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                                           Abstract

A possible explanation to the occurrence of so-called diffractive events in electron-
proton collisions at HERA is given through the introduction of an object called the
pomeron. The pomeron is assumed to consist of gluons and quarks. In this report a
variable describing the fraction of the total pomeron momentum carried by these so-
called partons, the xparton/IP  (parton/pomeron-x) has been studied. 

   The study was performed using data from computer simulations made with the
RAPGAP Monte Carlo generator as well as experimental data collected with the H1
experiment in 1994. The description of the pomeron in the simulations is based on a
pomeron structure function obtained from a fit to experimental data.

   Our study of Monte Carlo simulated data shows that a determination of the xparton/IP

is feasible i.e. the error of our measurement is expected to be satisfactorily low. The
xparton/IP  distributions from simulated and experimental data have been compared.

Disagreements between these two distributions can be observed, indicating that the
structure function used in the simulations does not give a correct description of the
parton distribution. Alternatively, the experimental distribution might be better
described by including the so-called 2-gluon exchange process, which was not done in
our simulations.

Contents

1 Introduction
1.1  Elementary particles, “atoms”



3

1.2  Interaction
1.3  The model and experimental examination of the proton
1.4  Thesis introduction

2 DESY, HERA and H1
   2.1 The H1 detector

3 e-p scattering
3.1  Coordinate system
3.2  Lorentz systems
3.3  Kinematics
3.4  DIS processes
3.5  Parton showers, hadronisation and jets
3.6  Diffractive pomeron events
3.7  Generators and detector simulation

4 Methodology
4.1  Kinematics of diffractive scattering: M x

2 , �s and xparton/IP

4.2  Jet selection and the CONE algorithm
4.3  Reconstruction of particle four-vectors from experimental information

5 Analysis
5.1  The pomeron structure function
5.2  Choice of Lorentz system
5.3  Data selection
5.4  Resolutions, correlations and shifts
5.5  Results
5.6  The xparton/IP  distribution



4

1 Introduction
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1.1  Elementary particles, “atoms”

Trying to explain what the world and the various objects around us are made of, the
ancient Greek philosopher Democritos (about 460-380 b.c) stated that everything is
built from tiny building-blocks, which he named atoms (atomos), meaning indivisible.
Though his actual theory is not so good by today’s standards, the idea of the universe
being built from some basic constituents is indeed now considered to be true. Particle
physics is a field within physics developed during the 20th century aimed at finding and
studying these constituents of the universe.

   The matter which we are in contact with in our
everyday life e.g. wood, plastic, water and air
is made of molecules or combinations of molecules.
The molecule is the smallest component of a
material still having its characteristic (chemical)
properties. Molecules are, roughly put, a bunch of
atoms put together. The name atom has been kept
through the years although it is a bit misleading.
The atom is not indivisible. Experiments in the
beginning of the 20th century first showed that
atoms consist of an electrically positive nucleus
surrounded by the so-called atomic shells, with
most of the mass being concentrated to the nucleus.
What we call shells are really point-like particles
called electrons (e- ) that revolve around the
nucleus. The electrons have small mass and carry a
negative electric charge. The nucleus is built from
neutral neutrons, n, and positive protons, p, giving
it a net positive charge.

   Many of the elementary particles, e.g. the neutron,
have been discovered through the study of cosmic radiation. The main instrument used
to study particles today, however, is the particle accelerator, using a technology
developed from the 1950’s and on. In accelerators, beams of particles are accelerated
to high energies and made to collide with other particles. The particles resulting from
this interaction are then detected, providing information on the collision mechanism.

   Through the use of accelerators, one could see that the atomic nucleus had a
measurable size (i.e. it was not point-like) and that it consisted of protons and neutrons
as described above. The proton and neutron are also of measurable size, making it
possible for them to have an inner structure. In the late 60’s, it was discovered that
they each consist of three point-like particles that were named quarks.

Fig 1.A : Order of size of  the
different components of  matter .
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   The electron belongs to a group of particles
called leptons. The different kinds of
leptons known to exist today are by order
of increasing mass: the electron (e- ), muon
( µ − ) and tauon (τ− ), all point-like, having
electric charge -1 (in units of the electron
electric charge) and also the corresponding
massless (or very small mass) neutrinos: the electron-neutrino (νe ), µ -neutrino (νµ )

and τ -neutrino (ντ ). The neutrinos are electrically neutral. It is not believed that any

other leptons exist.

   Quarks exist in six different flavours (i.e. there
are six different kind of quarks): up (u), down
(d), strange (s), charm (c), beauty or bottom (b)
and top (t). A quark with for example u-flavour
is called a u-quark and so on. The u, s and t-
quarks have charge (+)2/3, and the d, c and b-
quarks have charge –1/3 (in units of electron charge). No quarks except those
described above are believed to exist.

   Through certain reactions quarks can transform from one flavour into another.
Quarks of large mass are very unstable. They decay into those more stable with smaller
mass. The quarks most frequently existing in the universe are therefore the u and d-
quark, the two least massive quarks. Triplets of these two make up the proton and
neutron that together with the electron are the “cornerstones” of most universal
matter. The real “atoms” in the true sense of  the word “indivisible” and referring to
them as the building-blocks of the universe are thus: the u-quark, the d-quark and the
electron.

   Particles consisting of a combination of quarks, like the proton and the neutron, are
called hadrons. Hadrons are divided in two main groups, baryons like the proton and
neutron, containing three quarks and mesons containing a quark and an antiquark.
Hadrons have a total electric charge equal to the sum of the individual charges of its
constituent quarks.

   All particles have a “twin” particle with the same flavour and mass as itself. This twin
is called the antiparticle of the particle. If a particle is charged, its antiparticle has the
opposite charge. The concept of antiparticles was first suggested by Dirac and
experimentally confirmed by the discovery of the antiparticle of the electron, the
positive positron, denoted e+ . The antiparticle of a baryon consists of three antiquarks
(e.g. the electrically negatively charged antiproton, p ) with the same flavours as those
of its twin. The antiparticle of a meson, like its twin consists of  a quark and an
antiquark (but with the quark having the flavour of  its twin antiquark and the
antiquark having the flavour of its twin quark).

    Q
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1.2  Interaction

The atomic nucleus and shell are held together by the attractive force between the
negatively charged shell electrons and the positive core protons. This force of
interaction between electrically charged particles is called the electromagnetic force.
All the forces of nature can be seen as being mediated by “messenger” particles,
travelling between the interacting particles, providing information of the interaction.
The exchange of a messenger particle between two particles also means that
momentum is transferred from one particle to the other. The mediator of the
electromagnetic force is the photon, denoted γ. The photon is massless and travels with
the speed of light. Electromagnetic interaction can therefore in principle take place
over infinite distances. The theory describing the electromagnetic interaction is called
quantum electrodynamics, QED.

