030057) + 050052P 75, cos? (95 — ¢7;,)

+

~¥ " " " (3.13)
Uiy = Py €082 (05 — ¢7,)
where
A= 2q (ﬁm . q) + Vinz02z. (314)

Since the final expression for the scattering amplitude will be propor-
tional to p 4 cos ¢*, eq.2.10, it will be proportional to the square-root
above. If we continue to use the angles ¢* and ¢, we would have to
generate a two-dimensional distribution. The easiest way to get around
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this problem is to use the opening angle between the incoming and out-
going parton A¢s = ¢5 — ¢F instead of ¢}, as our seventh parameter.
This will reduce the square-root to a one dimensional function and, as
will be shown, put all of the dependence on ¢* in linear terms.

This gives:

* * ~ %2 k2 %2 N2 k2 %2

ok ApJ_in cos A¢2 + \/1}2210("42 - U;nOU;z) + U;nOUEZPIin cos? AQS;

P12 = ~ k2 :
Vino

—pi2, cos? Ags

(3.15)
Upon setting p’;,, = 0 GeV the only remaining terms are the first under
the square-root, and the first in the denominator.

i ¥in0(A? — 017032)
Plo= \/ o (3.16)
Yino

Inserting the expressions for the four-vectors from appendix A, leads to
Plo =1/824(1 — z4) = p’ 5 as expected. Since only real values of p* , are

of interest we will have \/17;120(142 — 0F2)052) + 012,052p*2  cos? Agh > 0
Le. 072,012,052 — A%) < 022,032p*2, cos? Ags. This fixes the limits for
Ag¢; for given kinematics and p7;,,.

Following the procedure of the previous chapter we insert the modi-
fied momenta into the terms in the nominator and expand the squares.
The denominator has not changed. The matrix element for QCD-Compton

scattering can then be expressed as:

|M3|%~ o Gy + & cos @y + & cos 205 + 3 cos(ds + Ags) +

é4c08 2(d5 + Ads) (3.17)
where
o = 2(e(vi5 +053) + €207 + 932)) + (T + pT) (3.18)
& = —4byepe] Py (3.19)
G = e (3.20)
& = —40jperePlin (3.21)
& = eVp. (3.22)

Setting p7;, to zero again restores the original dependence on p,.
Integrating the matrix-element, eq. 3.17, over ¢5 reduces the expression
to contain only the term & which depends on Q?, yg, Tp, Zq , P and
A5, After the values of Q?, yp, z, and z, have been fixed through
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the generation in Lepto, and p?,, has been generated according to a
Gaussian, ¢y will simply describe the distribution of A¢3, and can be
used as a probability function to generate A¢3. Thereafter ¢35 can be
generated from the complete expression of the matrix element eq. 3.17.

For BGF we have to insert the expressions for the two modified
outgoing partons, eqs. 3.10-3.11, into the matrix-element. This will lead
to a final form of the matrix-element which is slightly more complicated
compared to the Compton case.

Again inserting these into the terms in the nominator and expanding
the squares renders:

IMs3|3 bo + by cos o5 + by cos(gy + Ag3) + bs cos 205 +
by cos 2(p5 + Ad3) + bs cos 5 cos(d5 + Ads)  (3.23)

where
%0 = 2(e}?(015 + 033) + €52 (017 + 037)) + e (2575 +p13)(3.24)
131 = —4(03 — jp)epePlo (3.25)
by = 2e72p7% (3.26)
by = —4iipeielplin (3.27)
by = ei’pl (3.28)
by = —4ePplplin. (3.29)

Although the complexity of the expression is larger, the strategy in the
generation of the event kinematics is the same as in the case of QCD-
Compton. Integrating over ¢35 renders bo which can be used for gener-
ating A¢s.

In summary the strategy in the generation procedure is the following:

1. Let Lepto generate Q?, yg, zp and zg, and in case of a first order
ag process decide whether it is a BGF or QCD-Compton event.

2. Generate p7;, from a Gaussian.

3. Calculate, depending on the process, ao,a; and az (egs.3.5-3.7) or
éo (eq.3.18) or by (eq.3.24)

4. Generate ¢}, or A¢s

5. If O(«;) generate ¢}
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Figure 3.2: (cos ¢*) as measured by E665, compared to the default Lepto
prediction (dashed-dotted line) and to a modified MEPS model, with
different assumptions about (p?,,), on hadron-level.

3.6 Comparison of model predictions with data.

The model predictions were extracted for three different values of the in-
trinsic transverse momentum, (p’, ) = 0.3GeV, 0.6 GeV and 0.9 GeV'.
The resulting (cos ¢*) is plotted in fig. 3.2, from which it is found that
an intrinsic p; of 0.9 GeV gives a good description of the data. This
P i, however, too large to be consistent with the Fermi motion of the
partons inside the proton volume. An additional p; contribution may
come from the higher order a; processes.

The fact that E665 estimated a lower intrinsic p; using the model
of Chay et al.is due to the fact that the fragmentation was described by
special fragmentation functions, which amplified the asymmetry [Chay
et al. 1992]. Based on comparisons with this model E665 estimated
the intrinsic p; to 500 MeV and the “fragmentation p;” to 700 MeV.
We have used the standard Lund string-fragmentation, [Sjostrand 1994],
which does not consider the asymmetries. Therefore we have to use a
larger value for the intrinsic p; to be comparable to the model of Chay
et al..

In order to gain confidence in the method we have used to implement
the intrinsic p, , it is important to check that the total scattering ampli-
tude does not change drastically. The result of our method is an increase
in the amplitude but it turns out that this enhancement is limited to
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below 10%. Since this mainly is meant as a qualitative check rather than
a quantitative estimate, this precision is perfectly acceptable.

3.7 QED-effects.

QED-radiation from the incoming and/or scattered lepton can also pro-
duce an effect in the measured distributions due to the fact that the event
kinematics may be wrongly reconstructed as was explained earlier, see
fig. 3.3. This gives rise to a systematic error in the Lorentz transfor-
mation which has to be performed to reach the hadronic-cms and the
Breit-system. Consequently, this contribution is a purely experimental
problem.

(b)

Figure 3.3: The effect of QED-radiation on the lepton-side as viewed
in the Breit-system. In (a) a QPM-event is drawn. In (b) an initial-
state photon has been radiated, and the Lorenz-transform from the lab
has been calculated using the nominal beam-energy e, which is slightly
larger than the true lepton energy. Due to momentum conservation the
scattered quark ¢' has to absorb the p* of the photon . The final-state-
radiation will work in the same direction.

The influence of QED can be estimated through a short calculation.
For this we define a reference system where the incoming and scattered
leptons are contained in the x — z-plane. In this system we have cos ¢~* =
pe/p1 where the tilde now denotes that the transverse momentum of the
photon has been included. The expressions for the x-component of the
transverse momentum and the total transverse momentum become:

Py =plcosg” —pp, (3.30)
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P2 =p? - 2pypL cos ¢ —{—p;g/. (3.31)

Using these to calculate the measured cos gz;** renders

- ~k * cos * *
cos¢* = 22 = PLCOSOT ~ Piy (3.32)

~k -
Py \/pj_2 — 2p. ) cos ¢* + pﬁ/

For a qualitative estimate of the effect from QED we can neglect the
influence from the denominator and get the average observed distribu-
tion to be:

(cos ) ~ (cos ¢*) — (£22). (3.33)
Py
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Figure 3.4: (cos ¢*) as measured by E665, compared to the default Lepto
prediction (full line), to a modified MEPS model with (p, ,,) = 0.9GeV/c
(dotted line), and to a LO-QED model (Django 6.2) where the dashed-
dotted and the dashed lines correspond to different Lorentz transforms,
described in the text, on hadron level.

The QCD contribution to {(cos ¢~*) is displaced by a linear term in
Pr- Thisis a very short and approximate calculation to show that QED
indeed produces a signal.

The Monte Carlo used by E665 to calculate the QED corrections was
based on a leading-order QED calculation, without virtual corrections,
and using a p) cutoff to stay away from the divergences.
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We have used the Django Monte Carlo program to estimate the shape
of the (cos ¢*) distribution including effects from QED. Django provides
an interface between the HERACLES and LEPTO programs. In HER-
ACLES complete first order apy, corrections are performed. i.e. virtual
corrections and the emission of one initial or final state photon are in-
cluded. The QCD effect is produced by Lepto.

The p, cutoff, used in the E665 Monte Carlo, was taken into account
by introducing an artificial cutoff in Django applied in the following
way: If the emitted photon has a p; smaller than the cutoff value, the
boost was performed into the hadronic center-of-mass system by taking
the photon momentum into account. If, however the photon had a p|
greater than the cutoff value, the nominal energy of the incoming lepton
was used, leading to an error in the transformation. The consequence
of this is a non-zero (cos ¢*) which is due to the systematic error in the
Lorentz boost due to initial photon radiation.

In fig. 3.4 the results from Django are plotted together with the re-
sults from the modified Lepto and the data-points from E665. The
Django results can describe the general trend of the data points. The
curve with a cutoff at 2 GeV shows the sensitivity of the signal to QED
brems-strahlung. It is evident that one has to be very careful with the
QED corrections to make a reliable measurement.

It is of course impossible to estimate the effect of the cutoff used by
E665, and thus the effect of the QED-correction, without direct access
to their Monte Carlo program, but this simple investigation indicates
that the corrections due to QED radiation may be considerable.



Jets.

4.1 Introduction.

The signature of a typical DIS event is flows of hadrons stemming from
the partons involved in the hard scattering process and hadrons coming
from the proton remnant. Due to the colour field stretched between the
scattered partons and the proton remnant there is no unambiguous way
to assign the detected hadrons to either the remnant or the hard sub-
system. However, in the Breit-system the remnant continues essentially
in the direction of the incoming proton and the hadrons stemming from
the hard sub-system appear as collimated flows of particles, or jets, pro-
ceeding along the original directions of the scattered partons, provided
the energy involved in the process is large enough. In the present anal-
ysis the k] -algorithm for jet finding has been used. The procedure to
reconstruct jets in this algorithm will be described as well as its specific
application in this analysis.

It will be shown that the limited detector acceptance will influence
the ¢* resolution. In order to improve the situation an energy flow
parameter has to be used. In addition the limited detector acceptance
will by itself produce a signal in ¢* which requires some consideration.
The Lepto Monte Carlo generator has been used in different versions to
illustrate these effects. In the first version we have removed the QCD
effects on the azimuthal distributions and the intrinsic p* which enabled
us to study any fake signals. Secondly the authors default version with
LO QCD predictions assuming no intrinsic transverse parton momentum
was used. In addition the modified version, including an intrinsic p% of
0.9 GeV, developed in the previous chapter was used for comparison.
Finally we compare the expected signal from a NLO QCD calculation
(DISENT) to the leading order signal from Lepto.
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4.2 The kj-algorithm.

