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Abstract
The electron proton collider HERA in Hamburg is known as a source of accurate data of the proton
structure, which is usually described by structure functions, predominantly F2

(
x,Q2). Since the

HERA upgrade in 2001 its luminosity has been significantly increased; at the H1 experiment up to
∼ 180 pb−1 per year were collected. Today, these data are available for physics analyses, together
with the best detector calibration and understanding ever. Such precision data are especially valuable
in the light of first LHC data analyses, which need precise knowledge of the proton structure as an
important input.

In this thesis, the inclusive neutral current ep → eX cross section at small e− scattering angles
has been measured using the electromagnetic SpaCal calorimeter in the backward region of the H1
detector. This calorimeter constructed of lead and scintillating fiber was designed to measure the
scattered electron with high resolution in both energy and polar angle. The analysis comprises the
kinematic range of 0.06 < ye < 0.6 for the inelasticity and 14 GeV2 < Q2

e < 110 GeV2 for the squared
momentum exchange. The data sample consists of positron proton collisions of the years 2006 and
2007, adding up to an integrated luminosity of ∼ 141 pb−1.

Due to the high luminosity of the HERA II run phase the accuracy is no longer limited by the data
statistics but rather by the detector resolution and systematics. The migration becomes increasingly
influential; an effect which leads to distortions of the measured distribution as well as to statistical
correlations between adjacent data points. At this stage, the correction of detector effects as well
as the precise determination of statistical correlations become important features of a rigorous error
treatment.

In this analysis two-dimensional unfolding has been applied. This is a novel approach to H1
inclusive cross section measurements, which are usually based on a bin-by-bin efficiency correction
(bin-by-bin method). With unfolding, the detector effect to the measurements is modelled by a
linear transformation (“response matrix”) which is used to correct any distortion of the data. The
inclusion of off-diagonal elements results in a coherent assessment of the statistical uncertainties and
correlations. The model dependence can be optimally evaluated. In this context, the bin-by-bin
method can be viewed as an approximation based on a diagonal response matrix.

In a scenario of limited detector resolution, the unfolded data distributions will typically exhibit
strong fluctuations and correlations between the data points. This issue can be adressed by smooth-
ing procedures (regularization). Different methods have been tested in the analysis. Among those
are an algebraic method, a method exploiting the notion of global correlation and the standard L
curve method. All three methods give similar results, which are consistent with the result from the
standard bin-by-bin efficiency correction. However, the statistical uncertainties from unfolding are
larger than those from the standard bin-by-bin method for all tested regularization prescriptions. For
the algebraic method, the statistical uncertainty is of the order of 1 − 2% and the total error of the
order of 2− 3% throughout the kinematic range of this analysis.

The statistical uncertainties from unfolding and from the bin-by-bin method has been compared.
This is done by choosing a rather strong smoothing prescription for the unfolding, which leads to a
minimum of correlations between the data points. A difference of the order of 20− 30% in the error
is found. This reflects the additional effect of migration on the statistical error, a contribution that
has not been accounted for by the bin-by-bin method.

To summarize, the propagation from the standard bin-by-bin efficiency correction to a full two di-
mensional unfolding treatment does not result in an observable change of the measured cross sections,
thus establishing trust in previous measurements. However, a significant impact on the statistical
uncertainties is observed, which seem to be clearly underestimated by the traditional (bin-by-bin)
error treatment.
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Zusammenfassung
Der Elektron-Proton-Beschleuniger HERA in Hamburg ist als Quelle von präzisen Daten über die
Protonstruktur bekannt. Diese wird üblicherweise mittels Strukturfunktionen beschrieben, allen vo-
ran F2

(
x,Q2). Seit dem HERA Upgrade im Jahre 2001 wurde die Luminosität signifikant gesteigert;

beim H1 Experiment wurden bis zu 180 pb−1 pro Jahr erreicht. Diese Daten sind heute für Analy-
sen verfügbar; gleichzeitig sind durch sie maßgebliche Fortschritte beim Detektorverständnis und der
Kalibrierung erzielt worden. Diese Präzisionsdaten sind insbesondere deswegen interessant, da die
Protonstrukturfunktionen einen wichtigen Input für erste Datenanalysen am LHC darstellen.

In dieser Doktorarbeit wird der inklusive Wirkungsquerschnitt für Elektron-Proton-Streuung
ep → eX für neutrale Ströme bei kleinen e−-Streuwinkeln gemessen. Dabei wird das elektromag-
netische Kalorimeter SpaCal im hinteren Bereich des H1 Detektors genutzt. Dieses Blei/Glasfaser-
Kalorimeter ist speziell für den Nachweis des gestreuten Elektrons ausgelegt und verfügt über eine
hohe Energie- und Polarwinkelauflösung. Die Analyse umfaßt einen kinematischen Bereich von
0.06 < ye < 0.6 für die Inelastizität und 14 GeV2 < Q2

e < 110 GeV2 für den quadrierten Impulsüber-
trag. Dabei wurden Proton-Positron-Kollisionen aus den Jahren 2006 und 2007 wurden untersucht,
insgesamt entspricht das einer Luminosität von ∼ 141 pb−1.

Aufgrund der hohen Luminosität der HERA II Run Phase ist die Meßgenauigkeit nicht mehr
durch die Datenstatistik limitiert, sondern vor allem durch die Auflösungseffekte und systematische
Unsicherheiten. Die Migration wird daher immer bedeutsamer; ein Effekt, der zur Verzerrung der
gemessenen Verteilung sowie zu statistischen Korrelationen zwischen benachbarten Datenpunkten
führt. Auf dieser Ebene wird die Korrektur von Detektoreffekten und die präzise Bestimmung der
statistischen Korrelationen immer mehr zu einem wichtigen Bestandteil einer sauberen Fehlerbestim-
mung.

In dieser Analyse wird zweidimensionales Entfalten angewendet. Für inklusive H1 Wirkungs-
querschnitte ist dieses Verfahren neu; normalerweise wird eine bin-weise Effizienzkorrektur verwendet
(Bin-by-Bin-Methode). Beim Entfalten werden der Effekt des Detektors auf die Messung durch eine
lineare Transformation (“Antwortmatrix”) modelliert, mit deren Hilfe alle Verzerrungen korrigiert
werden können. Die Berücksichtigung der nicht-diagonalen Matrixelemente ermöglicht die kohärente
Bestimmung der statistischen Unsicherheiten und Korrelationen. Die Modellabhängigkeiten können
optimal bestimmt werden. Die Bin-by-Bin-Methode kann in diesem Zusammenhang als Näherung
betrachtet werden, die auf einer diagonalen Antwortmatrix basiert.

Im Fall begrenzter Detektorauflösung zeigt das Entfaltungsergebnis typischerweise starke Fluk-
tuationen und Korrelationen zwischen den Datenpunkten. Diesem Problem kann mit Glättungsver-
fahren begegnet werden (Regularisierung). Verschiedene Verfahren werden in der Analyse getestet.
Darunter sind eine algebraische Methode, eine Methode, die auf dem Begriff der globalen Korrelation
beruht, und die L-Kurven-Methode. Alle drei Methoden führen zu ähnlichen Ergebnissen, die auch
konsistent mit dem Ergebnis der Bin-By-Bin-Methode sind. Allerdings sind die statistischen Un-
sicherheiten nach Entfaltung grösser als die von der Bin-By-Bin-Methode und zwar unabhängig von
der Regularisationsvorschrift. Für die algebraische Methode ist der statistische Fehler typischerweise
1− 2% und der Gesamtfehler etwa 2− 3% im kinematischen Bereich der Analyse.

Die statistischen Fehler von der Entfaltungsmethode und der Bin-By-Bin-Methode werden ver-
glichen. Dafür wird eine starke Glättungsvorschrift für die Entfaltung gewählt, welche die Korrela-
tionen zwischen den Datenpunkten minimiert. Es zeigt sich eine Differenz von etwa 20 − 30% im
Fehler. Dieser zusätzliche Effekt beruht auf der Migration, die bei der Bestimmung des Fehlers nach
der traditionellen Bin-By-Bin-Methode nicht berücksichtigt wird.

Zusammenfassend gilt, dass der Übergang von der klassischen Bin-By-Bin-Methode zur vollen
zweidimensionalen Entfaltungsmethode zu keinen beobachtbaren Änderungen an den Wirkungsquer-
schnitten führt. Dagegen ist der Einfluss auf die statistischen Unsicherheiten signifikant. Diese werden
durch die klassische Bin-By-Bin-Methode unterschätzt.
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Chapter 1

Introduction and Motivation

1.1 DIS and Hadron Structure

One of the essential experimental tools to determine the internal structure of hadrons
such as the proton is known as Deep Inelastic Scattering (DIS). Experiments of this
type probe the hadrons with fundamental leptons such as electrons, myons or neutri-
nos, which interact only via the electroweak force. The scattering process can thus be
regarded independently from the proton structure, which itself results from the strong
force. An introduction to DIS can be found in [ES] and [CS03].

In this picture the DIS cross section can be expressed in terms of structure func-
tions, which contain all information of the hadron structure to which the process at
hand provides sensitivity. For neutral current processes, i. e. processes that preserve
the charge of the probing particle, the hadron structure is described by the functions
F2 (x,Q2) and FL (x,Q2). Here, the variables x and Q2 describe the kinematics of
the scattering process, see section 2.1. Different structure functions are obtained for
charged current processes.

The theory used to describe the structure of hadrons is Quantum Chromo Dynamics
(QCD). This highly successful SU (3)-invariant gauge theory comprises of massive
fermions called quarks and massless exchange bosons called gluons. The quarks come
in six flavours, called up (u), down (d), charm (c), strange (s), top (t) and bottom (b)
and occur as particle or antiparticle. Both quarks and gluons carry color charge, which
can take on the values red, green and blue. The fact, that gluons carry color charge
gives rise to the phenomenon of strong self-interaction. For a general introduction to
Quantum Chromo Dynamics see [MEP95] and [Wei05b].

In the QCD picture, each hadron is regarded as a bound state of quarks and gluons,
which in this context are also called partons. To describe the hadron structure in terms
of these QCD objects one introduces a Parton Density Function (PDF) fi (x,Q2) for
every type i of parton, be it a quark, antiquark or gluon [ES]. The parton density
functions provide a picture of the proton that is independent of the specifics of a
scattering process. Of course, these functions are related to the structure functions.
In fact, the PDFs can be extracted by a simultanous fit to a given set of measured
structure functions (QCD Fit) [A+10].

1



2 CHAPTER 1. INTRODUCTION AND MOTIVATION

Figure 1.2.1: Kinematic range of experiments dedicated to proton structure determi-
nation. Note the large coverage of the HERA experiments H1 and ZEUS, ranging up
to Q2 ' 2 · 104 GeV2 and down to x ' 0.5 · 10−6. The kinematic range of future
measurements at the LHC is also indicated.

1.2 HERA and the ep-Experiments
One of the best studied hadrons is certaintly the proton. Ever since the discovery
of scaling for ep-scattering at the Stanford Linear Accelerator Center in 1969 (see
chapter 2), numerous µ- and ν-scattering experiments were performed to determine
the proton structure. Among them are the fixed target experiments NMC and BCDMS
[A+97b, B+89].

The HERA1 accelerator in Hamburg was the first ep collider ever built and signifi-
cantly increased our knowledge about the structure functions F2 (x,Q2) and FL (x,Q2).
While fixed target experiments were able to resolve the proton structure only up to
Q2 ' 2·102 GeV2 and x ' 10−2 , at HERA this range was extended toQ2 ' 2·104 GeV2

and x ' 0.5 · 10−6, see figure 1.2.1. This was achieved at the two 4π detectors H1
[A+97a] and ZEUS [Col93], at which collisions at a center of mass energy of up to
318 GeV were studied. Figure 1.2.2 summarizes data from NMC, BCDMS and the
two HERA experiments.

From 1992 to 2007, both HERA and ZEUS collected a total integrated luminosity
of nearly 500 pb−1. The majority of this data sample originates from the HERA II run
phase (2001 - 2007) and particularly from its last two years of operation, in which the
accelerator reached its optimal performance of nearly ∼ 180 pb−1 per year, see also
figure 1.2.3. Today, these data are available for physics analyses, together with the best

1Hadron-Elektron-Ring-Anlage



CHAPTER 1. INTRODUCTION AND MOTIVATION 3

Figure 1.2.2: Proton structure measured at HERA. The reduced neutral current ep→
eX cross section measured at H1 and ZEUS is shown, together with measurements
from the fixed target experiments NMC and BCDMS [A+97b, B+89]. The blue band
corresponds to NLO DGLAP calculations based on HERAPDF1.0 [A+10]. (Note, that
the HERA data in this plot are obtained with the bin-by-bin method.)
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Figure 1.2.3: Total integrated luminosity Lint measured at the H1 detector as a function
of time. The best performance was reached in the last years of operation (HERA II).
The total integrated luminosity reaches nearly ∼ 500 pb−1.

detector calibration and understanding ever. In fact, they challenge the experiments
to measure the F2 proton structure function with an experimental uncertainty of ∼ 1%
throughout most of the HERA phase space.

In this thesis, the inclusive neutral current ep → eX cross section has been mea-
sured using the electromagnetic SpaCal calorimeter. This lead-based calorimeter was
designed to detect the scattered electron at small scattering angles with high energetic
and spatial resolution. The analysis comprises the kinematic range of 0.06 < ye < 0.6
for the inelasticity and 14 GeV2 < Q2

e < 110 GeV2 for the squared momentum ex-
change. The data sample consists of positron proton collisions from 2006 and 2007,
adding up to an integrated luminosity of ∼ 141 pb−1.

1.3 The Importance of HERA for the LHC

The precise understanding of the proton structure is particularly relevant for analyses
at the Large Hadron Collider (LHC) [CS10, Pet10]. The LHC is a proton proton
collider and consequently every cross section prediction at the LHC depends inherently
on the proton structure. In fact, the dependance is even “quadratic”, if the proton
structure is expresses in terms of parton density functions.

From figure 1.2.1 it can be seen, that the kinematic range in the direction of the
Bjorken variable x is nearly the same for HERA and LHC. Therefore, the HERA
data have a significant influence on every LHC analysis. This constitutes the need for
utmost accuracy in F2 measurements.



CHAPTER 1. INTRODUCTION AND MOTIVATION 5

1.4 Limitations of the Bin-By-Bin-Method
Best accuracy, however, is only achieved on the basis of a thorough and concise under-
standing of detector effects. Every measurement in experimental physics suffers from
the limited resolution and the limited efficiency of the measuring device. During the
measurement process, events can be reconstructed in the wrong bin (migration effects)
or can be lost completely (inefficiency). This is particularly true for steeply varying
distributions. Therefore, the measured distribution may be distorted and statistical
correlations between data points may arise.

Traditionally, inclusive cross section measurements at H1 have used a mere bin-by-
bin efficiency correction (bin-by-bin method). This method essentially compares the
generated and “measured” event counts for a Monte Carlo simulation, thus establishing
a bin-wise correction factor. If the Monte Carlo simulation can be trusted, this method
sufficiently corrects for efficiency effects. In addition, it corrects distortions in the shape
of the measured distribution which arise from migration effects.

However, the bin-by-bin method cannot account for statistical correlations that
arise between adjacent data points due to migration effects. Effectively, these cor-
relations are ignored. A QCD fit may be altered by such an artificial prescription.
Moreover, the statistical uncertainties on the data points are expected to rise in the
presence of migration effects. Again, this effect is not accounted for by the bin-by-bin
method.

Note, that in a scenario of low event statistics, the bin-by-bin method may be
sufficient. Migration effects strongly depend on the choice of the bin grid. Imagine
a binning that is coarse in comparison to the detector resolution, as is a typical case
if the choice of the bin grid is driven by low statistics. Then, the migration effects
will be rather small, potentially even negligible and the bin-by-bin method can be
used safely. However, with increasing event statistics the choice of the binning will
eventually be driven by the detector resolution, which becomes the limiting factor in
the experimental accuracy. Therefore, migration effects will play a larger role with
high statistics and the bin-by-bin method will no longer be applicable.

The HERA II data sample provides an amount of data, which indeed makes the
detector resolution the limiting factor for the bin grid. Maximizing the information
output from the measurement means choosing a bin grid which reflects the local detec-
tor resolution. (We will discuss these issues at length in chapter 4.) A full treatment
of migration effects becomes necessary.

1.5 Unfolding
A concise way to address both efficiency and migration effects is unfolding. This
statistical tool models detector effects by a linear transformation (“response matrix”)
which in turn is used to correct distortions of the data. Moreover, detector-based
correlations between the data points are quantified. In chapter 4 we review some
technical aspects of unfolding.

A typical feature of unfolding is the appearance of large fluctuations between the
bins. Such correlations can be reduced by the introduction of a smoothing procedure,
called regularization. At the price of potentially introducing a bias, the measurement
is thus freed from unphysical correlations. Evidently, a reasonable trade-off needs to
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be found. The determination of the adequate level of regularization is a key challenge
of each unfolding procedure.

1.6 How Unfolding effects H1 Cross Sections
In this analysis, two dimensional unfolding in y and Q2 is employed. This is a novel
approach to inclusive cross section measurements at H1, which are usually applied the
mere bin-by-bin efficiency correction discussed above. The application of unfolding
results in a concise assessment of the statistical uncertainties, as well as a first-time
natural evaluation of bin-to-bin correlations. Moreover, a reduction of model depen-
dencies can be achieved, leading to a better understanding and reduction of systematic
uncertainties.

Of course, strong interest is directed towards the potential variations between the
results obtained from unfolding and from the bin-by-bin method. We will see in
chapter 10, that no discrepancy in the shapes of the measured distributions is observed.
However, effects in the statistical uncertainties do emerge and depend on the level of
regularization.

In the light of all this, this work can also be seen as cross check of the standard
H1 error treatment. Note, that for a conclusive comparison of statistical uncertainties
uncorrelated quantities have to be studied. This condition can be approximately
fulfilled by choosing a level of regularization that minimizes the global correlation, see
chapter 4. A difference of the order of 20−30% is found for the statistical uncertainties.
This reflects the effect of migration on the statistical error, a contribution that has
not been accounted for by the bin-by-bin method.



Chapter 2

DIS and QCD

In this chapter some basic concepts of Deep Inelastic Scattering (DIS) and the proton
structure are reviewed. We introduce the HERA event kinematics, the parton model
of the proton and the QCD DGLAP evolution. Moreover, QED radiative effects are
discussed. See also [ES] for a general introduction into DIS and QCD.

2.1 Event kinematics
In figure 2.1.1, a typical neutral current interaction ep → eX is depicted. Let the
symbols k and k′ denote the four momenta of the incoming and outgoing lepton, P
the four momentum of the incoming proton. At fixed center of mass energy, the event
kinematics is typically described by the following Lorentz invariant variables:

Q2 ≡ −q2 := − (k − k′)2 (2.1.1)

x := Q2

2Pq (2.1.2)

y := qP

kP
(2.1.3)

Here, Q2 is known as squared momentum exchange, y as inelasticity and x as Bjorken
variable. Both x and y are by construction limited to values between 0 and 1. In
the quark parton model, x corresponds to the longitudinal momentum fraction carried
by the struck parton. Two more important Lorentz invariants are the center of mass
energy

√
s of the ep-system and the center of mass energy W of the proton-boson

system:
s := (k + P )2 (2.1.4)
W 2 := (q + P )2 (2.1.5)

Since the masses mP and me of proton and electron are negligible compared to the
HERA energy scale

√
s, we directly obtain the relations:

s =
√

4EpEe (2.1.6)

Q2 = sxy (2.1.7)
sy = W 2 +Q2 (2.1.8)

For more information on HERA event kinematics, see [Sti01].

7
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Figure 2.1.1: Neutral current ep → eX DIS event in lowest order. The symbols k,
k′ and P denote the four-momenta of the incoming and outgoing electron and the
incoming proton, respectively. The gauge boson is a photon with four momentum q;
for high Q2 contributions from the Z0 boson and interference terms have to be accounted
for.

2.2 DIS Cross Section and Structure Functions

Due to momentum conservation, φ-symmetry and negligible particle masses (m ' 0),
the double differential ep → eX cross section can only depend on three variables.
Without loss of generality, these are s, x and y. However, during an experimental run
phase at HERA, the center of mass energy

√
s is fixed.

For Q2 ≪ m2
Z , the scattering process is mediated purely by γ-exchange, thus

the cross section can be calculated from Quantum Electro Dynamics (QED). By ex-
ploitation of Lorentz invariance and electromagnetic current conservation we obtain
the following general structure [ES]:

∂2

∂x∂Q2σ
NC

(
x,Q2

)
= 2πα2Y+(y)

xQ4

(
F2
(
x,Q2

)
− y2

Y+(y)FL
(
x,Q2

))
(2.2.1)

Here, F2 (x,Q2) and FL (x,Q2) are the proton structure functions. They encode the
internal substructure of the proton, which cannot be derived from perturbative QCD
and therefore has to be determined experimentally. Note the abbreviation Y+(y) :=
1 + (1− y)2. Moreover, α denotes the electromagnetic fine structure constant. Note,
that for Q2 ' m2

Z , terms for the Z-exchange and for γ/Z-interference need to be added
to (2.2.1).

The function FL (x,Q2) is called longitudinal structure function. For low y, its con-
tribution to the cross section is suppressed with y2

Y+(y) . For y . 0.6, the measurement of
the neutral current cross section can therefore be regarded as a direct F2 measurement
up to a correction of the order of a few percent.

For brevity, one typically quotes the reduced cross section σr by suppressing the
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kinematic factor in (2.2.1):

σr
(
x,Q2

)
:= F2

(
x,Q2

)
− y2

Y+(y)FL
(
x,Q2

)
(2.2.2)

2.3 The Quark Parton Model
In the infinite momentum frame, the proton is viewed as being composed of non
interacting constituents called partons. Each parton carries a fraction ξ < 1 of the
proton’s longitudinal momentum, while its transverse momenta are neglected. The
cross section (2.2.1) is then given as an incoherent sum over the interaction processes
with each individual parton. This gives:

∂2

∂x∂Q2σ
NC

(
x,Q2

)
=
∑
i

ˆ 1

0
dξfi (ξ)×

∂2

∂x∂Q2σ
NC

(
x,Q2

)∣∣∣∣∣
eqi→eqi

(2.3.1)

Here, fi (ξ) is the Parton Density Function of the parton of type i.
In a very simple model, the proton consists of three non-interacting fermions, called

valence quarks, namely two u- and one d-quark. For this scenario, we directly obtain
from QED:

∂2

∂x∂Q2σ
NC

(
x,Q2

)∣∣∣∣∣
eqi→eqi

= 2πα2Y+(y)
Q4 · eiδ(x− ξ) (2.3.2)

Here, ei denotes the charge of the i-th quark. By insertion of (2.3.2) in (2.3.1) we
directly obtain x = ξ and moreover

F2
(
x,Q2

)
=
∑
i

e2
ixfi (x) (2.3.3)

FL
(
x,Q2

)
= 0 (2.3.4)

Note the vanishing Q2-dependence in (2.3.3), a feature called scaling [Bjo69]. The
vanishing longitudinal structure function (Callan Gross relation) reflects the fermionic
nature of the quarks. Both features were predicted in 1969 [Bjo69, CG69] and were
measured in 1972 [M+72]. Historically, they played a crucial role in establishing the
quark picture in DIS.

2.4 DGLAP Evolution
Of course, a proton model of non-interacting partons can only be an approximation.
In fact, violations of the scaling law have been found rather soon [F+74]. A more
rigorous treatment is needed, which takes into account the QCD interactions. These
are the emission of gluons from quarks and from other gluons, the splitting of gluons
in quark-antiquark pairs and the gluon self-interaction. The diagrams are shown in
figure 2.4.1.

For a quantiative QCD treatment of the neutral current ep cross section, we start
from the factorization theorem, see [CSS88]. It states, that a cross section is composed
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of a short distance part describing the hard scattering process and a long distance part
describing the proton structure. For F2, we can write:

F2
(
x,Q2

)
=
∑
i

ˆ 1

z

dzCi
2

(
x

z
,
Q2

µ2
r

,
µ2
f

µ2
r

)
fi
(
z, µ2

r, µ
2
f

)
(2.4.1)

Here, the sum runs over all parton types: quarks, antiquarks and gluons. Again, fi
denote parton density functions and Ci

2 describe the hard scattering process. With µr
and µf we denote the renormalization scale and factorization scale.

Note, that F2 must ultimately not depend on the choice of the scales µf and µr. In
the DIS renormalization scheme we conveniently choose µr = µf ≡ µ. Then, (2.4.1)
simplifies to:

F2
(
x,Q2

)
=
∑
i

e2
ix · fi

(
x,Q2

)
(2.4.2)

Moreover, by exploiting the arbitrariness of the renormalization scheme µ, one can
derive the DGLAP equations [AP77, Dok77, GL72a, GL72b]:

∂qi (x,Q2)
∂ lnQ2 = αs (Q2)

2π

ˆ 1

x

dz

z

∑
j

qj
(
z,Q2

)
Pij

(
x

z

)
+ g

(
z,Q2

)
Pig

(
x

z

) (2.4.3)

∂g (x,Q2)
∂ lnQ2 = αs (Q2)

2π

ˆ 1

x

dz

z

∑
j

qj
(
z,Q2

)
Pgj

(
x

z

)
+ g

(
z,Q2

)
Pgg

(
x

z

) (2.4.4)

Here, qi (x,Q2) denote the quark and antiquark density functions, g (x,Q2) the gluon
density function and αs (Q2) the running coupling of the strong force. The symbols
Pij(z), Pgj(z), Pig(z) and Pgg(z) are called splitting functions which can be calcu-
lated perturbatively in αS

2π . Calculations up to NNLO are available [VVM05, MVV04,
VMV04]. Their first order terms P (0)

ba (x/z) measure the probability for a parton of
type a with momentum fraction z to emit a parton of type b with momentum fraction
x, see figure 2.4.1.

Note, that equations (2.4.3) and (2.4.4) establish a Q2-dependence of the parton
density functions which explains the observed scaling violations. While for a given Q2

0
the curve progression of fi (x,Q2) with x can only be measured experimentally, the
DGLAP equations allow a theoretical extrapolation to higher Q2. Typically, a starting
value of Q2

0 ' 2− 4 GeV2 is chosen.
In figure 1.2.2 an overview of F2-measurements from H1 and ZEUS is given, to-

gether with data points from fixed target experiments. The blue band corresponds
to a QCD fit, which is referred to as HERAPDF1.0 [A+10]. Note the approximate
scaling behavior for x ∼ 0.2.