   Another force, similar to the electromagnetic, is the weak force. It is mediated by
massive particles, the so-called gauge-bosons. The charged bosonsW+ andW- mediate
weak interaction involving the transition of electric charge and the neutral Z0 -boson
mediates weak interaction not involving the transition of electric charge. Since the
gauge-bosons are massive, they require a high amount of energy to be created and can
(since a particle created with energy ∆E according to Heisenbergs uncertainty principle
has a life-time limited to ∆t ∼ h2/∆E) travel only very short distances, which in principle
makes it a point-like interaction. This interaction therefore has a low probability of
occurrence, giving it the name “weak”.

   Whenever the exchange of a photon is possible, Z0 -exchange is also possible.
Electromagnetic and weak interaction are therefore viewed as one basic, electroweak
interaction. At low energies weak interaction is less influential, but it is as important as
the electromagnetic at high energies.

   A big problem in particle physics was what force held the nucleus together. The
protons of the nucleus electromagnetically repel each other. Still, the nucleus is a stable
construction with protons and neutrons sticking together within a small radius. Also,
according to the Pauli principle, no two different particles can have all so-called
quantum numbers the same. The quantum numbers (e.g. electric charge, spin) describe
the properties of a particle. It was however observed that the quarks of some different
hadrons did have all quantum numbers the same. Furthermore, there was no
explanation as to why no free quarks are ever found in nature. These problems were
not totally solved and experimentally confirmed until in the 1980:s. To explain them
one had to introduce a new force, stronger than the electromagnetic force, independent
of electric charge and related to a new quantum number. This new force was called the
strong force and it acts between particles carrying colour charge. There are three
colours: red, green and blue, and three corresponding anticolours: antired, antigreen
and antiblue. Hadrons are colourless, but the individual hadron quarks carry colour
charge. The quark and antiquark of a meson must have charges colour, anticolour (or
reverse) to make the meson colourless, they can for example be red and antired. The
combination of three quark colours in a baryon must also be colourless, they can for

                                                       
2 The Planck constant h = 6.626⋅ 10 34− Js.
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example be red, green and blue (added together giving white - colourless). Since no
free coloured object has ever been detected, the rule of confinement was introduced,
saying that coloured objects can exist only in colourless combinations, like the quarks
do in hadrons.
   The strong force is mediated by massless particles called gluons, denoted g. Gluons
themselves carry colour charge, making it possible for them to interact with each other.
Leptons have no colour charge and do not interact strongly. The theory describing
strong interaction is called quantum chromo dynamics, QCD.

1.3  The model and experimental examination of the proton

The proton consists of two u-quarks and one d-quark,
p = (uud). These are called the valence quarks of the
proton. It also consists of gluons, mediating the strong
force that holds the three quarks together. Through
certain quantum fluctuations a gluon can temporarily
split up into a quark-antiquark pair. The quarks created
in this way are called sea quarks. Gluons can also due to
self interaction split into pairs of gluons. The quarks and
gluons of a proton are with a common name called the
partons of the proton. The partons are free to move inside
the proton (so called Fermi motion) and carry
momentum.

   To examine the inner structure of the proton, the point-like electrons may be used as
“probes” by making them collide with the partons inside the proton. This is a kind of
electron-proton (e-p) scattering. In view of experimental results and according to the
theories of quantum mechanics, elementary particles do not only behave like what is
expected from particles. They also have the properties of waves, propagating in space
and time.
   The wavelength, λ, of a periodic wave is the
length of its period (see figure 1.D). The spatial
resolution of e-p scattering is dependent on the
electron wavelength, that is, the “probe particle”
wavelength must be smaller than the object we
are studying. This can be intuitively grasped by
looking at figure 1.D. The electron wave of smaller
wavelength, λ, has more “wiggles” inside the
proton and is therefore more sensitive to an interaction with its contents, than the one
with longer wavelength, λ’. Furthermore, the wavelength of a particle is inversely
proportional to the particle momentum, p; λ = h/p. To achieve a small electron
wavelength we hence want to give the electron a large momentum relative to the
proton. The higher the particle energy, the larger the momentum. High electron and
proton energies are therefore desirable. In Hamburg, the DESY collider HERA has

u

ud

q

q

   Figure 1.C:  Simple picture of
   the proton inner structure.

    λ                λ’

Figure 1.D: Intuitive picture of  e-p scattering
using different electron wavelengths (λ < λ’).
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been in use since 1992. In this machine electrons of energy 30 GeV3 and protons of
820 GeV collide, allowing studies of objects down to a size of 10 18−  m.

   To describe the interaction taking place in e-p scattering, the so-called proton
structure function is used. The dimension-less structure function F2  parmetrizes the
parton content of the proton as the momentum distribution of the partons.

1.4 Thesis introduction

Usually, when a proton and electron collide the electron interacts with a coloured
object (a gluon or quark) inside the proton. However, at HERA a class of events has
been observed for which it seems that the electron interacts with a colourless object
fluctuating from the proton. This object is, in some models describing these events,
called the pomeron and the electron scatters against the constituents of this object, the
pomeron partons. Scattering against the pomeron is described by using the pomeron
structure function (analogous to the proton structure function).

   The fraction of the total pomeron momenta carried by the scattered pomeron parton
is denotedx parton/IP . In this study, we will first determine with which accuracy it is

possible to measure this variable. Then the xparton/IP  distribution, retrieved both from

experimental data and through computer simulation will be studied. This may tell us
something about the pomeron structure and the properties of the pomeron partons.
The computer simulation made is based on the pomeron model using a pomeron
structure function that is a fit to experimental data. Comparing the simulated x parton/IP

distribution with the experimental one, may hence give us an idea of how accurate our
model of the pomeron is.

                                                       
3  1 GeV = 1∗1,60219∗10 10−  J
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2 DESY, HERA and H1

In 1959 the DESY (Deutsches Elektronen Synchrotron) organisation was founded in
Hamburg. Today, DESY has many different accelerators, the largest one
(circumference 6336 m) is the electron-proton collider HERA. HERA consists of two
so called storage rings, one for electrons of 30 GeV and one for protons of  820 GeV.
Beams of electrons and protons circulate in these in opposite directions and collide at
the interaction points of the two detectors ZEUS and H1.

2.1  The H1 detector

The H1 detector makes it possible to with unprecedented accuracy investigate the
inner structure of proton. It is also among other things suitable for searching for
hitherto unobserved particles.

   Since the HERA proton beam is more energetic than the electron beam, the particles
emerging from the collision point will foremost travel in the proton direction of
motion. Therefore, the H1 detector is asymmetric with denser instrumentation in this
direction. The detector consists of the following parts, numbered according to figure
2.A.