In [Catani, Dokshitzer & Webber 1992] and [Catani, Dokshitzer & Webber
1994] the k jet-algorithm for e P-physics is developed. It is a clustering
algorithm which compares the distances between all pairs of four-vectors,
representing final-state hadrons, plus the distance from each individual
four-vector to the proton direction. The distance measure, k| , is defined
as follows:

Ky =min (B2 E}) 2(1—costy)  Vije[ln] i#j (41)

and
kY iy = E7 2(1 — cosby) Vi€ [1,n]. (4.2)

where cosf;; and cosf;, are the angles between the four-vectors of the
hadrons ¢ and j and between the hadron 7 and the proton direction p,
respectively. E; and Ej are the corresponding energies.

If the smallest distance is of the type k, ;,, then hadron 7 is regarded
as belonging to the proton remnant and is rejected. In case that the
smallest distance is of the type k. ;; the two four-vectors i and j are
added covariantly. In this analysis the procedure is repeated until each
event is reduced to contain exactly two jets for which a distance value
k% is extracted. To enable a comparison between events this distance
is scaled with Q2 producing a dimensionless measure of the hardness of
the event.

In chapter 2 we studied the azimuthal distribution on the parton-
level where the definition of the ¢* angle is trivial. There the incoming
parton, in the Breit frame, collide head on with the photon and therefore
the two hard partons from the scattering have to balance in p7,. With
the use of the k| algorithm we can investigate the azimuthal distribution
on hadron level by reconstructing jets. The assumption is that these jets
carry information about the underlying partons. In the reconstruction
of the hadron plane we have used all hadrons assigned to the hard jets in
order to calculate a two-dimensional thrust axis in the azimuthal plane.
For this we reduce the normal thrust-calculation, [Sjostrand 1994], from
three to two dimensions by introducing a two-dimensional unit vector
in Breit-system: i = (cos ¢*, sin ¢*). The two-dimensional thrust axis is
then found by maximizing:

T%(¢7) = 3_ W cos™(9h, — 67). (4.3)
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This equation has two equal maxima in ¢* separated by 180°, and to
resolve this ambiguity we choose the maximum closest to the backward
jet for the definition of the ¢* angle.

4.3 Kinematic range.

In order to ensure that the scattered lepton falls inside the acceptance of
the backward electro-magnetic calorimeter and that a good separation
between the the leptonic and hadronic system is achieved, the following
kinematic cuts were applied on the scattered positron:

10 GeV? < @Q* < 100GeV?
0.2 < yp < 0.65
156° < bsq < 176°

4.4 Resolution.

The LAr detector has an acceptance which is limited to the angular range
between 6° and 150° in the laboratory system which causes a problem
in the reconstruction of the ¢*-angle. Depending on the kinematics one
of the hadron jets may proceed in the backward region and escape de-
tection in the LAr calorimeter. On the parton-level one could simply
require two partons in order to determine whether the event is fully con-
tained in the detector. On the hadron-level higher-order emissions, and
the non-perturbative fragmentation will produce a flow of hadrons from
each parton and the exact number of hadrons in the final state is a priori
unknown. In order to determine how much of the event is contained in
the detector we instead use the light-cone momenta, remembering that
the proton defines the positive z direction. The incoming proton has
P* = E* — p} =0, and the incoming virtual boson has, from the defini-
tion of the Breit-system, ¢* = 1/Q2. On the parton-level the remnant
has r* = 0, which means that the two hard partons have to carry all of
the negative light-cone momentum. As was mentioned previously this is
not completely valid on the hadron-level due to the effects of higher order
emissions and non-perturbative effects. On the other hand it is reason-
able to assume that the hadron jets still have to carry a large fraction
of the light-cone momentum. Thus by requiring the detected hadrons
to carry more than a certain fraction of the light-cone momentum it is
possible to reconstruct the hadron-plane.
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Th energy fraction, i* , is defined as the scaled negative light-cone
momentum of the detected hadrons in the Breit-system:

TVeT Ve

(4.4)

a.u
N
T
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Figure 4.1: The resolution in ¢* using jets, for two different intervals
in the energy-flow i*. A¢*is defined as the absolute difference between
the ¢* angle reconstructed on the hadron-level and the one generated
on the parton-level.

With the resolution variable A¢* defined as the difference between
the ¢* angle reconstructed on the hadron-level and the one generated on
the parton-level we can study the effect of applying a cut in the scaled
light-cone momentum. This is illustrated in fig.4.1 by giving the two
examples i* < 0.5 and ¢* > 0.9. The results show that requiring less
than 50% of the light-cone momentum in the detector gives a more or
less flat A¢* distribution and thus no resolution at all is obtained. With
more than 90% of the light-cone momentum detected, a sharp peak is
observed at small values of A¢* indicating an excellent resolution. The
price which has to be paid to obtain this good resolution is of course
that a large fraction of the statistics is cut away.

In chapter 5 it will be shown that the detector-level resolution for i*
is not good enough to apply a cut. There are large migrations due to
errors in the energy measurement and from initial-state QED radiation.
We will therefore, in chapter 6, derive an unfolding algorithm to correct
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for detector effects over the full range 0 < i* < 1. This enables us to
extract the signal for ¢* > 0.9 as our final result.

4.5 The H1 acceptance.
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Figure 4.2: The shape of the LAr-calorimeter in the Breit-system for
different kinematic values. The hatched area gives the acceptance of the
LAr calorimeter.

The detector is a symmetric cylinder in the laboratory with accep-
tance holes in the forward and backward regions, which can be described
by cones with certain opening angles centered around the beam axis and
with its tips in the interaction point. Thus the azimuthal acceptance in
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the laboratory is flat. In the Breit frame the detector has a different
shape for every event depending on the event kinematics. If the boost
into the Breit frame is only a longitudinal one, it only affects the open-
ing angles of the cones but the azimuthal acceptance remains flat. The
effect of a transverse boost is to change the directions of the cones so
that they are no longer aligned. This will cause a non-flat ¢* acceptance.
The acceptance of the LAr calorimeter in the Breit frame is drawn in
fig. 4.2 for four different kinematic situations. One immediate observa-
tion from the top row of fig.4.2 is that there is a larger acceptance in
rapidity for ¢* = m than for ¢* = 0. This will result in an (cos ¢*) < 0
[Jacobsson 1994] and consequently one has to find a way around this
difficulty.

The accumulated effect of the limited acceptance on the ¢* asymme-
try over the whole kinematic range can be seen in fig. 4.3 where (cos ¢*)
is plotted as a function of the k3 /Q? — cutof f. The results are given
for three different regions of light-cone momenta and for the two cases
where the k2 /Q? is above and below the k% /Q? — cutof f value, respec-
tively. All events which contributed to the plots were required to have
at least two hadrons within the acceptance of the LAr calorimeter.

In principle it should be possible to correct for the acceptance effects
but, as we will see, the faked signals from these effects are several times
bigger than the real signals. Instead we have chosen to avoid the accep-
tance problem by defining, for each event, the rapidity region which has
a flat acceptance in ¢*.

If we again study fig. 4.2 it illustrates four specific situations, which
are (top left) small longitudinal and transverse boosts, (top right) large
longitudinal and small transverse boost, (bottom left) small longitudinal
and large transverse boost and finally (bottom right) large longitudinal
and transverse boosts. The idea is to find the rapidity limits which
define a region of flat ¢* acceptance. However, as seen in the bottom
row of fig. 4.2 there are in some cases "holes’ in the acceptance area. The
rapidity region defined by these ’holes’ must also be excluded in order
to obtain a completely flat acceptance in ¢*.

The limits of the rapidity range in the Breit frame can be calculated
for each event from the event kinematics. The rapidity is given from
scalar-products of a massless four-vector A with the proton four-vector
P and the four-vector of the virtual boson ¢ as:

1 h*

1 q-h
*= logt =-log 14+ —L 2 ). 4.
Y T8 2°g< +a:BP-h> (45)

For the azimuthal angle we need an explicit expression for h} and the
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Figure 4.3: (cos ¢*) as function of the k% /Q* — cutof f in three different
bins of the scaled light-cone momentum, i* . The results are given for
events above the ki/Q2 — cutof f, top row, and those below, bottom
row. The two curves show the Lepto Monte Carlo prediction without
any azimuthal asymmetry included. The dashed curve includes the full
acceptance of the LAr calorimeter, and the dotted line corresponds to the
azimuthally flat acceptance. The naming-scheme of the bins is adapted
to the fact that there will be twice as many bins on detector level.

result is
cos ¢ = hy YB (2—3/3 cos 0, e-h )
By VIT—ygsinG; \ 2yp 2 (2zgP +4q)-h

(4.6)
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Figure 4.4: (cos 2¢*) as function of the k2 /Q? —cutof f in three different
bins of the scaled light-cone momentum, i* . The results are given for
events above the ki/Q2 — cutof f, top row, and those below, bottom
row. The two curves show the Lepto Monte Carlo prediction without
any azimuthal asymmetry included. The dashed curve includes the full
acceptance of the LAr calorimeter, and the dotted line corresponds to
the azimuthally flat acceptance.

where 6} is the polar angle of h in the Breit-system. Using these equa-
tions we can calculate the rapidity and ¢*-angle in the Breit system for
an arbitrary four-vector in the laboratory frame. By placing a four-
vector in the lepton plane of the laboratory system, at the boundaries
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of the LAr acceptance in rapidity for ¢ = 0 and 7, we can thus calculate
the acceptance in the Breit frame. From this we can define a maximum
region of flat acceptance ¢*. In the top right picture of fig. 4.2 this means
that we calculate the two corners of the hatched area at ¢* = 0, as well
as the two at ¢* = . We can then cut out all four-vectors ending up in
the curved area below n* =~ 0.5 and create a flat acceptance.

To study the effects of the acceptance we removed the QCD cor-
rections to the azimuthal angle in the Lepto Monte Carlo. The results
in figs.4.3-4.4 are given both for the full LAr acceptance and for flat
acceptance. Whereas the former case produces a significant effect the
latter gives results consistent with zero. This proves that an influence
on the signal from detector effects can be avoided.

In the following all results will be using the flat acceptance.

4.6 The expected signal.

The LEPTO Monte Carlo generator has been used to estimate the sig-
nals in (cos ¢*) and (cos2¢*) as a function of k2 /Q? cutoff, after the
acceptance effects have been removed. Presented are results for three
different scenarios corresponding to no intrinsic transverse parton mo-
mentum (LEPTO default), an intrinsic p7 of 0.9 GeV included (LEPTO
modified) and the QCD signal removed from the Monte Carlo program
(LEPTO uncorrelated). As before the results are subdivided into three
regions in the flow parameter i* , and for k3 /Q? larger and smaller than
the cutoff value.