2.5 Radiative Effects
A neutral current cross section measurement will be distorted by higher order QED
processes, henceforth regarded as radiative effects [Spi92]. The most prominent con-
tributions originate from photon radiation off the electron line, see figure 2.4.2. The
propagator structure of these graphs suggests, that significant contributions only oc-
cur, if at least one of the photon virtualities q2, q′2 or q′′2 vanishes. This allows the
following classification:
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Figure 2.4.1: Lowest order diagrams for the splitting functions in the DGLAP evolu-
tion. The first order terms of the splitting functions P (0)

ba (z) measure the probability for
a parton of type a with momentum fraction z to emit a parton of type b with momentum
fraction x.

Figure 2.4.2: Diagrams for Initial State Radiation (ISR) and Final State Radiation
(FSR).
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Initial state radiation (ISR). This process is characterized by a single electron being
emitted collinearly from the incoming electron with q′2 ' 0 and q2 6= 0. While the
photon is typically not detected, the center of mass energy s at the hadronic vertex is
effectively lowered which in turn effects the cross section.

Final state radiation (FSR). This process is characterized by a single electron being
emitted collinearly from the outgoing electron with q′′2 ' 0 and q2 6= 0. This process
is less critical, since the emitted photon can typically not be resolved from the electron
in the calorimeter and both particles contribute to the cluster energy.

QED Compton (QEDC). This process is characterized by q2 ' 0 and q′2 6= 0
or q′′2 6= 0, respectively. While the proton is typically lost, electron and photon
have sizable transverse momentum. A clear signature of two clusters back to back in
azimuth and little hadronic activity make these events easy to identify.

Bethe Heitler Events. This process is characterized by q2 ' 0 and q′2 ' 0 or
q′′2 ' 0, respectively. Since the elastic QED cross section of this process is known to
high precision, these events are used for the luminosity determination, see chapter 3.

In a scattering experiment photon radiation can be a substantial effect. How-
ever, our interest is mainly directed to the Born cross section, which describes the ep
scattering without radiative effects. Therefore, a correction has to be applied to the
measurements, an issue we will re-adress in subsection 5.1.4 and chapter 11.



Chapter 3

The Detector

The objective of this chapter is the introduction of the HERA collider and the H1
detector. We discuss the subdetectors that are relevant to this analysis. Moreover, a
brief introduction to the trigger system is given. For a more general description of the
H1 detector, see [A+97a].

3.1 HERA Collider

The HERA collider was an electron proton collider on the DESY site in Hamburg,
which was operational from 1992 to 2007. It was situated in a circular tunnel of
6.3 km circumference. In figure 3.1.1 the accelerator with its four experiments is
shown. H1 and ZEUS were designed at 4π-detectors, at which the electron and proton
beam were brought into collision at zero angle. HERMES and HERA-B were fixed
target experiments.

In the year 2000 the collider has been shut down for a luminosity upgrade. This
divides the HERA run time into two operational phases, HERA I and HERA II.
Moreover, different run periods exist, which differ in the electron charge (e−/e+). For
most HERA II run periods, the proton and electron beam energies were Ep

beam =
919 GeV and Ee

beam = 27.6 GeV, respectively. Accordingly, the center of mass energy
was:

s =
√

4Ep
beamE

e
beam = 318.5 GeV (3.1.1)

Each run period is further subdivided into HERA luminosity fills, which typically
span 12 hours. At the beginning of a fill, the beam currents reached Ip ' 100 mA and
Ie ' 40 mA.

Both beams are structured into 220 bunches, which collide with a frequency of
10.4 MHz or every 96 ns. (Note however, that typically not all of the bunches are
filled, and some unpaired pilot bunches exist for the purpose of beam monitoring.)
The longitudinal shape of the proton bunches is nearly Gaussian with a width of 45
cm (FWHM), leading to a luminous region with a width of σz ∼ 9 cm. However, due
to technical reasons, small satellite bunches occur about 70 cm apart from the main
bunch, which are not used for the analysis.

13
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Figure 3.1.1: HERA with its four experiments H1, ZEUS, HERMES and HERA-B.
On the left site, the chain of pre-accelerators is enlarged.

3.2 The H1 Detector
In figure 3.2.1 an overview of the H1 detector is given. Clearly visible is its asymmetri-
cal structure, which is a consequence of the different beam energies involved. Note the
H1 coordinate system. It assigns the direction of the incoming proton to the positive
z-axis. According to the direction of the z-axis we speak of the forward region, the
central region and the backward region of the H1 detector.

The main tracking systems are the central tracker (CTD) and the forward tracker
(FTD). The most important calorimetry devices are Liquid Argon Calorimeter (LAr)
and the SpaCal, the latter of which is located in the backward H1 region. Both feature
electromagnetic and hadronic sections. The calorimetric region is surrounded by a
superconducting solenoid which provides a uniform magnetic field of 1.15 T. Outside
the solenoid a myon system is installed.

3.2.1 The Tracking System
The tracking system consists of the central tracker (CTD) and the forward tracker
(FTD). Their total polar angle coverage is 15◦ ≤ θ ≤ 165◦ and 7◦ ≤ θ ≤ 25◦, respec-
tively. Figure 3.2.2 shows an overview of its subcomponents.

Central Jet Chambers CJC1 and CJC2. These concentric drift chambers measure
wire hits in the r − φ−plane with a spatial resolution of up to 170 µm. This is
achieved with 720 and 1920 sense wires, respectively, which are oriented parallel to
the beam axis. Moreover, a measurement of the z-coordinate is possible (δz ' 4 cm)
by utilization of charge division. The length of the detectors is 220 cm, while the
transverse range is 20.3 cm ≤ R ≤ 45.1 cm for CJC1 and 53 cm ≤ R ≤ 84.4 cm for
CJC2.

Central Outer Z Chamber COZ. This drift chamber consists of radially oriented
wires, providing a precise measurement of the z-position of hits with a resolution of
200 − 260µm. It is longitudinally subdivided in 24 rings of 9 cm width. Its radial
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Figure 3.2.1: The H1 Detector. Important subcomponents: Central Tracker CTD
(2), Forward Tracker (3), Electromagnetic LAr (4), Hadronic LAr (5), Superconduct-
ing Coil providing 1.15 T (6), Myon System (9), Lead/Scintillating-fiber calorimeter
SpaCal (12).
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Figure 3.2.2: Central tracker system (CTD) with its components CST, CIP, CJC1,
COZ, COP and CJC2.

position is between CJC1 and CJC2.
Central Proportional Chambers CIP and COP. Both these chambers are mainly

used for triggering and are mounted inside CJC1 and CJC2, respectively. The CIP
was redesigned for the HERA II run phase (CIP2k), comprising now 5 concentric
layers, 8 azimuthal segments and 60 longitudinal sectors of 3.6 cm length each. The
spatial hits from the electron track can be used together with its SpaCal cluster to
find the longitudinal position zV tx of the event vertex, see section 3.4.2.

Silicon Track Detectors CST, BST and FST [P+00]. These silicon based strip
detectors constitute the innermost layer of the H1 architecture. The CST has a spatial
resolution of 12 µm in rφ and 22 µm in z-direction and supports both the measurement
of the event vertex and of potential secondary vertices.

Forward Track Detector (FTD). This tracker system covers the forward detector
region. It consists of 3 super modules, each consisting of multiple drift chambers with
different wire geometries. Its typical resolution is 210 µm in rφ and 3 cm in z-direction.

Backward Proportional Chamber (BPC). The BPC is located in front of the SpaCal
and consists of six wire layers oriented in 3 different azimuthal directions, see figure
3.2.7. For charged particles, it provides a point measurement in the xy−plane with a
resolution of 1 mm.

3.2.2 Liquid Argon Calorimeter
The H1 detector features an almost complete 4π calorimetric coverage. While the
SpaCal covers the backward region (153◦ ≤ θ ≤ 174◦), the central and forward region
is covered by the Liquid Argon calorimeter (LAr) (4◦ ≤ θ ≤ 154◦). Both devices have
electromagnetic and hadronic parts.
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Figure 3.2.3: Liquid Argon Calorimeter (LAr) with its 8 calorimeter wheels. The inner
components (IF1E, FB2E, FB1E, CB3E, CB2E, CB1E, BBE) belong to the electro-
magnetic part (green), the outer components (IF2H, OF2H, OF1H, FB2H, FB1H,
CB3H, CB2H, CB1H) belong to the hadronic part (orange).

The Liquid Argon Calorimeter (LAr) features lead as absorber for the electromag-
netic part and stainless steel for the hadronic part. Its cryostat temperature is 90 K.
Being placed within the superconducting solenoid, energy loss due to dead material in
front of the calorimeter is reduced. The calorimeter is structured in 8 wheels, each of
which consists of 8 sections in φ-direction. Energy resolutions of

σEEL
EEL

' 10%√
EEL/GeV

⊕ 1% (3.2.1)

and
σEHAD
EHAD

' 50%√
EHAD/GeV

⊕ 2% (3.2.2)

are reached for test beams [A+93a, A+93b].

3.2.3 The SpaCal calorimeter
The SpaCal (Spaghetti Calorimeter) [A+96, N+96] covers the backward region (153◦ ≤
θ ≤ 174◦). The electromagnetic part is structured into 4.05 cm × 4.05 cm × 25 cm
cells, which are grouped in super modules of 4×4 cells each, see figure 3.2.4. Each cell
consists of 2340 longitudinally aligned scintillating fibers embedded in a lead matrix,
see figure 3.2.6. The fiber diameter is 0.5 mm and the lead/fiber ratio is 2.3 : 1.
The fibers conduct the light from showers directly to photo-multiplier tubes (PMT).
The stability of the PMT amplification is monitored with pulsed LED signals. A
longitudinal cut through the SpaCal is given in figure 3.2.5.

With the electromagnetic SpaCal an extraordinarily accurate energy resolution of

σEEL
EEL

' 7%√
EEL/GeV

⊕ 1% (3.2.3)
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Figure 3.2.4: The electromagnetic SpaCal calorimeter viewed in transverse projection.
Clearly visible are the different cells and their grouping in supermodules.

Figure 3.2.5: Side view of the SpaCal calorimeter. Note its division in an electro-
magnetic and a hadronic part. In front of the calorimeter the track chamber BPC is
mounted.
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Figure 3.2.6: A single cell of the electromagnetic SpaCal. It consists of 2340 longitu-
dinally aligned scintillating fibers embedded in a lead matrix.

Figure 3.2.7: Backward proportional chamber (BPC). It is mounted in front of the
SpaCal. It features six layers with three azimuthal wire orientations. It supports the
measurement of the spatial cluster position in the SpaCal.
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is achieved, which was determined with test beams at CERN and DESY. The spatial
resolution of

σxy '
4 mm√
EEL/GeV

⊕ 1 mm (3.2.4)

is obtained for the reconstruction of the impact point [A+96, N+96].
The hadronic part of the SpaCal is made from 11.9 cm × 11.9 cm × 25 cm cells,

comprising 1 mm fibers with a material ratio of 3.4 : 1. An energy resolution of

σEHAD/EHAD ' 29% (3.2.5)

has been found with pion test beams [A+96].

3.2.4 Luminosity System
The luminosity is measured with Bethe-Heitler events (ep → epγ), the cross section
of which is known to high precision. The emitted photon is measured in the Photon
Detector (PD), a Cerenkov sampling calorimeter with tungsten absorbers [A+97a].
Background mainly emerges from beam gas interactions, which are accounted for by
the analysis of pilot bunches. Moreover, pile-up events from multiple interactions per
bunch crossing occur. While the luminosity is monitored online in 10 second intervals,
its precise value is determined offline, accounting for beam gas interactions, pile-up
events and the efficiency and acceptance of the photon detector.

For the HERA II run phase, an independent luminosity determination is done
with QED Compton events, searching for SpaCal clusters which are back to back in
azimuthal angle φ. With this procedure, the systematic uncertainty of the luminosity
measurement is reduced to ∼ 2%. At the same time, a small QEDC Luminosity
Correction has to be applied to each run [SP].

3.3 The Trigger
The bunch crossing rate of 10.4 MHz largely exceeds the output rate of ∼ 50 Hz that
can be achieved at H1. Therefore, a four-level trigger is used to suppress background
and to downscale the frequency of abundant event types (prescaling). The trigger
levels (L1,L2,L3 and L4/5) consecutively ascend in both precision and dead-time.

3.3.1 H1 Trigger Architecture
The L1 trigger level is pipelined and effectively dead-time free. It is composed of 128
raw subtriggers. If at least one of them is activated (“L1 keep”), the pipelines are
stopped and dead time accumulates. The raw subtriggers are then logically combined
of 256 trigger elements (TE). The output rate of level L1 is ∼ 1 kHz.

The L2 trigger level is used for online verification on a time scale of 20 µs. A
topological trigger (L2TT) [Biz97] providing 16 trigger elements is used, providing
background reduction on the basis of topological event signatures. Moreover, a system
with 13 neural networks (L2NN) [K+97] is used.
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Figure 3.3.1: H1 Trigger architecture featuring 4 trigger levels L1, L2, L3 and L4/L5.
The L1 trigger is pipelined and dead time free.

Figure 3.3.2: The helical trajectory of a charged particle in the CTD with its 5 pa-
rameters κ, dCA, φ0, θ and z0. Here, κ = 1/R, dCA and φ0 describe the track in the
rφ-plane, denoting respectively its inverse radius, its “distance of closest approach” to
the origin and its azimuthal angle. In the rz-plane, the track is determined by the
polar angle θ and the value z0 of the point of closest approach to the z-axis.

The L3 trigger is implemented since 2005. On a time scale of ∼ 100µs tracks from
the FTT L3 were analyzed. It was mainly used to search for heavy quark decays
[Nau, Jun07].

On the L4/L5 trigger level a complete event reconstruction is done using a dedi-
cated PC farm. Further, the events are classified and downscaled according to their
type. The output rate is ∼ 10 Hz.

3.3.2 The S3 Trigger
In this analysis, the subtrigger S3 is used. It is sensitive to clusters in the electro-
magnetic part of the SpaCal. The cluster is required to have an energy Euncalib

e above
Etr ≡ 10 GeV and to be at least Runcalib

tr ≡ 30 cm away from the beam axis:

Euncalib
e > Etr ≡ 10 GeV (3.3.1)

Runcalib
e > Rtr ≡ 30 cm (3.3.2)

Since the trigger condition is applied at run time, no calibration is applied to the cluster
energy and position, which is indicated by the superscript “uncalib”. Note further, that
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Figure 3.3.3: A typical neutral current DIS event. Clearly visible are the scattered elec-
tron with its large SpaCal cluster and multiple reconstructed tracks from the hadronic
final state.

no prescaling is applied for S3. We will discuss the S3 efficiency in chapter 8.

3.4 Event Reconstruction

3.4.1 Track Reconstruction
Charged particles in a homogeneous magnetic field follow a helical trajectory. To
account for multiple scattering, tracks are reconstructed using a broken line fit [Blo06],
which allows the trajectory to be composed of two subtracks. This accounts for nuclear
interactions with dead material, magnetic field inhomogeneities and energy loss. For
the central region, the track finding algorithm starts from a few CJC hits (track seed)
and successively adds hits from the CJC, COZ, CIP and silicon detectors. The resulting
objects are called Central Tracks.

In figure 3.3.2 a helical trajectory is drawn with its 5 parameters κ, dCA, φ0, θ
and z0. Here, κ = 1/R, dCA and φ0 describe the track in the rφ-plane, denoting
respectively its inverse radius , its “distance of closest approach” to the origin and its
azimuthal angle. In the rz-plane, the track is determined by the polar angle θ and the
value z0 of the point of closest approach to the z-axis.

A similar approach holds for tracks in the forward region of the detector (Forward
Tracks). Moreover, Combined Tracks are defined via a matching algorithm using
central and forward tracks.
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3.4.2 z-Vertex Position
The longitudinal vertex position zV tx (z-Vertex) can be obtained using two different
methods. Using the track detectors, it is obtained from essentially all tracks featuring
a compatible value for dCA in the rφ-plane, see [Blo06]. Tracks from the Central Jet
Chamber (CJC), the Forward Silicon Tracker (FST) and the Backward Silicon Tracker
(BST) are used. A weighted average over the parameters z0 is calculated. The other
spatial coordinates of the vertex position are then derived from the beam geometry.
Note, that from here on the event vertex obtained from this procedure is referred to
as CJC Vertex zCjcV tx.

The next step is a refit of all tracks originating from the primary vertex using the
CJC Vertex as a constraint. These objects are called Vertex Fitted Tracks.

The longitudinal vertex position can also be reconstructed using CIP hits from
the scattered electron. This is done by a fit procedure developed by S. Glazov and
S. Piec [Gla06]. First, CIP hits along a line between the electron SpaCal position
and the nominal vertex are searched for. Then, a linear fit in the rz-plane is done
using the SpaCal cluster position as a constraint. The event vertex obtained from this
procedure is referred to as CIP Vertex zCipV tx.

3.4.3 SpaCal Electron
To find electromagnetic particles in the SpaCal, a clustering algorithm is employed
[Sch96]. The cluster energy is then simply the sum over the energy deposits in all
contained cells i:

Ee :=
∑
i

Ei (3.4.1)

Moreover, we define the cluster position as a weighted sum over the positions of all
cells:

~r :=
∑
iwi~ri∑
iwi

(3.4.2)

The weight function is given by [A+92]:

wi = max
(

0, w0 + ln Ei∑
iEi

)
(3.4.3)

By choosing w0 = 4.8 an energy threshold is introduced.
The cluster size ECRA is defined in a similar manner [Gla], which is shown to be

rather independent from the cluster position:

ECRA :=

√√√√∑i w̃i (~ri − ~r)2∑
i w̃i

(3.4.4)

Here, w̃i is defined analogously to (3.4.3). To account for imperfections in the shower
simulation [GRP90] different thresholds are used for data (w̃data0 = 4.85) and Monte
Carlo (w̃MC

0 = 5.05).
This cluster size ECRA can be used as a discriminator to reduce hadronic back-

ground, which will be discussed in chapter 6.
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3.5 Reconstruction of Kinematic Variables
At its core, this analysis is a counting experiment, in which all events are binned
according to their inelasticity y and momentum exchange Q2. The kinematic variables
y and Q2, however, cannot be measured directly, but have to be reconstructed from
other variables, which are directly accessible trough the detector. There are different
ways to achieve this, which are referred to as reconstruction methods.

In this analysis, the electron method is employed by default and the double angle
method is used for calibration checks. Both techniques are described below. Other
common methods at H1 are the sigma method and the sigma electron method. A
review of the different reconstruction methods and a comparison of their strengths
and weaknesses is given in [Spi92].

3.5.1 Electron Method
In this analysis, the electron method is used. The electron method obtains the kine-
matic invariants ye and Q2

e from the energy deposit Ee and the polar scattering angle
θe of the scattered electron. From section 2.1 we see, that for Born level events we
have:

y ' ye := 1− Ee
Ebeam
e

· sin2
(
θe
2

)
(3.5.1)

Q2 ' Q2
e := 2EeEbeam

e · (1− cos θe) (3.5.2)

From analytical error propagation we obtain for the relative resolution:

∆ye
ye

= 1− ye
ye

√√√√√(∆Ee
Ee

)2

+
 ∆θe

tan
(
θe
2

)
2

(3.5.3)

∆Q2
e

Q2
e

=

√√√√(∆Ee
Ee

)2

+
(

tan
(
θe
2

)
·∆θe

)2

(3.5.4)

The advantage of this method is, that it makes use of the high SpaCal precision
in Ee and θe, which is given by (3.2.3) and (3.2.4). All other reconstruction methods
employ the hadronic final state (HFS), which is reconstructed with far less precision in
both energy and direction. In [BB95] different reconstruction methods are compared
for the H1 detector using the standard H1 detector simulation. They show, that for
medium and high y (i.e. y & 0.1) and low Q2 (i.e. 7 ' Q2 GeV2) the electron method
features a better resolution in both Q2 and x than the double angle and the sigma
method. This makes the electron method especially suitable for an inclusive SpaCal
analysis.

According to (3.5.3), the ye-resolution depends strongly on ye itself. Note, that
the ye-resolution is mainly limited by the energy resolution, since typically we have
∆θe ∼ 10−3. The Q2

e-measurement degrades for θe → π (“beampipe”) due to the
tan

(
θe
2

)
-factor in (3.5.4). Especially for high θe the resolution of θe becomes the

limiting factor for the Q2
e-resolution.

A draw-back of the electron method is its susceptibility to radiative effects. Con-
sider an ISR event emitting a photon from the incoming electron line. Then, the
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formulae (3.5.1) and (3.5.2) do not hold, and y and Q2 will be wrongly reconstructed.
A way to deal with this issue is described in subsection 5.1.4 and performed in chapter
11. It essentially introduces a bin wise correction to the cross section measurement,
that is determined by a Monte Carlo simulation.

3.5.2 Double Angle Method
In contrast to the electron method, the double angle method utilizes the hadronic
final state (HFS). Moreover, it is independent of the SpaCal energy measurement Ee
and such can be used for calibration cross checks of the SpaCal calorimeter. Let the
hadronic angle γh be given by:

tan
(1

2γh
)

:= (E − pz)HFS
(pt)HFS

(3.5.5)

It can be viewed as the polar angle of the scattered parton. Then, we can define
estimators for y, E and Q2 via:

y ' yDA :=
tan

(
1
2γh

)
tan

(
1
2γh

)
+ tan

(
1
2θe
) (3.5.6)

E ' EDA := Ebeam
e · 1− yDA

sin2
(
θe
2

) (3.5.7)

Q2 ' Q2
DA := 2EDAEbeam

e · (1− cos θe) (3.5.8)
We will make use of the double angle method in chapter 9.

3.6 SpaCal Calibration and Alignment
This analysis is essentially based on measurements of the SpaCal cluster energy Ee
and position Re. Therefore, we briefly review the calibration and alignment of the
electromagnetic part of the SpaCal calorimeter.

3.6.1 SpaCal Energy Calibration
The energy calibration is done in multiple steps. During data taking, the performance
of the photo multiplier tubes is monitored using pulsed LED signals and cross checked
using cosmic muons, establishing a raw cluster energy measurement Eraw

e for each
event. On analysis level, further calibration is done using the double angle method,
which compares the reconstructed energy EDA according to (3.5.7) with the raw cluster
energy Eraw

e . From this comparison, a correction prescription is derived, which in turn
is used to correct the cluster energy, Eraw

e → Ee. The correction prescription uses both
cell-specific calibration constants as well as functions of the cluster position [Col09].

The double angle method makes no reference to other calorimetric measurements.
However, it evidently relies on the quality of the measurement of the angles θe and γh.
Therefore, a special data subset around the kinematic peak (Ee ∼ Ebeam ≡ 27.6 GeV)
with well-reconstructed electron and hadronic final state is choosen as calibration
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sample, see [Col09]. The linearity of the energy measurement down to smaller electron
energies is tested with π0 → γγ decays.

Since cross section measurements are performed by comparison with a Monte Carlo
simulation, the focus of calibration tests is not on the absolute calibration scale, but
rather on the level of agreement of between data and simulation. We will perform
calibration tests in chapter 9.

3.6.2 SpaCal Alignment
The H1 coordinate system is defined by the positions of the CJC wires (x- and y-
coordinates) and the COZ (z-coordinates). Therefore, all other detector components
are aligned in respect to these two subdetectors.

The alignment of the SpaCal and the BPC is done using high energy electrons. The
polar and azimuthal angle of both, SpaCal clusters and CTD tracks are compared, i.e.
∆θ = θe − θCTD and ∆φ = φe − φCTD, see [Col09]. We will perform alignment tests
in chapter 9.



Chapter 4

Unfolding

Every measurement in experimental physics is influenced by the limited resolution and
the limited efficiency of the measuring device. Therefore, the measured distribution
will be distorted in many ways; moreover, statistical correlations between the data
points arise. However, our final goal is a cross section measurement, that is free from
all such detector effects.

Different ways exists to treat these issues. The traditional way is a bin wise effi-
ciency correction, which will be discussed in section 4.7. If the resolution of the detector
is a limiting factor for the measurement precision, this method is not sufficient, since
migration effects are not fully accounted for by this method.

The way unfolding addresses these issues is modelling the detector with all its res-
olution effects by a linear transformation A. This transformation maps a “true” dis-
tribution ξ : Rn → R, (α1, . . . , αn) → ξ (α1, . . . , αn) of a set of n variables α1, . . . , αn
onto a potentially distorted “measured” distribution A [ξ] : Rn → R, (α1, . . . , αn) →
A [ξ] (α1, . . . , αn) of those n quantities:

A : ξ → A [ξ]

With this transformation at hand, distortions in a measured distributionN (α1, . . . , αn)
can now be remedied by finding a distribution ξ (α1, . . . , αn) which satisfies:

A [ξ] = N (4.0.1)

If both the true and the measured distributions are given as discrete histograms ~x
and A [~x], then A can be described by a matrix A (response matrix), such that we
have A [~x] = A~x. A measured distribution ~N can then be corrected by solving the
following simple equation with respect to ~x:

~N = A · ~x (4.0.2)

A typical difficulty of the unfolding technique is the rank deficiency ofA. It emerges
due to the limited accuracy of the detector, which cannot discrimiate structures in the
data below its resolution scale. Therefore, the solution ~x becomes ambiguous, hence
(4.0.2) is under-constrained. This may result in large fluctuations in ~x, large error bars
and large bin to bin correlations.

To remedy this, a smooting prescription is imposed on the solution ~x, which is
denoted as regularization. At the price of potentially introducing a bias, the mea-
surement is thus freed from those unphysical fluctuations. Of course, a reasonable

27
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trade-off needs to be found. The determination of the right level of regularization is a
key challenge of each unfolding procedure.

In this chapter we discuss some of the general aspects of unfolding, as far as they are
needed for this analysis. We will introduce the basic definitions and the conceptual
framework, while its application to the data will be forwarded to chapter 10. The
reader who is familiar with unfolding might skip this chapter and come back to it
when needed. For further reading on unfolding, see [Cow, Blo02, D’A95, VB98, Zec,
Han00, HK96].