Figure 2.A : The H1 detector .
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   The electrons and protons circulating in a high vacuum (1) beam pipe are directed to
the interaction point by the beam magnets. Particles that do not leave the beam pipe
can not be detected.

   The (2) Central tracking chambers and (3) Forward tracking and transition
radiators are made up of several wire chambers. A wire chamber consists of detection
wires and wires generating an electric field, put inside a gas-filled container.
Electrically charged particles that enter a wire chamber will interact with the gas atoms
producing electron-ion pairs through ionisation. The electron-ion pairs are from the
electric field acting on them given sufficient energy to reach the detection wires. This
makes it possible to reconstruct a “track of ionisation” in the gas, made by the original
charged particle. A magnetic field is applied from the outside to bend the trajectory of
this particle. The bending is dependent on the particle velocity and therefore its
momentum, and also its charge. The curvature of the track will hence provide
information of these properties.

   In the (4) Electromagnetic calorimeter, the energy of electrons, positrons and
photons are absorbed whereas the hadrons deposit their energy in the (5) Hadronic
calorimeters. This absorption happens through the production of so-called
electromagnetic and hadronic showers respectively. That is, a particle entering the
calorimeter medium interacts, primarily with its nuclei, giving secondary particles.
These in turn interact, producing new particles and so on, resulting in a total shower of
particles. In electromagnetic showers, the shower particles are electrons, positrons and
photons. Hadronic showers are predominantly made up of hadrons. Higher mass
hadrons decay into lower mass hadrons. The H1 calorimeter consists of a stack of lead
and steel plates submerged in liquid argon. The lead plates are used in the
electromagnetic and the steel plates in the hadronic calorimeter as absorption plates.
Emerging from the plates, the showers enter the liquid argon and ionises it, creating
so-called clusters of ionisation. The ionisation is collected on electronic pads producing
a signal, proportional to the energy of the particles.

   The (12 ) Backward electromagnetic calorimeter (BEMC) is used to detect the
scattered electron of e-p scattering events. It is a lead scintillator sandwich, meaning
that it consists of layers of scintillator material, material that when ionised by a charged
particle emits visible light. This light then gives rise to a detectable pulse through so
called photo multiplication.

   The (13) Plug calorimeter is built for the study of particles travelling in the extreme
forward direction with respect to the proton beam direction of motion. It can be used
to detect the scattered proton, or proton remnant (the ”broken up” proton rest) which
keeps on travelling in the proton original direction of motion after the scattering has
occurred.

   In the (9) Muon chambers, muons are detected. Muons only interact weakly with
nuclei and do not loose as much energy through radiation as for example electrons.
They can therefore penetrate large quantities of iron almost without deflection and
energy loss. This property of the muons is used to identify them. The (10) Iron yoke in
this way functions as a muon “filter”. The iron yoke is the outer shell of the detector
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and consists of  a laminated structure of iron plates with streamer chambers inserted
into the gaps. These chambers provide a rough measurement of the shower energy,
which might not be fully contained in the calorimeter. In the detector forward
direction, there is a separate muon spectrometer consisting of large tracking chambers
before and after a (11) Toroid Magnet.

   The iron yoke also acts as a return yoke for the H1 magnetic field, provided by the
(6) Superconducting coil (cooled by liquid helium from the (8) Helium cryogenics
system). The magnetic field acts on the particles in the central tracking chambers (as
described above). The superconducting coil is situated on the “outside” of the
calorimeters as not to disturb the particle detection, and its influence on the electron
beam is compensated by the (7) Compensating magnet.

   When the two particle beams are collided, different types of interaction will take
place at a high rate. To sort out the interesting events and suppress the large so-called
background of uninteresting ones, a trigger system is used. The triggers select events
that satisfy certain specified conditions, and reject those that do not.
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3 e-p scattering

Electron-proton scattering events are dominated by one-photon QED exchange
between the proton and electron. As a calculational tool and visual aid for
understanding interactions between elementary particle, so-called Feynman diagrams
are used. The formalism of Feynman diagrams will not be described in any detail here,
but we note that time “travels” from left to right in these diagrams. A generalised
Feynman diagram of e-p scattering can be seen in figure 3.A, with letters denoting the
particle types next to their respective Feynman representation.

   The e-p scattering is called elastic when the proton after the scattering is intact, i.e.
still “remains” a proton. This is written: e- + p →  e- + p (X = p in fig. 3.A). The study
of elastic e-p scattering led to the first measurements of the proton size.

   When the proton breaks up, the scattering is called inelastic. This can be written: e- +

p →  e- + X, where X denotes the so-called hadronic system which includes all particles
produced by the interaction except the scattered electron. The kind of inelastic
scattering in which the partons of the proton are “probed” (as mentioned in chapter
1.4) is called deep inelastic scattering, DIS.
   If the partons of the proton are directly involved in the interaction, but the proton
remains a proton after the scattering, it is called diffractive scattering, DS. Diffractive
scattering is really also considered to be inelastic since the partons are probed, like in
DIS. DIS and DS scattering will be discussed in more detail later on in this chapter
(chapter 3.4 and 3.6 respectively). First, the concepts and formalism of e-p scattering
will be looked into.

3.1  Coordinate system

In the formalism set up by the H1 experiment, e-p scattering events are described with
respect to a coordinate system defined in the following way. The origin is placed in the
collision point with the z-axis directed in the proton direction of motion. The x and y-
axis are then chosen as to create a right-handed coordinate system. The polar

e
e’

γ

Xp

   Figure 3.A: Generalised e-p scattering Feynman
   diagram.
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                           Figure 3.B: The H1 coordinate system.

angle, θ, is defined as measured from the positive z-axis. The azimuthal angle, φ, is
defined in the xy-plane with the x-axis as reference.

3.2  Lorentz systems

The basic physical quantities which are important when studying elementary particles
are energy and momentum and we thus introduce the particle four-vectors. If a particle
has energy E and three-vector of momentum p  = ( px , py , pz ) , its four-vector is

written: P = (E , p) = (E , px , py , pz ).

   Particles travelling at velocities close to the speed of light are affected by relativistic
effects according to Einstein’s special theory of relativity. A Lorentz system is a system
of reference in which one has selected specific object to be at rest in the relativistic
studies. The laboratory system is the Lorentz system defined as having the detector
apparatus at rest. In DIS it is convenient to do studies in the system where proton and
the exchanged photon balance each other, the so called γ-proton centre-of-mass system
(CMS) also referred to as the hadronic CMS. It is defined as being the system where:

γp + p   = 0, with γp  being the photon and p  the proton momentum three-vector.