The first observation from figs.4.5-4.6 is that the LEPTO version
from which the generation of azimuthal asymmetries has been removed,
does not produce any signal neither for (cos ¢*) nor for (cos2¢*) as is
also expected provided there is no influence of the acceptance.

Fig. 4.5 shows that the magnitude of the (cos¢*) signal is below
2% in all bins except for 0.5 < i* < 0.9 and i* > 0.9 as k2 /Q* >
k3 /Q? —cutof f is required. The effect of the intrinsic p* is considerable
in the bins 0.5 < i* < 0.9 and i* > 0.9 for k% /Q? < k2 /Q? — cutof f.
The only bin which exhibit a reasonable signal is i* > 0.9 demanding
k2 /Q* > k2 /Q? — cutof f.

The (cos2¢*) signal seems to be less sensitive to the intrinsic p7 as
seen from fig. 4.6. In the lowest i* bin the signal is very small both for
k3 /Q? < k2 /Q? — cutof f and for k2 /Q? > k% /Q* — cutof f.

The distributions of (cos ¢*) and (cos 2¢*) for the bin with ¢* > 0.9
and a k% /Q? above the k2 /Q? — cutof f are presented in more detail
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Figure 4.5: The (cos ¢*) signal as expected if the azimuthal asymmetry is
removed (dotted line), from normal QCD including the asymmetry (full
line) and with an intrinsic-p; (dashed line), using the analysis method
described. (cos ¢*) is shown as a function of the k% /Q? — cutof f for
k3 /Q? < k2 /Q? — cutof f and k% /Q* > k% /Q? — cutof f. The binning
and naming-scheme are described in fig.4.3.

in fig.4.7. Here the signals have been extracted separately for QCD-
Compton events (quark induced) and BGF-processes (gluon induced).
LEPTO has been used in its default version i.e. without any intrinsic
p’ , and for comparison also the results from the DISENT program are
shown. DISENT calculates cross sections for DIS-processes up to next-
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Figure 4.6: The (cos2¢*) signal as expected if the azimuthal asymme-
try is removed (dotted line), from normal QCD including the asymme-
try (full line) and with an intrinsic-p; (dashed line), using the analysis
method described. (cos2¢*) is shown as a function of the k /Q*—cutof f
for k% /Q* < k3 /Q? — cutof f and k% /Q? > k% /Q* — cutof f. The bin-
ning and naming-scheme are described in fig.4.3.

to-leading order. We notice that the dominant contribution to the signal
comes from the gluon induced process both for (cos ¢*} and for (cos 2¢*).
The NLO corrections are largest for the (cos ¢*) from the gluon induced
processes. It will turn out that we cannot resolve this difference when
we look at the data.
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Figure 4.7: The high energy flow bin (i* > 0.9) for k% /Q? > k% /Q? —
cutof f. (cos ¢*) (top) and (cos2¢*) (bottom) are shown as a function
the ki/Q2 —cutof f. The curves correspond to the Lepto predictions for
gluon initiated (full lines) and quark initiated (dashed lines) processes,
and to NLO predictions (Disent) for gluon initiated (dotted lines) and
quark initiated (dash-dotted lines) processes.

4.7 Conclusions.

We have established that a jet-algorithm can be used in order to recon-
struct the hadronic plane by clustering the four-vectors of the measured
hadrons until two jets remain in every event. At the point in the cluster-
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ing procedure where exactly two jets are obtained a distance-measure
k3 /@Q? is extracted as an estimate of the hardness of the event. The
four-vectors of the two jets are used to reconstruct the hadron-plane.

Two major problems connected to the measurement have been solved.
Firstly the relevant variables have been identified by which a region of
good ¢* resolution can be defined. Secondly the effect of the limited de-
tector acceptance has been removed by calculating, on an event by event
basis, the largest rapidity range with an azimuthally flat acceptance in
the Breit-system.

Due to the fact that the acceptance effects produce asymmetries
which are four times larger than the expected QCD signals, all investi-
gations on the hadron and the detector level, have been performed in
the regions of azimuthally flat acceptance only and no extrapolations
have been done.
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Hera and H1.

5.1 DESY.

The German research laboratory DESY (Deutsches Elektronen Syn-
chrotron) was founded in 1959. As the name indicates it was centered
around a 7 GeV electron synchrotron. A number of experiments were
performed at this accelerator over the years until the DORIS electron-
positron collider was taken into operation in 1974. This collider was
covering the energy range up to just beyond 10 GeV. In 1979 the PE-
TRA electron-positron ring was completed offering collision energies up
to 38 GeV. At this machine the first observation of three jet events were
made and thus the experimental evidence for the existence of the gluon
was given. The construction of the “Hadron-Electron Ring Accelerator”
(HERA) started in 1984 and in 1991 HERA was put into operation. It
is the first and only electron-proton collider in the world and its center-
of-mass energy of about 300 GeV is by more than a factor ten larger
than those reached in previous DIS experiments with fixed proton tar-
gets. In this chapter we will give a brief overview of the HERA collider
and the layout of the H1 detector. Those detector components which
have been specifically used in this analysis are described in more detail.
We furthermore go through the methods used to reconstruct the event
kinematics and show the resulting resolution in the various kinematic
variables.

5.2 HERA.

The HERA collider consists of two separate storage rings, placed in a
subterranean circular ring tunnel of 6.3 km circumference. Positrons* (or
electrons) and protons are separately accelerated up to energies of 27.5

*The present analysis is based on the data taken 1997 where HERA was operated
with positron beams due to problems with the lifetime of the electron beam.
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Figure 5.1: The electron-proton collider HERA (left), and the area of
the DESY (right) including the pre-accelerators LINAC I-III, DESY
[-1IT and PETRA.

GeV and 820 GeVT, respectively, and brought to collision at the North
Hall and the South Hall, where the multi-purpose detectors of the H1
and the ZEUS collaborations are located (fig. 5.1a). These experiments
have been taking data since 1992. The fixed target experiments HER-
MES and HERA-B are located in the West Hall and in the East Hall,
respectively. Since 1995 the HERMES experiment measures collisions
of the polarized lepton beam with polarized protons from a gas tar-
get, to study phenomena related to the spin of the target particles. The
HERA-B experiment utilizes tungsten wire targets inserted into the pro-
ton beam halo to produce proton-proton collisions. The main goal is to
search for decay modes of the B® — BY system, which indicate a violation
of the combined charge conjugation and parity (CP) conservation.

Fig. (fig. 5.1b) gives an overview of the various preaccelerators, which
are needed to prepare the beams for HERA. The proton beam is pro-
duced by passing H ™ ions, accelerated to an energy of 50 MeV in LINAC
II1, through a stripper foil in order to remove the electrons. They are
then collected in bunches and accelerated in DESY III to 7.5 GeV and
in PETRA to 40 GeV before they are injected into HERA for acceler-
ation to the final energy. Leptons are provided by a 500 MeV linear
accelerator, and after acceleration in DESY II to 7 GeV and in PETRA
to 12 GeV before they are injected into HERA to reach 27.5 GeV. The

In 1998 the energy of the proton beam was increased to 920 GeV and the positron
beam was again replaced by an electron beam.
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leptons (protons) are stored in typically 190 colliding bunches, with a
length of 8 mm (110 mm) and typical currents of 30 mA (80 mA). The
bunch crossing interval is 96 ns, corresponding to a bunch crossing rate
of 10.4 MHz. The lifetime of the lepton (proton) beam is typically 10
(100) hours.

5.3 HI1.

The H1 laboratory frame is defined by a right-handed coordinate system
where the positive z-axis points along the proton beam direction. The
x-axis points to the center of the HERA ring and the y-axis upwards.
The nominal interaction point is taken as the origin. The polar angle 6
is defined with respect to the positive z-direction and azimuthal angles
are defined such that ¢ = 0 points to the positive x-direction.

The final state particles from the lepton-proton collisions are de-
tected by the HERA detectors H1 and ZEUS. Both are designed as
nearly hermetic multi-purpose detectors. A side view of the H1 detec-
tor is shown in fig.5.3. To account for the asymmetric beam energies
of the colliding particles the forward region (i.e. the region along the
proton direction) is equipped with enhanced instrumentation. A de-
tailed description of the H1 detector can be found in [Abt et al. 1997].
In this measurement the liquid argon (LAr) calorimeter, the backward
calorimeter, the tracking chamber system and the luminosity detectors
are of particular importance.

5.4 Trackers.

The H1 tracking system includes three major components which cover
polar angles in the range of 5° < 6 < 178° with full azimuthal cover-
age (fig.5.3). The central tracking chambers and the forward tracking
detector are placed around the beam pipe between z = -1.5 m and z
= 2 m. The backward drift chamber (BDC) is located in front of the
backward calorimeter. A super-conducting solenoid, which surrounds
both the tracking system and the LAr calorimeter, provides a uniform
magnetic field of 1.15 T.

The Central Tracker. The central tracking device consists of six
chambers in total which are housed in an aluminum tank. The main
components are the two concentric drift chambers (CJC1, CJC2) with
wires strung parallel to the beam axis. They cover the range of polar
angles 15° < # < 165°. The transverse momenta of charged particles
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Figure 5.2: An isometric view of the H1 detector
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Figure 5.3: A side view of the tracking system and the backward
calorimeter.

are measured with a resolution of 5pL/p3_ < 0.01GeV~!. Two polyg-
onal drift chambers with wires strung perpendicular to the beam axis
improve the determination of the z coordinate and complement the mea-
surement of the track momenta. These are the central inner and central
outer z-chambers (CIZ, COZ) which are placed at radii of 18 cm (CIZ)
and 47 cm (COZ), they achieve a z resolution of typically 300um. The
central tracker is completed by two multi wire proportional chambers
(MWPC), the central inner proportional chamber (CIP) and the central
outer proportional chamber (COP), which deliver a fast trigger signal
with a time resolution better than the 96 ns separation time between
consecutive HERA bunch crossings. In this analysis the central track-
ing chambers are used to reconstruct the event vertex and to measure
the momenta of charged particles in the hadronic final state. The back-
ward drift chamber (BDC) is important for a precise measurement the
scattered positron, needed for the calculation of the event kinematics.

The Forward Tracker. The forward tracking detector which covers
the polar angles 5° < 6 < 25° is composed of a tracking chamber system
comprising three identical modules aligned along the z direction. Each
module consists of a planar drift chamber, a multi-wire proportional
chamber, transition radiators, and a radial drift chamber. In the present
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analysis the forward tracking detector is only used in combination with
the CJC.