Note, that unless specified otherwise, we use the symbol ∆ for the absolute error
and the symbol δ for the relative error.

4.1 Detector effects
The way a detector affects the measurement is referenced to as detector effects.

Detector effects are studied using Monte Carlo simulations. In general, Monte
Carlo events are produced in three steps, which are denoted as generation, simulation
and reconstruction. During the generation phase, the physics properties of events are
simulated including event type and kinematic of all outgoing jets and particles. This
leads to generator level distributions of event specific variables. During the simulation
phase, the interaction of the outcoming particles with the detector and the signals in
the different detector components are simulated. From these simulated signals, tracks
and clusters are reconstructed just as it is done for the data events. Distributions
of reconstructed quantities are in this work referred to as detector level distributions.
More information on the simulation process is given in chapter 7.

To study detector effects, one can compare distributions on generator level and
detector level. Evidently, any quantitative determination depends strongly on the
quality of the Monte Carlo simulation. We will come back to this issue in more detail
in chapter 7 and 8.

There are two kinds of detector effects:
• Efficiency effects

• Migration effects
We will address both issues seperately.

4.1.1 Efficiency
In the context of this analysis multiple notions of efficiency have to be distinguished
carefully.

We refer to the reconstruction efficiency εreci in bin i as the probability for an event
originating from bin i to be measured somewhere in the detector (potentially even in
an underflow or overflow bin). This probability can be estimated using a Monte Carlo
simulation. Let NMC

ji be the number of simulated events that have been generated in
bin i and reconstructed in bin j. And let N gen

i be the number of simulated events that
have been generated in bin i. Then we have:

N gen
i =

incl∑
j

NMC
ji +NLost

i (4.1.1)
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Here, the sum runs over all detector level bins including overflow and underflow bins
and NLost

i quantifies the events that have been generated in bin i and have not been
reconstructed.

Then, the reconstruction efficiency εreci can be estimated by the following ratio ε̂irec:

εreci ' ε̂i
rec :=

∑incl
j NMC

ji

N gen
i

(4.1.2)

Note, that the notion of the reconstruction efficiency gathers all efficiency effects re-
lated to the measurement. These are the sensitivity and acceptance of the detector,
the efficiency of the reconstruction algorithm, the trigger efficiency and the efficiency
of applied analysis level cuts.

Another reason for efficiency losses lies in the limited phase space region, which is
under investigation (the bin grid area). An event that originates within the bin grid
can be reconstructed outside the bin grid due to migration effects. We refer to the bin
grid efficiency εgridi in bin i as the probability for an event that originates from bin i
and is measured in the detector, to be measured within the bin grid area. Again, this
probability can be estimated using a Monte Carlo simulation.

Using the above nomenclature, the bin grid efficiency εgridi can be estimated by the
following ratio ε̂igrid:

εgridi ' ε̂i
grid :=

∑excl
j NMC

ji∑incl
j NMC

ji

(4.1.3)

Here, the sum in the numerator runs over all detector level bins excluding the overflow
and underflow bins, while for the sum in the denominator these bins are included.

The product of reconstruction efficiency and bin grid efficiency will be called the
overall efficiency εi and is estimated by the following expression:

εi := εrecoi · εgridi '
∑excl
j NMC

ji

N gen
i

(4.1.4)

The absolute statistical uncertainty ∆εi of this quantity can be calculated in a binomial
manner:

∆εi =

√√√√εi · (1− εi)
N gen
i

(4.1.5)

Similar expressions hold for the reconstruction efficiency and the bin grid efficiency.
A widely used approximation for the overall efficiency is the fraction between the

number of reconstructed events N rec
i and the number of generated events N gen

i in bin
i. Since this quantity plays an important role in the context of bin-by-bin unfolding,
we will refer to it as bin-by-bin efficiency:

εbbbi := N rec
i

N gen
i

(4.1.6)

Here, we use:

N rec
i :=

incl∑
k

NMC
ik (4.1.7)
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Again, the sum runs over all generator level bins including overflow and underflow bins.
It must be emphasized that - in spite of its name - this quantity is not an efficiency in
the commonly used sense. In particular, it can be greater than 1, because the number
of reconstructed events N rec

i can in some cases exceed the number of generated events
N gen
i due to migration effects. Moreover, the formula (4.1.5) does not hold for the

uncertainty of the bin-by-bin efficiency, as can easily be seen by inserting εbbbi > 1
into (4.1.5). Instead, by treating the simulated events NMC

ij as Poisson-distributed,
∆NMC

ij '
√
NMC
ij , we obtain:

∆εbbbi = N rec
i

N gen
i

·

√√√√ 1
N gen
i

− 2 · NMC
ii

N gen
i N rec

i

+ 1
N rec
i

(4.1.8)

However, one typically uses a slightly more conservative approximation, which effec-
tively treats N gen

i and N rec
i as statistically independent:

∆εbbbi '
N rec
i

N gen
i

·
√

1
N gen
i

+ 1
N rec
i

(4.1.9)

The determination of all these efficiencies depends strongly on the quality of the
Monte Carlo simulation. Therefore, the simulated efficiencies have to be individually
cross checked with real and independent data samples. If discrepancies show up, these
can be addressed by corrrecting the Monte Carlo on detector level with an appropriate
weight function. We will come back to these issues in detail in chapter 8.

4.1.2 Migration
Events are not necessarily measured in the bins they originate from. Instead, they can
be reconstructed in one of the neighbouring bins. This effect is called migration. There
are two common reasons for migration, detector resolution and non-linear detector
effects. Limitations in the detector resolution lead to a smearing of the measured
distribution. A non-linear detector response will result in a systematic distortion of
the measured distribution.

One quantifies migration effects in terms of stability and purity. The stability si
in bin i refers to the probability for an event originating from bin i to be measured
in bin i. Again, this quantity has to be determined with a Monte Carlo simulation.
Using the nomenclature of subsection (4.1.1), this quantity can be estimated by the
following expression:

si ' ŝi := NMC
ii

N gen
i

= NMC
ii∑incl

k NMC
ki +NLost

i

(4.1.10)

The term purity pi in bin i refers to the probability for an event being measured in bin
i to originate in bin i. Using a Monte Carlo simulation this quantity can be estimated
by the following expression:

pi ' p̂i := NMC
ii

N rec
i

= NMC
ii∑incl

k NMC
ik

(4.1.11)
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Combination of (4.1.6), (4.1.10) and (4.1.11) shows a simple relation of stability, purity
and bin-by-bin efficiency:

εbbbi = si
pi

(4.1.12)

Both purity and stability depend strongly on the chosen bin-size. The choice of
larger bins can help to reduce the impact of migration on the data. However, the chosen
bin size puts a limit on the resolution of the measurement. Finding the right trade-
off between those two counteracting goals can be complex and needs to be carefully
adapted to the situation at hand. We will come back to this question in section 4.5.

Again, the determination of purity and stability depends strongly on the quality
of the Monte Carlo simulation. Therefore, the calibration and the resolution of the
detector has to be cross checked with independent data samples. This will be done in
chapter 9.

4.2 Regularized Unfolding
Efficiency and resolution of the detector can be modelled by a response matrix A. It
relates a generated distribution with its simulated and reconstructed “measurement”.

4.2.1 The Response Matrix
Let us choose a generator level bin grid Ggen with n bins Bi and a detector level bin grid
Gdet with m bins Bdetj . Then any generated distribution can be depicted as a vector
~N gen with n entries N gen

i which hold the number of generated events in bin Bi. Any
reconstructed Monte Carlo distribution ~N rec or any measured data distribution ~Ndata

is a vector with m entries, correspondingly.
Let Aji be the probability of an event generated in bin Bi to be measured in Bin

Bdetj . Then, the response matrix A is defined as the m × n-Matrix built from these
probabilities:

A := (Aji) (4.2.1)

The response matrix can be estimated by a Monte Carlo simulation. Using the nomen-
clature of section (4.1.1) we have the following expression:

Aji '
NMC
ji

N gen
i

(4.2.2)

We refer to the matrix NMC comprising the numbers NMC
ji as scaled response matrix.

Its entries NMC
ji simply represent the number of events that have been generated in

bin i and have been reconstructed in bin j:

NMC =
(
NMC
ji

)
(4.2.3)

Obviously, the generated distribution ~N gen and its reconstructed counterpart ~N rec

are related by a simple linear equation:

~N rec = A · ~N gen (4.2.4)
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The reponse matrix can be viewed as a mathematical model of the whole measurement
process. All efficiency and migration effects are encoded in its elements. Note for
example, that if the binning on generator and detector level is the same, a diagonal
element Aii of the response matrix corresponds to the stability of bin Bi, see definition
(4.1.10).

The basic idea of unfolding is now to utilize the response matrix to correct the
impact of smearing on the measured data distribution, i. e. to solve the linear equation
with respect to ~x:

~Ndata = A · ~x (4.2.5)

Here, the unfolded distribution ~x is a vector with n entries xi which hold the corrected
number of events in bin Bi.

4.2.2 Unfolding as an inversion problem
In most cases equation (4.2.5) cannot be solved directly. The naive ansatz ~x = A−1 ·
~Ndata is only defined, if m = n and if detA 6= 0. Both conditions are usually not
fulfilled. However, in most physics scenarios, one chooses a detector level bin grid Gdet
which is finer than the generator bin grid Ggen, i. e. m > n. In this case, the equation
system (4.2.5) is often over-determined and a “solution” can be found by minimizing
the following χ2-function with respect to ~x0:

χ2
A ( ~x0) :=

(
~Ndata −A · ~x0

)T
·COV −1

~Ndata ·
(
~Ndata −A · ~x0

)
(4.2.6)

Here, the COV −1
~Ndata denotes the inverse covariance matrix of the measured data

distribution ~Ndata [Bloa].
It is a straightforward calculation to find the solution ~x0 to (4.2.6). First, we

introduce the following abbreviation, in which we follow [Scha]:

E−1
0 := ATCOV −1

~NdataA (4.2.7)

By setting 0 = ∇~ξχ
2
A

(
~ξ
)∣∣∣
~ξ=~x0

one obtains:

~x0 =
[
ATCOV −1

~NdataA
]−1
·ATCOV −1

~Ndata
~Ndata

~x0 = E0A
TCOV −1

~Ndata
~Ndata (4.2.8)

Using standard error propagation, we can directly compute the covariance matrix
COV ~x0 for the unfolded distribution ~x0:

COV ~x0 =
[
E0A

TCOV −1
~Ndata

]
·COV ~Ndata ·

[
E0A

TCOV −1
~Ndata

]T
COV ~x0 = E0 (4.2.9)

Note, that if m = n and detA 6= 0, the solution ~x0 to (4.2.6) is also the direct
solution to (4.2.5). However, the solution ~x0 from (4.2.8) exists even under the much
weaker condition, that E−1

0 ≡ ATCOV −1
~NdataA is invertible, which is fulfilled in some

physics cases.
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More troublesome is the case, that E−1
0 ≡ ATCOV −1

~NdataA is not invertible. In
this much more frequent scenario, there is more than one solution to (4.2.6). From
an experimental perspective, this can be easily understood with regard to the limited
accuracy of the detector. Consider two distributions ~x1 and ~x2 with ~x1 6= ~x2, which
differ only on a scale much smaller than the dector resolution. This could for example
be a narrow peak in one of the two distributions, which is two small to be resolved
by the measuring device. Both distributions then yield the same detector response
~Ndata, i.e. we would have ~Ndata = A~x1 = A~x2 and both distributions minimize (4.2.6)
equally well.

In a typical situation in experimental physics, the matrix E−1
0 ≡ ATCOV −1

~NdataA

is invertible, but the determinant is close to zero, det
(
E−1

0

)
' 0. In this case, the

covariance matrix COV ~x0 = E0 will typically show large variances and correlations.
This frequent case emerges, whenever we have enough measured data to mathemati-
cally determine the solution ~x0 to (4.2.6), but due to the limited detector resolution
the data will not determine the solution experimentally, i.e. with reasonably small
statistical uncertainties. Then, the solution ~x0 will typically show large statistical cor-
relations between the entries. Moreover, the solution ~x0 will be determined by large
fluctuations and large error bars, making it inconclusive.

4.2.3 Regularization
The core of the problem is the ambiquity in the solution of (4.2.6). This problem can
only be overcome by making a choice! The method of regularized unfolding makes
such a choice by imposing the condition of smootheness on the solution ~x . This idea
embraces the fact, that only sufficiently smooth solutions ~x to (4.2.6) are of interest,
since any substructure below the resolution of the detector cannot be resolved.

We ensure the smoothness of the solution ~x by introducing a penalty term χ2
L (~x),

which will be added to the function (4.2.6), see [Bloa]. Thus, solutions with weak
fluctuations are favored in the minimization process:

χ2
L(~x) := C(~x− ~xTheory) (4.2.10)

χ2(~x) := χ2
A(~x) + τ 2 · χ2

L(~x) (4.2.11)

Here, C(~x) is a positive-valued function which measures the amount of fluctuations of
the solution ~x (curvature measure). The parameter τ is a number greater or equal
than zero (regularization parameter). Note, that in the definition of the penalty term,
the curvature appears in reference to the difference ~x − ~xTheory to some theoretically
expected distribution ~xTheory.

One of the most difficult and controversial issues regarding unfolding is the choice
of the regularization parameter. An array of methods has been developed to find the
right trade-off between smoothness on the one hand and safeguarding the measured
data against bias on the other. Some of these methods have been tested in this analysis.

Moreover, there are multiple possibilities to define the curvature measure C (~x),
some of which will be discussed in section 4.3. They can be viewed as quadratic forms
on the vector space of possible solutions ~x:

~x→ C (~x) = ~xTL2~x (4.2.12)
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Here, L2 is a symmetric, positive semi-definite n × n-Matrix, where n is the number
of generator level bins. With this notation, (4.2.10) becomes:

χ2
L(~x) =

(
~x− ~xTheory

)T
L2
(
~x− ~xTheory

)
(4.2.13)

To minimize (4.2.11), we define [Scha]:

E−1 := AT ·COV −1
~Ndata ·A+ τ 2 ·L2 (4.2.14)

By setting 0 = ∇~ξχ
2
A

(
~ξ
)∣∣∣
~ξ=~x

, we obtain for the optimum ~x:

~x =
[
ATCOV −1

~NdataA+ τ 2L2
]−1
·
[
ATCOV −1

~Ndata
~Ndata + τ 2L2 · xTheory

]
~x = E ·

[
ATCOV −1

~Ndata
~Ndata + τ 2L2~xTheory

]
(4.2.15)

Using standard error propagation, we can directly compute the covariance matrix
COV ~x for the unfolded distribution ~x:

COV ~x =
[
EATCOV −1

~Ndata

]
·COV ~Ndata ·

[
EATCOV −1

~Ndata

]T
COV ~x = E (4.2.16)

4.3 The Curvature Measure
In the context of this section we discuss three different types of curvature measures,
size regularization, derivational regularization and curvature regularization. These
methods are implemented in the Root-package TUnfold, which has been written by
S. Schmitt [Schb].

4.3.1 Notions of Curvature
The most simple measure of curvature studied in this analysis is referred to as size
regularization Csize(~x). Here, the squared Euklidian norm of the vector ~x is studied:

Csize(~x) :=
n∑
i=1

x2
i = ~xTL2

size~x (4.3.1)

When applied to the minimization of (4.2.11), the solution ~x is forced to be close the
theoretical expectation ~xTheory, thus statistical fluctuations are reduced.

The matrix L2
size is diagonal and has unit trace elements. The key advantages

of this ansatz are simplicity and the fact that it has been well studied in literature.
Moreover, it can easily be applied to more dimensional unfolding problems. An obvious
problem of the method is its tendency to bias the solution ~x towards the theoretical
expectation ~xTheory. Note in particular, that this bias not only affects the shape, but
also the normalisation of ~x.

An alternative measure of curvature is called derivational regularization Cderiv (~x).
For a one dimensional problem, we define:

Cderiv,1D(~x) :=
n−1∑
i=1

(xi+1 − xi)2 = ~xTL2
deriv,1D~x (4.3.2)
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Thus, for the matrix L2
deriv,1D we obtain:

L2
deriv,1D = LD ≡



1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1

 (4.3.3)

If the bin size is roughly constant throughout the bin grid, this measure can be viewed
as a “discrete first derivative” of ~x. Therefore, the minimization process favours so-
lutions with small fluctuations while preserving the global normalisation at the same
time.

The third measure of curvature is called curvature regularization Ccurve (~x). For a
one dimensional problem, we define:

Ccurve,1D(~x) :=
n−2∑
i=1

(xi+2 − 2 · xi+1 + xi)2 = ~xTL2
curve,1D~x (4.3.4)

Thus, for the matrix L2
curve,1D we obtain:

L2
curve,1D = LC ≡



1 −2 1
−2 5 −4 1
1 −4 6 −4 1

. . . . . . . . . . . . . . .
1 −4 6 −4 1

1 −4 5 −2
1 −2 1


(4.3.5)

If the bin size is roughly constant throughout the bin grid, this measure can be viewed
as a “discrete second derivative” of ~x. Therefore, the minimization process favours
solutions with small fluctuations while the global normalization and the slope of the
distribution are preserved.

Similar definitions can be found for the two dimensional case. Let the generator
level bin grid Ggen have n1 bins in the first and n2 bins in the second direction. Then,
~x is a n1×n2-matrix with entries xi1,i2 , each representing the number of events in one
of the bins Bi1,i2 . Moreover, the symbol L2

deriv,2D denotes a four-dimensional tensor.
However, we can still formulate the problem in the familiar framework of vectors and
matrices by introducing an index mapping, which will be referred to as bin numbering
scheme. This is done by allocating each bin Bi1,i2 a unique bin number i = ν2D (i1, i2)
via the prescription:

ν2D : {1, . . . , n1} × {1, . . . , n2} → {1, . . . , n1 · n2} , (i1, i2)→ ν2D(i1, i2) (4.3.6)

The choice of such a numering scheme is of course purely conventional, we choose a
lexical mode:

ν2D(i1, i2) := i1 · (n2 − 1) + i2 (4.3.7)
Unless specified otherwise, this bin numbering scheme will be used implicitly through-
out this analysis.
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We now write down a definition for the “discrete first derivative”:

C2D
deriv(~x) :=

n1∑
i1=1

n2−1∑
i2=1

(xi1,i2+1 − xi1,i2)2 +
n1−1∑
i1=1

n2∑
i2=1

(xi1+1,i2 − xi1,i2)2 = ~xTL2
deriv,2D~x

(4.3.8)
If the bin size is roughly constant throughout the bin grid, this measure can be thought
of as the Euklidian norm of the “gradient” of the distribution ~x. Using (4.3.7), we
obtain for L2

deriv,2D the following block matrix structure:

L2
deriv,2D =



LD + I −I
−I LD + 2 · I −I

. . . . . . . . .
−I LD + 2 · I −I

−I LD + 2 · I

 (4.3.9)

Here, the symbol LD is given by (4.3.3) and I denotes the unit matrix in n1 dimensions.
Persuing the idea of a “discrete second derivative”, we also define:

C2D
curve(~x) :=

n1∑
i1=1

n2−2∑
i2=1

(xi1,i2+2 − 2 · xi1,i2+1 + xi1,i2)2 +
n1−2∑
i1=1

n2∑
i2=1

(xi1+2,i2 − 2 · xi1+1,i2 + xi1,i2)2

C2D
curve(~x) = ~xTL2

deriv,2D~x (4.3.10)

If the bin size is roughly constant throughout the bin grid, this measure can be thought
of as the “Laplacian” of the distribution ~x. Using (4.3.7), we obtain for L2

curve,2D the
following block matrix structure:

L2
curve,2D = (4.3.11)



LC + I −2 · I I
−2 · I LC + 5 · I −4 · I I
I −4 · I LC + 6 · I −4 · I I

. . . . . . . . . . . . . . .
I −4 · I LC + 6 · I −4 · I I

I −4 LC + 5 · I −2 · I
I −2 · I LC + I


Here, the symbol LC is given by (4.3.5) and I denotes the unit matrix in n1 dimensions.

For the measurement of any differential distribution, the preservation of normal-
ization and slope seems to be a critical requirement. This is particularly true for the
measurement of a double differential ep cross section, which is dominated by large
slopes along the kinematical variables Q2 and y. On the other hand, statistical fluctu-
ations are expected to appear mainly in the second derivative of the solution ~x. This
is due to the nature of migration, which leads to strong negative correlations between
neighbouring data points xi. In the light of all this, the curvature regularization seems
to be the most adequate method and has indeed been chosen for this analysis.
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4.3.2 Uniformity Conditions
While the usage of “discrete derivatives” appears to be far better motivated than simple
size regularization, it can introduce various problems. The first one is a regional scaling
problem. Consider a measurement suffering from migration effects which vary strongly
between different regions of the phase space. The significance of a “peak” in the data
will then depend on the phase space region; it can be of physical nature in areas of low
migration and can be of purely statistical nature in highly smeared regions. However,
the above measures do not account for that. The core of the problem is, that Cderiv(~x)
and Ccurve(~x) contain no information about the detector resolution Λ(i) in bin Bi, none
about the chosen bin size Vol(i) and therefore none about the actual migration effects.

The second problem is a directional scaling problem; it is specific to more dimen-
sional scenarios. Consider a two dimensional measurement suffering from migration
effects which are very different between the two variables under investigation. Whether
derivational changes in the solution ~x are of statistical or physical nature, depends on
the direction. Again, the measures Cderiv(~x) and Ccurve(~x) cannot account for that,
since they lack information about the migration effects.

Both issues could in principle be addressed by introducing scaling functions Sc(i),
which encode the migration effects as a function of the bin number i, i.e. the phase
space region. With these, the definitions (4.3.2) and (4.3.4) can be extended:

Cscaledderiv,1D(~x) :=
n−1∑
i=1

Scderiv (i) · (xi+1 − xi)2

Cscaledcurve,1D(~x) :=
n−2∑
i=1

Sccurve (i) · (xi+2 − 2 · xi + xi)2

For the two dimensional case we need two scaling functions Sc1(i1, i2) and Sc2(i1, i2)
which are both funtions of both variables. The extended definitions of (4.3.8) and
(4.3.10) are:

Cscaledderiv,2D(~x) :=
n1∑
i1=1

n2−1∑
i2=1

Scderiv1 (i1, i2) · (xi1,i2+1 − xi1,i2)2 +

n1−1∑
i1=1

n2∑
i2=1

Scderiv2 (i1, i2) · (xi1+1,i2 − xi1,i2)2

Cscaledcurve,2D(~x) :=
n1∑
i1=1

n2−2∑
i2=1

Sccurve1 (i1, i2) · (xi1,i2+2 − 2 · xi1,i2+1 + xi1,i2)2 +

n1−2∑
i1=1

n2∑
i2=1

Sccurve2 (i1, i2) · (xi1+2,i2 − 2 · xi1+1,i2 + xi1,i2)2

While the definition of such scaling functions seems to be a highly non-trivial task,
in many physics scenarios they turn out to be surprisingly simple. Consider, that the
choice of the generator level bin grid Ggen is a fundamental decision of every analysis,
which is driven by the two counteracting goals of a high number of data points on
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the one hand and sufficient decorrelation of the data points on the other. Therefore,
the bin size will often be chosen proportional to the detector resolution. For a two
dimensional scenario, we would have:

Length1 (Bi1,i2) ' const · Λ1 (i1, i2) (4.3.12)

Length2 (Bi1,i2) ' const · Λ2 (i1, i2) (4.3.13)
Here, Lengthµ (Bi1,i2) denotes the length of the rectangular bin Bi1,i2 in the µ-th direc-
tion and Λµ (i, j) measures the detector resolution in the µ-th direction. In this case,
the level of migration will be roughly constant throughout the bin grid. In the context
of this analysis, we speak of regional conformity:

si1,i2 ' sl1,l2∀i1, i2, l1, l2 (4.3.14)

Here, si1i2 denotes the stability in bin Bi1,i2 . Moreover, the stability will not differ
between the two directions of the bin grid, which we refer to as directional conformity:

s1
i1 ' s2

i1 ' s1
i2 ' s2

i2∀i1, i2 (4.3.15)

Here, sµiλ denotes the stability in the µ-th direction at the bin iλ in the direction λ.
If regional and directional conformity is given, we can set:

Sc1(i1, i2) = Sc2(i1, i2) = 1∀i1, i2 (4.3.16)

The bin grid Ggen should be chosen such, that (4.3.14) and (4.3.14) are approximately
fulfilled. This means, that the bin sizes have been choosen according to the resolution
in both directions.

4.3.3 Bin Wise Measures of Curvature
The curvature measures discussed above can be defined in a bin wise manner [Schb].
This will be helpful especially in two dimensions, when we need to extend the curvature
measures of subsection 4.3.1 to non-rectangular bin grids. Note, that in this subsection,
we implicitly use the bin numbering scheme (4.3.7) for the two dimensional case, even
if not explicitely mentioned.

We start with the size regularization for the one dimensional case. We introduce
a positive semi-definite quadratic form Kisize(~x) for every bin Bi with the following
simple structure:

Kisize(~x) := x2
i = ~xTKi

size~x (4.3.17)(
Ki

size

)
lk

= δil · δik (4.3.18)

Now we define the curvature measure of size regularization Csize as the sum of the bin
wise measures Kisize,1D:

Csize :=
∑
i

Kisize (4.3.19)

Here, the sum runs over all bins Bi that enter the unfolding process. By compari-
son with (4.3.1), we have redefined the curvature measure of size regularization from
subsection 4.3.1.
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For derivational regularization, we introduce a positive semi-definite quadratic form
K(i,j)
deriv(~x) for every neighbouring pair1 (Bi,Bj) of bins with the following structure:

K(i,j)
deriv(~x) := (xi − xj)2 = ~xTK

(i,j)
deriv~x (4.3.20)(

K
(i,j)
size

)
lk

= δli · δki − δli · δkj − δlj · δki + δlj · δkj (4.3.21)

Now we define the measure of derivational regularization Cderiv as the sum of these bin
wise measures K(i,j)

deriv:
Cderiv :=

∑
(i,j)
K(i,j)
deriv (4.3.22)

Here, the sum runs over all neighbouring pairs (Bi,Bj) of bins that enter the unfolding
process. By comparison with (4.3.2) and (4.3.8), we have redefined the curvature
measure of derivational regularization from subsection 4.3.1.