   The invariant mass of a particle or group of  particles is defined as the absolute of the
sum of the particle four-vectors. That is, n particles having four-vectors
Pj  = ( E j  , p j ), j = 1,2,…,n have a total invariant mass M, defined as:

M 2  = ( Σ
j=1

n

Pj
2) = ( P1+ P2 +…+ Pn

2) = (E1 + E2 +…+ En
2) -( p1+ p2 +…+ pn

2)

This mass has the same value in all Lorentz systems i.e. it is invariant with respect to
the Lorentz system.

x

θ z

P e

y

φ
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3.3  Kinematics

The different particle four-vectors of e-p scattering (see fig. 3.C) are denoted:

• beam electron four-vector: Pe  = (Ee , pe )

• scattered electron four-vector: Pe
'  = ( E '

e , pe
' )

• beam proton four-vector: P = (E, p )

• the scattered proton four-vector: P '  = ( E ' , p ' )

• exchanged photon four-vector: q = ( E γ , pγ )

Basic quantities, often used in the DIS formalism are:

• the square of the photon momentum transfer taken negative, Q2 , defined as:

Q2  = - q2  = ( Pe - Pe
' )2 , and approximated by neglecting the electron mass ( me

2 ≈ 0):

Q2 ≈ 4 Ee E '
e cos /2 2θe , where θe = 180-θ deg.

• the Bjoerken scaling variable defined as: x = Q2 /(2 P⋅q )

• Bjoerken y, the fraction of the electron energy transferred to the proton in the proton
rest system, defined as: y = (q ⋅ P/ Pe ⋅P), and approximated in the proton rest system to

y≈ E γ / Ee .

• the invariant mass of the total hadronic system W, defined as: W2  = (P + q )2 , and

approximated by neglecting the electron and proton masses ( mp
2 ≈ 0 and me

2 ≈ 0):

W2 ≈ Q2 (1/x-1).

The electron and proton rest masses can be safely neglected since they are small
compared to the particle momenta.

Rapidity is a measurement of the polar angle θ, suitable for studies of e-p scattering,
since it offers high resolution in the angular interval close to the proton direction of

Pe

Pe’

q

P’P

Figure 3.C: Illustrative picture of the e-p scattering
four-vector denotation.
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motion. If a particle has energy E and momentum pz  in the z-direction, its rapidity is

defined as: y = (1/2)ln(E+ pz /E- pz ) = tanh −1 ( pz /E). Neglecting masses, rapidity can

be approximated with so-called pseudorapidity: η = (1/2)ln(p+ pz /p- pz ) = -ln tanθ/2

3.4  DIS processes

The simplest possible DIS process (Feynman diagram fig. 3.D) is when the electron
scatters against a quark in the proton via exchange of a photon. In such a process the
hadronic system consists of a scattered quark having four-momentum Pp = xP and the

broken up rest of the proton, the proton remnant. It is called a quark-parton model
(QPM) process. The original beam proton, of course, is colourless, but the scattering
process leads to two individual coloured parts, the quark and the proton remnant.
   According to the rule of colour confinement no free coloured objects exist. Hence,
the scattered quark and the proton remnant transform into hadrons (via the so-called
fragmentation process which will be described in chapter 3.5) in the form of two
collimated flows of particles, two jets. QPM events are therefore referred to as being
(1+1)-jet, or 1-jet events not counting the proton remnant jet. In this process, only
QED interaction takes place. The Feynman diagram of the process does not contain
any vertices representing QCD interaction and it can thus be classified as a zeroth
order QCD process.

e

e’

γ
q

q

P

Figure 3.D: zeroth order DIS, QPM process Feynman
diagram.
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    More complex DIS processes also exist. In a QCD-Compton process the electron
(as in QPM) scatters against a quark in the proton via photon exchange, but the
scattered quark in addtion emits a gluon. The probability for the quark to emit a gluon
is determined by the strong coupling constant αs . QCD interaction has taken place and
the Feynman diagram of the process (fig. 3.E.a) contains a “three-parton” QCD vertex
connecting the gluon and the quark before and after the emission. The QCD-Compton
process is therefore classified as a first order QCD process.

   A gluon in the proton can split up into a quark-antiquark pair. When the electron
scatters against one of the quarks of such a pair it is called a boson-gluon fusion, BGF
process. The BGF Feynman diagram (fig. 3.E.b) contains a three-parton QCD vertex
(occurring with a probability determined by αs ) connecting the quark-antiquark pair
and the gluon, making it too a first order QCD process.

   The first order processes have two resulting partons and should therefore give rise to
two jets in addition to the proton remnant jet. first order processes are therefore
expected to be  (2+1)-jet or 2-jet events. First order processes are less probable to
occur than zeroth order processes.  

3.5 Parton showers, hadronisation and jets

The processes of e-p scattering are theoretically understood only to the point of  the
interaction on the basic level, the hard interaction as described above. The gluons and
quarks produced by the hard interaction are called hard partons. To this description
so-called phenomenological models must be added to account for remaining effects.
The interacting partons are given the possibility to emit soft gluons both before and
after the interaction with the photon has taken place, so-called initial and final state
parton showers.

e

e’

γ
q

q

P

g

a)

            Figure 3.E: first order DIS processes, a) QCD-Compton and b) BGF
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   The strong force between particles is for large distances directly proportional to the
distance between them (F(QCD)∝r). In the Lund string model this is described as
something similar to two objects being attached to the ends of a rubber band. When the
objects are pulled away from each other the band stretches, bursting if it is pulled hard
enough. In this way the quark and antiquark of a colourless quark-antiquark pair can
be regarded as being bound together by a so called colour string. The energy of the
string increases as they move apart. If there is enough energy in the string to create
new particles, it breaks, forming two or more colourless mesons. This is called the
fragmentation or hadronisation process.

   In DIS, the exchanged photon transfers energy and momentum to the scattered
parton. This makes the scattered parton move away from the other partons of the
proton. It is then seen as being connected to them by a colour string. Hadronisation
follows and the final state particles (hadrons) are created.

   Provided that the energies of the hard partons are large enough, the final state
particles will be emitted in a direction close to the hard parton direction of motion, thus
giving rise to jets. On the other hand jets can not unambiguously be said to originate

q q

q q

q qqq

Direction of Time

Figure 3.F: Schematic picture of the hadronisaton of a quark-antiquark
pair according to the string model.

e

e’

γ
q

q

P

string
colour

Figure 3.G: Illustrative picture of the colour string
connections in a DIS QPM process.
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from the hard partons, since final state hadrons are created from the colour strings
connecting the partons and also parton showers contribute to the creation of jets.

   Particles are assigned to jets through the use of jet algorithms. There are many
different algorithms offering different ways to pick out the jets. The input of a jet
algorithm is often the four-vectors of the reconstructed final state particles. The
algorithm then selects which four-vectors belong to jets and combines them to four-
vectors representing the jets. These “jet four-vectors” are the output of a jet algorithm.