5.5 Calorimeters.

The H1 calorimeter comprises four sub-detectors, each with full az-
imuthal acceptance, designed to measure the energy of final state par-
ticles. The liquid argon (LAr) calorimeter, the spaghetti calorimeter
(Spacal), the tail catcher and the plug calorimeter. The main component
is the LAr calorimeter which covers the central and the forward region,
while the backward region is covered by the Spacal. The instrumented
iron yoke of the magnet (the tail catcher) is used for muon identification
and to provide a rough calorimetric measurement of hadronic particles
leaking out of the LAr calorimeter. The plug calorimeter (not used in
this analysis) closes the acceptance gap in between the LAr calorimeter
and the beam pipe in the forward direction.

The Liquid Argon Calorimeter. In order to obtain as good
an energy resolution as possible the finely segmented liquid argon (LAr)
calorimeter has been placed inside the solenoid in order to reduce the
amount of uninstrumented material that the particles have to traverse
before they are absorbed in the calorimeter. The calorimeter consists of
an electro-magnetic section and a hadronic section, both contained in a
single liquid argon cryostat, and covers the polar angles 4° to 154°. It
is segmented along the beam axis in eight self supporting wheels. The
wheels are constructed from eight identical stacks or octants (figs. 5.4-
5.5). The two forward wheels (IF1 and IF2 in fig.5.4) are assembled
as two half rings in an effort to minimize uninstrumented regions due
to cracks. Every wheel of the LAr calorimeter is divided into an inner
electro-magnetic section with lead absorber plates and an outer hadronic
section with steel absorber plates (in both cases liquid argon is used as
the active material). The most backward wheel, the BBE, has only
an electro-magnetic section. Both sections are highly segmented in the
transverse and longitudinal directions with about 44000 cells in total.
The electro-magnetic part has a depth between 20 and 30 radiation
lengths and the total depth of the LAr calorimeter varies between 4.5
and 8 hadronic interaction lengths depending on the polar angle. The
energy resolution of the hadronic calorimeter is limited by fluctuations
in the 7° content on the hadronic shower and the unequal calorimeter
response for electro-magnetic and hadronic energy. The charge output
for hadrons is about 30% smaller than for leptons of the same energy.
A weighting technique is employed online to correct for this effect. The
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Figure 5.4: A side view of the H1 liquid argon calorimeter. The upper
part shows the structure of the absorber plates, the lower part shows
the cell structure.

LAr calorimeter is used in this analysis both to measure the total energy
flow of the hadronic final state and for the measurement of the jets.

The Spacal. The backward region is instrumented with a lead/scintillating

fiber calorimeter (Spacal), covering polar angles from (154° to 177.8°)
with full azimuthal acceptance. It consists of an electro-magnetic and a
hadronic section, the latter with a total depth of two hadronic interac-
tion lengths. The primary task of this detector is to measure the energy
and the direction of the scattered lepton but in this analysis it has also
been used to measure the total hadronic energy flow in the backward
direction.
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Figure 5.5: Radial view of the octant and cell structure of the CB1 ring
of the H1 Liquid Argon calorimeter

Electron Tagger (ET) Photon Detector (PD)
Egr = 11.8 GeV Epp = 14.5 GeV
[T
[
v H: =
Y [ l‘l :
T—D X : :
LD X
m= —p
PD
o 1o 20 30 10 50 60 70 80 90" 100 110(m)

Figure 5.6: A Bethe-Heitler bremsstrahlung event measured in the H1
luminosity system.

5.6 Luminosity system.
The cross section of a given process oprocess is related to the observed
number of events produced in this process Npyocess according to

o o Nprocess
process — T 5
Eint
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where L;,; denotes the integrated luminosity represented by the data
set. The measurement of any cross section therefore requires a precise
knowledge of L;y;. The integrated luminosity can be determined by
measuring the event rate of a process with a well known cross section.
In the H1 experiment the elastic bremsstrahlung e +p — e+ v+ p
(Bethe-Heitler process) is used for this purpose. Both, the scattered
lepton and the emitted photon, are measured by two detectors installed
close to the lepton beam in the HERA tunnel (fig.5.6). The electron
tagger (ET) and the photon detector (PD) are situated at z positions of
33.4 m and 102.8 m respectively.

5.7 Time of Flight Counters

Background induced by reactions of the proton beam with residual gas
particles and interactions with the wall of the beam pipe far outside
the detector can be rejected by using time-of-flight (ToF) information.
For this purpose scintillators with a time resolution of 2-4 ns cover the
end-caps of the detector at both ends. Based on the precise timing
knowledge of the bunch crossings in the detector provided by the HERA
machine (HERA clock), a distinction between signals from proton in-
duced background outside the detector and genuine collision events is
enabled.

5.8 Triggers.

The purpose of the trigger is to recognize, with the help of the detec-
tor information, real ep-events and to reject the background events. At
HERA the lepton and the proton bunches collide with a frequency of
10.4 MHz. The expected rate of events from lepton-proton collisions is
around hundred per second at the design luminosity whereas the back-
ground rates are in the kHz range. The largest contributions comes from
proton gas interactions, synchrotron radiation originating from the lep-
ton beam, and stray protons which produce particle showers by hitting
the beam pipe.

The H1 trigger system used for the online selection consists of three
active levels plus one level which is used in the online reconstruction
step. After the application of the trigger, events are recorded at a rate
of the order of 10 Hz.
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5.9 Kinematic reconstruction.

Two different methods to reconstruct the event kinematics will be de-
scribed. The first method, which has been used to select events for the
analysis, is based on the knowledge of the beam energy, and the energy
and direction of the scattered lepton.

Q*=(e—¢é)~2e-¢ (5.1)
P.q P.¢
yB:P-eZI_P-e (5.2)

Unfortunately this method is sensitive to bremsstrahlung from the
leptons (see chapter 3), and will produce systematic effects if it is used to
perform Lorentz-transformations. Therefore the hadronic energy flow,
which is less sensitive to initial state radiation, is used to define yp
([Bassler & Bernardi 1999]).

Recognizing that P- (P +¢q) = p-h = P-q = P-h and that
P.ex~P-h+ P-¢e we have a modified yg

N P-h _ h-
“P-h+P-€¢ h_+e

YB (53)

Even if this method is generally more reliable in performing Lorentz-
transformations it does not reproduce inclusive quantities as well as the
lepton method. The reason is that for events where a part of the hadronic
final state particles disappears undetected in the beam pipe the value of
yp will be underestimated. By combining the two, selecting events using
the lepton variables, and performing the Lorentz transform to the Breit
system using @ from the lepton method and yp from the energy flows,
we will achieve two things: A good description of the inclusive quantities,
and secondly an isolation of the events with wrongly calculated Lorentz-
transforms to low values of the scaled light-cone momentum, ¢* ; defined
in eq.4.4. If we would have used the lepton method for the transform
there would be systematic errors in all bins of ¢* .

On the left hand side of fig. 5.7 the relative resolution in Q? is shown.
No systematic dependence is observed and the spread is 0.82.

On the right hand side of fig. 5.7 the resolution, defined as the ab-
solute difference between detector and hadron level, is shown. For yp
the tail due to initial state radiation is visible from the lepton method,
whereas it has more or less disappeared in the hadron method.
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Figure 5.7: The resolution for the kinematic variables Q2 left and yg
right. For @Q? only the lepton method is shown. For yp both the
lepton-method (open circles) and the energy-flow method (filled circles)
is shown.

5.10 Light-cone momentum and jets.

The scaled energy flow is calculated in the region of flat ¢* acceptance,
defined inside the LAr calorimeter. If the measured scaled energy flow is
required to be larger than 90% the resolution will depend entirely on the
energy and spatial resolution of the LAr calorimeter, while for smaller
fractions of the energy flow seen by the detector, it will also be sensitive
to the resolutions of the Spacal calorimeter and to the loss of hadrons
in the beam-pipe.

On the right of fig. 5.8 shows the relative resolution of i* for events
having * > 0.9. The resolution is defined as the difference between the
detector level value minus the hadron level value divided by the hadron
level value. We observe an average systematic displacement of 7% and
a width of 0.18. This means that on average an event generated at 0.9
will migrate down to 0.84. The tail towards lower values tells that the
migration goes predominantly in one direction we will have a rather pure
sample in the bin reconstructed with ¢* > 0.9.

On the left hand side of fig. 5.8 the relative resolution in k3 /Q? is
plotted. It has a mean-value of zero but the distribution is very broad,
with tails both towards lower and higher values.
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Figure 5.8: The resolution in k2 /@2 (lefthand plot) and in i* (righthand
plot), plotted for i* > 0.9 and k% /Q? > 0.3.

In fig. 5.9 the resolution in ¢* is shown for the case that 90scaled
energy flow is measured. As expected the resolution comes out very
good. The reconstruction of the angle is less sensitive to errors in the
energy measurement since the measuring error probably effects all final
state particles and thus the direction of the resulting four-vector remains
more or less the same.

Although we have a very good resolution in the variable we want to
measure, the resolution in the variables defining our kinematic bins is
unfortunately less good. This calls for a complete unfolding of the data.
For this purpose a general unfolding method has been developed.
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Figure 5.9: The resolution in ¢* defined as the absolute difference be-
tween the ¢* reconstructed on hadron level and the ¢* reconstructed on
detector level, plotted for i* > 0.9 and ki/Q2 > 0.3.



68

5. Hera and HI.



Detector corrections and unfolding.

6.1 Background.

In order to compare experimental data with predictions from models,
it is necessary to compensate for detector effects like acceptance limi-
tations, finite resolution, efficiencies etc. One method which has been
used frequently is based on bin to bin corrections. The basic idea behind
this method is that the interesting observable is extracted both on the
hadron level and on the detector level with the help of simulation pro-
grams. The ratio between the values obtained on hadron and detector
level provides the correction for each bin separately. The deficit of this
method is that it does not consider the migrations between the bins, i.e.
an event is generated in one bin and detected in another.

An improvement of this scheme is to do a maximum likelihood or x-
fit to the data, using the complete detector response. The advantage is
that it can easily be extended to any number of dimensions and can take
poor Monte Carlo statistics into account, as well as weighted events.

In this chapter the problem of deconvolution/unfolding will be treated.
The two methods above will be described and a scheme to test and com-
pare them will be developed. The tests are then carried out with special
attention to model dependence and error calculations.