For curvature regularization, we introduce a positive semi-definite quadratic form
K(h,i,j)
curve (~x) for every neighbouring triple1 (Bh,Bi,Bj) of bins with the following structure:

K(h,i,j)
curve (~x) := (xh − 2 · xi − xj)2 = ~xTK(h,i,j)

curve ~x (4.3.23)(
K(h,i,j)

curve

)
lk

= δlh · δkh − 2 · δlh · δki + δlh · δkj

− 2 · δli · δkh + 4 · δli · δki − 2 · δli · δkj (4.3.24)

+δlj · δkh − 2 · δlj · δki + δlj · δkj
Now we define the curvature measure of curvature regularization Ccurve as the sum of
the bin wise measures K(h,i,j)

curve :

Ccurve :=
∑

(h,i,j)
K(h,i,j)
curve (4.3.25)

Here, the sum runs over all neighbouring triples (Bh,Bi,Bj) of bins that enter the
unfolding process. By comparison with (4.3.4) and (4.3.10), we have redefined the
curvature measure of derivational regularization from subsection 4.3.1.

The advantage of this nomenclature becomes instantly apparent, when a curva-
ture measure needs to be defined for a non-rectangular two dimensional bin grid. In
these cases, the “property of neighbourhood” of a pair (Bi,Bj) or triple (Bh,Bi,Bj) of
bins needs to be checked individually and the definitions (4.3.22) and (4.3.25) can be
adapted, accordingly. Definitions (4.3.8) and (4.3.10) fail to account for such cases.

Like the definitions from subsection 4.3.1, the bin wise curvature measures can be
viewed as the discretization of continous curvature measures. For the one dimensional
case, consider the distributions

Kξ : C2 (R)→ R, f → Kξ(f) := [f(x)]2
∣∣∣
x=ξ

K′ξ : C2 (R)→ R, f → K′ξ(f) :=
[
∂

∂x
f(x)

]2
∣∣∣∣∣∣
x=ξ

1Whether two or more bins fulfill the property of neighbourhood needs to be determined according
to the geometry of the problem.
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K′′ξ : C2 (R)→ R, f → K′′ξ (f) :=
[
∂2

∂x2f(x)
]2
∣∣∣∣∣∣
x=ξ

By discretization, we directly recover the measures Kisize, K
(i,i+1)
deriv and K(i,i+1,i+2)

curve ac-
cording to (4.3.17), (4.3.23) and (4.3.23).

4.4 Adjustment of Regularization
One of the most difficult issues of the unfolding process is the determination of the
regularization parameter τ , which determines the level of smoothing in the minimiza-
tion process (4.2.11). In this context, three different methods will be discussed which
each motivate their own choice of τ .

4.4.1 The L-curve Method
The L-curve method is a graphical approach to adjust the level of regularization
[Han00]. The Root-package TUnfold provides an implementation, see also the docu-
mentation there [Schb].

We start from a parametric plot of the two terms χ2
A (~x (τ)) and χ2

L(~x (τ)) in
(4.2.11), which are drawn as a logarithmic function of τ :

L : τ →
{
Lx(τ) := logχ2

A (~x (τ))
Ly(τ) := logχ2

L (~x (τ)) (4.4.1)

Here, ~x (τ) is given by (4.2.15). Note, that Lx (τ) measures the data compatibility
of the solution ~x (τ), while Ly (τ) measures its smoothness. Therefore, Lx(τ) rises
monotonously with τ , while Ly (τ) monotonously decreases. For small τ , Ly (τ) typ-
ically decends fast, while Lx (τ) stays constant. For large τ , however, a decrease of
Ly (τ) always comes at the price of an increase in Lx (τ). As a result of all this, the
plot of the function L will typically have the shape of an “L”, showing a more or
less distinct kink on its course. For an example, see figure 10.2.1 in chapter 10. The
position of the kink is regarded the best compromise between data compatability and
smoothness.

To pin down the L curve kink mathematically, we search for a value τL such that
the function L has maximum curvature at that point. The program TUnfold achieves
this by a scanning procedure over m scan points τ1, . . . , τi, . . . , τm. First, the values
of Lx(τi) and Ly(τi) are determined for all i; then, both lists of pairs (τi,Lx(τi)) and
(τi,Ly(τi)) are fitted by spline functions of third order Lsplinex (τ) and Lspliney (τ). By
construction we then have Lsplinex (τ) ' Lx(τ) and Lspliney (τ) ' Ly(τ). Now, for each
point τi the following curvature measure CL (τi) is compared:

CL (τi) :=
L̇splinex (τ) · L̈spliney (τ)− L̇spliney (τ) · L̈splinex (τ)√(

L̇splinex (τ)
)2

+
(
L̇spliney (τ)

)23

∣∣∣∣∣∣∣∣∣
τ=τi

(4.4.2)

Here, the symbols L̇splinez (τ) and L̈splinez (τ) denote the first and second derivatives of
the spline functions with respect to τ with z = x, y. For τL we choose the value that
maximizes CL (τi).
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One of the advantages of the L curve method is, that it is intuitive, well-motivated
and simple to use. It works equally well with either size regularization, derivational
regularization or curvature regularization.

It must be emphasized tough, that the L curve method intends to simply find
a compromise between data compatability and smoothness. It implicitly separates
small-scale structures (high χ2

L) in the solution ~x from large-scale structures (small
χ2
L) and damps the small-scale structures away. However, even small-scale structures

in the solution ~x can contain physical information. This is particularly true, if the
measured distribution has large slopes and second derivatives, which is the case for
double differential cross sections. Therefore, one has to check whether the choice τL
sufficiently preserves all physical information. We will come back to this question in
chapter 10.

4.4.2 Algebraic Method
An algebraic approach to unfolding has been proposed by V. Blobel [Blo02], from
now on referred to as algebraic method. At the core of this approach a three step
linear transformation T = T 3T 2T 1 on the unregularized result ~x is introduced, which
removes all stastistical correlations between the data points. Moreover, smooth con-
tributions to ~x and such of high curvature will be separated. The entries (T~x)i of
the transformed vector T~x can then be studied independently, particularly in terms
of their statistical significance.

The first transformation T 1 is an orthogonal projection onto the eigenvectors of
the inverse covariance matrix COV −1

~x0
of the unregularized result ~x0. Since COV −1

~x0
is symmetric, we can find an orthogonal n× n-matrix U and a diagonal n× n-matrix
D such, that U ·D · UT = COV −1

~x0
. The trace elements of D are the eigenvalues

of COV −1
~x0

and the column vectors of U are the corresponding unit eigenvectors. We
now define:

T 1 : Rn → Rn, ~x→ T 1~x = UT~x (4.4.3)

The covariance matrix COV T 1~x0 of the transformed unregularized result is then di-
agonal:

COV T 1~x0 = UT ·COV ~x0 ·U ≡
1
D

(4.4.4)

This means, the coefficients (T 1~x0)i are uncorrelated; their variance is given by the
i-th inverse eigenvalue Dii of COV −1

~x0
.

The second transformation T 2 scales the components of T 1~x such, that their vari-
ances become all equal to 1. We define:

T 2 : Rn → Rn, ~x→ T 2~x =
√
D~x (4.4.5)

Note, that since COV −1
~x0

is positive semidefinite, its eigenvalues are positive or zero
and the square root (√

D
)
lm

=
√
Dlm (4.4.6)

is well defined. Then, the covariance matrix COV T 2T 1~x0 is given by:

COV T 2T 1~x0 =
√
D · 1

D
·
√
D

T
≡ I (4.4.7)
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Here, I denotes the unit matrix. All coefficients (T 2T 1~x0)i are uncorrelated and have
unit variance.

The third transformation T 3 is an orthogonal projection onto the eigenvectors of
the transformed curvature matrix L̃2:

L̃
2 ≡

(
(T 2T 1)−1

)T
·L2 · (T 2T 1)−1 = 1√

D
·UT ·L2 ·U · 1√

D
(4.4.8)

Obviously, L̃2 is symmetric and can again be diagonalized by an orthogonal matrix B
and a diagonal matrix S, such thatB ·S ·BT = L̃

2. Then, S contains the eigenvectors
of L̃2 and the columns of B the corresponding unit eigenvectors. Without loss of
generality we can choose S such, that the following ordering condition is fulfilled:

S11 ≤ S22 ≤ ... ≤ Snn (4.4.9)

For the third transformation T 3 we define:

T 3 : Rn → Rn, ~x→ T 3~x = BT~x (4.4.10)

The covariance matrix COV T 3T 2T 1~x0 of the transformed unregularized result is still
equal to the unit matrix:

COV T 3T 2T 1~x0 = BT · I ·B ≡ I (4.4.11)

In order to further study the full transformation

T ≡ T 3 · T 2 · T 1 (4.4.12)

we calculate the vectors:
~ak := T−1~ek∀k < n (4.4.13)

Here, ~ek denotes the k-th unit vector. We call the vectors ~ak modes, since every solution
~x can now be viewed as linear combination of these ~ak with statistically independent
coefficients:

~x =
∑
k

(T~x)k ~ak (4.4.14)

We now study the coefficient (T~x0)k of the unregularized result for every mode
independently. In particular, the coefficients can be classified according to their sta-
tistical significance. This is done by comparing the absolute mean value |T~x0| of
each coefficient to its variance, which is 1. We only treat those modes as statistically
significant, for which the following significance criterion is fulfilled:

|T~x0| > ζ ' 3.84 (4.4.15)

Obviously, the value of the parameter ζ can be used for steering. For this analysis,
the rather high value of ζ ' 3.84 has been chosen; this corresponds to the width of
the 95% confidence interval of a normally distributed variable with known variance
1. The number of statistically significant modes is called the effective dimension n0,
which is always less than or equal to n.

For an example, see figure 10.2.3 in chapter 10 which will be explained in all detail
there. Essentially, it shows the measured and the expected double-differential cross
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section for neutral current ep-scattering, both transformed according to (4.4.12). The
descent of the coeffientents (T~x0)k with k is clearly visible as well as dropping below
the significance threshold ζ ' 3.84.

Note, that the study of the significance of individual modes - and in particular
the effective dimension n0 - depends on the curvature measure L2, which enters the
definition of the third transformation T 3. Consider, that T 3 is orthogonal for every
choice of L2 and will thus always give a unit covariance matrix COV T 3T 2T 1~x0 = I,
while T 3T 2T 1~x0 can vary significantly with L2. However, if the curvature measure
L2 is well chosen, an insignificant coefficient (T~x0)i will belong to a mode ~ai of high
curvature, meaning that it corresponds to a large eigenvalue Sii of L̃

2.
The effect of T on a regularized solution ~x (τ) can be calculated from (4.2.15). Let

L̂
2 denote the fully transformed curvature matrix:

L̂
2
≡
(
(T 3T 2T 1)−1

)T
·L2 · (T 3T 2T 1)−1 (4.4.16)

We obtain by direct computation:

T~xτ = BT ·
√
D ·UT ·

AT ·COV −1
~Ndata · ~Ndata

E−1
0 + τ 2L2 + τ 2E0L

2~xTheory



T~xτ = BT ·
√
D ·UT · E

−1
0 ·U ·

√
D
−1 ·B

E−1
0 + τ 2L2 (T~x0) + τ 2L̂

2 (
T~xTheory

)
T~xτ = 1

I + τ 2 · S
(T~x0) + τ 2L̂

2 (
T~xTheory

)
(4.4.17)

For now, set ~xTheory = 0. Then, the regularization can be viewed as a damping of the
coefficients (T~x0)i with high curvature eigenvalues Sii:

(T~xτ )i = 1
1 + τ 2 · Sii

(T~x0)i (4.4.18)

This means, that the contribution of modes ~ak with τ 2 ·Skk & 1 will effectively be cut
away. Therefore, the effective dimension n0 suggests a choice τA for the regularization
parameter. By summing up the damping factors 1

1+τ2·Sii we obtain:

η (τ) =
∑
i

1
1 + τ 2 · Sii

(4.4.19)

Now, we set:
η(τA) = n0 (4.4.20)

This means, that we identify the number of effective dimensions n0 from a significance
analysis of the unregularized modes, then (4.4.19) will be inverted to find τA.

4.4.3 Global Correlation Method
A third choice for the regularization parameter τC can be motivated by using the
notion of global correlation [Blob]. The idea is to find a quantity, that measures the
correlation of the event count xi in a bin Bi to its whole environment, i.e. to the event
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counts xj in all surrounding bins Bj with j 6= i. Such a correlation measure is then
naturally a τ -dependent function. Thus, an optimum choice for τ can be obtained
from minimizing this function with respect to τ .

To define such a correlation measure for bin Bi, we scan all linear combinations
λi = ∑

j 6=i αj · xj of data points (αj ∈ R) for the combination λmaxi which maximizes
the correlation Corr (xi,λi) with bin Bi. More formally, let the generator level bin grid
Ggen have n bins. For every bin Bi, we define the set Λi of linear combinations of all
environmental data points xj with j 6= i:

Λi :=

λi
∣∣∣∣∣∣λi =

∑
j 6=i

αj · xj, αj ∈ R

 (4.4.21)

Then, the global correlation ρi in bin Bi is defined as the maximum of correlations
between xi and any linear combination λi ∈ Λi [Jam, Bloc]:

ρi := max
λi∈Λi

(Corr (xi,λi)) (4.4.22)

While the definition (4.4.22) seems to be involved, the global correlation can easily be
computed from the covariance matrix COV ~x of ~x [Bloc]:

ρi =
√√√√1− 1

(COV ~x)ii ·
(
COV −1

~x

)
ii

(4.4.23)

Note, that by construction ρi is always a real number between 0 and 1.
The notion of global correlation is useful, since it provides information on how a

single data point is correlated to its whole environment. Moreover, it is sensitive to
the choice of τ. For very small τ (under-smoothing), the global correlation ρi (τ) will
show rather large values (close to 1), which will decrease with rising τ . This is due to
the large negative bin-to-bin-correlations which are introduced by migration. For very
large τ (over-smoothing), the behaviour of ρi (τ) depends on the curvature measure.
For size regularization, ρi (τ) tends to 0, while for derivational and curvature regu-
larization ρi (τ) rises again with τ . This is, because these curvature measures mainly
constrain the first and second derivative of the measured distribution, introducing
positive bin-to-bin correlations.

Care needs to be taken, if a bin Bi is situated close to a bin Bj of very low efficiency
(low efficiency bin). A low efficiency bin is poorly constrained by data. Therefore, due
to the smoothing prescription, its value xj can be fully determined by its neighbouring
bin xi. In this case, a large positive correlation ρij would arise. These correlations
would strongly contribute to the global correlation of bin Bi.

We can avoid this problem by noting, that many bins of low efficiency have to be
excluded from quotation anyhow, since they suffer from large systematic uncertainties.
Therefore, we define the reduced global correlation which essentially ignores all the bins
that lack our interest. Pratically, only those bins should enter our notion of reduced
global correlation, that will be quoted in the end. Starting from COV ~x we define the
submatrix COV red

~x by removing the columns and rows of those bins that are not to
be quoted. Then we set:

ρredi :=
√√√√√1− 1(

COV red
~x

)
ii
·
((
COV red

~x

)−1
)
ii

(4.4.24)
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This quantity shows the same properties as ρi does, besides being more reliable at
the edges of the bin grid. On the other hand, it is not defined for non-quotable bins,
particularly overflow bins. For brevity, we will use the term “global correlation” and
its symbol ρi to refer to the definition given in (4.4.24).

In the context of derivational and curvature regularization, this behaviour of ρi(τ)
can be used to define an optimum regularization parameter τC by minimizing ρi (τ)
as a function of τ . To achieve such a minimization for the bin grid as a whole, we
introduce some averaging notions. We define the maximum global correlation as:

ρmax (τ) = max
i

(
ρredi (τ)

)
(4.4.25)

We define the averaged global correlation as:

ρav (τ) = 1
n

n∑
i=1

(
ρredi (τ)

)
(4.4.26)

We define the averaged squared global correlation as:

ρavsq (τ) = 1
n

n∑
i=1

(
ρredi (τ)

)2
(4.4.27)

Note, that the sum in these definitions should run only over those bins, for which the
reduced global correlation is defined.

By minimizing each of these functions, similar values τC for the regularization
parameter can be obtained. For an example, see figure 10.2.7 in chapter 10. For
a two dimensional unfolding analysis performed there, it shows the averaged global
correlation ρav (τ) and the averaged squared global correlation ρavsq (τ) as a function
of the regularization parameter τ . The minimum τC is clearly visible.

The choice τC for the regularization level minimizes bin-to-bin correlations. This
means, that the covariance matrix COV ~x will typically be rather diagonal. This is
useful, whenever the researcher’s interest lies mainly in the shape of the measured
distribution rather than statistical uncertainties and correlations.

4.4.4 Comparison of Regularization Levels
The three different methods described in the preceding subsections each provides their
own regularization parameter, τL, τA and τC . They each have advantages and draw-
backs.

The algebraic method aims at finding a solution ~x, that maximizes the information
captured from the data while leveling out unphysical fluctuations. This is reflected in
cutting away only those entries from T~x0 that are truly insignificant. Therefore, the
choice of τA is rather conservative. Some curvature might still remain in the solution
~x, as long as it is statistically significant. Moreover, data points xi might still be
negatively correlated. While the statistical uncertainties will typically be rather large,
they are inconclusive. This is, because they are contaminated by contributions from
bin to bin correlations.

The result τC from the global correlation is typically higher than τA. It minimizes
the bin to bin correlations, potentially sacrificing some statistically significant infor-
mation. We end up with a solution ~x, that is smoother than that from the algebraic
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method. Moreover, it shows smaller and more realistic statistical uncertainties. It is
the method of choice, if one needs to visualize the shape of the distribution ~x or is
interested in the statistical accuracy of the measurement.

The L curve method tries to find a trade-off between data compatability (χ2
A) and

curvature (χ2
L). Its output τL is therefore typically close to the result of the global

correlation method.

4.5 The Choice of the Bin Grid
The notions of purity pi and stability si reflect both the detector performance and the
characteristics of the chosen bin grid. Therefore, a careful choice of the involved bin
sizes is imperative. For the generator level bin grid Ggen, a number of conditions can
be listed, which should be fulfilled for a sucessful unfolding procedure.

4.5.1 Detector Resolution
At first, the bin grid Ggen should reflect the resolution scale of the detector. In princi-
ple, unfolding provides a technology to de-blur measured data to scales far below the
detector resolution. However, the success of such a procedure depends strongly on
the reliability of the detector simulation. The smaller the bin size, the stronger is the
influence of the response matrix NMC on the unfolding result ~x, and the stronger the
systematic uncertainty on the entries NMC

ji will affect ~x.
From an experimental viewpoint, this is clear, because the information contained in

the measured data ~Ndata is limited, regardless of the chosen bin size. Mathematically, it
is reflected in formula (4.8.16): If the bin sizes are smaller than the detector resolution,
large off-diagonal elements Eji of E =

(
AT ·COV −1

~Ndata ·A
)−1

will emerge. These will
increase the dependence of the unfolding result ~x on the elements NMC

ji , see (4.8.16).
Therefore, by error propagation, large systematic uncertainties will be introduced on
the result ~x.

A choice for the bin size can be made exploiting the notion of stability. For one
dimensional problems, one can choose a bin grid Ggen such, that the stability roughly
takes on a constant value s1D for every bin Bi:

si ' s1D (4.5.1)

To motivate a reasonable choice for s1D, consider the simple case, in which a
measured quantity ηmeas is Gaussian distributed around its true value µ = ηtrue with
a variance σ2 = Λ2. Here, Λ reflects the detector resolution scale, which in this example
is assumed to be constant throughout the bin grid. Then, the stability of s1D ' 80%
reflects the reasonable choice of ∼ 2.5Λ for the bin width:

s1D ' 80% (4.5.2)

Note, that the notion of stability is applicable even to those frequent cases, in which
detector effects are neither Gaussian distributed nor show a constant resolution scale.

For the two dimensional case, the stability should be both constant throughout the
bin grid Ggen and independent of the direction:

si,j ' s2D∀i, j (4.5.3)
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ski ' slj ' s1D∀i, j ∀k, l ∈ {1, 2} (4.5.4)
Note, that these two conditions correspond to the condition of regional and directional
conformity, (4.3.14) and (4.3.15).

To motivate a choice for s2D, assume two quantities ηmeas1 and ηmeas2 which are
Gaussian distributed around their true values µ1 = ηtrue1 and µ2 = ηtrue2 and with
variances σ2

1 = Λ2
1 and σ2

2 = Λ2
2 reflecting two constant resolution scales. The choice

of rectangular bins with the widths ∼ 2.5Λ1 and ∼ 2.5Λ2 then leads to a stability of
s2D ' 60%. Therefore, for the two dimensional case we can reasonably choose:

s2D ' 60% (4.5.5)

Note, that for underflow and overflow bins the conditions (4.5.1), (4.5.5) and (4.5.4)
are typically not fulfilled.

4.5.2 Effective Dimension
The second constraint on the bin grid concerns the effective dimension n0. In sub-
section 4.4.2 it has been pointed out, that n0 counts the statistically independent
data points of the measurement. Therefore, n0 can be used to estimate the optimum
number of bins n in the bin grid.

Note, however, that the effective dimension n0 is a direct property of the trans-
formed result T 3T 2T 1~x and such depends on the response matrix A, the curvature
measure, the data distribution and its statistical uncertanties. This shows, that the op-
timum binning is not a mere question of the detector resolution. It also depends on the
functional shape under investigation ( ~Ndata), the available data statistics (COV ~Ndata)
and the researcher’s notion of curvature (~x→ C(~x)).

Note further, that the effective dimension n0 depends on the number of bins n
chosen in the first place, and that we have n0(n) < n. This reflects the natural
correlations between the bins. These can never be completely suppressed, regardless
of the bin size and the bins are never truly statistically independent (i.e. n0(n) = n).
Therefore, to adjust the number of bins to n0 (n) , i.e. n → n′ ' n0(n) contains the
risk of loosing information, since we will have n0(n′) < n0(n). To avoid the dependence
on n and loss of information, n should be chosen such that we have:

n & 1.5 · n0(n) (4.5.6)

In some cases bin grids contain nZE bins with vanishing efficieny (“zero efficiency
bins”), see section 4.5.3. This is often the case in two dimensional scenarios, if the
rectangular bin grid reaches out of the acceptance region of the detector. The measured
data do not contain information on these nZE bins. As described in section 4.5.3, these
bins must be removed prior to unfolding. In this case, the number n in this subsection
must be replaced with:

n = nall − nZE (4.5.7)

4.5.3 Quotable and Non-Quotable Bins
Once a generator level bin grid Ggen is found, not all bins are alike. In particular, there
are bins Bi for which the unfolding result xi must not be quoted, since we cannot trust
it. We refer to these as non-quotable (NQ) bins.
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The overflow (OF) bins will be regarded as non-quotable. This is, because every
overflow bin covers an infinite phase space region, which the detector model must
naturally fail to simulate. Of course, this does not relax the necessity to carry all
overflow bins through the unfolding process.

In many cases the efficiency ε varies strongly throughout the bin grid. Often, this
is due to the boundaries of the detector acceptance, which lead to “blind spots” in
some phase space regions of the bin grid. One can define an efficiency threshold εtr
and exclude all those bins from quotation that fail to satisfy the following efficiency
condition:

εi ≥ εtr (4.5.8)
We call such bins low efficiency (LE) bins, as long as they are not overflow bins. We
cannot trust the unfolding result xi in a low efficiency bin Bi, since it is afflicted with
a rather large systematic uncertainty from the efficiency modelling of the Monte Carlo
simulation. Of course, the threshold εtr is a tunable parameter, the choice of which
depends on the problem under investigation. The question, whether all low efficiency
bins have to be carried trough the unfolding process, will be addressed in the section
4.5.5.

A more intricate problem emerges from those low efficiency bins, for which the
efficiency exactly vanishes. These are called zero efficiency (ZE) bins. The solution
xi of a zero efficiency bin Bi is not constrained by any data and thus Bi has to be
excluded from unfolding. The procedure for that is described in section 4.5.5.

For further clarity, we introduce the following notation: Let nall denote all generator
level bins, nOF the number of overflow bins, nLE the number of low efficiency bins,
nZE the number of zero efficiency bins, nQO the number of quotable bins, nNQ the
number of non-quotable bins and n the number of generator level bins entering the
unfolding process. Then we have:

n = nall − nZE (4.5.9)

nQO = nall − nNQ = nall − nOF − nLE (4.5.10)

4.5.4 The Detector Level Bin Grid
In general, the choice of the detector level bin grid Gdet is less intricate. A general rule
is, to choose Gdet finer than Ggen, in order to avoid loss of resolution [Blo02]. Typically
one uses for every dimension twice as many bins on the detector level than one uses
on the generator level. For two dimensions, this leaves us with four detector level bins
for each non-overflow generator level bin.

Attention needs to be paid to those detector level bins, which do not contain any
data, i.e. for which Ndata

i = 0. We call them empty (EM) bins. Since the event counts
Ndata
i are assumed to be Poisson-distributed, these bins have vanishing statistical

uncertainty; this leads to a covariance matrix COV ~Ndata that can not be inverted.
The empty bins have to be excluded from unfolding.

For further clarity, we introduce the following notation: Letmall denote all detector
level bins, mOF the number of overflow bins on detector level, mEM the number of
empty bins and m the number of detector level bins that enter the unfolding process.
Then we have:

m = mall −mEM (4.5.11)
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4.5.5 Treatment of Low Efficiency Bins
While it is clearly imperative to carefully account for every overflow bin, the question
arises, whether every low efficiency bin needs to be carried trough the whole unfolding
process. Two possible approaches are available: To cut out the low efficiency bins
prior to unfolding as it is done for the zero efficiency bins (“cut-first-approach”), or
to discard the low efficiency bins after the unfolding process (“cut-last-approach”).