3.6 Diffractive pomeron events

In a standard DIS event, final state hadrons are distributed in the whole angular space
between the proton and the hard partons, due to the hadronisation of the colour string
stretched between them. At HERA, events have also been observed in which there are
no hadrons in the angular region close to the beam pipe. The occurrence of such events
were first noticed when studying rapidity distributions, and they are therefore called
rapidity gap events. An explanation to the existence of such events is that the
exchanged photon interacts with a colourless component, the pomeron, fluctuating the
proton. The proton therefore remains colourless also after the scattering and continues
its way down the beam pipe without breaking up, so called diffractive scattering (in
this report denoted DS). The pomeron moves slightly away from the proton direction
of motion. Since the proton remains colourless, there will be no colour strings
connecting it and the rest of the system. Therefore, no hadronisation will take place
close to the beam pipe.

   The parton content of the pomeron and the momenta of the partons is (in analogy
with the proton structure function) assumed to be parametrizable with the pomeron
structure function. The structure function describing the parton content and momenta
in diffractive scattering is denoted F D

2 . The pomeron is believed to consist of a
combination of gluons and quarks. There are several hypothetical pomeron structure
functions, based on different assumptions of what the pomeron consists of. They are

P
P’
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γ

no
particle
flow

Figure 3.H: Illustrative picture of the basic structure
of diffractive e-p scattering events.
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thus either gluon or quark-based, meaning the pomeron content is assumed to be
dominated by either gluons or quarks in the different models.

   A model for a zeroth order pomeron process could in analogy with standard DIS
(“replacing” the proton with the pomeron), be a QPM process in which the electron
scatters against a quark in the pomeron (Feynman diagram in figure 3.I). The hard
parton is like in DIS a quark. The structurally unaffected proton continues down the
beam pipe. There would also be a pomeron remnant (regarded to be an antiquark for
the pomeron to be colourless) as a result of the break-up of the pomeron.

   In correspondence with diffractive QPM, first order processes would be the
diffractive QCD-Compton ( Feynman diagram in fig. 3.J.a) and BGF (Feynman
diagram in fig. 3.J.b) processes involving the pomeron. In analogy with DIS, the
electron in the QCD-Compton process scatters against a quark in the pomeron
producing a quark and a gluon. In the BGF process it scatters on one of the quarks of
a quark-antiquark pair formed from a gluon fluctuating the pomeron. There is also, like
for zeroth order DS, in both cases a pomeron remnant. (The pomeron remnant is seen
as being an antiquark in the QCD-Compton process and a gluon in the BGF process.)
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Figure 3.I: Feynman diagram of a DS zeroth order QPM
process including the pomeron.
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Figure 3.J: DS first order processes including the pomeron a) QCD-Compton and b) BGF
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   Another possible kind of DS process is the 2-gluon exchange process (Feynman
diagram fig. 3.K). The pomeron is here made of two gluons (and is therefore not the
same “kind” of pomeron as the so-called soft pomeron involved in the processes
described above), one splitting up into a quark-antiquark pair and the other
“connecting” one of the pair quarks with the proton, making it a colourless object. In
difference to the other DS processes, the 2-gluon exchange does not leave a pomeron
remnant.

3.7 Generators and detector simulation

To get simulated results of e-p scattering, based on the current theories, so-called
event generators are used. A generator is a computer program that calculates the
probability for a certain process to occur and then produces the four-vectors of the
particles resulting from the interaction of that process. For example, the RAPGAP
generator generates rapidity gap events, based on the pomeron model. The calculation
is done in steps: first the hard interaction, then the phenomenological models i.e.
parton showers, colour strings and hadronisation. Results are available after each of
these steps. The generator data is called Monte Carlo data, since Monte Carlo
techniques are used in the calculations. Results from the hard interaction are referred
to as the parton level and from the hadronic final state as results on the hadron level.

   To be able to compare Monte Carlo data to experimental data, the effects of the
detector must be taken into account. The detector itself affects the results in many
ways. To impose detector effects on data directly produced by the event generator, a
detector simulation is performed. This means that the Monte Carlo data is treated by a
simulation program, containing information on how data is affected by the detector.
The results are called simulated detector level results.
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        Figure 3.K: DS 2-gluon exchange process.
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4 Methodology

In this chapter we will describe the derivations and the methods used in our study.

4.1  Kinematics of diffractive scattering: �s, M
x

2
 and xparton/IP

In diffractive pomeron events, M x  denotes the invariant mass of  the hadronic system
excluding the proton. On the parton level this corresponds to the total invariant mass
of  the hard partons and the pomeron remnant, the diffractive system. On hadron and
detector level, M x  is calculated as the invariant mass of all final state particles detected
outside the beam pipe. The invariant mass of the two hard partons in a first order DS
event, the hard subsystem, is denoted �s . �s  is on the hadron and detector level
calculated as the invariant mass of the two jets originating from the hard subsystem. ( �s
can also be calculated from the jet rapidities, which has been tried in our study, but it
gave inferior results and will therefore not be accounted for in this report.)

The variable Bjoerken-x (x = Q2 /(2 P⋅q ))  is, as in DIS, the fraction of the proton
momentum carried by the scattered parton interacting with the photon.
The “Bjoerken-x of the pomeron”, β, is the fraction of the pomeron momentum carried
by this parton. If  PIP  = ( E IP  , pIP ) is the pomeron four-vector, we have

                               β = Q2 /(2 PIP ⋅q ) ≈ Q2 /( Q2 + M x
2 ), since

                               ( PIP +q )2  = M x
2 , gives

                               (2 PIP ⋅q ) ≈ Q2 + M x
2 , when mIP

2 << Q2

x IP  (x-pomeron), the fraction of the proton momentum carried by the pomeron is
given by
                                ( x IP P+q )2  = M x

2 , so that

                                      x IP  ≈ ( Q2 + M x
2 )/2P⋅q = ( Q2 + M x

2 )x/ Q2 , when mp
2 << Q2

xIP

x, β

xparton, xparton/IP Mx
2

s^

 Figure 4.A: Illustrative picture of DS kinematic variables.
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x parton  the fraction of the proton momentum carried by the parton scattered against in

the pomeron is given by

                                ( x parton P+q )2  = �s , so that

                                      x parton  ≈ ( Q2 + �s )/2P⋅q = ( Q2 + �s )x/ Q2 , when mp
2 << Q2

And, x parton IP/ , this partons fraction of the pomeron momentum by

                                 ( x parton/IP PIP +q )2 = �s , so that

                                       x parton/IP ≈ ( Q2 + �s )/2 PIP ⋅q = ( Q2 + �s )/( Q2 + M x
2 ),

                                  when mIP
2 << Q2

If all of the pomeron momentum went into the pomeron remnant we would expect an
x parton/IP =0 and if there was no pomeron remnant, x parton/IP =1.