6.2 Detector response.

The unfolding problem is that a function f(E) on the hadron level, which
depends on the observable* F, has to be extracted from a measured
distribution g(E') where E' is the experimentally measured quantity.
The transformation between f(F) and g(E') is given by the convolution
integral:

o) = [ KB, B)f(E)E (61)

*E is here any observable, and is taken to be dimensionless.
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Where the kernel K(E', E) is describing how the detector is trans-
forming the observable f(FE) to the measured distribution g(E"). This
is a classical integral-equation of the first-kind. There does not exist a
unique way to solve it, but the solution has to be developed for each
specific problem.

An accurate determination of the kernel, K(E', F), is necessary for
a meaningful analysis. This is, in our case, obtained from a Monte
Carlo simulation in which the measuring properties of the various de-
tector elements have been modeled. Through this kind of simulation
the hadron and detector levels are known simultaneously on an event by
event basis. What is explicitly known is however just the total distri-
bution r(E',E) = K(E', E)f(F) since we cannot separate the physics
distribution f(E) from the detector response without knowledge of the
analytical form of both the total distribution r(E’, E) and f(F).

6.3 A reformulation of the integral equation using histograms.

For a numerical solution of the convolution integral, the kernel K (F', E)
is represented as a two-dimensional histogram/matrix. This means that
the integral in eq.6.1 will be replaced by a sum over a number of bins
integrating over each bin.

g(E")=>_| K(E, E)f(E)E (6.2)
s 'Ps

where Fg indicates the integration over bin 8 on hadron level. The
binning on detector level produces the additional integration over a bin

/E/Qg(E’)dE’ = Zﬁ:/ﬂg . K(E',E)f(E)dEdE'. (6.3)

Since the functions are of unknown form the integrations cannot be per-
formed analytically but are simply replaced by the bin content multiplied
by the bin width. This is a correct procedure provided the functions
g(E') and r(E',E) = K(FE',E)f(F) can be written as odd functions
with respect to the bin center, in each bin. It will later be necessary to
bin also f(Ejg), and thus to assume that it, like g, is an odd function.
This implies that K(E’, E) has to be an even function. Thus the de-
tector response must be approximately symmetric in each bin, possibly
described by a Gaussian distribution.

90(EL)AE, =Y K(E,, Eg) f(Es)AESAE,, (6.4)
B
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where AE], is the bin width and EJ, is the center of bin a.. Rewriting
this as a matrix equation renders

g=K-f (6.5)

where the factors AE!, has been absorbed into the vector g and the
matrix K, and AEg into the vector f. This equation is exact under the
constraints mentioned above.

To extract the distribution on hadron level, hgqtq, Which corresponds
to the experimentally measured distribution, dgata, We have to generate
hadron level Monte Carlo data, hy., and perform a detector simulation
to get the corresponding detector level Monte Carlo distribution, dpe.
The data histograms and the Monte Carlo histograms separately fulfill
equation eq. 6.5 using the same kernel:

Jdata =K- Bdata (66)
dme = K - Tome (6.7)

where the kernel K has to be determined from eq. 6.7 if we are going to
be able to solve eq. 6.6.

6.4 Bin-to-bin corrections.

First we will study an approximate determination of K. We start by
left-multiplying both eq. 6.7 and eq. 6.6 with the inverse of K

Bdata = K_l : Jdata (68)
hme = K71 - dpe. (6.9)
We then have to find K~! using home and dpe, and with the assumption

that the off-diagonal elements in K are small compared to the diagonal
we can, as a “zeroth-order” approximation, write eq. 6.9 as':

diag(hme) =~ K1 - diag(dpm,). (6.10)
Right-multiplying with the inverse of the detector level histogram leads

to:

1

K '~ diag(hy.) - diag(dpme)~ (6.11)

Inserting this expression for K~' into eq. 6.8 renders:

hdata = diag(fme) - diag(dme) - ddata (6.12)

TThe notation diag(#), mean the diagonal matrix whose elements are the vector

.
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which is a so-called bin-to-bin correction. It is commonly used but, as
can be seen, suffer from the fact that no knowledge concerning the off-
diagonal elements in K is used. The bin-to-bin correction will, in the
last section of this chapter, be contrasted to a more refined solution,
which takes the off-diagonal elements into account.

6.5 A solution taking the migrations into account.

The first step is to consider the two-dimensional histogram r,., which
has the detector level stored as a function of the hadron level. This
histogram contains in its elements all information concerning the mi-
gration from one bin on hadron level to another detector level, but it
also contains the physical input-distribution, Ay,. from the Monte Carlo
generation. It can symbolically be written as

rpme = (Kh), . (6.13)

If, as mentioned above, the detector response is even with respect to
the bin-center, and the physical input is odd, we can divide hp,. away
by right-multiplying eq.6.13 with the inverted hadron level histogram,
diag(ﬁmc)_l, to isolate K

K ~ (Kh), - diag(hme) "' =ty - diag(hme) - (6.14)
We now invert eq.6.14 and insert into eq. 6.8
haata = diag(hme) - Trms * ddata (6.15)

This is a numerically exact solution which, however, suffers from the fact
that statistical fluctuations in the bins of r,,. where the statistics is small
can be amplified by the inversion [Blobel 1984]. The first improvement
is to do a x?-fit, which will find the most probable solution, using a
Gaussian interpretation of the errors. This require different numbers of
bins on hadron and detector level, in order for the number of degrees
of freedom to be non-zero. This can be achieved by simply dividing
each hadron level bin in two on detector level, or by studying where
the migrations are largest and introduce extra bins in those regions. To
calculate the x? we also need to introduce the covariance-matrix, C,
containing the summed error of the measured data and the Monte Carlo
data in each detector level bin:

X2 = (Jdata -K- Bdata)T ' Cil : (Jdata -K- ﬁdata)- (6'16)
If the Monte Carlo data has comparable errors to the measured data this

formulation is difficult to solve numerically for a problem with many bins
and will be improved in the next section.
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6.6 2 vs. log-likelihood.

The normal y? method has a deficit which has to be resolved. When
both coordinates have errors, the x? will, for a single bin, have the
following limiting behavior:

2 (y - CWT)2

2

- 2
a— Foo 7
which makes it very difficult to minimize. A minimizer can very easily
be stuck at very large absolute values on a since the x? function is more
or less flat there. For a problem with many bins the y? will be almost
impossible to minimize. Using a log-likelihood formulation introduces
an additional term by which the limiting behavior of the y? is avoided.
Assuming uncorrelated errors the log-likelihood is written as:

)2
L= {y = az)” + log(UZ +ad%02) — + o0 (6.18)

T 02 1 4202
oy + a0y a — £oo
where the last term ensures that £ goes to infinity in the limit of large

a. This behavior makes the minimization much more reliable than the
x> method since all parameters will be limited to reasonable values.

6.7 Maximum likelihood formulation.
The integral-equation can now be formulated as log-likelihood expression
L= (Jdata -K- Bdata)T . C_l . (Jdata -K- Bdata) + lOg |C| (619)

which, in a more explicit notation, can be written as (again assuming
uncorrelated errors):

(da - ZB Kaﬁhﬂ)Z 9 2 9
E = + log(ada + E OK h ) (620)
g { Uc%a + Zﬂ U%(Qﬁh?i’ B w6 P

which should be minimized with respect to the parameters hg. This is
achieved with a normal Newton procedure using the derivatives to iter-
atively find the best minimum, [Press, Teukolsky, Vetterling & Flannery
1992, John E. Dennis & Schnabel 1996].
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6.8 Orthogonal functions.

In the previous sections we have treated the case where the functions in
the original integral equation, eq.6.1, are unknown and therefore were
replaced by histograms. However, if the form of these functions are
known we can find an analytic solution to the equation. In the present
measurement we are dealing with a Fourier cosine-series containing three
terms and we will in this section develop a solution for this case. It will
be shown that the equation has an exact solution, and that it can be
formulated as a matrix-equation similar to the one found in egs. 6.6-6.7.
We start with:

A() = [ K&, 0)h(¢)do (6.21)

where the functions d(¢') and h(¢) now are known to be cosine series in
the variables ¢’ and ¢, respectively, containing three terms:

(do + dq cos ¢’ + da cos2¢') = /K(¢', ®)(ho + hi cos ¢ + ha cos 2¢)d¢
(6.22)
Studying the equation we firstly conclude that we can write the kernel
as a function of the three moments in cosi¢’ times general functions
of ¢; K(¢',¢) = ko(¢) + ki(¢) cos ¢’ + ka(¢) cos 2¢’. If we expand the

functions k; in cosine series in ¢ we can write the kernel as:
2 2
K(¢',¢) = Z Z kij cos(i@') cos(jp). (6.23)
=0 j=0

This kernel will be multiplied by the hadron level function h(¢) = (ho +
hicos ¢ + hacos2¢) and then integrated over ¢. Using the fact that
the terms in a Fourier series are orthogonal to each other the mixed
products, for example the cos ¢ term from the kernel times the cos2¢
term from h, will integrate to zero. We can thus write the first step in
the integration as:

/K(¢', 6)(ho + 1 cos ¢ + ha cos 26)de —
/ (Kooho + kot 1 cos?e + koshs cos® 268)de +
/ (K1oho + k11l cos?e + k1ahs cos® 268)de cos ¢’ +

/ (kaoho + ka1 h1 cos? + kashs cos® 28)de cos 24 (6.24)
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We see the that the natural way to reformulate this into a matrix equa-
tion is by using the moments in cosi¢’ and cosj¢ as coordinate axes
and regard the equation as a linear transformation from one coordinate
system to another. Performing the integrals in eq.6.24, dropping the
explicit notation with cosi¢’ and cos j¢ produces:

do 2koo ko1 ko2 ho
d1 =T 2k‘10 kll k12 h1 . (625)
da 2k ko1 k22 ha

This equation can be written exactly as eq. 6.6:
Jdata =K- hdata (626)

where the normalization factor 7 has been absorbed in K.

The only difference from the formulation in eq. 6.6 is that eq.6.26 is
an exact solution whereas in the case of histograms a number of con-
straints have to be imposed to make it correct.

The interpretation of the elements in K is straight-forward. The
diagonal elements is the detector resolution for that moment and the
off-diagonal elements represent noise or systematic effects.

In chapter 4 we concluded that a high scaled energy flow i* is cru-
cial for a good resolution in ¢*. However, in chapter 5 we saw that the
resolution in ¢* is not good enough to perform a cut in this variable.
We will therefore use a two dimensional formulation of the unfolding
method we have developed here. This is straight forward since the his-
togram formulation, eq. 6.6, which will be used for the energy flow and
the orthogonal formulation, eq.6.26, which will be used for the ¢* mod-
ulations are identical.