The advantage of the first method is, that only those bins enter the unfolding
process which are of physical interest. The behaviour of the low efficiency bins during
the regularization process if often difficult to understand. However, the bin grid will
no longer be rectangular, which makes the definition of the curvature measure slightly
more complex. Formula (4.5.9) becomes:

n = nall − nLE (4.5.12)

4.5.6 Internal Mappings
In order to cut out generator level bins prior to unfolding, an internal bin mapping
needs to be found2:

ν : {1, ..., nall} → {1, ..., n} , k → ν(k) (4.5.13)

We find a map ν such, that the index k of a low efficiency bin Bk is mapped onto the
bin number ν(k) of the closest overflow bin Bν(k). In most cases, this choice is natural
and unique. If Bk is not a low efficiency bin, then k is mapped onto itself. Then,
the unfolding matrix NMC has to be recalculated, which essentially means adding the
column of bin Bk to the column of the overflow bin Bν(k) and removing it thereafter.
Moreover, NLost

k needs to be added to NLost
ν(k) , then has to be removed.

In order to cut out detector level bins prior to unfolding, an internal bin mapping
needs to be found:

µ : {1, ...,mall} → {1, ...,m} , k → µ(k) (4.5.14)

We find a map µ such, that the index k of an empty bin Bk is mapped onto the bin
number µ(k) of the closest overflow bin Bµ(k). In most cases, this choice is natural and
unique. If Bk is not an empty bin, then k is mapped onto itself. Then, the unfolding
matrix NMC has to be recalculated, which essentially means adding the row of bin
Bk to the row of that overflow bin Bµ(k) and removing it thereafter. Moreover, Ndata

k

needs to be added to Ndata
µ(k) , then has to be removed. The curvature matrix L2 needs

to be recalculated, too.

4.6 Treatment of Background Sources
The general approach to treat background in this analysis is to subtract it from the
data distribution before unfolding. Let ~N raw be the measured data distribution and

2The mapping ν is not to be confused with the index mapping ν2D from (4.3.6) and (4.3.7).
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~N bgr the reconstructed distribution of some background simulation. Then, the data
distribution ~Ndata which enters the unfolding procedure is given by:

~Ndata = ~N raw − Ldata
Lbgr

· ~N bgr ≡ ~N raw − fbsc · ~N bgr (4.6.1)

Here, the symbols Ldata and Lbgr denote the luminosities of the data sample and the
background simulation, respectively. fbsc is called the background scale factor.

4.7 Bin-by-Bin Unfolding
The traditional way to treat detector effects is a mere bin wise efficiency correction.
For this, the same bin grid needs to be used on generator and detector level, i.e.
Ggen = Gdet. The bin-by-bin efficiency εbbbi is determined for every bin, and every data
point xi is obtained by the following procedure:

xi := 1
εbbbi
·Ndata

i (4.7.1)

Here, Ndata
i refers to the i-th data point of the background free measurement, see

(4.6.1). This procedure is often regarded as bin-by-bin unfolding, since it can be
viewed as an unfolding procedure with a diagonal response matrix Abbb:(

Abbb
)
ji

= δji · εbbbi (4.7.2)

4.7.1 Draw Backs of Bin-by-Bin Unfolding
Bin-by-bin unfolding not only compensates efficiency losses, it even accounts to some
extend for migration. Under the assumption of a reliable Monte Carlo simulation, the
migration effects will also show up in the reconstructed model distribution ~Nmeas and
will thus be described by the bin-by-bin efficiency εbbbi . This is exactly, because the
bin-by-bin efficiency is not a true efficiency. Instead we have:

εbbbi = εi + NSmearin
i −NSmearout

i

N gen
i

(4.7.3)

Here, NSmearin
i denotes the number events generated in some bin j 6= i and recon-

structed in bin i, while NSmearout
i denotes the events that have been generated in bin i

and reconstructed in some bin j 6= i. This means among other things, that the quan-
tity εbbbi can have values grater than 1, and that εbbbi does contain information about
migration.

We see, that the inadequacy of the bin-by-bin method does not lie in the insensi-
tivity to migration effects, it rather lies in the wrong treatment of correlations. Since
Abbb is diagonal, the covariance matrix COV ~x will also be diagonal, which contradicts
the nature of migration.

A second deficiency of bin-by-bin method is, that the statistical uncertainties can-
not be trusted a priori. This is the case, whenever there is a significant imbalance
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between immigration and emigration, i.e. if
∣∣∣NSmearin

i −NSmearout
i

∣∣∣ � 0. Consider,
for example, a distribution ~N true that steeply falls with its entry index i:

N true
1 > N true

2 > ...

This is true for many differential cross section measurements. Then, typicallyNSmearin
i −

NSmearout
i > 0. Further, assume the overall efficiency to be close to one (εi ' 1) and

well known (δ(εi) ' 0). Then, the true relative statistical uncertainty σ (N true
i ) will

be underestimated by the one obtained from bin-by-bin unfolding:

δ
(
xbbbi

)
= δ (N rec

i ) = 1√
N rec
i

=

1√
N true
i +NSmearin

i −NSmearout
i

<
1√
N true
i

= δ
(
N true
i

)
For distributions ~N true that show local maxima (peaks), statistical uncertainties can
be overestimated for a similar reason.

4.7.2 Global Correlation Method as Cross Check for Bin-By-
Bin Unfolding

The bin-by-bin method can be viewed as an unfolding technique with implicit regu-
larization. Recall, that the global correlation method described in subsection 4.4.3
provides a measure of regularization τC , that minimizes the correlations of ~x in a
global manner. This means, that the off-diagonal elemens in COV ~x will be mini-
mized. While the global correlation method achieves the diagonalization of COV ~x by
a smoothing procedure, the bin-by-bin method sets the off-diagonal elements of Abbb

to zero in the first place, leading to a diagonal COV ~x.
We see, that regardless of the deficiencies of the bin-by-bin method, it implicitly

introduces a regularization. The level of this regularization cannot be expressed in
terms of a precise value of τ . However, the result ~xbbb of the bin-by-bin method can
meaningfully be compared to the result ~xτC of a full unfolding procedure using τC
according to the global correlation method.

This provides a valuable cross check for the bin-by-bin method and its ability to
quantify the statistical uncertainties correctly.

4.8 Treatment of Systematic Uncertainties
The unfolding procedure provides a tool to directly quantify the statistical errors
∆statxi of the unfolded data points xi as well as their bin-to-bin correlations ρij :=
Corr (xi, xj), see (4.8.2). Systematic uncertainties ∆sysxi can be determined by er-
ror propagation [Scha]. This is implemented by S. Schmitt in the ROOT-package
TUnfoldSys [Schb].

There are many types of systematic uncertainties. The unfolding matrix A gives
two types of systematic uncertainties, uncorrelated model uncertainties ∆uncxi and
correlated model uncertainties ∆λxi for multiple error sources λ. The background
distribution ~N bgr introduces the background uncertainty ∆bgrxi and the correlated
background scale uncertainty ∆bscxi.
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4.8.1 Treatment of Data and Background Uncertainties
In this analysis, we adopt the viewpoint of a bias-free measurement. That means, the
raw measurement ~N raw only suffers from statistical uncertainties and is free from any
systematic deviations. This perspective can be motivated by noting, that the data
distribution is compared to a reconstructed Monte Carlo simulation ~N rec and any flaw
in the measurement process will ideally be reproduced by the simulation. Therefore,
rather the simulation than the data will be afflicted with possible systematic errors.
We will postpone their treatment to the next subsection.

The event counts N raw
i of the raw measurement are uncorrelated and Poisson-

distributed, in contrast to the data points xi of the unfolded solution ~x. Therefore, we
have ∆N raw

i '
√
N raw
i and its covariance matrix COV ~Nraw is diagonal.

Concerning the background, there are mainly two error sources to be considered,
its statistical error ∆N bgr

i in each bin and its scale uncertainty. Any uncertainty on the
background ∆N bgr

i or ∆fbsc will directly propagate to ~Ndata. Therefore, the formula
(4.2.16) stays valid even in the presence of background sources. Note, however, that
the background scale fbsc introduces correlations between the data points Ndata

i , so
that COV ~Ndata will no longer be exactly diagonal.

As for the data, the background event counts N bgr
i are uncorrelated and Poisson-

distributed, ∆N bgr
i '

√
N bgr
i , its covariance matrix COV ~Nbgr is diagonal. To compute

COV ~Ndata , we use error propagation with ∂
∂fbsc

Ndata
i = N bgr

i and obtain:

COV ~Ndata = COV ~Nraw + f 2
bsc ·COV ~Nbgr + ∆f 2

bsc ·
((

~N bgr
)
·
(
~N bgr

)T)
(4.8.1)

Each of the terms in (4.8.1) can be individually propagated with (4.2.16). This
enables us to study their impact on the solution ~x separately. Following (4.2.16), we
define the raw statistical uncertainty ∆rawxi :

∆rawxi =√([
EATCOV −1

~Ndata

]
·COV ~Nraw ·

[
EATCOV −1

~Ndata

]T)
ii

(4.8.2)

The statistical background uncertainty ∆bgrxi is given by:

∆bgrxi =√([
EATCOV −1

~Ndata

]
· f 2

bscCOV ~Nbgr ·
[
EATCOV −1

~Ndata

]T)
ii

(4.8.3)

The statistical scale uncertainty ∆bscxi is given by:

∆bscxi =√([
EATCOV −1

~Ndata

]
·∆f 2

bsc

((
~N bgr

) (
~N bgr

)T)
·
[
EATCOV −1

~Ndata

]T)
ii

(4.8.4)

We refer to the quadratic sum of these terms as statistical uncertainty ∆statxi and
directly obtain with 4.2.16:

∆statxi =
√
Eii (4.8.5)
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4.8.2 Treatment of Uncorrelated Model Uncertainties
Since the scaled unfolding matrix NMC from (4.2.3) is determined by a Monte Carlo
simulation, each entryNjk comes with an absolute statistical uncertainty ∆stat

(
NMC
jk

)
,

which is approximately Poisson-distributed:

∆stat
(
NMC
jk

)
'
√
NMC
jk (4.8.6)

We treat each of these uncertainties as an uncorrelated systematic error source, which
gives a covariance matrix COV jk

~x for every element NMC
jk of the matrix NMC . By

standard error propagation, we obtain:(
COV jk

~x

)
lm

:= ∂xl
∂NMC

jk

·∆statNMC
jk ·

∂xm
∂NMC

jk

(4.8.7)

We define the total uncorrelated uncertainty simply as the quadratic sum of the con-
tributions of the matrix elements, or, more formally:

(COV unc
~x )lm :=

∑
jk

(
COV jk

~x

)
lm

(4.8.8)

Note, that for the response matrix A we have:

Aji =
NMC
ji

N gen
i

=
NMC
ji∑incl

k NMC
ki

(4.8.9)

Here, the sum in the denominator runs over all detector level bins including the over-
flow bins. From (4.8.9) we obtain:

∂Aab
∂Nij

:= δbj ·
1∑incl

k NMC
kb

· (δai − Aab) (4.8.10)

Therefore, (4.8.7) gives:(
COV jk

~x

)
lm

=
∑
abcd

∂xl
∂Aab

· ∂Aab
∂NMC

jk

·∆statNMC
jk ·

∂xm
∂Acd

· ∂Acd
∂NMC

jk

·

(
COV jk

~x

)
lm

=
∑
ac

∂xl
∂Aak

· ∂Aak
∂NMC

jk

·∆statNMC
jk ·

∂xm
∂Ack

· ∂Ack
∂NMC

jk

· (4.8.11)

For the uncorrelated systematic uncertainty ∆uncorrxi we therefore obtain with (4.8.8):

∆uncorrxi =
√√√√∑
ijkl

∂xi
∂Aak

· ∂Aak
∂NMC

jk

·∆statNMC
jk ·

∂xi
∂Ack

· ∂Ack
∂NMC

jk

(4.8.12)

To calculate the error propagation from A to ~x, we observe, that for any invertible
matrix E, we have:

∂Ein
∂E−1

lm

= −EnmEil (4.8.13)

Let E now be given by (4.2.14), so that:

∂E−1
mn

∂Aij
=
∑
l

(
δjm ·

(
COV −1

~Ndata

)
il
Aln + δjn ·

(
COV −1

~Ndata

)
ml
Ali
)

(4.8.14)
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Then we have
∂Ekl
∂Aij

=
∑
mn

∂Ekl
∂E−1

mn

· ∂E
−1
mn

∂Aij
=

− Ekj ·
(
E ·AT ·COV −1

~Ndata

)
li
− Ejl ·

(
E ·AT ·COV −1

~Ndata

)
ki

(4.8.15)

For ~x, we obtain with (4.2.15):

∂xk
∂Aij

=
∑ ∂Ekl

∂Aij
·
([
AT ·COV −1

~Ndata · ~Ndata + τ 2 ·L2 · ~xTheory
])
l

+Ekl ·
∂

∂Aij

([
AT ·COV −1

~Ndata · ~Ndata
])
l

And finally:
∂xk
∂Aij

=

Ekj ·
(
COV −1

~Ndata · ~Ndata −COV −1
~Ndata ·A~x

)
i
−
(
E ·AT ·COV −1

~Ndata

)
ki
· ~xj (4.8.16)

With (4.8.16) and (4.8.12), the uncorrelated systematic uncertainties ∆uncxi can be
directly computed.

4.8.3 Treatment of Correlated Model Uncertainties
Correlated errors arise, whenever the entries NMC

jk of the scaled unfolding matrix
NMC depend on some parameter η of the measurement, i.e. if we have a functional
dependence for NMC

jk :
η → NMC

jk (η) (4.8.17)

For each such parameter ηλ we have uncertainties ∆ηλ+ and ∆ηλ−, which propagate
to the entries ofNMC . This way, we will obtain two new matricesNλ+ andNλ− with
shifted entries Nλ+

ij and Nλ−
ij . The shifted unfolding matrices will alter the unfolding

result establishing shifts ∆λ+xi and ∆λ−xi on every single data point xi.
Typical parameters η on which the unfolding matrix depends are all sorts of calibra-

tion scales, since they often affect the whole kinematic range in a correlated manner.
We will refer to the asymmetric uncertainties ∆ηλ+ and ∆ηλ− as input shifts.

In the context of this analysis, we estimate the shifted matrix elements Nλ±
jk using

a simple Monte Carlo technique. The simulation is done independently for the three
parameter values:

ηλ

ηλ+ := ηλ + ∆ηλ+

ηλ− := ηλ + ∆ηλ−
They yield the matrices NMC , Nλ+ and Nλ−, respectively. For the systematic un-
certainties ∆λ+Njk we then obtain simple estimators:

∆λ±Njk := Nλ±
jk −NMC

jk (4.8.18)
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In order to further propagate the shifts ∆λ±Njk to the solution ~x, we use multiple
approaches. The package TUnfoldSys uses standard error progagation. From here on,
this method is regarded to as propagation method:

∆λ±xi :=
∑
jk

∂xi
∂NMC

jk

·∆λ±Njk

∆λ±xi =
∑
jklm

∂xi
∂Alm

· ∂Alm
∂NMC

jk

·∆λ±Njk (4.8.19)

Now, the correlated systematic uncertainties ∆λ±xi can directly computed with (4.8.16)
and (4.8.10).

The offset method is even simpler, comparing the outcome of three independent
unfolding processes with NMC , Nλ+ and Nλ−. The results ~x, ~xλ+ and ~xλ− are then
compared, giving shifts ∆λ±

offsetxi for each data point xi:

∆λ±
offsetxi := xi − xλ±i (4.8.20)

If the error propagation is reliable, offset and propagation method should approxi-
mately give the same result.

For comparison, a third method is studied, which is called the bin-by-bin method
in this context. From independent Monte Carlo simulations for ηλ, ηλ + ∆ηλ+ and
ηλ+∆ηλ− we compare the reconstructed distributions ~N rec, ~Nλ+ and ~Nλ− and analyze
the shifts on the data points:

∆λ±
bbbxi := Ldata

LMC

·
(
N rec
i −Nλ±

i

)
(4.8.21)

(Note the normalization condition in this definition.) This method basically neglects
the presence of migration effects. Nevertheless, it is useful: By comparing its result to
the other two methods, one can study the impact of migration effects on the systematic
uncertainties.

For consistency reasons, the propagation method has been chosen to be quoted; the
other two methods are merely used for comparison. Moreover, the systematic shifts
will be symmetrized by the following symmetrization prescription:

∆λ
symxi := 1

2
∣∣∣∆λ+xi −∆λ−xi

∣∣∣ (4.8.22)

Note, that due to statistical fluctuation, ∆λ+xi and ∆λ−xi can sometimes have the
same sign. This is not believed to be worrisome, since statistical fluctuations are
accounted for by ∆statxi.

4.8.4 Regularization Uncertainty
By the nature of unfolding, the result ~x depends on the choice of the regularization
parameter τ . Therefore, the error propagation from τ to ~x can be studied. We have
for shifts ∆τ± (propagation method):

∆τ±xi := ∆τ± ·
∂xi
∂τ 2 · 2τ (4.8.23)
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Here, with (4.2.15) we have:

∂xi
∂τ 2 =

(
E ·L2

(
~xTheory − ~x

))
i

(4.8.24)

We can also study the effect using the offset method, comparing the results ~x, ~xτ+

and ~xτ− for the different regularization parameters τ , τ+∆τ+ and τ+∆τ−. We define:

∆τ±
offsetxi := xi − xτ±i (4.8.25)

If the error propagation is reliable, both results should give similar results.
While the propagation of the regularization parameter is well defined, it is much

less clear how to estimate ∆τ±. In fact, reasons can be found that justify to set
∆τ+ = ∆τ− = 0. This is, because a proper choice of τ should be conservative enough
to not introduce any bias at all on ~x. In this case, high values of ∂

∂τ2xi rather reflect
statistical fluctuations than a systematic uncertainty from regularization. Statistical
uncertainties, however, are accounted for by ∆statxi.



Chapter 5

Cross Section Determination

The measurement of an inclusive cross section is at is core a counting experiment.
Given the data luminosity Ldata and its measured event count Ndata, the cross section
is in principle given via the simple formula σ = Ndata/Ldata. In a real life scenario,
multiple intricacies have to be accounted for, such as the presence of background
sources, the correction of efficiency and migration effects and the treatment of photon
radiation. In the context of this analysis, all this is reflected by the five step procedure
pointed out in this subsection.

5.1 The Measurement Procedure

5.1.1 Binning

The first step is binning. For every event, the inelasticity y and the squared momentum
transfer Q2 are measured. The results are then binned in a two-dimensional bin grid
Gdet with bins Bdeti1i2 , where the two dimensions correspond to the variables y and Q2.
Such, a raw event count N raw

i1i2 is obtained for each bin Bi1i2 . The details of the chosen
bin grid are discussed in chapter 10.

5.1.2 Background Subtraction

The second step is background subtraction. There are multiple background sources.
The most dominant source originates from pions in the SpaCal calorimeter, which
are misidentified as electrons. Within the context of this analysis, the background is
estimated by a Monte Carlo simulation using the package PYTHIA, see chapter 7. Let
N bgr
i1i2 be the event count of simulated background events in bin Bi1i2 , then the data

event count in Bin Bi1i2 is given by (4.6.1):

Ndata
i1i2 := N raw

i1i2 −
Ldata
Lbgr

·N bgr
i1i2 ≡ N − fbgr ·N bgr

i1i2 (5.1.1)

Here, Ldata and Lbgr denote the luminosities of the data sample and the background
model and fbgr is called the background scale factor.
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5.1.3 Efficiency and Migration Correction
The third step is unfolding. At this step, the limited detector efficiency and migration
effects are accounted for, giving the unfolded event count xi1i2 for Bin Bi1i2:

xi1i2 :=
(
A−1

(
~Ndata

))
i1i2

(5.1.2)

Here, A−1
(
~Ndata

)
denotes symbolically the result of the unfolding process. In fact,

two different approaches have bin applied in this analysis, which are referred to as the
unfolding method and the bin-by-bin method, see chapter 4. For the bin-by-bin method
we simply obtain:

xi1i2 := N gen
i1i2

N rec
i1i2

·Ndata
i1i2 (5.1.3)

Here, N gen
i1i2 and N rec

i1i2 denote the generated and reconstructed event count of the Monte
Carlo sample, respectively. Note, that for the unfolding method, the bin grid Ggen for
the unfolding result ~x typically differs from the bin grid Gdet for the measured event
counts ~Ndata, ~N raw and ~N bgr.

5.1.4 Radiative Corrections
The fourth step is radiative corrections. As pointed out in section (2.5), the measured
event count ~Ndata does not only reflect the Born-level cross section, but rather contains
higher order contributions from initial state radiation (ISR), final state radiation (FSR)
and QED compton events (QEDC).

The correction is given by a continuous function R (y,Q2) of y and Q2, which
relates the radiative and non-radiative cross section:

∂2

∂y∂Q2σ
NC,norad

(
y,Q2

)
= R

(
y,Q2

)
· ∂2

∂y∂Q2σ
NC,rad

(
y,Q2

)
(5.1.4)

In principle, this correction factor can be calculated directly vom QED, which has
been done in [Spi93].

Since this analysis is a counting experiment, we need bin wise correction factors
Ri1i2 for every bin Bi1i2 , which can be defined as follows:
¨
Bi1i2

∂2

∂y∂Q2σ
NC,norad

(
y,Q2

)
dydQ2 = Ri1i2 ·

¨
Bi1i2

∂2

∂y∂Q2σ
NC,rad

(
y,Q2

)
dydQ2

(5.1.5)
We will call the factor Ri1i2 the radiative correction factor for Bin Bi1i2 , and we have:

xBorni1i2 := Ri1i2 · xi1i2 (5.1.6)

In order to quantify Ri1i2 , we adopt a Monte Carlo approach according to [Spi92].
We compare two independent simulations with radiative effects beeing turned on and
off, respectively. Then, for every bin Bi1i2 , we obtain two event counts N rad

i1i2 and N
norad
i1i2 .

Then, the correction factor Ri1i2 is simply given by:

Ri1i2 = Lrad
Lnorad

·
Nnorad
i1i2

N rad
i1i2

(5.1.7)
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Note, that often the radiative correction factorRi1i2 is expressed as a relative difference
δi1i2 , where δi1i2 and Ri1i2 are related via:

Ri1i2 = 1
1 + δi1i2

(5.1.8)

In chapter (11) we will determine the factors Ri1i2 together with systematic uncer-
tainties δrad

(
xBorni1i2

)
on the corrected cross sections.

5.1.5 Cross Section Determination
The fifth step is the cross section determination. It accounts for the luminosity Ldata of
the studied data sample and the bin volumes V oli1i2 . For the bin-averaged differential
cross section in Bin Bi1i2 we obtain:〈

∂σ

∂y∂Q2

〉
i1i2

:=
xBorni1i2

V oli1i2 · Ldata
(5.1.9)

Here, the bin volumes are given by:

V oli1i2 =
((
Q2
)i1
up
−
(
Q2
)i1
down

)
·
(
yi2up − y

i2
down

)
(5.1.10)

In (5.1.10), the symbols (Q2)i1up, (Q2)i1down, yi2up and yi2down denote upper and lower bin
boundaries of bin Bi1i2 .

In section (6.1) the luminosity Ldata is determined and a measure for its uncertainty
δ (Ldata) is given.

The complete list of cross sections is given in appendix A.

5.2 Cross Section Uncertainties
In section 4.8 the uncertainty treatment of unfolding was discussed, both for statistical
and for systematic error sources. We refer to it to the total unfolding error δtot(xBornij ).
The two error sources not accounted for by this procedure are the systematic uncer-
tainty δrad(xBorni1i2 ) for the radiative corrections and the overall uncertainty σlum for the
luminosity. These can be accounted for by quadratic summation. We define:

δtot+r
(
xBorni1i2

)
=
√(

δtot(xBorni1i2 )
)2

+ (δrad(Ri1i2))2 (5.2.1)

δtot+r+l
(
xBorni1i2

)
=
√(

δtot+r(xBorni1i2 )
)2

+ (δ (Ldata))2 (5.2.2)
All these quantities are quoted in appendix A.

5.3 Bin center correction
Note, that formula (5.1.9) gives a cross section that is bin-averaged over bin Bi1i2 .
However, our final interest is rather directed to the functional value

σdiffi1i2 := ∂2σ

∂y∂Q2

(
Q2, y

)∣∣∣∣∣ Q2 = Q2
i1

y = yi2

(5.3.1)



60 CHAPTER 5. CROSS SECTION DETERMINATION

of the measured cross section at some point (Q2
i1 , yi2) in Bin Bi1i2 . These point-wise

differential cross sections can then directly be compared to any theory prediction(
σTheory

)diff
i1i2

at that point. Moreover, the triples
(
Q2
i1 , yi2 , σ

diff
i1i2

)
can be used for

fitting the functional form of (Q2, y)→ ∂2σ
∂y∂Q2 (Q2, y) in the context of a PDF-fit.

In this analysis point-wise differential cross sections (5.3.1) are obtained by exploit-
ing the mean-value theorem. We start from a given theoretic prediction (Q2, y) →
∂(σTheory)
∂y∂Q2 (Q2, y) and find points (Q2

i , yj) such that:

V oli1i2 ·
∂2
(
σTheory

)
∂Q2∂y

(
Q2
i1 , yi2

)
=
¨
Bi1i2

∂2
(
σTheory

)
∂y∂Q2

(
Q2, y

) dQ2dy (5.3.2)

Then, we have
〈
∂2
(
σTheory

)
∂y∂Q2

〉
i1i2

=
∂2
(
σTheory

)
∂y∂Q2

(
Q2, y

)∣∣∣∣∣∣ Q2 = Q2
i1

y = yi2

(5.3.3)

and for (5.3.1) we obtain the following relation:

σdiffi1i2 =
〈

∂σ

∂y∂Q2

〉
i1i2

=
xBorni1i2

V oli1i2 · Ldata
(5.3.4)

Of course, the position of the points
(
Q2
i1 , yi2

)
contains essential information about

the measurement and has to be quoted together with the differential cross sections
σdiffi1i2 at that point.