   In DS BGF processes specifically, this x is referred to as the x-gluon/pomeron, xg/IP ,

since the parton is a gluon in this process. For QCD-Compton it is referred to as
x-quark/pomeron, xq/IP , since it is a quark there.

4.2 Jet selection and the CONE algorithm

A problem with some jet algorithms is that they are dependent on the Lorentz system
in which they are applied. If we want to see the jets as carrying the properties of the
hard partons, there is also a problem. Jets do (as mentioned in chapter 3.6) not totally
reflect the hard parton properties, due to the effects of parton showers and
fragmentation. Some particles included in the jets may therefore not satisfactorily
reflect the hard parton properties. This lowers the jet resolution i.e. increases the
difference between the jet properties and the hard parton properties. The jet resolution
is dependent on the so-called cut-off variables included in the jet algorithm.

   In this study, the CONE algorithm is used. In this jet algorithm, angular space is
divided into equal sized cells in pseudo-rapidity, η and azimuthal angle, φ. The sum of
the transverse energy ET  = Esinθ deposited in each cell is calculated and cells having a
total ET  above a certain value
are considered as initiators of jets. Taking
these initiators in order of decreasing ET ,
the algorithm “checks” if a surrounding
cone, having a beforehand chosen radius,
∆R = ∆φ ∆η+ , where ∆φ and ∆η  are

the ranges in φ and η, has a total ET

greater than a cut-off parameter ET(min) .

If so, the cells define a jet. Instead
of ET , the almost equivalent quantity

transverse momentum, pT  = psinθ ≈ ET

(for high momentum, p), is often used, as        Figure 4.A: Energy flow in η−φ space
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it is in this report.

   The γ-parton CMS is the Lorentz system in which the total hard parton pT  is equal
to zero. The resulting hard partons of a frist order DS event will thus in this system
have equally large pT  in opposite directions. The pomeron remnant, though, like the
pomeron has almost no pT . If the CONE algorithm was applied in this system, the pT

cut would therefore exclude the particles originating from the pomeron remnant. First
order processes are hence expected to become 2-jet events. The single hard parton in a
zeroth order event will have a quite low pT  and such events should therefore be 0-jet
events. For different reasons (e.g. the pT  of the hard parton jet is above the cut-off
value or the pomeron remnant is counted as a jet by the jet algorithm), zeroth order
events can sometimes be detected as 1 or even 2-jet events.
   If we (like in this study) are interested in studying first order processes we look at 2-
jet events. To exclude 2-jet events that are zeroth order processes, we can increase the
pT  cut-off value in the jet algorithm. Increasing this value though also means cutting
into first order events and thus decreasing the statistics.

   Some of the particles from the pomeron remnant may be incorrectly included in the
jets. Also, the proton remnant may sometimes escape the beam pipe, as is the case
when so-called proton dissociation takes place. Particles originating from the proton
remnant can therefore sometimes also be incorrectly included in the jets.

4.3 Reconstruction of particle four-vectors from experimental
      information

When studying simulated data and experimental data the most basic information is
given in the form of electronic signals from the detector. From these signals we want
to reconstruct four-vectors describing the properties of the final state particles as well
as possible. By means of advanced reconstruction algorithms, information from each
sub-detector is translated into a rudimentary four-vector “object”. The most important
ones are the calorimeter objects called clusters and tracking chamber objects called
tracks. The best i.e. most correctly reconstructed four-vector information of a detected
particle is retrieved from a combination of both object properties.
   The tracking chambers are closer to the beam pipe than the calorimeters. A bit of
“dead” matter (matter not involved in actual detection) between the tracking chambers
and calorimeter causes a loss of energy in the calorimeter. For low momentum tracks,
the track information is therefore important. For high momentum tracks, a large
amount of energy will go into the calorimeter. The track properties will not add any
information (since the track “bending” is small), but the energy lost “on the way” to the
calorimeter should still be accounted for.
    Considering this, we will in our study take a low momentum track, p<350 MeV, as
it is. If a track has large momentum, p>350 MeV, it is rescaled to p=350 MeV, and
then used only to account for energy losses before the calorimeter. Tracks are then
combined with clusters, creating so-called combined objects. Using combined objects
much improved our results compared to only using clusters in the reconstruction.
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5 Analysis

In this chapter we will describe the conditions and assumptions under which the study
has been made. Then the results of the study will be shown and commented on.

   Our final aim is to study the xparton /IP  distribution for diffractive events from

experimental data. This distribution provides information about the pomeron parton
content and in the prolongation also the pomeron structure function. To determine the
relevance of the results from experimental data, we first compare Monte Carlo data on
the detector and hadron level. In this way we can estimate how large the distortions
(smearing) due to detector effects are. Then we compare simulated and experimental
data.

   A file containing Monte Carlo events generated by the RAPGAP 2.1 generator and
processed with the detector simulation program H1SIM was used. This version of
RAPGAP does not include the 2-gluon exchange process. The experimental data used
was H1 data from 1994. The analysis was made using the H1TOX analysis package. It
provides the standard variables of e-p scattering in the form of blocks, each block
containing a number of logically connected quantities. For each event the quantity
values were calculated from data and stored in a so-called n-tuple. Plots were then
extracted from the n-tuple using the PAW analysis workstation program.

5.1  The pomeron structure function

The pomeron structure function used in this study is called the singular gluon and
quark structure function. It is a fit to F2

D  data from inclusive measurements, which
provide a description of the parton content in diffractive events. The pomeron is
assumed to consist of both gluons and quarks. At a starting scale of Q2 = 4 (GeV )2

b)

Figure 5.A: The pomeron gluon and quark distributions at a) low energy,

Q2 =5 (GeV )2  and b) high energy, Q2 =65 (GeV )2

a)
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the gluon distribution is peaked at large values of xg/IP  and the quark distribution is flat

in (i.e. independent of ) xq/IP . The quark contributions are small compared to the gluon

contributions. Increasing Q2 , the gluon contribution still dominates and has the
characteristic behaviour of increasing at low xg/IP  and depleting at high xg/IP .

   For the 2-gluon exchange process, not included in the simulations of this study, we
would expect a gluon distribution similar to a δ-function peaked at 1. This is expected
since there is no pomeron remnant and thus x parton/IP = xg/IP ≈1.

   

5.2  Choice of Lorentz system

Our studies are made in the hadronic (γ-proton) CMS. To “get to” this system from
the laboratory system, we need to make a boost. This boost is determined by the
kinematics reconstructed from the scattered electron. The errors of this reconstruction
will therefore affect the boost and the reconstructed hadronic CMS will not be
completely correctly defined.