6.9 Test procedure.

The purpose of the test procedure is to check the error-calculation, and
any systematic effects stemming from the differences between the Monte
Carlo and the data. Normally full hadronic final-state generators are
used to generate single events, which then are going through a detailed
simulation of the detector. This sets statistical limits to the number of
models which can be simulated. A faster way is to use a typical pa-
rameterization of a detector resolution to achieve a analytic formulation
of the kernel. For example the calorimeter resolution can typically be
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Figure 6.1: Distributions in the variables £ and E' for one of the gen-
erated sets. The histogram representing the measured data on detector
level is shown as filled circles, and the histograms representing Monte
Carlo data are shown on detector level as filled squares and on hadron
level as open squares. For comparison all three histograms are normal-
ized to unity.

written as x/+/(E), which gives the kernel:

1(E-FE')

1 =X @ 7
' _ 2 2
K(E\E) = ¢ ) (6.27)

and convolute that with a typical energy distribution
f(E) = ae . (6.28)

We thus have a analytic expression for the total distribution r(E', E) =
K(E',E)f(E). This function is then sampled on a fine-grained grid, and
a number of events is generated directly in each node. This is a fairly
fast procedure and can therefore be repeated to test how sensitive the
different solutions of the integral equation are to the input distribution
f(E) and to statistical fluctuations. As an example one set of histograms
are shown in fig. 6.1. The detector resolution was set to 50%/vE. The
unfolding uses twice as many bins on detector level (not shown) as on
hadron level. For the measured data ¢ = 0.2 and for the Monte Carlo
data a = 0.1.
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Figure 6.2: The mean of the Gaussian residuals plotted versus a,,. for
the maximum likelihood method (filled circles and filled squares) and for
bin-to-bin corrections (open circles and open squares). The two cases
of Monte Carlo statistics equal to the data sample, nye = Ndata, and
Monte Carlo statistics four times the data sample, e = 4ngetq, are
compared.

For the results 1000 times two sets of histograms were generated.
One set was representing the measured data, whereas the other set rep-
resented the Monte Carlo data. The measured data was then corrected
for detector effects using bin-to-bin correction according to eq.6.12, and
using the maximum likelihood method according to eq.6.19. An expo-
nential was then fitted to each corrected histogram, and the parameter
a. was extracted with errors.

To check the systematic dependence two things were varied, the num-
ber of entries in the Monte Carlo histograms was set to 1000 and 4000,
and the mean value in eq. 6.28 was set to am,. = {0.1,0.15,0.2,0.25,0.3}.
The data was kept fixed at 1000 entries and a = 0.2. For the bin-to-bin
correction the overlap, the number of events which occur in the same
bin on hadron as on detector level, was between 60% and 80%, and the
correction factors were between 0.9 and 1.1.

The results are studied by plotting the Gaussian residuals

Qe — G

Rg = (6.29)

2
Oc
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Figure 6.3: The RMS of the Gaussian residuals plotted versus a, for
the maximum likelihood method (filled circles and filled squares) and for
bin-to-bin corrections (open circles and open squares). The two cases
of Monte Carlo statistics equal to the data sample, npe = Ndata, and
Monte Carlo statistics four times the data sample, npy,e = 4ngetq, are
compared.
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and the relative residuals

R, = , (6.30)

where a. is the corrected value, and a is the true.

For R the mean should be zero and the RMS one, where a deviation
in the RMS indicates a problem in the error-calculation and a deviation
in the mean shows the systematic error made. Any systematic depen-
dence should also be visible in the mean of R,, as a percentage of the
true a.

As can be seen in fig. 6.3, the error calculation is good for both meth-
ods, but fig. 6.2 and fig. 6.4 show that there is a rather large systematic
dependence in case of the bin-to-bin correction. This comes from the
fact that the off-diagonal elements are too large for the actual resolution.

There is also a systematic dependence for the maximum likelihood fit
(fig. 6.2 and fig. 6.3), stemming from the fact that the constraints defined
in section 6.3 are not completely fulfilled. The bins are so large that
the function cannot be approximated as odd. If the bin-size is decreased
some bins become so depopulated that the Gaussian approximation fails.
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Figure 6.4: The mean of the relative residuals plotted versus a,,. for the
maximum likelihood method (filled circles and filled squares) and for
bin-to-bin corrections (open circles and open squares). The two cases
of Monte Carlo statistics equal to the data sample, npe = Ndata, and
Monte Carlo statistics four times the data sample, npy,e = 4ngetq, are
compared.
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This is a rather typical problem connected to balancing the detector
resolution and the statistics in the definition of the bin size.
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The measurement.

7.1 Introduction.

We will now put the results of the previous chapters together and extract
the azimuthal asymmetries. The discussion will start with a description
of the selections criteria for the measured data sample and the Monte
Carlo samples used for the detector corrections. A comparison between
the data and the Monte Carlo sample of the basic kinematic quantities
will be performed on detector level before we continue with a thorough
discussion of the jet reconstruction on detector level. A number of quan-
tities will be studied to ensure that the Monte Carlo program Rapgap
can be used for the detector corrections.

In the two final sections the unfolding of the measured data to hadron
level will be performed according to the method described in chapter
6. The final results will be presented and compared to Monte Carlo
predictions.

7.2 Basic quantities on detector level.

The analysis uses data taken 1997, comprising 294041 events which cor-
responds to an integrated luminosity of 15.3 pb~!. The event selection
requires an electron in the Spacal-detector with the following character-
istics:
10 GeV < FEgee
156° < Begee < 176°
10GeV? < @Q* < 100 GeV?
0.2 < yp < 0.65

where the Q? and yp are calculated from the scattered lepton and the
nominal energy of the lepton beam as described in chapter 5. Thereafter
yp is recalculated from the hadronic energy flow to achieve a minimal
systematic error in the Lorentz transformation to the Breit system.

The Monte Carlo generator Rapgap 4.06, with a parameterization of
the structure function according to CTEQ-4m, was used to perform the
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Figure 7.1: The Q? distribution (left) and yp distribution (right). The
measured data (filled circles) are compared to the simulated Monte Carlo
sample (open circles).

detector corrections. In order to save space and time a weighting proce-
dure was applied to reduce the sample designated for detector simula-
tion. This was achieved by weighting the generated Monte Carlo events
such that the events are almost equally distributed over the whole phase
space region, which means a suppression of events at low y, low Q> and
with low jet transverse momenta. The events were kept with a proba-
bility p = min(1, (1 + Q*yp + p3?)/100), where Q* and yp were taken
from the generator output and p*? was calculated from the partons of
the leading order matrix element in the hadronic cms. In case of a low-
est order event, QPM, pf was set to zero. A sample of 2343687 events
resulted in 307257 events after applying the weights. This Monte Carlo
sample, which corresponds to an integrated luminosity of 115.5pb~!,
was sent through a detailed detector simulation. An unweighted sample
of 8220951 events corresponding to 342.2pb~! was generated and used
as reference for the hadron level.

On the left hand side of fig. 7.1 the cross-section is plotted as a func-
tion of Q2 for the measured data sample, filled circles, and the simulated
Monte Carlo sample, open circles. On the right hand side the cross-
section is plotted as a function of yg for the same samples. The Monte
Carlo is giving an accurate description of both variables both in shape
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and absolute normalization.

7.3 The jets.
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Figure 7.2: The energy distribution (left) and the beta distribution
(right) for the backward jet in events with i* > 0.9 and k% /Q? > 0.3.
The measured data (filled circles) are compared to the simulated Monte
Carlo sample (open circles).

The k£ -algorithm is applied to both samples as described in chapter
4 in order to make sure that the Monte Carlo sample is giving a good
description of the jets found in the data. We have chosen to study five
key jet variables which should be sensitive to possible discrepancies. In
this section we will only discuss events with ¢* > 0.9 and ki/Q2 > 0.3.
A complete set of plots for all energy flow bins and for all cutoff values
is shown in appendix D, giving mean values and variances for the key
variables.

In fig. 7.2 the energy and B* distributions of the backward jet, for
events with i* > 0.9 and kﬁ_/Q2 > 0.3, are shown. Both variables are
measured in the Breit system. Beta is the dimensionless velocity of the
jet defined as 8* = P*/E*. Both distributions are well described, both
in shape and normalization, telling that both the energy and the mo-
mentum of the jets are correctly generated by the Monte Carlo program.
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Figure 7.3: The rapidity distribution (left) and multiplicity distribution
(right) of the backward jet in events with i* > 0.9 and k% /Q* > 0.3.
The measured data (filled circles) are compared to the simulated Monte
Carlo sample (open circles).

The spatial location of the jets must be established in the Breit-
system. In fig.7.3 the rapidity and multiplicity distributions of the
backward jet, for events with i* > 0.9 and k2 /Q? > 0.3, are shown.
The rapidity is defined in the Breit system. From the rapidity distribu-
tion we learn that the position in the Breit system is very well described.
The multiplicity, or the number of four-vectors assigned to the jets, is
of course sensitive to the QCD effects but also to effects in the detector.
Shower evolution, Bremsstrahlung and scattering will thus influence the
jet reconstruction and these effects should therefore be correctly repro-
duced by the Monte Carlo data. It is clear from the plots that Rapgap-
generated data which have gone through a detailed simulation of the H1
detector are in very good agreement with the experimental data.

Finally in fig. 7.4 we see the azimuthal distribution for jets in events
with i* > 0.9 and k2 /@2 > 0.3. It is normalized to cross-section and the
Monte Carlo is also here giving very accurate description of the shape.
The overall cross-section in the Monte Carlo is within 4% of the data.

In fig. 7.5 and fig. 7.7 two two-jet events are presented in a longitu-
dinal (r-z) and transversal (x-y) view of the detector. The same events
are also shown in fig. 7.6 and fig. 7.8 as lego-plots in the n — phi plane
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Figure 7.4: The distribution of the azimuthal angle for jets in events
with i* > 0.9 and k% /Q? > 0.3. The measured data (filled circles) are
compared to the simulated Monte Carlo sample (open circles).

of the detector, together with the kinematics of the events and the jet

variables.
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Run 191070
Event 137

;_1\{

Figure 7.5: A deep-inelastic two-jet event as registered by the detector.
The upper figure shows the r — z projection of the LAr-calorimeter, the
tracking system and the SPACAL. The scattered lepton is observed in
the SPACAL, the backward jet is going upward and the forward jet
downward. In the lower figure the © — y-projection of the barrel-region
of the LAr-calorimeter is shown together with the SPACAL and the
particle tracks. The two LAr wheels in the forward direction are not
incorporated into the x — y projection. The backward jet is here at 2
o’clock and the forward jet is at 7 o’clock.
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Figure 7.6: The Ep weighted n — ¢ laboratory projection for the same
event as in fig.7.5, is shown together with the kinematic- and jet-
variables of the event.
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Figure 7.7: Another deep-inelastic two-jet event presented as in fig. 7.5
The scattered lepton is in the SPACAL and the backward jet is down-
ward in the r — z-projection and right in the x — y-projection.
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Figure 7.8: The Ep weighted n — ¢ laboratory projection for the same
event as in fig.7.7, is shown together with the kinematic- and jet-
variables.
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7.4 The jet cross-section on detector level.
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Figure 7.9: The jet cross-section on detector level as a function of the
kf_ /Q?-cutoff at low energy-flows. The error bars only include statistical

errors.