While the mean value theorem ensures the existence of a point
(
Q2
i1 , yi2

)
fulfilling

(5.3.2), the choice of
(
Q2
i1 , yi2

)
is far from unique. This is due to the two dimensions

involved. Therefore, a choice has to be made. For yi2 we choose the arithmetic bin
center:

yi2 := 1
2 ·
(
yi2up + yi2down

)
(5.3.5)

Then, Q2
i1 is defined via:

((
Q2
)i1
up
−
(
Q2
)i1
down

)
·
∂2
(
σTheory

)
∂Q2∂y

(
Q2
i1 , yi1

)
=
ˆ (Q2)i1

up

(Q2)i1
down

∂2
(
σTheory

)
∂y∂Q2

(
Q2, yi2

) dQ2

(5.3.6)
Here, the monotony of the Q2-dependance ensures the uniqueness of Q2

i1 .
For the theoretical cross section, the functional form of H1PDF2009 [Kre, A+09] has

been chosen, which summarizes previous measurements from HERA I.



Chapter 6

Data Sample and Event Selection

In this section, the data sample of this analysis is defined. We discuss the run selection,
the used subtrigger and the analysis level cuts.

6.1 Run Selection and Data Luminosity
In this analysis, the positron runs from 2006 and 2007 are studied, with the exception
of the low energy runs at the end of the HERA run time in 2007. The run range of
this period is 468531 to 500611. A run selection is applied, which excludes runs with
low quality based on the following criteria.

Trigger Phase. For the trigger settings, different profiles exist, called trigger phases.
For regular data taking, trigger phase 2 and 3 are used. The profiles 0 and 1 are used
at the start of each HERA luminosity fill, while a beam steering procedure is executed.
Runs from that time period cannot be trusted. Therefore, we require a minimal trigger
phase of 2 for all runs in our sample.

Run Quality. Each run is flagged as either good (G), medium (M) or poor (P). The
classification is done by means of the operational status of major subdetectors, such as
the CJC, the LAr or the SpaCal. Moreover, short runs with luminosity Lrun < 0.1 nb−1

are classified as poor. Only runs classified as medium or good as used for this analysis.
Readout Status. Only those runs are selected, for which the event information

from the relevant subdetectors has been read out. For this analysis, the relevant
subdetectors are the SpaCal, the CJC1 and CJC2, the CIP, the LAr and the lumi
system. Moreover, we require the trigger S3 to be up and running.

High Voltage Status. For safety reasons, the voltage of detector components can be
lowered during a run. Therefore, the voltage is monitored and saved for each event. If
the drop-off holds on for more than 1

3 of the run, the full run is excluded. Otherwise,
single events are excluded and the luminosity of the run is corrected accordingly.

The selection criteria described above are usually referred to as Good Run Cuts.
For this analysis, the luminosity is measured using QED Compton events, see

section 3.2.4. Note, that one conventionally introduces a cut on the z Vertex position
zV tx for the luminosity measurement:

− 35 cm < zV tx < 35 cm (6.1.1)

This is beneficial, since it keeps the satellite bunches from influencing the measured
luminosity. Of course, the same cut has to bee applied on analysis level. For the run
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Figure 6.2.1: Left: Data distribution as a function of the transverse SpaCal cluster
position Xe and Ye . The outer radial boundary of the SpaCal is clearly visible. Note,
that the inner boundary reflects the radial trigger condition R > 30 cm. Right: Data
distribution as a function of the Bjørken variable xe and the squared momentum ex-
change Q2

e. While the upper boundary corresponds to the outer geometric boundary of
the SpaCal, the lower boundary reflects the radial trigger condition. The right boundary
corresponds to the low inelasticity cut ye ≥ 0.06.

selection discussed above, we obtain the following total integrated data luminosity:

Ldata ' 141.0 pb−1 (6.1.2)

Note, that the rather large systematic uncertainty of δ (Ldata) = 2% is quoted for the
luminosity measurement [SP].

6.2 Trigger Selection
For this analysis, the subtrigger S3 is used. It is sensitive to SpaCal clusters, which
fulfill the following two trigger conditions:

Euncalib
e > 10 GeV (6.2.1)

Runcalib
e > 30 cm (6.2.2)

Here, Euncalib
e denotes the electromagnetic cluster energy and Runcalib

e the radial cluster
position. Note, that both quantities are uncalibrated, since they are calculated at run
time.

In figure 6.2.1, the data sample is plotted as a function of the transverse SpaCal
cluster position Xe and Ye. The outer radial boundary of the SpaCal is clearly visible.
Note, that the inner boundary reflects the radial trigger condition Runcalib

e > 30 cm.
Some of the subtriggers used in H1 use prescales. This is a prescription that aims

at reducing the recording frequency of abundant event types. Thus, bandwidth is
saved for rare event types which are typically of high scientific interest. Note however,
that the subtrigger S3 is not prescaled.

The efficiency of the trigger conditions (6.2.1) and (6.2.2) will be discussed in
chapter 8.
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6.3 Analysis Level Event Selection
In this section the analysis level cuts are discussed.

6.3.1 Phase Space Cuts
We now formally define our phase space region of interest. Note that natural bound-
aries are given by the SpaCal geometry and the trigger conditions (6.2.1) and (6.2.2).
This is reflected by introducing the following phase space cuts:

Energy Cut: Ee ≥ 11 GeV (6.3.1)

Radius Cut: 30 cm ≤ Re ≤ 70 cm (6.3.2)

The final measurement will be done in the (Q2
e, ye)-plane. A rectangular area is defined

by:
Inelasticity Cut: 0.06 ≤ ye ≤ 0.62 (6.3.3)

Squared Momentum Exchange Cut: 10 GeV2 ≤ Q2
e ≤ 133 GeV2 (6.3.4)

In figure 6.2.1 the data sample is plotted. The left picture shows the distribution as a as
a function of the SpaCal cluster position Xe and Ye. The outer radial boundary of the
SpaCal is clearly visible. The inner boundary reflects the radial trigger condition Re >
30 cm. On the right side the data distribution is drawn as a function of the Bjørken
variable xe and the squared momentum exchange Q2

e. While the upper boundary
corresponds to the outer geometric boundary of the SpaCal, the lower boundary reflects
the radial trigger condition. The right boundary corresponds to the low inelasticity
cut ye ≥ 0.06.

6.3.2 z-Vertex Cut
For each event, we require the reconstruction of a primary vertex, which is needed to
reconstruct a scattering angle θe for the electron. In order to suppress background
from beam gas interactions and satellite bunches, we require the event vertices to lie
close to the geometric center of the detector:

z-Vertex Cut: − 35 cm < zV tx < 35 cm (6.3.5)

In figure 6.3.1 (left), the full z-Vertex distribution is shown. All events which fulfill
(6.3.1), (6.3.2) and the trigger condition are binned. The complex longitudinal bunch
structure consisting of the main bunch and the satellite bunches is clearly visible. The
arrows indicate the boundaries of the z-Vertex cut.

Note, that we allow for two different vertex types to be reconstructed, which we
refer to as CJC vertex and CIP vertex, see chapter 3. This is done to enhance the
vertex reconstruction efficiency, as will be pointed out in chapter 8. In the case, that
for an event both a CJC vertex and a CIP vertex is reconstructed, we prefer the CJC
vertex.
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Figure 6.3.1: Left: z-Vertex distribution with the main bunch and the two satellite
bunches. Right: EMPZ-distribution with its peak around 2 · Ebeam ≡ 55.2 GeV. For
both plots, all cuts were released except the trigger condition and the cuts (6.3.1) and
(6.3.2), which define the phase space under investigation. The arrows indicate the
position of the cuts in each plot.

6.3.3 The E − pz Cut

We also apply a cut on the following variable:

EMPZ ≡ (E − pz)tot =
∑
i

(E − pz)i (6.3.6)

The notation EMPZ is used for brevity. Note, that the sum runs over all reconstructed
particles. Therefore, the variable (6.3.6) describes the longitudinal energy momentum
balance of the full final state. For non-radiative DIS events, we expect:

(E − pz)tot ' 2 · Ebeam ≡ 55.2 GeV (6.3.7)

By construction, the proton remant has (E − pz)remnant = 0, which makes the variable
EMPZ stable against particle losses into the forward direction.

However, EMPZ is sensitive to radiative effects. ISR events have lower values
for EMPZ as the electron beam energy is effectively lowered. Even for FSR events,
(6.3.7) is not necessarily fulfilled. To suppress radiative background, the following
standard cut is used:

EMPZ Cut: 30 GeV. (E − pz)tot . 70 GeV (6.3.8)

Another type of background which is reduced by this cut is photoproduction (Q2 ' 0).
For this event type, typically no electron track is found, effectively reducing the recon-
structed EMPZ-balance by its track momentum (−pz,e ' Ebeam = 27.6 GeV). There-
fore, another cumulation in the EMPZ-distribution is expected around the kinematic
peak (Ee ∼ 27.6 GeV), which is removed by (6.3.8).

In figure 6.3.1 (right), the full EMPZ-distribution is shown for events that fulfill
(6.3.1), (6.3.2) and the trigger condition. The peak around 2 · Ebeam ≡ 55.2 GeV is
clearly visible. The arrows indicate the boundaries of the EMPZ-cut.
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6.3.4 Background Reduction
A potential source of background contamination are hadronic particles, which are
wrongly reconstructed as electrons. This happens frequently for photoproduction
events (Q2 ' 0), for which the electron will be scattered into the beam pipe. The
hadronic particles create sizable SpaCal clusters, which can then be mistaken as elec-
trons. Note, that the hadronic background can originate from both charged and neutral
tracks. Consider neutral pions for instance, to which the SpaCal is sensitive due to
photo conversion (π0 → γγ). In order to suppress this hadronic background, three
more cuts are introduced.

Hadronic Energy Cut. Hadronic particles are expected to cause a significant energy
deposit in the hadronic part of the SpaCal, which is typically larger than the one from
electrons or photons. This can be used for further discrimination between DIS and
photoproduction events. We require:

Hadronic Energy Cut: Ehad ≤ 0.5 GeV (6.3.9)

In figure 6.3.3 (top right), distributions of the hadronic energy deposit Ehad of electron
clusters are shown for simulated DIS events (Djangoh) and simulated photoproduction
events (Pythia). The arrow indicates the position of the cut.

ECRA Cut. Another variable, that exhibits discriminating power between data
and background, is the cluster size ECRA, see chapter 5. Typically, hadronic particles
leave a slightly larger cluster in the electromagnetic part of the SpaCal, suggesting a cut
on this quantity. In figure 6.3.3 (bottom left), distributions of the electron cluster size
ECRA are shown for simulated DIS events (Djangoh) and simulated photoproduction
events (Pythia).

A common value for a cut threshold is ECRAtr = 4 cm. However, the distribution
of the variable ECRA is not very well described by the detector simulation, see figure
6.3.2 (top). Therefore, the inefficiency introduced by a cut on ECRA is afflicted with a
rather large systematic uncertainty. This problem can only be reduced by relaxing the
cut. It follows, that the background reduction and the minimization of the systematic
uncertainty are oppositional requirements for the ECRA cut.

A solution to this problem is obtained by the observation, that the background
contamination is limited to the region of small energy (Ee . 16 GeV) and small radius
(Re . 55 cm). Therefore, the ECRA cut can be introduced as a function on Ee and
Re:

ECRA Cut: ECRA ≤ ECRAtr (Re, Ee) (6.3.10)
Here, the ECRA threshold function ECRAtr (Re, Ee) should vary within the interval
ECRAmin . ECRAtr (Re, Ee) . ECRAmax and must be constructed such, that the
cut is relaxed for large radii and energies. The function is depicted in figure 6.3.4 (left).
To formally define the function ECRAtr (Re, Ee) , we start with thresholds Emin and
Emax for the energy and Rmin and Rmax for the radius. With the following helper
functions

ξR (Re, Ee) := ECRAmin + ECRAmax − ECRAmin
Rmax −Rmin

(Re −Rmin) (6.3.11)

ξE (Re, Ee) := ECRAmin + ECRAmax − ECRAmin
Emax − Emin

(Ee − Emin) (6.3.12)
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Figure 6.3.2: ECRA distribution for data events and simulated events.

ξ (Re, Ee) := max {ξR (Re, Ee) , ξE (Re, Ee)} (6.3.13)

we define:

ECRAtr (Re, Ee) =


ECRAmax if Ee ≥ Emaxor Re ≥ Rmax

ECRAmin if Ee ≤ Eminand Re ≤ Rmin

ξ (Re, Ee) otherwise
(6.3.14)

For the ECRA interval we choose ECRAmin = 3.8 cm and ECRAmax = 6 cm. Note,
that the variable ECRA never takes on values greater than 6 cm. Moreover, we choose
Rmin = 50 cm, Rmax = 55 cm, Emin = 14 GeV and Emax = 16 GeV. The arrow in
figure 6.3.3 (bottom left) indicates the position of the cut for small Re and Ee. The
ECRA cut introduces an inefficiency εECRA (Re, Ee), which will be discussed in chapter
8.

CIP Hit Cut. Another way to reduce background from neutral particles is provided
by counting the CIP hits NCip

hit of the electron. This number is determined by searching
for hits in a cone between the SpaCal and the primary vertex position. Since the
electron is charged, it is expected to give multiple hits. Since the CIP detector has
limited efficiency εCip, we restrict the cut to the region with Ee < 16 GeV. This is the
region of the phase space, which is susceptible to hadronic contamination. We require:

Cip Hit Cut: NCip
hit ≥ NCip

tr (Re, Ee) :=
{

2∀Ee < 16 GeV
0∀Ee > 16 GeV (6.3.15)

In figure 6.3.3 (bottom right), CIP hit counts are shown for simulated DIS events
(Djangoh) and simulated photoproduction events (Pythia). The arrow indicates the
position of the cut for small Ee. Effectively, the cut threshold NCip

tr (Re, Ee) is a
function of the phase space variables, which is shown in 6.3.4 (right). The efficiency
εCip introduced by the Cip Hit Cut will be discussed in chapter 8.

The effect of the background reduction can be read off from figure 6.3.5, in which a
part of the distribution of the electron energy Ee is shown for both data and simulated
DIS events (Djangoh). The figures show the distributions before and after background
reduction, respectively.



CHAPTER 6. DATA SAMPLE AND EVENT SELECTION 67

 in hadronic SpaCal in GeVhadE
0.5 1 1.5

N
u

m
b

e
r 

o
f 

E
v

e
n

ts
1

210

410

6
10

 in hadronic SpaCal in GeVhadE
0.5 1 1.5

N
u

m
b

e
r 

o
f 

E
v

e
n

ts
1

210

410

6
10

 in hadronic SpaCal in GeVhadE
0.5 1 1.5

N
u

m
b

e
r 

o
f 

E
v

e
n

ts
1

210

410

6
10

 in hadronic SpaCal in GeVhadE
0.5 1 1.5

N
u

m
b

e
r 

o
f 

E
v

e
n

ts
1

210

410

6
10

Pythia

Django

 in cm
CRA

Electron Cluster Radius E
2 3 4 5

N
u

m
b

e
r 

o
f 

E
v

e
n

ts

1

210

410

6
10

 in cm
CRA

Electron Cluster Radius E
2 3 4 5

N
u

m
b

e
r 

o
f 

E
v

e
n

ts

1

210

410

6
10

 in cm
CRA

Electron Cluster Radius E
2 3 4 5

N
u

m
b

e
r 

o
f 

E
v

e
n

ts

1

210

410

6
10

 in cm
CRA

Electron Cluster Radius E
2 3 4 5

N
u

m
b

e
r 

o
f 

E
v

e
n

ts

1

210

410

6
10

Pythia

Django

Number of CIP Hits

0 1 2 3 4 5 6 7 8 9

N
u

m
b

e
r 

o
f 

E
v

e
n

ts

1

210

410

6
10

Number of CIP Hits

0 1 2 3 4 5 6 7 8 9

N
u

m
b

e
r 

o
f 

E
v

e
n

ts

1

210

410

6
10

Number of CIP Hits

0 1 2 3 4 5 6 7 8 9

N
u

m
b

e
r 

o
f 

E
v

e
n

ts

1

210

410

6
10

Number of CIP Hits

0 1 2 3 4 5 6 7 8 9

N
u

m
b

e
r 

o
f 

E
v

e
n

ts

1

210

410

6
10

Pythia

Django

Figure 6.3.3: Distributions of different background sensitive variables for simulated
DIS events (Djangoh) and simulated photoproduction events (Pythia). Top Right:
Hadronic energy deposit Ehad of the reconstructed electron cluster. The arrow indicates
the position of the applied cut. Bottom left: Electron cluster size ECRA. The arrow
indicates position of the cut for small Ee and Re. Bottom right: CIP hit count NCip

hit .
The arrow indicates the position of the cut for small Ee.
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Figure 6.3.5: Part of the distribution of the electron energy Ee for both data and
simulated DIS events (Djangoh). Left: Before background reduction. Right: After
background reduction according to (6.3.9), (6.3.10) and (6.3.15).

6.3.5 The QEDC Cut

Another cut we apply to our sample is the exclusion of QED Compton events. This
radiative event type is characterized by small momentum exchange between the lepton
and the proton (QQED ' 0), see the discussion in chapter 2.

QED Compton events have a distinct signature, exhibiting two clusters which are
back-to-back in azimuthal angle φ and fulfill (E − pz)1 + (E − pz)2 = 2Ebeam. We
therefore search for pairs of SpaCal clusters, which fulfill the following conditions:

− 5◦ < φ1 − φ2 + 180◦ < 5◦ (6.3.16)

− 4 GeV < (E − pz)1 + (E − pz)2 − 2 · Ebeam < 4 GeV (6.3.17)

7 GeV < E1,2 < 22 GeV (6.3.18)

Events, which fulfill these conditions are likely to be QED Compton events and are
excluded. In figure 6.3.6, a typical QED Compton event is shown with both clusters
in the LAr calorimeter. In figure 6.3.7 the distribution of (E − pz)1 + (E − pz)2 and
φ1−φ2 are shown for the two reconstructed electron clusters with highest energy. The
peak at (E − pz)1 + (E − pz)2 ' 2 · Ebeam = 55.2 GeV and φ1 − φ2 ' π originating
from QED Compton events is clearly visible. The arrows indicate the position of the
applied cuts.
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Figure 6.3.7: Distribution of (E − pz)1 +(E − pz)2 (left) and φ1−φ2 (right) for the two
reconstructed SpaCal clusters with highest energy. For both plots, all cuts were released
except the trigger condition and the cuts (6.3.1) and (6.3.2). The arrows indicate the
range of the cuts.

Figure 6.3.6: Typical QED Compton event with two clusters in the LAr calorimeter.
Both clusters are back-to-back in azimuth. The electron and the photon cluster can be
distinguished by means of the reconstructed track.
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Chapter 7

The Monte Carlo Models

In the context of this analysis, two different Monte Carlo generators are used. The DIS
events are modelled using the DJANGOH package while for the background simulation
the PYTHIA package is used. The detector simulation and event reconstruction is done
using the programs H1SIM and H1REC. In the first section of this chapter we introduce
both generator models. In the second section we present control plots of different
variables to study the consistency between the data and its Monte Carlo description.

7.1 The Djangoh Sample

The DJANGOH package [SS] generates DIS events including parton showers, hadroniza-
tion and first order QED radiative corrections. It internally relies on HERACLES
[KSM92] for the radiative corrections, LEPTO [IER97] for the hard scattering process,
ARIADNE for parton showering and JETSET [S+01] for fragmentation and hadronization.
ARIADNE is an implementation of the color dipole model [AGLP89, GP88] for parton
cascades. JETSET relies on the Lund string model [AGIS83, AGS83]. For this work,
the version 1.4 of DJANGOH has been used.

7.1.1 The Generator Sample

For this analysis 300 million events have been generated, accounting for radiative
processes of ISR, FSR, QED Comption and and processes of Born level type. No
generator weights have been applied to the events. The generation has been done
using parton density functions from the set CTEQ6L [P+02, B+], which is accessible
through LHAPDF [WBG05] (LHAPDF-Code: 10041). As kinematic cuts, Q2

min = 4 GeV
and xmin = 10−5 have been used. Virtual corrections are applied to the QED vertex of
the event. Integration over the phase space gives for the total generator cross section:

σDjangohtot = 347399 pb (7.1.1)

In the left column of figure 7.4.1 the generated distributions for the variables Q2
e,

ye and xe are drawn.

71



72 CHAPTER 7. THE MONTE CARLO MODELS

7.1.2 QCD Reweighting
The simulation should correspond to the H1 data rather than the to PDF set CTEQ6L.
Therefore, a QCD reweighting function is applied to the Monte Carlo model, such that
it effectively describes a sample according to the PDF set H1PDF2009 [Kre, A+09]. The
weight function depends on the photon virtuality Q2

QCD and the proton momentum
fraction xQCD carried by the struck parton. Both variables are available on generator
level. The weight function is simply defined as the ratio of the double differential cross
sections obtained from the two PDF sets:

wQCD
(
xQCD, Q

2
QCD

)
=

∂2σH1PDF2009

∂Q2
QCD∂xQCD

(
xQCD, Q

2
QCD

)
∂2σCTEQ6L

∂Q2
QCD∂xQCD

(
xQCD, Q2

QCD

) (7.1.2)

Note, that this reweighting procedure needs to be applied both on detector level and
on generator level. In figure 7.1.1 the weight function wQCD

(
xQCD, Q

2
QCD

)
is depicted

together with the structure functions FH1PDF2009
2 (x,Q2) and FCTEQ6L

2 (x,Q2) from
which it is derived.

7.1.3 Djangoh Luminosity
In order to calculate the integrated luminosity of this Monte Carlo sample, we count all
generated events passing the Z Vertex Cut (6.1.1) and the run selection from section 6.1
(Good run cut). Note, that for the luminosity determination the QCD weights wQCD
from (7.1.2) should not be applied to the events. However, the weights wV txRew (zV tx)
for the Z vertex shape reweighting do have to be applied, see chapter 8. We end up
with Nweighted = 288.61 million weighted events, or, equivalently:

Lmodel = 830.8 pb−1 (7.1.3)

For further reference we introduce a model scale factor fmodel for which we obtain
with (6.1.2):

fmodel = Ldata
Lmodel

= 0.1699 (7.1.4)

From the data luminosity determination with QED Compton events the following
systematic uncertainty is obtained [SP] :

δ (fmodel) = 2% (7.1.5)

We can recalculate the scale factor by comparing the sum of all weigthed reconstructed
events for both the data and Monte Carlo distribution and obtain a slightly different
result:

f shapemodel :=
∑
iw

data
i∑

iw
model
i

= 0.1648 (7.1.6)

Here, each sum runs over all events selected on analysis level. The discrepancy between
fmodel and f shapemodel of the order of 3% is not compatible with the systematic uncertainty
of the data luminosity. It rather reflects a discrepancy between the measurement of
this analysis and H1PDF2009. We will come back to this issue in chapter 12.
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Figure 7.1.1: Structure function F2 (x,Q2) for the pdf sets H1PDF2009 [Kre, A+09]
and CTEQ6L [P+02, B+]. Moreover, the QCD weight function wQCD
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given.
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In figure 7.4.1 (left column) control plots of generated variables are given. Note
the steep descent in the Q2-distribution (top left) and the generator cut Q2 > 4 GeV2.
Note the sharp peak in the y-distribution (center left) around y ' 1 which originates
from ISR events, for which the center of mass energy is effectively lowered. Moreover,
the distribution of the generated Bjorken variable x is shown (bottem left).

7.2 The Pythia Sample
The background is simulated using the PYTHIA [SMS08] package. A pure photoproduc-
tion sample is produced with Q2 . 4 GeV. The generation has been done using parton
density functions from the set CTEQ5L [L+00] (PDFLIB-code: 1446 [PB93]). Integration
over the phase space gives for the total generator cross section:

σPythiatot = 173176 pb (7.2.1)

In the right column of figure 7.4.1 the generated distributions for the variables Q2
e,

ye and xe are drawn.
We calculate the integrated luminosity of the Pythia sample in the same way we

did for the Djangoh sample. Note, however, that the Pythia sample is afflicted with
large generator weights wMC . We end up with Nweighted = 3.876 million weighted
events, or, equivalently:

Lbgr = 223.85 pb−1 (7.2.2)
For further reference we introduce a background scale factor fbgr for which we obtain
with (6.1.2):

fmodel = Ldata
Lmodel

= 0.63 (7.2.3)

The determination of the background normalization suffers from large model uncer-
tainty in this region of the phase space. However, the overall background contami-
nation of the DIS sample is very low in the phase space of this analysis and, by the
dedicated cuts described in chapter 6, is further reduced to values clearly below 1%.
It follows that the estimation of the systematic unvertainty δ (Lbgr) of the background
luminosity is not very critical. Therefore, in accordance with [A+03] the following
rather conservative choice for the background scale uncertainty is made:

δ (Lbgr) = 0.5 (7.2.4)

In figure 7.4.1 (right column) control plots of generated variables are given. The
generatedQ2-variables are very low (Q2 . 2 GeV2), as photoproduction events are pro-
duced (top right). Moreover, the events exhibit high elasticity, see the ye-distribution
(center right). Moreover, the distribution of the generated Bjorken variable x is shown
(bottem left).

7.3 Simulation and Reconstruction
The detector simulation is done with the package H1SIM which is based on GEANT
[BBM+]. It simulates the passing of the particles through the detector material in-
cluding multiple scattering. Moreover, a calorimetric shower simulation is available.

The reconstruction is done in the same way as for genuine data events.
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7.4 Control Plots of Reconstructed Variables

In figures 7.4.2 and 7.4.3, control plots of different variables are given to study the
consistency between the data and its Monte Carlo description. The Djangoh sample
is shape normalized according to (7.1.6).

In 7.4.2 (top left) the Q2
e-dependence with its typical falling behaviour is shown.

The lower limit is an artefact of the radius cut Re > 30 cm. The ye-distribution
is shown in 7.4.2 (top right), while the logarithmic binning masks the descending
behaviour which is typical for this variable. Note the kink in the top right corner, which
originates from the ECRA Cut and the EMPZ Cut which are especially restrictive at
small electron energies Ee . 16 GeV.

In 7.4.2 (center left), the Bjorken variable xe is shown. One can easily understand
the shape of the distribution by projection of figure 6.2.1 (right) on the horizontal axis.
7.4.2 (center right) shows the z-Vertex distribution exhibiting the Gaussian shape of
the main bunch. Note, that events featuring either a CIP vertex, a CJC vertex or
both are binned.