   The ideal Lorentz system for us to use would be the γ-parton CMS since it is the
system were the total hard parton pT  is equal to zero. Boosting to this system requires
an a priori knowledge of the properties of the pomeron parton defining it, which we
do not have. The hadronic CMS is a natural frame for our analysis, since the total pT

of the hadronic final state particles is equal to zero in this system. It is preferred for the
pT  based CONE algorithm, since the total hard parton pT  is close to zero. Thus, the
single hard parton of a zeroth order event will have almost no pT . In a first order event
the two hard partons will have almost equal and oppositely directed pT .

5.3  Data selection

For our results to have meaning we must disregard, cut away events that are not within
a well defined kinematical region. Also cuts must be made to keep out events for which
detector limitations makes the reconstruction unreliable.

   In this analysis, the scattered electron is detected by the BEMC. Located in front of
the BEMC is the Backward proportional chamber, BPC. Together with the vertex
position reconstructed from tracks from the central tracker, the BPC provides the
angular measurement of the electron whereas its energy is measured by the BEMC.
The cuts we make on BEMC and BPC data, and the reconstructed electron kinematics
are:

• The BEMC cluster must have energy weighted radius that is less then 5 cm, defining
lateral spread and energy deposited in the BEMC.

• The distance between BPC tracks and BEMC clusters has to be less then 5 cm.
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• The cuts on the x- and y-coordinates are x<16 cm and y<16 cm, the “box cut”
and x+y<18 cm, “inner radius cut”, defining the small angular acceptance of the
BEMC.

• The reconstructed electron polar angle is cut at θe <3.019 rad, to ensure that the
scattered electron is well contained in the BEMC.

• Events must have reconstructed electron energy, Ee
' >11 GeV, to remove the

background events in which the true electron escapes detection and a cluster (e.g.
created by a photon, radiated by the electron through a bremsstrahlung process) is
misidentified by the BEMC as being an electron.

• To avoid events in which there are large electron bremstrahlung effects, the
difference between energy and longitudinal momentum for all objects (including the
scattered electron), Σ(E- pz ), must be within the range 40<Σ(E- pz )<70.

• For the y of the reconstructed electron we cut off events where y>0.05 to get an
adequate resolution in this variable.

  The point in the tracking chambers from which the particles from a collision seem to
originate along the z-axis, is defined as the event z-vertex. On this variable we make
the following cut:

• We accept only events where -25 cm <z-vertex<35 cm, to remove the background of
events registered by the detector not origininating from collisions between the two
particle beams (but for example from particles colliding with the beam pipe wall or
with gas particles in the beam pipe).

   In order to get a good M x  measurement, as much as possible of the diffractive
system and as little as possible of the particles from proton dissociation should be
included in the measurement. To make sure that the diffractive system is satisfactorily
separated from the dissociated proton system and that the diffractive system particles
has not gone into the beam pipe we make cuts:

• Only events including clusters having a maximum rapidity in the laboratory system
ηmax <3, and energy Ecluster >400 MeV are considered.

• Only events with energy in the forward plug calorimeter E plug <1 GeV are accepted.

• The number of reconstructed muons in the three first layers (the other layers were
broken 1994) of the forward muon detector (FMD) must be less then 2.
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This combination of cuts, using information
from calorimeter, plug and FMD is introduced
to get an as complete coverage in θ-angle close
 to the beam pipe as possible. The calorimeter
angular coverage is defined up to a rapidity of
η=3.35 and the plug covers rapidities
3.54<η<5.1. The FMD is defined for
1.9<η<3.64. A particle colliding with some
material (e.g. the beam pipe wall) produces a
shower of secondary particles. Some of the
secondaries may have large angles to the beam
and may therefore be detected by the FMD. The FMD can thus be used to tag very
high rapidity particles.

In our CONE algorithm (see chapter 4.4) jets are selected using the following cuts:

•  The cone size is set to ∆R=1

• A jet must have transverse momentum pT >3.5 GeV in the hadronic CMS.

Only 2-jet events are then used for the calculation of xparton /IP .

5.4  Resolutions, correlations and shifts

In this analysis, comparisons are made from detector to hadron level, rather than from
detector to parton level, since the transition between parton and hadron level would
require complex calculations, not defined in the current Monte Carlo generators. The
resolution of a certain quantity on the detector level is defined as this quantity divided
by the same quantity on the hadron level (“Q resolution” = “detector level Q” /
”hadron level Q”). The division is made for all events giving a resolution distribution
curve. A Gauss distribution is fitted to this curve. It should be peaked at 1, and if it is
not, we conclude that there is a systematic error, a shift, in the detector level quantity
compared to the hadron level. We correct shifts either by simply multiplying with a
factor on the detector level, or first adding a constant to them and then multiplying by
a factor. The mean deviation, σ, of the Gaussian fit will then be used as a measurement
of the resolution.

    To get an idea of how the quantity values on the detector and hadron level are
related, so-called correlation plots are made. In the correlation plots we always have
the hadron level quantity values on the x-axis and detector level values on the y-axis. A
linear fit to such a plot should if there is no systematic shift be described by an x = y
(“detector level Q” = ”hadron level Q”) line in the x-y plane. Shifts are in correlation
plots observed as systematic deviations from this line.

η=5.1 (θ=0.7)
(θ=0)

η=3.64(θ=3)
η=3.54(θ=3.3)
η=3.35(θ=3.35)

FMD

argon calorimeter

plug

η= 8

Figure 5.B: The angular coverage close
to the beam pipe.
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      In the following plots, events that are not 2-jet events on hadron level are cut
away. This is done since �s  and xparton /IP  are not defined on the hadron level for these

events. (No other cuts are made on the hadron level)

5.5  Results

The M x  resolution ( M x (det)/ M x (had)) and correlation plots are shown in fig. 5.C.
There is a shift in M x , the Gauss fit having a mean of about 0.91 (see fig. 5.C.a) i.e.
the detector level M x  that on average is approximately 9% smaller than the hadron
level M x . Some of the energy of the diffractive system thus seems to be lost due of
detector effects. The shift is corrected using a multiplicative factor. M x  has a

reasonable resolution, σ ≈ 0.28 (for the Gauss fit with the shift corrected, fig. 5.C.b).
The correlation is satisfactorily concentrated to the diagonal line M x (det) = M x (had)

(as expected when σ is small) and the spread of the correlation line is approximately
equally large over the whole M x  interval. The resolution is hence well defined,
meaning it is close to the same value for all values of M x .

a) b)

d)c)

Figure 5.C: Mx resolution and correlation, shifted: a), c) and with the shift corrected: b), d).
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   The �s  resolution ( �s (det)/ �s (had)) and correlation plots are shown in fig. 5.D. There
is a small shift in �s , approximately 3 % (fig. 5.D.a) The shift is corrected using a
multiplicative factor. The resolution after the shift correction: σ ≈ 0.33 (for the Gauss
fit, fig. 5.D.b) is reasonable. The correlation plot also looks reasonable, the spread of
the correlation is more or less equally large for all values of �s , meaning the resolution
is well defined.