In figs. 7.9-7.10 the jet cross-sections for data and Monte Carlo are
shown. Compared to the hadron-level plots in figs. 4.5-4.6 the bins in the
energy-flow parameter on the detector-level have been subdivided into
twice as many bins. This is necessary in order to provide the unfolding
with the degrees of freedom needed to perform the fit.
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Figure 7.10: The jet cross-section on detector level as a function of the
k3 /@Q?-cutoff at high energy-flows. The error bars only include statistical
errors.

The important high energy flow bins in fig.7.10 is extremely well
described by the Monte Carlo data, but there are deviations in the low
energy flow bins in fig. 7.9. Those discrepancies stem from the fact that
the NLO corrections become important in these kinematic regions. We
can understand this by looking at fig. 4.2. In those cases where we have
a hole in the backward region of the acceptance, there is a possibility for
a third jet to disappear undetected. The Rapgap Monte Carlo contains
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only leading order matrix elements and is thus only capable of produc-
ing a two jet event. Plots showing the energy, velocity, position and
multiplicity of the two detected jets can be found in appendix D, from
which it is obvious that the data is well reproduced by the Monte Carlo

sample.

7.5 Average cos ¢*/ and average cos 2¢*’ on detector level.
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Figure 7.11: The average cos ¢* on detector level as a function of the
k3 /@Q*-cutoff at low energy-flows. The error bars of the data points
include both statistical and systematic errors.
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Figure 7.12: The average cos ¢* on detector level as a function of the
kf_/Q2—cutoff at high energy-flows. The error bars of the data points
include both statistical and systematic errors.

We now turn to the final measurement of the azimuthal asymme-
tries and start by plotting the average cos ¢* in figs.7.11-7.12 and the
average cos2¢* in figs.7.13-7.14 as a function of the cutoff variable.
The averages have been calculated in two different ways: By fitting the
function f(¢*) = ao + a1 cos ¢* + ay cos 2¢* to the experimental data
and calculating the averages from the expressions (cos¢*) = a1/2ag
and (cos 2¢*'> = a2/2ap, and by simply calculating the average value
of the measured cos ¢* and cos2¢* distributions. No significant devi-
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Figure 7.13: The average cos 2¢* on detector level as a function of the
kf_/Q2—cutoff at low energy-flows. The error bars of the data points
include both statistical and systematic errors.

ation could be observed between the two methods. We also calculated
(cos 3¢*') as well as (sin ¢*'), but no significant signal could be observed,
which is consistent with expectations.

We see that the data in the bins of high energy flow, fig.7.12 and
fig. 7.14, are persistently well described and that there are systematic
deviations in the bins I and k' of fig. 7.11. The deviations may come
from a number of different sources. The first possibility which has to
be considered is the description of the detector performance in the sim-
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Figure 7.14: The average cos 2¢* on detector level as a function of the
kf_/Q2—cutoff at high energy-flows. The error bars of the data points
include both statistical and systematic errors.
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ulation program. The SPACAL has been in operation a much shorter
period of time than the LAr calorimeter and therefore the experience
with the SPACAL is much poorer, which means a worse understanding
of its properties.

QED effects as discussed in section 3.7 could be a possible source,
since it was shown that the QED correction could amount to a (cos (]5*/> ~
—0.1 effect (see fig. 3.4). The fact that we are using a kinematic method
less sensitive to the QED radiation limits the effect to (cos ¢*') = —0.05
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SPACAL had %
SPACAL elmagn | 2%

LAr had 2%
LAr elmagn 2%
Tracks 3%

Table 7.1: The systematic errors from the uncertainty in the energy
scales of the detector.

in bin I’ of fig. 7.11, where we otherwise would not have expected any
signal (see fig.4.5). However, if the Heracles interface makes a slight
overestimation of the QED corrections this would lead to the observed
difference.

Higher order QCD effects as we discussed in the previous section can
of course also play a role. The only thing which we probably can rule
out is the intrinsic p’ of the proton since it according to fig. 4.5 should
produce a negative signal and thus would put the data below the Monte
Carlo and not above.

It is, however, a complicated procedure to find out which of the
possible sources, mentioned above, contribute to the deviations observed
in bins k' and I’ of fig. 7.11, and what the magnitude of the respective
contributions are. Therefore we have chosen to include the difference
between data and Monte Carlo in these bins into the systematic errors.
This is a conservative estimate. A list of the other contributions to the
systematic errors are specified in table 7.1.

7.6 Detector respounse.

The detector response has been discussed in chapter 6. The detector
level data is related to the hadron level via a matrix, which describes the
influence of the detector. The overall matrix plotted in fig. 7.15 relates
bins in the energy flow variable on detector level to those on hadron
level, for k2 /Q? — cutoff = 0.3. Each element in the overall matrix
consists of a sub-matrix, which we denote K4y , where ¢ = a,b, ¢, f, k,1
and ¢’ = a'..I'. Each of these sub-matrices can, with reference to eq. 6.25,
be written as:

koo ko1 koo
k = kio ki1 k1o (71)
koo ko1 ko2

where the constants in eq.6.25 has been absorbed into the elements.
The element kj; in each sub-matrix gives the response for the cos ¢*
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Figure 7.15: The detector response matrix at k% /Q* — cutoff =
0.3. Each box contains 9 elements telling how the Fourier series
ap + a1 cos ¢* + cos 2¢* is transferred from hadron to detector level.

term and the element koo gives the response for the cos2¢* term. We
see that there are 6x12 sub-matrices which each consists of 9 elements.
The total matrix thus has 648 elements. The elements were determined
for each sub-matrix by plotting #* as measured on detector level versus
¢* as obtained on hadron level, and performing a two-dimensional fit to
the Fourier expansions.

We first notice that the elements are concentrated along the diago-
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Figure 7.16: The detector response matrix for cos ¢* term at k% /Q? —
cutof f = 0.3.

nal of the sub-matrices which means that the moments in the Fourier
expansion on hadron level are dominantly transferred to the same mo-
ments on detector level. We have listed some important numbers in the
detector response in table 7.2. The sub-matrix K, describes the trans-
formation between the high energy flow bins (¢* > 0.9) on detector and
hadron level. As observed from the table the diagonal elements in that
sub-matrix indicate a response of 60%. We also notice the smearing to-
wards lower energy flows into the bins ¢’ and e’. The migration the next
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Figure 7.17: The detector response matrix for cos 2¢* term at k3 /Q? —
cutof f = 0.3.

lower energy flow bin above the cutoff value, e, into bin a’ is relatively
small, which guarantees a clean sample in that bin.

In fig. 7.16 we have separated out the element k;; of each sub-matrix
indicating how (cos ¢*) is transferred to (cos ¢*') and fig. 7.17 shows the
element koo of each sub-matrix indicating how (cos2¢*) is transferred
to (cos 2¢*'>. In these two plots we can more clearly study the smearing
of the signal from bin @ on hadron level over the detector level bins o,
¢ and €'. The lower energy flows in the bins ¢’ and €’ contain a mixture
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Figure 7.18: The response in the various energy flow bins on hadron
level, after summation over detector level bins for cos¢* (top) and
cos 2¢* (bottom), at k% /Q? — cutof f = 0.3.

of events mainly from the bins a and e.

Finally we have performed a sum over the detector level bins in
fig. 7.15 and these sums are displayed in fig. 7.18 for each of the hadron
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a 0.08 | 0.61 a 0.07 | 0.59
c 0.20 | 0.23 c 0.20 | 0.31
e | 0.01]0.40 | 0.05 e | 0.01]0.39 | 0.05
U1]0.22 I"10.15

l e a [ e a

Table 7.2: Some of the numbers from the detector response for cos ¢*,
left, and for cos 2¢*, right.

level bins. We notice that between 90% and 95% of the high energy flow
signal is transferred to the detector level and the response is falling with
the energy flow.

The detector response for other cutoff values is rather similar, the
response in the high energy flow bin does not change significantly and
stays at 90% for cos ¢* and 95% for cos 2¢*.

7.7 Unfolding the data to hadron level.

Cut | k2/Q* | x* | x®—prob.
0.10 11.17 0.89
0.17 12.18 0.84
0.30 12.18 0.84
0.52 9.50 0.95
0.90 8.36 0.97

T W N~

Table 7.3: x? for the unfolding using five different cutoff values.

Using the detector response matrix in the previous section we now
unfold the measured asymmetries down to hadron level. We have chosen
to use the x2-probability as quality measure of the unfolding. There
are 12 energy flow bins on detector level each with the three measured
moments ag, a; and az. On hadron level we have 6 energy flow bins
with three moments. This gives 12x3-6x3=18 degrees of freedom. In
table 7.3 the x? and the y2-probabilities are listed. The x2-probabilities
are very high, varying between 0.84 and 0.97, stemming from the very
conservative estimates of the systematic errors in the Hl-detector.
Both detector and hadron level was normalized in each bin so that the
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Figure 7.19: The average cos ¢* unfolded to hadron level (filled circles),
compared to the reference point from Rapgap (open circles) and curves
from Lepto, as a function of the kﬁ_ /Q*cutoff at low energy-flows. The
error bars belong to the data points. Note the different scale on the
y-axis compared to previous plots.

functions had the form f(¢*) = 1+ ay cos ¢* +ag cos 2¢* on both hadron
and detector level.

As a cross check the unfolding was performed twice, once with all
three moments in the unfolding and once with only the two higher mo-

ments. Both unfoldings gave consistent results.

As a further check we initiated the unfolding with three different
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Figure 7.20: The average cos 2¢* unfolded to hadron level (filled circles),
compared to the reference point from Rapgap (open circles) and curves
from Lepto, as a function of the kﬁ_ /Q*cutoff at low energy-flows. The
error bars belong to the data points. Note the different scale on the
y-axis compared to previous plots.

starting values, namely by giving the parameters used in the unfolding
procedure the values from the Monte Carlo generator on hadron level,
by setting the parameters to zero, and by setting them to unity. All
three runs gave consistent results.

The results for (cos ¢*) and (cos 2¢*) on hadron level are plotted in
figs. 7.19-7.20, together with the reference points from Rapgap and the
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curves from Lepto. The high energy flows are perfectly described for
both (cos ¢*) and (cos2¢*). The average cos ¢* for the data in bin [ is
one sigma above the Monte Carlo predictions, consistent with the signal
on detector level.