Figure 7.4.2 (bottom left) shows the well described polar angle distribution of the
electron (θe). It shows the expected rise towards small scattering angles (θe → π).
Note in figure 7.4.2 (bottom right) the S-shaped ascent of the energy distribution
between 14 GeV and 16 GeV. It is an artifact of the ECRA cut and the EMPZ cut,
which is are especially restrictive at small electron energies Ee . 16 GeV.

The plot for the variable EMPZ ≡ (E − pz)tot is drawn in figure 7.4.3 (top left).
A slight shift between the distributions can be observed. Recall, that a cut is ap-
plied on this variable, see (6.3.8). However, since the cut affects only the tails of the
distribution, no efficiency discrepancy is expected to emerge from this cut.

The SpaCal cluster size ECRA exhibits a severe shape discrepancy between data
and Monte Carlo, see figure 7.4.3 (top right). Recall, that a cut is applied on this vari-
able, see (6.3.10), which will affect the reconstruction efficiency εEcra. In particular,
due to the shape discrepancies in the ECRA-distribution, the reconstruction efficien-
cies for data εEcradata and model εEcramodel will differ. Therefore, both efficiencies have to be
determined carefully and an appropriate correction needs to be applied to the Monte
Carlo simulation. This is done in chapter 8.

In figure 7.4.3 (bottom left) the number of vertex fitted tracks Ntr is plotted. Note,
that the vertex fitting is done in reference to the CJC vertex. Events which do not have
a vertex fitted track (and hence no CJC vertex) can still enter the event selection by
featuring a CIP vertex. In figure 7.4.3 (bottom right) the distribution of the number
of CIP hits NCip

hits is shown.

Control plots of the PYTHIA sample are shown in figure 7.4.4. The control plots are
normalized to the data luminosity according to (7.2.3). Note the low event frequency
for the background events. They predominantly occur at high ye and small Q2

e values,
which corresponds to low energy events (Ee . 16 GeV) at small scattering angles
(Re . 50 cm).
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Figure 7.4.1: Generator level distributions for the DJANGOH and the PYTHIA sample.
Top: Squared momentum exchange Q2

e. Center: Inelasticity ye. Bottom: Bjorken
variable xe.
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Figure 7.4.2: Control plots of reconstructed variables for data and model (DJANGOH).
Top: Squared momentum exchange Q2

e and Inelasticity ye. Center: Bjorken variable
xe and z vertex position zV tx. Bottom: Electron polar angle θe and electron energy Ee.
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Figure 7.4.3: Control plots of reconstructed variables for data and model (DJANGOH).
Top: The variable EMPZ ≡ (E − pz)tot and the SpaCal cluster size ECRA. Bottom:
Number Ntr of reconstructed vertex fitted tracks and number NCip

hit of CIP hits along
the electron track.
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Figure 7.4.4: Control plots of the reconstructed variables Q2
e and ye for the background

simulation (PYTHIA ).



Chapter 8

Efficiency and Z Vertex Correction

As pointed out in chapter 4, the success of the unfolding strategy critically depends on
a reliable modelling of the detector effects. In this chapter, efficiency studies are per-
formed for the data sample and for the Monte Carlo. Discrepancies between data and
model efficiency are then remedied by the introduction of appropiate weight functions.

Another correction that needs to be applied to the Monte Carlo simulation is the
z-Vertex reweighting. It will be discussed in section 8.3.

8.1 General Approach to Efficiency Correction

The reason for a potential loss of reconstruction efficiency is typically some sort of cut
on the event sample for background reduction. For each such cut λ, we determine both
a data efficiency ελ,data(Ξλ) and a model efficiency ελ,model(Ξλ). Here, both efficiencies
are functions on some variable Ξλ, which is specific to the cut λ under investigation.
For instance, the CIP efficiency εCip (ZCIP ) depends on the longitudinal coordinate
ZCIP of the electron’s passing through the CIP layers. Note, that in some cases, the
efficiency even depends on more than one variable. For such cases, the symbol Ξλ shall
denote an n-tupel of variables, i. e. Ξλ = (Ξ1

λ,Ξ2
λ, . . .). For instance, as we will see in

section 8.2, the efficiency of the ECRA cut is a function of the cluster position Re and
the cluster energy Ee.

In order to obtain the efficiencies ελ(Ξλ), background free reference samples need
to be defined. Then, two independent analyses of the reference sample are performed,
once with and once without the cut λ that introduces the inefficiency. We obtain
distributions Nλ

cut (Ξλ) and Nλ
all (Ξλ), respectively. Note, that Nλ

cut (Ξλ) and Nλ
all (Ξλ)

are not smooth functions, since they originate from the discrete data points of a
counting experiment. Rather, Nλ

cut (Ξλ) and Nλ
all (Ξλ) can be viewed as step functions

over an appropriate binning Gλ of Ξλ. The choice of the bin grid Gλ should reflect the
available event statistics as well as the shapes of the efficiencies to be compared.

The efficiency is now simply the ratio between the two event distributions:

ελ(Ξλ) = Nλ
cut (Ξλ)

Nλ
all (Ξλ)

(8.1.1)

79
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while its statistical uncertainty is given by:

∆ελ(Ξλ) =

√√√√ελ (Ξλ) · (1− ελ (Ξλ))
Nλ
all (Ξλ)

(8.1.2)

This procedure is done for both the model and data efficiency.

8.1.1 Weight Functions
With ελ,data(Ξλ) and ελ,model(Ξλ), a weight function wλ(Ξλ) can be defined for each
efficiency effect λ:

wλ (Ξλ) = ελ,data(Ξλ)
ελ,model(Ξλ)

(8.1.3)

Note, that unlike the efficiencies ελ,data(Ξλ) and ελ,model(Ξλ), the weight function wλ (Ξλ)
can take on values both greater and less than 1. For the cases studied in section 8.2,
all weights are indeed close to 1, see figures 8.2.2, 8.2.4 (left), 8.2.7, 8.2.9 and the
discussion there.

With the weight functions wλ (Ξλ) at hand, the Monte Carlo simulation can be
redone, such that all efficiencies are modelled correctly. To achieve this, every single
Monte Carlo event is applied the following weight on detector level:

W =
∏
λ

wλ (Ξλ) (8.1.4)

Here, the product runs over all sources λ of an inefficiency. This way, an efficiency
corrected detector matrix ÑMC and an efficiency corrected reconstructed Monte Carlo
distribution ~̃N rec are obtained:

NMC → Ñ
MC

~N rec → ~̃N rec

Of course, no weights are applied for the generator level distribution ~N gen, which
means we have ~̃N gen ≡ ~N gen. Then, by construction, we have ε̃λ,model ' ελ,data for the
re-evaluated model efficiency.

Evidently, the determination of the weights wλ (Ξλ) depends on the reliability of the
efficiency determination and the available event statistics. This is, why for some regions
in Ξλ weights cannot be safely determined. For instance, the CIP efficiency reweighting
wCip (ZCIP ) is only possible within regions with efficiency significantly greater than 0.
Outside these region, the weights will therefore be fixed to the boundary values.

Formally, we refine the definition of the weight functions by introducing a region
of trust Ωλ ≡ [Ξmin

λ ,Ξmax
λ ] for each wλ (Ξλ). For Ξλ /∈ Ωλ we regard wλ (Ξλ) as not

reliable and use wλ (Ξmin
λ ) or wλ (Ξmax

λ ) instead. We define:

ŵλ (Ξλ) =


wλ (Ξmin

λ ) ∀Ξλ < Ξmin
λ

wλ (Ξλ) ∀Ξλ ∈ Ωλ

wλ (Ξmax
λ ) ∀Ξλ > Ξmax

λ

(8.1.5)
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This definition is particularly useful to exclude regions of low efficiency ελ � 1 from the
region of trust. In those areas large systematic uncertainties on the weight functions
would emerge. From now on, with the symbol wλ (Ξλ), we implicitly understand a
weight function according to (8.1.5).

Note, that the weight function wλ (Ξλ) for some cut λ is not given in a functional
form Ξλ → wλ (Ξλ), but rather as a set of bin wise data points wλ1 , wλ2 , wλ3 ... Therefore,
for each efficiency study λ an appropriate binning Gλ of the variable Ξλ must be chosen.
This binning Gλ should reflect the shape of the observed weight function wλ (Ξλ) and
the available statistics of the reference sample.

Unless specified otherwise, from here on the symbol NMC shall implicitly denote
the reweighted response matrix.

8.1.2 Estimation of Systematic Uncertainties
The idea to account for the systematic uncertainty of the efficiency correction is the
introduction of shifted weight functions wλ+ (Ξλ) and wλ− (Ξλ) for each efficiency effect
λ. For instance, we shift the CIP efficiency weight function wCip (ZCIP ) up and down,
giving wCip+ (ZCIP ) and wCip− (ZCIP ). Then, the Monte Carlo simulation is repeated
for both of these shifted weight functions, giving two shifted response matrices NCip+

and NCip−. These matrices can then be used for the error propagation according to
section 4.8.

More formally, we produce two independent Monte Carlo simulations for each λ,
while each event is applied the following weight on detector level:

W λ± =
∏
η

wη (Ξη)×
wλ± (Ξλ)
wλ (Ξλ)

(8.1.6)

This means effectively, that for the efficiency effect λ under investigation, only the
weight function wλ (Ξλ) is shifted (wλ (Ξλ) → wλ± (Ξλ)), while for each η 6= λ no
weight shifting is performed. With this procedure, two shifted response matrices Nλ±

and two shifted detector level distributions ~N rec,±∆λ are obtained for each λ:

NMC →Nλ±

~N rec → ~N rec,λ±

The shifts ~N rec,λ±− ~N rec can then be used as estimates of the systematic uncertainties
on ~N rec originating from the efficiency effect λ. With the shifted matrices Nλ± at
hand, the error propagation of these uncertainties to the unfolding result ~x can be
performed, using the techniques described in section 4.8.

The remaining task is the definition of the shifted weight functions wλ± (Ξλ). This
is done by shifting the model efficiency ελ,model (Ξλ) up and down, giving ελ,model+ (Ξλ)
and ελ,model− (Ξλ), which propagates to the weight functions wλ+ (Ξλ) and wλ− (Ξλ) via
(8.1.3). For most efficiency effects λ, we will take the difference between the data and
the model efficiency as a measure for the systematic uncertainty of the model efficiency,
i.e. ∆sys

(
ελ (Ξλ)

)
= ∆ελ,data (Ξλ) − ∆ελ,model (Ξλ). Therefore, for the shifted model

efficiencies ελ,model± (Ξλ), the following choice is motivated:

ελ,model± (Ξλ) = max
{
ελ,model (Ξλ)±

1
2 ·
(
ελ,data (Ξλ)− ελ,model (Ξλ)

)
, 1
}
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Here, the maximum prescription ensures, that the shifted model efficiencies never take
on values greater than 1.

More general, we define the shifted model efficiencies ελ,model± (Ξλ) in the following
way:

ελ,model± (Ξλ) := max
{
ελ,model (Ξλ)± fλ ·

(
ελ,data (Ξλ)− ελ,model (Ξλ)

)
± pλ, 1

}
(8.1.7)

Note, that both ελ,model+ (Ξλ) and ελ,model− (Ξλ) can take on values greater or less than
ελ,model (Ξλ), but never greater than 1. Here, fλ (shift factor) and pλ (shift pedestal)
are parameters, that can be used to adjust the level of shifting. As a standard value,
we use fλ = 0.5 and pλ = 0, which corresponds to the choice motivated above.

We now define the shifted weight functions in analogy to (8.1.3):

wλ± (Ξλ) := ελ,data(Ξλ)
ελ±(Ξλ)

(8.1.8)

Again, we refine this notion by limiting this weighting prescription to the region of
trust Ωλ ≡ [Ξmin

λ ,Ξmax
λ ] and define:

ŵλ± (Ξλ) =


wλ± (Ξmin

λ ) ∀Ξλ < Ξmin
λ

wλ± (Ξλ) ∀Ξλ ∈ Ωλ

wλ± (Ξmax
λ ) ∀Ξλ > Ξmax

λ

(8.1.9)

From now on, with the symbol wλ± (Ξλ), we implicitly understand a weight function
according to (8.1.9).

8.2 Determination of Efficiencies
In this subsection, we discuss the S3 trigger efficiency, the CIP efficiency, the Zvtx
reconstruction efficiency and the ECRA cut efficiency.
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Figure 8.2.1: S3 trigger efficiencyεTrg. Left: As a function of the radial position Re

of the SpaCal electron. Right: As a function of the electromagnetic energy Ee of the
SpaCal electron.
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Figure 8.2.2: S3 trigger efficiency weight functions wTrg, wTrg+ and wTrg− as a func-
tion of the radial position Re of the SpaCal electron.

8.2.1 S3 Trigger efficiency

In order to determine the S3 trigger efficiency, an independent reference sample has
been defined using the S74 trigger. While the S3 trigger is sensitive to the SpaCal
electron clusters, S74 triggers dijet events in the LAr calorimeter. Therefore, no cor-
relation between the two triggers is expected.

In figure 8.2.1 the trigger efficiency is plotted, once as function of the SpaCal
position Re of the cluster and once as a function of its energy Ee. A dropping of
the data efficiency towards the radius threshold Rtr ' 30 cm and towards the energy
threshold at Etr ' 10 GeV is visible. A slight difference between εTrg,data and εTrg,model
is visible, that varies with Re. Its order of magnitude is about 0.5 %.

The reweighting wTrg (Re) is applied as a function of Re, since the efficiency dif-
ference varies prodominantly with Re. For the reweighting procedure, a rather course
bin grid GTrg of 11 bins between 28 and 72 cm has been chosen. For the systematic
uncertainties, we set fTrg = 0.5 and pTrg = 0. The result is shown in figure 8.2.2,
where wTrg, wTrg+ and wTrg−are depicted for the bins of GTrg.
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Figure 8.2.3: CIP efficiency εCip for two CIP hits along the electron track. Left: As a
function of the longitudinal position ZCIP of the electron’s CIP passage. Right: As a
function of the electron’s azimuthal angle φe.
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Figure 8.2.4: Left: CIP efficiency weight functions wCip, wCip+ and wCip− as a function
of the longitudinal position ZCIP of the electron’s CIP passage. Right: CIP efficiency
εCip after reweighting as a function of the electron’s azimuthal angle φe.
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Figure 8.2.5: Event histogram over the longitudinal position ZCIP of the electron’s CIP
passage.

8.2.2 CIP Efficiency
As pointed out in chapter 6, a cut on the number of CIP hits of the electron track
has been applied (CIP Hit Cut) in order to suppress background events from neutral
particles. Events with Nhit < Ntr ≡ 2 are rejected for small cluster energies (Ee .
16 GeV). In this subsection, we discuss the CIP efficiency εCip introduced by this cut.

To define a reference sample, we use only to those events which fullfill the require-
ment Ee < Eref

tr ≡ 20 GeV. Since the hadronic background is predominantly observed
at small energies Ee . 16 GeV, this sample is regarded as background free. Moreover,
we request for the reference sample, that the reconstructed event vertex is of CJC type
rather than CIP type, see chapter 6. This is to avoid possible influences of the event
selection in the CIP efficiency determination.

In figure 8.2.3 the CIP efficiency is plotted once as function of the azimuthal angle
φe of the SpaCal cluster and once as function of the z-position of the track’s passage
through the CIP detector (ZCIP ). The latter variable is easily calculated from the
electron polar angle θe and vertex z-position zV tx:

ZCIP = zV tx + RCIP

tan θe
(8.2.1)

Here, RCIP = 17 cm denotes the radial position of the inner layer of the CIP detector.
Note, that for these computations the conventions of the H1 coordinate system are
used.

Note the dropping of the CIP efficiency towards low ZCIP in figure 8.2.3. This
reflects the geometry of the CIP detector, which is restricted in its longitudinal range
to z ≥ −112 cm [B+08]. Notice further the drop of effiency at very high values of Z.
Also, some systematic variation of the efficiency with φe is visible. Recall from chapter
3, that the azimuthal structure of the CIP detector shows 8 segments, which differ in
performance. This introduces the observed φe-dependence of εCip.



86 CHAPTER 8. EFFICIENCY AND Z VERTEX CORRECTION

Clearly, the data and model efficiencies εCip,data and εCip,model show some difference,
which varies with ZCIP . In particular, this is true for very high and very low values
of ZCIP . However, as can be seen from figure 8.2.5, the bulk of the event statistics
concentrates on the region ΩCip = [−100 cm,−30 cm]. Therefore, the efficiency deter-
mination outside this region ΩCip (region of trust) is not reliable, while its influence on
the total error is negligible. Within the region of trust ΩCip, we observe a difference of
up to 2 %, which rises with ZCIP . Note, that almost no large scale φe-dependance of
the difference is observed. The performance of the different sectors of the CIP detector
seems very well described by the model. The plot shows an overall difference between
εCip,data and εCip,model of roughly 1 %.

The reweighting wCip (ZCIP ) is applied as a function of ZCIP , since the efficiency
difference varies prodominantly with ZCIP . For the reweighting procedure, a rather
course bin grid GCip of 15 bins between -100 cm and 30 cm has been chosen, since
the variation of wCip (ZCIP ) is small throughout GCip. For the shifting parameters, we
choose fCip = 0 and pCip = 0.003. This means, that a constant offset of 3 permille
is applied for the shifts in both directions. This approach can be motivated with
figure 8.2.4 (right), in which the corrected CIP efficiencies for model (ε̃Cip,model) and
data (εCip,data ) is plotted as a function of the electron’s azimuthal angle φe. The
overall difference which was visible in figure 8.2.3 is reduced, while fluctuations of
∼ 3 permille remain in average. We therefore take this value as a measure for the
systematic uncertainty of the model CIP efficiency.

The result is shown in figure 8.2.4 (left), where wCip, wCip+ and wCip−are depicted.
Note the constant offset of 3 permille bewteen the weight functions. Note further, that
for ZCIP /∈ GCipEff , the values of the boundary bins of GCipEff are used.

On analysis level, the CIP efficiency is only applied to low energy events, for which
Ee < Ecut

tr ≡ 16 GeV. This is, because the background contamination predominantly
occurs in this region of the phase space. Accordingly, the weight functions wCipEff ,
wCipEff+ and wCipEff− are only applied to those low energy events, reducing the
systematic uncertainty significantly in the rest of the phase space.

8.2.3 Vertex Efficiency
The determination of the vertex reconstruction efficiency εV txEff is complicated by
the fact, that no clean reference sample can be defined. Recall, that the vertex cut
(−35 cm < zV tx < 35 cm) plays a crucial role in the background reduction, partic-
ularly by cutting away the satellite bunches. A second problem emerges from the
fact, that our event selection exploits two different reconstruction techniques, the CJC
vertex reconstruction and the CIP vertex reconstruction. Both have their own effi-
ciency, εCjcV tx and εCipV tx, while our main interest lies in the combined vertex efficiency
εV txEff .

We solve both intricacies at once by the following cross-over approach: We first
determine the CJC vertex reconstruction efficiency εCjcV tx using a reference sample
comprising all events with CIP vertex. Then, we determine the CIP vertex reconstruc-
tion efficiency εCipV tx using a reference sample comprising all events with CJC vertex.
Since both reconstruction algorithms use different subdetectors, they are completely
independent.

The combined vertex reconstruction efficiency εV txEff can then be mathematically
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derived in the following way:

εV txEff = εCjcV tx + εCipV tx − εCjcV tx · εCipV tx (8.2.2)

To obtain an estimate for the statistical uncertainty, we use:

∆εV txEff =
√

(1− εV txEff ) · εV txEff
Nall

'
√

(1− εV txEff ) · εV txEff
NV txEff

(8.2.3)

Here, Nall denotes the true event count, while NV txEff refers to all events with a
reconstructed vertex either of CIP type or CJC type and with −35 cm < zV tx < 35 cm.
Since εV txEff is very high, Nall ' NV txEff is justified.

In figure 8.2.6 (top) the CJC vertex reconstruction efficiency εCjcV tx is plotted,
once as function of the SpaCal position Re of the cluster and once as a function of its
energy Ee. Clear discrepancies are visible up to almost 2 % for high Re and 1% for
low Ee. Note, that for events close to the kinematic peak (Ee ' 27.6 GeV) the CJC
vertex efficiency drops rapidly, since this region is dominated by elastic scatterings. In
this region, the determination of εCjcV tx,model and εCjcV tx,data can not be trusted.

In figure 8.2.6 (center) the CIP vertex reconstruction efficiency εCipV tx is plotted,
once as function of the SpaCal position Re of the cluster and once as a function of its
energy Ee. Again, the discrepancies are prominent and reach up to 5 % for low Ee.
Note the ascend of εCipV tx with both Ee and Re.

The combined vertex reconstruction eficiency εCipEff is depiced in figure 8.2.6
(bottom). Notice, that the remaining inefficiency is on a sub-permille scale. Only
for small electron energies Ee the inefficiency is almost 1.5 permille. Moreover, the
difference between data and model efficiency takes on values up to roughly 1.2 permille
only.

Nevertheless, a reweighting of the vertex reconstruction efficiency has been done.
Since only the Ee-dependence of the difference εV txEffdata − εV txEffmodel is potentially signif-
icant, the weights wV txEff (Ee) are defined as a function of Ee. For the reweighting,
the region ΩV txEff = [11 GeV, 27 GeV] (region of trust) has been devided in 17 bins
(GV txEff ). For the shift parameters, we set fV txEff = 0.5 and pV txEff = 0 as usual.
The result is shown in figure 8.2.2, where wV txEff , wV txEff+ and wV txEff−are depicted
for the bins of GV txEff .
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Figure 8.2.6: Vertex reconstruction efficiency. Top: The CJC vertex reconstruction
efficiency εCjcV tx. Center: The CIP vertex reconstruction efficiency εCipV tx. Bottom:
The combined vertex reconstruction efficiency εCjcV tx. The left column shows the effi-
ciencies as a function of the radial position Re of the SpaCal electron, the right column
as a function of its electromagnetic energy Ee.
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Figure 8.2.7: Vertex reconstruction efficiency weight functions wV txEff , wV txEff+ and
wV txEff−are depicted as a function of the electromagnetic energy Ee of the SpaCal
electron.

8.2.4 ECRA Cut Efficiency
As pointed out in chapter 6, a cut on the SpaCal cluster size has been applied
(ECRA Cut) in order to suppress background from hadronic particles. Events with
ECRAe > ECRAtr (Re, Ee) are rejected, while ECRAtr (Re, Ee) is a function on the
radial position Re of the SpaCal cluster and its electromagnetic energy Ee. In this
subsection, we discuss the ECRA efficiency εEcra introduced by this cut. Recall, that
the variable ECRAe is not well described by the Monte Carlo simulation (see figure
7.4.3), such that an efficiency difference is expected.

In order to construct a clean reference sample, we search specifically for QED
Compton events. These events have a distinct signature, exhibiting two clusters which
are back-to-back in azimuthal angle φ and fulfill (E − pz)1 + (E − pz)2 = 2Ebeam, see
chapter 6. We therefore search for pairs of SpaCal clusters, which fulfill the following
conditions:

− 10◦ < φ1 − φ2 + 180◦ < 10◦ (8.2.4)
− 10 GeV < (E − pz)1 + (E − pz)2 − 2 · Ebeam < 10 GeV (8.2.5)

7 GeV < E1,2 < 22 GeV (8.2.6)
Recall from chapter 6, that we also have E1 > 11 GeV. The above selection is expected
to significantly reduce the background contamination. Of course, the QEDC Cut from
chapter 6 is relaxed for this sample.

In order to enhance the statistics of the reference sample, the data sample is ex-
tended to the electron run periods in 2005 and 2006. The complete run range of the
sample is 399101 to 500611. Here we use, that the ECRA cut efficiency is expected
to be time invariant. The same good run selection is used, which has been described
in 6. For the integrated luminosity, we obtain LQEDCdata ' 301.5 pb−1. For the Monte
Carlo reference sample, a DJANGOH generation is used, which comprises QED Compton
events only1. The integerated luminosity is LQEDCmodel ' 1124.8 pb−1.

1Requests 7117, 7119.



90 CHAPTER 8. EFFICIENCY AND Z VERTEX CORRECTION

In figure 8.2.8 the ECRA cut efficiency εEcra is plotted, once as function of the
SpaCal position Re of the cluster and once as a function of its energy Ee. Note, that
inefficiencies only appear in the area of small Ee and small Re, since at higher values
the ECRA cut is relaxed. As expected, discrepancies between εEcradata and εEcramodel are
clearly visible, which take on values up to ∼ 1.5 % for low Ee.

Since the discrepancies depend on both Re and Ee, a two dimensional weight
function wV tx (Re, Ee) needs to be introduced. To do that, a two dimensional bin grid
GEcra is defined, comprising 3 bins in Re in 4 in Ee. The bin boundaries in the direction
of Re and Ee are:

Rbnd
e = 28 cm, 40 cm, 55 cm, 72 cm (8.2.7)

Ebnd
e = 11 GeV, 12.5 GeV, 14 GeV, 16 GeV (8.2.8)

The rather coarse choice of the binning accounts for the limited statistics of the QED
Compton sample. The bin boundaries are chosen to reflect the structure of the thresh-
old function ECRAtr (Re, Ee). For the systematic uncertainties, we set fEcra = 0.5
and pEcra = 0. The result is shown in figure 8.2.9, where wEcra, wEcra+ and wEcra−are
depicted for the bins of GEcra.
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Figure 8.2.8: ECRA cut efficiency εEcra. Left: As a function of the radial position Re

of the SpaCal electron. Right: As a function of the electromagnetic energy Ee of the
SpaCal electron.
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Figure 8.2.9: ECRA cut efficiency weight functions wEcra, wEcra+ and wEcra−are de-
picted as a function of the radial position Re of the SpaCal electron and its electro-
magnetic energy Ee.

8.3 Z Vertex Reweighting

As pointed out in chapter 7, the Monte Carlo simulation fails to match the Z vertex
shape distribution, see figure 8.3.1 (left). This is remedied by introducing a shape
weight function wV txRew (zV tx) that depends on the longitudinal position zV tx of the
primary vertex. The result can be seen in figure 7.4.2 (center right), which features
a good agreement of the distributions for data and Monte Carlo. The reweighting is
done very similar to the efficiency correction.