^ ^ ^  ^

^  ^d)

< <

a) b)

c)

Figure 5.D: �s  resolution and correlation, shifted: a), c) and with the shift corrected: b), d).



31

The xparton /IP  resolution and correlation plots can be seen in fig. 5.E. There is a small

shift in the resolution (fig. 5.E.a) and the correlation line (fig. 5.E.c) seems to cross the
y-axis above y = xparton /IP (det) = 0. The shift is therefore corrected using first an

additive constant and then a multiplicative factor. ( xparton /IP  is calculated using the

original M x  and �s , without first correcting their shifts. The shift in xparton /IP  is then

corrected.) The xparton /IP  resolution is good, σ ≈ 0.23 (for the Gauss fit of the plot with

the shift corrected (5.E.b)), which is an even smaller σ than for the Gauss fits of  both
the M x  and �s  resolution plots. This indicates that a cancellation of systematic errors
between these two variables takes place when they are used to calculate xparton /IP  =

( Q2 + �s )/( Q2 + M x
2 ). With the shift corrected (fig. 5.E.d) the xparton /IP  correlation line is

well concentrated around the diagonal line, and the resolution is well defined.

a) b)

d)c)

Figure 5.E: xparton /IP  resolution and correlation, shifted: a), c) and with the shift corrected b), d).
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   Fig. 5.F again shows the xparton /IP  correlations, now with the events divided up into 4

bins. Looking at these plots, we see that the shift correction improves the xparton /IP

correlation. The correlation plot in which the shift is corrected (fig. 5.F.b) has a more
symmetric shape than the plot of the original correlation (fig. 5.F.a). Also, if we look at
the number of events (fig. 5.F.a and fig. 5.F.b) generated in the lowest xparton /IP  bin on

the hadron level axis, we see that some events that are reconstructed in higher bins on
the detector level are “moved” by the shift correction into the lowest bin. (The shift
correction only affects the detector level xparton /IP  value, i.e. increasing or decreasing it

and thus moving events up or down the detector level axis.)

a) b)

d)c)

Figure 5.F: xparton /IP  correlations, using for 4 bins. Plots are made using relatively sized boxes: a)

shifted and b) with the shift corrected, and number of events: c) shifted and d) with the shift
corrected.
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   In Fig. 5.G we have for each bin on the detector level (after the shift has been
corrected) calculated the percentage of events that was generated in a certain bin on
hadron level. The percentage of events in the diagonal bins is satisfactorily high. In the
leftmost bin on the hadron level axis the percentage of events that are non 2-jets on
hadron level, and for which xparton /IP  is therefore undefined on the hadron level is

displayed. Since this percentage of events is large, it requires further investigation.

   The pT  spectrum of the jets is a steeply
falling distribution. The resolution of the
detector is limited i.e. the detector can never
measure a quantity value perfectly, but will to
some extent “smear” it out in an interval
around the true value. When applying a sharp
jet cut at 3.5 GeV on the detector level we
may therefore accept jets that have pT  close
to 3.5 on the hadron level. The pT  spectrum
of the least energetic hard parton when the
2-jet cut on the detector level has been made
is shown in fig. 5.H. We observe some QPM
events ( pT =0 in the plot), but most of the
first order events having a hard parton
pT <3.5 have a pT  close to 3.5. The pT

distribution is falling for pT <3.5 (and not increasing as pT  approaches zero). This is
what is expected from smearing effects. The events included in our xparton /IP

measurement, accepted as 2-jet events on the detector level that are 1-jet events on the
hadron level will therefore not affect the measurement to a large extent.

on HL.
2-jet events 

-Not

Figure 5.G: For each detector level bin, the percentage of
events that was generated in a certain bin on hadron level.

QPM events

Figure 5.H: pT  of the least energetic hard

parton for 2-jet events on detector level.
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5.6 The xparton/IP  distribution

Luminosity, L, is defined as being the number of collision events taking place per time
and area-unit, L = [(cm )−2  s-1 ]. The cross-section of a certain process can be
interpreted as the relative probability for it to occur. The number of events, N, of a
process with the cross-section σ, expected to occur during a time interval ∆t = t2 - t1

can be calculated as the integrated luminosity times the cross-section: N = L ⋅∫ dtt

t

1

2 ⋅σ.

The integrated luminosity is given in units of (pb )−1  and the cross-section in (pb); 1b =

1barn = 10 24− (cm )2 . The experimental data sample of diffractive events used in this

study corresponds to an integrated luminosity of 1.96 (pb )−1  and was collected with
H1 during 1994. The simulated diffractive event sample corresponds to an integrated
luminosity of  3.625 (pb )−1 .

   A division of the xparton /IP  distribution into 4 bins is made to get a reasonable amount

of events per bin. The total number of events was 122 in the experimental plot (and
294 in the simulated plot). We normalise the xparton /IP  distribution with the integrated

luminosity and the bin-width to get the differential cross-section dσ/d xparton /IP .

= simulated data

= experimental data

Figure 5.I: The xparton/IP  differential cross-section (dσ/d xparton/IP ) retrieved from experimental data

(line) and simulated data (dashed line).
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The distribution is plotted in fig. 5.I, using error bars proportional to the square-root of
the number of events in each bin, corresponding to the statistical error. The total cross-
section of the experimental data is about 250 (pb) and of the simulated data about 325
(pb). The difference between the experimental and simulated distribution is only within
the ranges of the error bars in two of the 4 bins. There also seems to be differences in
the shape of the two distributions. These differences between experimental and
simulated data could be an indication of the structure function used in the simulations
not giving a correct description of the parton distribution. The F2

D  structure function is
mainly sensitive to the quark content of the pomeron. On the other hand, the 2-jet
sample obtained is strongly affected by the gluon distribution, via BGF. Looking at the
experimental distribution we see that the cross-section of the top xparton /IP  bin

(0.75< xparton /IP <1) is higher than the simulated distribution cross-section in this bin,

even though the total simulated cross-section is larger than the total experimental
cross-section. For events in which the 2-gluon exchange process takes place, we
expect xparton /IP  to be close to 1, since there is no pomeron remnant in this process. The

high cross-section in the top xparton /IP  bin could hence be an indication of the 2-gluon

exchange process playing a part in diffractive e-p scattering.
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