Comparing Rapgap and Lepto we see that they are consistent for
the important high energy flows for k2 /Q? > k2 /Q? — cutoff. The
deviations seen at lower energy flows stem from the fact that in Rapgap
we have the parton showers switched on whereas they were switched off
in Lepto. Secondly they have a different cutoff scheme for the matrix
element where Rapgap uses a cutoff p*f > 2.5GeV? and Lepto a two
dimensional cutoff § > 4GeV? and min(z,1 — z) > 0.04.

7.8 Final result.

The final results are presented in fig.7.21 as the average cos¢* and
the average cos2¢* versus k3 /Q>-cutoff for i* > 0.9 and k%/Q? >
ki/Q2 — cutof f. The data points are 1.5-2 standard deviations above
zero, and are consistent with a pure gluon signal for both leading and
next to leading order calculations.

The large errors stem from the migrations in the detector response.
In order to reduce the error bars one would have to find a way to unfold
the data which is less sensitive to the migrations.

By looking in a very constrained kinematic region we are able to
isolate signals on (cos ¢*) and {cos 2¢*) which are consistent with QCD.
The interesting extension of the analysis is now to cover the region of
small 2 and @Q?, where multiple gluon exchange might contribute to
the DIS cross section. This can be investigated by a measurement of the
azimuthal asymmetries which determines the exchanged spin.
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Figure 7.21: The average cos ¢* (top) and cos 2¢* (bottom) as a function
of the k3 /Q*-cutoff for k3 /Q? > k2 /Q? —cutof f and k3 /Q? < k% /Q*—
cutof f, bin a in figs.7.19-7.20. The data is compared to the Lepto
predictions for gluon initiated (full lines) and quark initiated (dashed
lines) processes, and to NLO predictions (Disent) for gluon initiated
(dotted lines) and quark initiated (dash-dotted lines) processes.
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The Breit frame.

A.1 Introduction.

In this appendix we define the Breit frame and, as was stated in section
2.4, list the expressions for the four-vectors of the leptons and partons
participating in the DIS process. We provide formulas for both zeroth
and leading order processes in «s.

A.2 Definition of the Breit frame.

The frame is so defined that the exchanged virtual photon is purely
space-like, with the proton and photon colliding head on along the z-
axis. We let the proton define the positive z-direction, which then gives
the four-momenta of the photon, g, and proton, P, as:

g= (0,0,0, —@) (A.1)

P= \2/@ (1,0,0,1) (A.2)

TB
A.3 Expressions for the leptons.

Looking at the expression for the photon above we recognize that since
the photon four-momentum is the difference between the lepton four-
momenta, ¢ = e — €', the energy and transverse momenta of the leptons
have to be identical in order to cancel each other. The fact that the
energies and transverse momenta are equal means that also the z com-
ponents have to be identical in magnitude. We position the leptons in
the x-z plane.

e = (\/@(Q_yB)’ QZ(le_yB),O,_\/?> (AS)

2yp
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o= (\/@(2—&!3) VQ*(1 - yp) 0 \/@) (A4)
, 0,75 )

2yp YB

A.4 Expressions for the incoming and scattered quark in a
QPM process.

In the Breit frame a QPM process is defined such that the four- momenta
of the incoming (p;) and scattered (ps) quarks are of the same magnitude
but oppositely directed along the z-axis. This has led to the nick-name
“the brick-wall frame” for the Breit system.

Ve?

pf=— \/@ (1,0,0,1) (A.6)

2

A.5 Expressions for the incoming parton and the two scat-
tered partons in a leading order a; process.

In a leading order « process the four-vector of the incoming parton, v},
can be written:

v = P+ Q01— 2) (1,0,0,1). (A7)

T2(1-2)VQ?

To formulate the fourvectors of the scattered partons we need to define

a partonic scaling variable z:
v - v
z=L2 (A.8)
Vi-q

The four-vector, v3, associated with z can then be written as:

vy = pif Q2 Pl cos ¢*,p sin p* pi*f —@
? 2:/Q2 TN TR e )

(A.9)

Using the above expressions the four-vector of the other final state
parton, vj can be calculated from momentum conservation:

\ (p*erQQ(l—Z)2 . pf—Q2(1—2)2>_

v = 2(1_2)\/@ ,—pj_cos¢*,—pj_sin¢, 2(1_2)\/@
(A.10)
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The LO matrix element.

B.1 Introduction.

Complete expressions for the factors which enter the formulae of the
leading order cross section given in section 2.5 and the approximate
formulae specified in section 2.6.

B.2 The exact expressions.
The exact factors in eq.2.32 for BGF are:
bo = (2 (e5” + e2*) (v3F +v33 + pT?) + 4eTpT?)
=1+ (1 -yp)*) Q(v3 + v +p7) +

2(1-y)2Q°p? (B.1)
b1 = —4y epe’ (v — vo1)PT
= —(2-yB)v1 - yB 2Q*(v5y — v51)PL. (B.2)
by = yp2epY
=2(1-yg) Q*pt%, (B.3)

and the corresponding factors for QCD Compton in eq. 2.35 are:

* * * * 1 * * *
co =yp(2(e5" + ) (v} + v + SpT) +2eTpT)

* * 1 *
=1+ (1-yp)*)Q* (i +vi+ p) +

2
2(1-y) Q*pY (B.4)
c1 = —4y]23 ege voall
=—(2—yB)V1 -y 2Q°v5p} (B.5)

2 x2_ %2
C2= Ype | P|

21—y QL. (B.6)
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110

B.3 Expressions in the collinear limit.

The explicit expressions for the D functions in eqs. 2.44-2.46 are:

D — dzp(l —xp) fy + %Ip >qfa
= 41+$I2,
quq

T
3T @+ (L= ap)fy + 5,
(1 —ap)(2xp — 1) fg + %xp g fa
Dy = -2 =
T 4 T
_i_ng > tq

3Tl (e + (L= 1)),
D, — 2ap(1 _mp)fg"‘%xp > lq
2 41+$I2,
Zq fq

3Tl @3+ (=)D fo + 3,
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Details on the Monte Carlo models used.

C.1 Introduction.

We will in this appendix just list the features in the different Monte
Carlos which was set at a non-default value. The structure function
parametrized according to CTEQ-4M was implemented in all cases, and
Q? was used as scale.

C.2 Lepto.

Since parton-showers are not generated taking the azimuthal asymme-
tries into account, they were switched off (LST(8) = 1). Furthermore
the soft colour interaction (LST(35) = 0), and the new remnant treat-
ment were taken out(LST(14) = 0).

In the cases were the default version were used the intrinsic pi was
set to zero (PARL(9) =0).

In the modified version developed in chapter 3 everything was kept
as above, and the intrinsic p| was steered through the lepto parameter
(PARL(9)).

C.3 Disent.

Disent was used in its default version without changing any parameters.

C.4 Rapgap/Heracles.

Rapgap/Heracles was used with two different settings, one where the
radiative corrections on the leptons was included and one where they
where switched off.

These sets of events were produced for common use by the whole H1
community and most features were therefore included.

The process generation was set to normal DIS, without any contri-
bution from resolved photon processes. Therefore Q> was the natural
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choise of scale in the structure function and in «z. The piQ cutoff in the
leading order matrix elements was set to 2.5 GeV2.
As diffractive structure function a fit to the H1 data from 1994 was

used.
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Control plots on detector level.

D.1 Introduction.

We will here present the control plots which have been used to ensure
that the Monte Carlo model Rapgap gives an accurate description of the
data. The key variables we have chosen are the energy, velocity, rapidity
and multiplicity of the backward jet. The mean values and RMS spread
of all four variables will be presented for all six detector-level bins of the
energy flow, both below and above the k% /Q*-cutoff.
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D.2 The energy distribution.
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Figure D.1: The mean value and RMS spread in the energy of the back-
ward jet as a function of the k% /Q>-cutoff at low energy-flows.

The energy of the backward jet as measured in the Breit system is
plotted on detector level in fig. D.1 for low energy-flows and in fig. D.2
for high energy flows.

The only regions where any significant difference can be observed
are in the bins i’, g’; €’, ¢’. These are regions with medium energy flow,
0.4 < ¥ <0.9, above the kf_/Q2—cutoff. The Monte Carlo gives a mean
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Figure D.2: The mean value and RMS spread in the energy of the back-
ward jet as a function of the k% /Q>-cutoff at high energy-flows.

value and an RMS spread which are between 1% and 5% lower than the
data. The for us most important bin, a’, is very well described.
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D.3 The § distribution.
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Figure D.3: The mean value and RMS spread in 8* of the backward jet
as a function of the k3 /Q?-cutoff at low energy-flows.

The velocity of the backward jet, defined as 8* = P*/E*, is shown
on detector level in figs. D.3-D.4 as a function of the k3 /Q*-cutoff . No
difference between the data and Monte Carlo can be observed. In those
cases where only one filled circle or square can be seen the Monte Carlo
and the data points are overlapping.
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Figure D.4: The mean value and RMS spread in 8* of the backward jet
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D.4 The rapidity distribution.
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Figure D.5: The mean value and RMS spread in the rapidity of the
backward jet as a function of the k3 /Q*-cutoff at low energy-flows.

The rapidity of the backward jet on detector level is shown in figs. D.5-
D.6 as a function of the k2 /Q?-cutoff . No significant difference between
the data and Monte Carlo can be observed in any bin.
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Figure D.6: The mean value and RMS spread in the rapidity of the
backward jet as a function of the k% /Q?-cutoff at high energy-flows.
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D.5 The multiplicity.

multipicity

D. Control plots on detector level.
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Figure D.7: The mean value and RMS spread in the multiplicity of the

backward jet as a function of the kf_ /Q?-cutoff at low energy-flows.

The number of measured four-vectors clustered on detector level to
obtain the backward jet, abbreviated multiplicity, is shown in figs. D.7-
D.8 as a function of the k% /Q*-cutoff . The only regions where any
significant difference can be observed are, just as for the energy distri-
bution, the bins i’, g’, €’, ¢’. These are the regions with medium energy
flow, 0.4 < i* < 0.9, above the kf_/Q2—cutoff. The mean value of the
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Figure D.8: The mean value and RMS spread in the multiplicity of the
backward jet as a function of the kf_ /Q?-cutoff at high energy-flows.

hadron multiplicity in the Monte Carlo data is, in the worst case, one
unit smaller than in the measured data and the RMS spread is 0.5 units

smaller.

D.6 Conclusions.

The Rapgap Monte Carlo model gives an accurate description of the
jets, which gives us confidence in using it for calculating corrections due
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to detector effects.
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