8.3.1 The Z vertex weight function

The weight function wV txRew (zV tx) is directly obtained as a ratio of the data distribu-
tion Ndata (zV tx) and the Monte Carlo distribution Nmodel (zV tx). Note that, unlike for
efficiency corrections, a pure shape reweighting is applied. This means, both numerator
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and denominator have to be normalized to their luminosity. We therefore define:

wV txRew (zV tx) =
(∑

Nmodel (zV tx)∑
Ndata (zV tx)

)
· N

data (zV tx)
Nmodel (zV tx)

(8.3.1)

Here, the sum runs over all zV tx-bins in the bin grid GV txRew to be defined. Note, that
the weight function wV txRew (zV tx) can take on values both greater and less than 1.

The application of wV txRew (zV tx) to the Monte Carlo simulation is done in the way
described in subsection 8.1.1. Note however, that the Z Vertex shape reweighting must
also be applied to the generator level distribution ~N gen, such that we have:

~N gen → ~̃N gen

This is critical to the preservation of the correct reconstruction efficiencies in the
unfolding process.

From 8.3.1 (left) it is clear, that for zV tx with large absolute value |zV tx|, the event
statistic is poor. Large systematic uncertainties on the weight functions have to be
expected. Therefore, a restriction of the reweighting prescription to the luminous
region of the detector should be applied. We do this formally by introducing a region
of trust ΩV txRew ≡ [zminV tx , z

max
V tx ] and refine the definition (8.3.1) in the following way

(α ∈ {model, data}):

Ñα (zV tx) =


Nα (zminV tx ) ∀zV tx < zminV tx

Nα (zV tx) ∀zV tx ∈ ΩRew

Nα (zmaxV tx ) ∀zV tx > zmaxV tx

(8.3.2)

Then, let w̃V txRew (zV tx) be given analog to (8.3.1). This essentially means, the weight
function is constrained to the region ΩV txRew, while for events with zV tx /∈ ΩV txRew

the weights from the boundaries of ΩV txRew are used. From now on, with the symbol
wV txRew (zV tx), we implicitly understand a weight function according to (8.3.2) and
(8.3.1).
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Figure 8.3.1: Left: Comparison of the distributions of the l z-Vertex distribution for
data and Monte Carlo before reweighting, Ndata(zvtx) and Nmodel(zvtx). The model
distribution is normalized to the data distribution according to (7.1.6). Right: Weights
wV txRew, wV txRew+ and wV txRew− for the z-Vertex shape reweighting. For the z Vertex
distribution after reweighting, see figure 7.4.2 (center right).

8.3.2 Systematic Uncertainty of Z Vertex Reweighting
In order to account for the systematic uncertainty of z Vertex reweighting, shifted
weight functions wV txRew+ (zV tx) and wV txRew− (zV tx) are introduced. Completely ana-
log to subsection 8.1.2, two shifted response matrices NV txRew± and two shifted de-
tector level distributions ~N rec,V txRew± are obtained. Moreover, we obtain two shifted
generator level distributions ~N gen,V txRew± , which are important to preserve the recon-
struction efficiency in the unfolding process.

Completely analog to subsection 8.1.2, the shifted weight functions wV txRew± (zV tx)
are constructed by shifting the model z-Vertex distribution Nmodel (zV tx) up and down,
such that we obtain N+ (zV tx) and N− (zV tx). These shifts in turn propagate to the
weight functionswV txRew+ (zV tx) and wV txRew− (zV tx) by means of (8.3.1). We set for
the shifted model distributions:

N± (zV tx) = Ndata (zV tx)±

fV txRew ·
(
Ndata (zV tx) ·

(∑
Nmodel (zV tx)∑
Ndata (zV tx)

)
−Nmodel (zV tx)

)
± pV txRew (8.3.3)

Note the normalization factor in (8.3.3), the sums of which run over all zV tx-bins in
the grid GV txRew. As always, the functional values outside the luminous region of the
detector, i.e. for zV tx /∈ [zminV tx , z

max
V tx ], will be fixed to the boundary values:

Ñ± (zV tx) =


N± (zminV tx ) ∀zV tx < zminV tx

N± (zV tx) ∀zV tx ∈ ΩRew

N± (zmaxV tx ) ∀zV tx > zmaxV tx

(8.3.4)
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With Ñ± (zV tx) from (8.3.3) and Ñdata (zV tx) from (8.3.2) the shifted weight functions
wV txRew± (zV tx) can be calculated according to (8.3.1). With this definition, the nor-
malization of the Z vertex shape is preserved even when the shifted weight functions
are applied.

8.3.3 Estimation of Z Vertex Weights
In order to estimate the Z vertex weights, the data and Monte Carlo distributions
are directly compared, see figure 8.3.1 (left). A slight horizontal shift between the
distributions is visible.

The weights wV txRew are determined for the region ΩV txRew = [-20 cm, +20 cm],
while a bin grid GV txRew with 30 bins has been chosen. For the shifting parameters,
we set fV txRew = 0.1 and pV txRew = 0, reflecting the abundant statistics of our data
sample. The result is shown in figure 8.3.1 (right), where wV txRew, wV txRew+ and
wV txRew− are depicted for the bins of GRew. Note, that the correction can take on
values up to 9%.



Chapter 9

Calibration and Alignment Tests

In Chapter 3 the general SpaCal calibration procedure was covered. Here, calibration
tests are performed with regard to the electron variables Ee and θe. We particularly
study, how both variables are reproduced in the Monte Carlo simulation. The discus-
sion spans both the absolute calibration scale and the detector resolution. From that,
measures for the systematic uncertainties are derived, that account for the detector
calibration and resolution.

9.1 Electron Energy Scale and Resolution
In order to study the calibration of the electron energy Ee, we compare this quantity
with the energy obtained from the double angle method EDA, see equation (3.5.7).
Note, that both quantities do not necessarily match, since the SpaCal cluster energy
can be lowered due to photon radiation off the electron line.

In figure 9.2.1, the shift
δE := Ee − EDA (9.1.1)

has been plotted for different radial SpaCal regions. For the binning in Re, 10 bins
with the width of 4 cm have been chosen, ranging from 30 cm to 70 cm. The data
sample for this calibration study is restricted to EDA > 25 GeV to reduce the influence
of radiation effects.

As can be seen from figure 9.2.1, both the data and Monte Carlo distributions do
not peak at zero. Their maxima are rather shifted by 200 to 500 MeV towards negative
values, depending on the Re-bin. Moreover, the distributions are not fully symmetric,
but exhibit tails reflecting the residual influence of radiative effects. For each bin i,
the mean value µi (δE) is shifted by roughly 1 GeV and its root mean square δi (δE)
takes on values around 1 GeV as well. Note however, that all shifts, resolution widths
and tails of the distributions are well described by the Monte Carlo simulation. One
obtains:

∆µi ≡ µidata (δE)− µidata (δE) ' 15 - 100 MeV (9.1.2)

∆δi ≡ δidata (δE)− δimodel (δE) ' 10 - 60 MeV (9.1.3)

The estimation of the systematic uncertainties on the unfolding result ~x is done
according to section 4.8. Two shifted matricesNEe± are produced by shifting the elec-
tron energy scale up and down for each event. By the above discussion, the following
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constant offset is motivated for the input shift:

(∆Ee)± = ± 50 MeV (9.1.4)

For the electron energy resolutionRes(Ee), a single shifted matrixNRes(Ee) is produced
by shifting the resolution up by:

∆Res(Ee) = 40 MeV (9.1.5)

The effect of those shifts on the unfolding result is described in chapter 10.

9.2 Electron Polar Angle Calibration and Resolu-
tion

We now test the calibration of the polar angle θe of the electron clusters, which is
essentially an alignment check for the SpaCal. We compare θe to the polar angle θTrack
from the electron track. The angle θTrack is particularly reliable for tracks which show
hits in the COZ subdetector, because the alignment of both the CJC and the SpaCal
detector is done relative to the COZ position. Electron clusters in the outer region of
the SpaCal can often be linked to a track with COZ hits.

In figure 9.2.2, the shift
δθ := θe − θTrack (9.2.1)

has been plotted for different energy regions. For the binning in Ee, 8 bins with the
width of 2 GeV have been chosen, ranging from 11 GeV to 27 GeV. The data sample
for this alignment study is restricted to events, for which a vertex fitted track can be
matched to the electron cluster. Moreover, the electron track is required to have at
least 2 hits in the COZ detector.

As can be seen from figure 9.2.2, the root mean square of the distribution typically
takes on values between 3 and 4 mrad. The consistency of data and model distributions
is acceptable and one obtains:

∆µi ≡ µidata (δθ)− µidata (δθ) ' 0.7 - 1.1 mrad (9.2.2)

∆δi ≡ δidata (δθ)− δidata (δθ) ' 0.3 - 0.5 mrad (9.2.3)

Again, the estimation of the systematic uncertainties on the unfolding result ~x is
done according to section 4.8. Two shifted matrices N θe± are produced by shifting
the electron polar angle scale up and down for each event. For the shift, a constant
offset of

∆θe = ±1 mrad (9.2.4)

is chosen. For the electron polar angle resolution Res(θe), a single shifted matrix
NRes(θe) is produced by shifting the resolution up by:

∆Res(θe) = 0.4 mrad (9.2.5)

The result of this procedure is described in chapter 10.
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Figure 9.2.1: Comparison of SpaCal cluster energy Ee and double angle energy EDA.
The distribution of the shift δE := Ee − EDA for different bins in Re is shown. For
this event sample, Ee > 25 GeV is required. For each bin i, also the mean values µi
and the root mean squares δi are given for the data distribution.
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Figure 9.2.2: Comparison of SpaCal cluster polar angle θe and the track angle θTrack.
The distribution of the shift δθ := θe−θTrack for different bins in Ee is shown. For this
event sample, vertex fitted tracks with at least 2 COZ hits are required, which have to
match the electron cluster. For each bin i, also the mean values µi and the root mean
squares δi are given for the data distribution.



Chapter 10

Unfolding the data

In this chapter we apply the unfolding procedure introduced in chapter 4 to the mea-
surement of the double differential neutral current ep → eX cross section in the
backward region of the H1 detector.

We start with the introduction of the generator and detector level bin grids Ggen
and Gdet, we study both efficiency and migration for these binnings and introduce the
response matrix.

To determine the level of regularization, the L curve analysis (subsection 4.4.1),
the algebraic analysis (subsection 4.4.2) and the global correlation method (subsection
4.7.2) are performed and compared. We will argue, that the result of the algebraic
analysis according to V. Blobel provides the appropriate choice of the regularization
parameter τ .

We will study the unfolding result with emphasis on the differences to the standard
bin-by-bin method, both concerning the cross section itself and its statistical uncer-
tainty. Moreover, we will study the systematic shifts on the result that are introduced
by the different systematic error sources.

10.1 Bin Grid and Response Matrix
The generator bin grid Ggen chosen for this analysis features 18 bins in the direction of
Q2
e and 10 bins in the direction of ye. Together with its overflow bins, Ggen comprises

240 bins Bi1,i2 in total. Each bin Bi1,i2 is given a unique bin number i = ν(i1, i2), which
is defined in (4.3.7). For better orientation, the bin numbering scheme is depicted in
figure 10.1.1. In Table 10.1, the bin boundaries are given.

From figure 10.1.2 it can be seen, that the efficiency varies strongly throughout
the bin grid. This is due to the boundaries of the detector acceptance, which lead to
“blind spots” in some phase space regions. According to the arguments in subsection
4.5.3, we introduce an efficiency threshold of εtr = 70%. Figure 10.1.1 shows the bins
with sufficient efficiency in green (quotable bins), while low efficiency bins are shown
in yellow and overflow bins are supressed. In total, we have 106 quotable bins, 60
overflow bins and 74 low efficiency bins in the generator level bin grid Ggen. Note, that
we have no bins with vanishing efficiency (zero efficiency bins). Table 10.3 features a
summary of the different bin types.

In this analysis, the low efficiency bins are not excluded from unfolding (“cut-last-
approach”, compare subsection 4.5.5). Therefore, all 240 generator level bins will be
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used for the unfolding process. However, low efficiency bins and overflow bins will be
discarded later.

In Figure 10.1.5 the different efficiencies defined in chapter 4 are drawn and com-
pared. Note, that for some bins with low y the bin grid efficiency takes on values
greater than one.

Figure 10.1.2 shows the purity pi1,i2 and the stability si1,i2 for each bin Bi1,i2 .
Note, that inefficient bins and overflow bins are suppressed. Both stability and purity
take on values around 60% for all quotable bins. Moreover, it can be seen, that
both stability and purity are constant troughout the efficient region of the bin grid.
Therefore, the condition (4.3.14) of regional conformity is fulfilled. From table 10.1
the one dimensional migration effects can be obtained. Both purity and stability are of
comparable size for both directions, such that the condition of directional conformity
(4.3.15) can be regarded as fulfilled. We conclude, that the application of curvature
regularization as defined in (4.3.10) is justified.

For the detector level bin grid Gdet a finer binning must be chosen, which we achieve
by dividing each bin in half for each direction, see Table 10.2. Therefore, we end up
with 36 bins in the direction of Q2 and 20 bins in the direction of y, giving a total
number of 836 bins Bdetj1,j2 including the overflow bins. Among those are 310 empty
bins. In particular, the 116 overflow bins are empty, which is due to the phase space
cuts (6.3.4) and (6.3.3) applied on analysis level. See also table 10.3 for a summary of
the different event types.

Figure 10.1.3 shows the detector level distributions for the measured data ~N raw

and the Monte Carlo model ~N rec as a function of the bin number. The steeply falling
behaviour with both Q2

e and ye can be directly observed. The Monte Carlo and
distribution has been normalized to the data luminosity according to (7.1.4).

In Figure 10.1.4 the scaled unfolding matrix NMC is depicted. The migration
effects are clearly visible. Note, that the lower right corner is less populated than
the upper left region of the plot. This shows, that migration predominantly occurs
from lower to higher values of ye and Q2

e. This is expected due to the steeply falling
behaviour of the double differential cross section.

10.2 Adjustment of the Regularization
In the context of this analysis, curvature regularization has been applied. This is done
using definition (4.3.25) for two dimensions. In Figure 10.1.6, the matrix L2 is shown.
We immediatly recognize the structure of (4.3.11).

10.2.1 L Curve Analysis
The outcome of a straightforward L curve analysis according to subsection 4.4.1 is
shown in 10.2.1. This L curve analysis is done with Nscan = 500 scan points, yielding:

log τL ' −3.46 (10.2.1)
Note, that for this value of τ , we obtain χ2

A ' 497.
Note, that m = 526 detector level bins and n = 240 generator level bins enter the

unfolding process. For the χ2-minimization process, this leaves
nDOF = m− n = 286 (10.2.2)
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Q2
e-Bin Left Right Stability sQ2 Purity pQ2 Status
0 −∞ 10.0 GeV2 0.000 0.000 OF-Bin
1 10.0 GeV2 12.5 GeV2 0.750 0.779
2 12.5 GeV2 14.3 GeV2 0.735 0.729
3 14.3 GeV2 16.0 GeV2 0.703 0.695
4 16.0 GeV2 18.5 GeV2 0.766 0.755
5 18.5 GeV2 21.0 GeV2 0.742 0.733
6 21.0 GeV2 23.5 GeV2 0.722 0.715
7 23.5 GeV2 26.5 GeV2 0.777 0.739
8 26.5 GeV2 30.0 GeV2 0.757 0.750
9 30.0 GeV2 34.0 GeV2 0.756 0.758
10 34.0 GeV2 38.0 GeV2 0.734 0.738
11 38.0 GeV2 43.0 GeV2 0.759 0.763
12 43.0 GeV2 49.0 GeV2 0.774 0.779
13 49.0 GeV2 55.0 GeV2 0.756 0.760
14 55.0 GeV2 62.0 GeV2 0.765 0.774
15 62.0 GeV2 71.0 GeV2 0.790 0.799
16 71.0 GeV2 88.0 GeV2 0.856 0.868
17 88.0 GeV2 110.0 GeV2 0.849 0.873
18 110.0 GeV2 133.4 GeV2 0.702 0.901
19 133.4 GeV2 +∞ 0.000 0.000 OF-Bin

ye-Bin Left Right Stab. sy Pur. py Status
0 −∞ 0.06 0.376 0.756 OF-Bin
1 0.06 0.12 0.765 0.661
2 0.12 0.18 0.722 0.699
3 0.18 0.24 0.731 0.714
4 0.24 0.30 0.743 0.724
5 0.30 0.35 0.710 0.691
6 0.35 0.40 0.720 0.700
7 0.40 0.45 0.733 0.710
8 0.45 0.50 0.749 0.721
9 0.50 0.55 0.756 0.738
10 0.55 0.62 0.921 0.816
11 0.62 +∞ 0.000 0.000 OF-Bin

Table 10.1: Generator level binning in Q2
e (top) and ye (bottom). Moreover, the one

dimensional purities and stabilities are listed.
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Q2
e-Bin Left Right Status
0 −∞ 10.0 GeV2 OF-Bin
1 10.0 GeV2 11.2 GeV2

2 11.2 GeV2 12.5 GeV2

3 12.5 GeV2 13.4 GeV2

4 13.4 GeV2 14.3 GeV2

5 14.3 GeV2 15.1 GeV2

6 15.1 GeV2 16.0 GeV2

7 16.0 GeV2 17.2 GeV2

8 17.2 GeV2 18.5 GeV2

9 18.5 GeV2 19.8 GeV2

10 19.8 GeV2 21.0 GeV2

11 21.0 GeV2 22.2 GeV2

12 22.2 GeV2 23.5 GeV2

13 23.5 GeV2 24.0 GeV2

14 24.0 GeV2 26.5 GeV2

15 26.5 GeV2 28.2 GeV2

16 28.2 GeV2 30.0 GeV2

17 30.0 GeV2 32.0 GeV2

18 32.0 GeV2 34.0 GeV2

19 34.0 GeV2 36.0 GeV2

20 36.0 GeV2 38.0 GeV2

21 38.0 GeV2 40.5 GeV2

22 40.5 GeV2 43.0 GeV2

23 43.0 GeV2 46.0 GeV2

24 46.0 GeV2 49.0 GeV2

25 49.0 GeV2 52.0 GeV2

26 52.0 GeV2 55.0 GeV2

27 55.0 GeV2 58.5 GeV2

28 58.5 GeV2 62.0 GeV2

29 62.0 GeV2 66.5 GeV2

30 66.5 GeV2 72.0 GeV2

31 72.0 GeV2 79.5 GeV2

32 79.5 GeV2 88.0 GeV2

33 88.0 GeV2 99.0 GeV2

34 99.0 GeV2 110.0 GeV2

35 110.0 GeV2 120.0 GeV2

36 120.0 GeV2 133.4 GeV2

37 133.4 GeV2 +∞ OF-Bin

ye-Bin Left Right Status
0 −∞ 0.06 OF-Bin
1 0.06 0.09
2 0.09 0.12
3 0.12 0.15
4 0.15 0.18
5 0.18 0.21
6 0.21 0.24
7 0.24 0.27
8 0.27 0.30
9 0.30 0.32
10 0.32 0.35
11 0.35 0.38
12 0.38 0.40
13 0.40 0.43
14 0.43 0.45
15 0.45 0.47
16 0.47 0.50
17 0.50 0.52
18 0.52 0.55
19 0.55 0.58
20 0.58 0.62
21 0.62 +∞ OF-Bin

Table 10.2: Detector level binning in Q2
e (left) and ye (right)
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Ggen Bin Grid Parameters
Total number of bins nall: 240

Overflow bins nOF : 60
Low efficiency bins nLE (ε < 70%): 74

Zero efficiency bins nZE: 0
Bins to unfold n: 240

Quotable bins nQO: 106
Bins in Q2 direction (without OF): 18
Bins in y direction (without OF): 10

Gdet Bin Grid Parameters
Total number of bins mall: 836

Overflow bins mOF : 116
Empty bins mEM : 194
Bins to unfold m: 526

Bins in Q2 direction (without OF): 36
Bins in y direction (without OF): 20

Table 10.3: Properties of the used bin grids Ggen and Gdet.
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degrees of freedom. From that we obtain the ratio:

χ2
A

nDOF
' 1.74

Note, however, that the nDOF fit parameters are not statistically independent, such
that this rather high value for χ2

A/nDOF seems reasonable.

10.2.2 Algebraic Analysis
We perform an algebraical analysis according to subsection 4.7.2. The matrix E0
(Hesse matrix) according to (4.2.7) is plotted in figure 10.2.2, while its eigenvalues
are depicted in 10.2.6 (left). Note, how the eigenvalues of E0 span almost 12 orders
of magnitude and exhibit a steep descend roughly after the 130th eigenvalue. This
reflects the limited “rank” of the unfolding problem. Recall, that E0 corresponds to
the inverse covariance matrix COV −1

~x0
of the unregularized result ~x0.

Figure 10.2.6 also visualizes the curvature Ccurve(~ak) the modes ~ak, which are given
according to the transformation T = T 3T 2T 1, see (4.4.13) and(4.4.12). Again, the
curvature of the modes spans many orders of magnitudes. Note, that the first four
modes are virtually flat. Since the curvature measure Ccurve is only sensitive to the
second derivative of any distribution ~x, such modes are expected and correspond to
the limited rank of the matrix L2. From mode 3 onwards, we observe physical modes
slowly ascending in curvature. The higher the curvature, the slower the rise. From a
mathematical point of view, this reflects the two-dimensionality of the problem, which
introduces a degeneracy to the eigenspaces to L2. Roughly from mode 130 onwards, a
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Figure 10.2.2: The values of the matrix E0. It is clearly visible how it is dominated by
its diagonal elements and those of neighbouring bins.

sharp ascent is visible - modes beyond this kink are likely to be noise. Note, that the
curvature matrix L2 transformes unter T to L̂2, see figure 10.2.4.

The application of the transformation T is shown in figure 10.2.3. Both, the trans-
formed unregularized unfolding result T~x0 and the transformed prediction T~xH1PDF2009

according to the pdf set H1PDF2009 [Kre, A+09] is drawn. Recall, that every coeffi-
cient (T~x0)i of the unregularized result has unit variance. The red line denotes the
significance threshold σtr = 3.84 according to (4.4.15). The start of the noise region
is clearly visible and is located after mode 145, leaving us with 146 significant modes
(effective dimension):

n0 = 146 (10.2.3)

The boundary is depicted by the green line in figure 10.2.3. Note the region right from
the green line: The smooth distribution according to the fit H1PDF2009 continuously
falls off, while the measured distribution shows noise fluctuations.

According to (4.4.19) and figure 10.2.5 we can determine the regularization param-
eter τA that corresponds to m0. We obtain:

log τA ' −4.29 (10.2.4)

10.2.3 Global Correlation Analysis
The global correlation analysis according to subsection 4.7.2 is done in figure 10.2.7.
For the plot the averaged and the averaged squared reduced global correlation ρredav (τ)
and ρredavsq (τ) have been drawn. As it has been discussed in subsection 4.4.3, only the
bins with sufficient efficiency (ε > εtr = 70%, quotable bins) have been used for the
averaging process.
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The minima in 10.2.7 are clearly visible. We obtain for the averaged squared
reduced global correlation:

log τC ' −3.36 (10.2.5)

10.2.4 Interpretation and comparison
In order to further interpret the different propositions for τ , we can study how the
unfolding result in a specific bin varies with τ . In figure 10.2.8 and 10.2.9 this is
done for a single bin (bin 88), since from a single bin much can be learned in an
exemplary manner. In particular, note that the τ -Axis can be divided in different
regions, according to the functional form of the unfolding result x88 (τ), its statistical
uncertainty σstat88 (τ) and the correlation to its neighbouring bins ρ87,88(τ), ρ89,88(τ) ,
ρ68,88(τ) and ρ108,88(τ) . Note, that bin 88 is located centrally in the efficient region of
the phase space of this analysis (26.5 GeV2 < Q2 < 30 GeV2 and 0.24 < y < 0.3).

For log τ . −6 the uncertainty σstat88 (τ) has a divergent behaviour for τ → 0, which
mirrors the rank deficiency of the unfolding matrix A. In this area, the result is
dominated by unphysical fluctuations (noise region).

The region −6 . log τ . −4 exhibits a rather constant course of σstat88 (τ) (plateau
region). The same is true for the absolute value x88 (τ) and the correlations to the
neighbouring bins. In this region, rank deficiency problems have been remedied by
a rather conservative choice of τ , while strong negative bin-to-bin correlations still
remain. It comes at no surprise, that the value log τA ' −4.29 found from the algebraic
analysis, belongs to the plateau region. Any choice of τ in this region is trustworthy in
the sense that the result x88 (τ) and its error σstat88 (τ) will not depend too much on τ.
Note, that the statistical uncertainty σstat88 (τ) is larger than the one from the bin-by-
bin method σbbb88 . This is partly due to the negative correlations to the neighbouring
bins.

The region around −4 . log τ . −3.36 ' log τC shows a strong dependence of the
error σstat88 (τ) on τ (slope region). Moreover, the correlations to the neighbouring bins
dissapear while log τ → log τC .

For log τ ' log τC = −3.36 we obtain a roughly diagonal covariance matrix COV ~x

(level of diagonalization). Here, the reduced global correlation ρred88 (τ) has its mini-
mum. Note, that at this point the statistical uncertainty σstat88 (τC) is free from contri-
butions from negative correlations. Therefore, this value of σstat88 (τC) can be regarded
as a measure for the “statistical accuracy” of this data point, see subsection 4.4.3. We
see, that σstat88 (τC) is still larger than the uncertainty σbbb88 on the bin-by-bin result. We
will come back to this observation in the next section.

Any log τ & log τC introduces strong positive correlations ρ87,88(τ), ρ89,88(τ), ρ68,88(τ)
and ρ108,88(τ) to the neighbouring bins (region of oversmoothing). While the statis-
tical uncertainties σstat88 (τ) are intriguingly small, the result x88 (τ) reflects rather the
theoretical prediction xTheory88 than the measurement. Any choice of τ from the over-
smoothed region is therefore highly dangerous.

10.2.5 Choice of τ
In the context of this analysis the following viewpoint is adopted: Since the regulariza-
tion should remove unphysical noise contributions while preserving the maximum of
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physical information, a rather conservative choice of τ is made. Therefore, we choose

log τA = −4.29 (10.2.6)

as the value for the regularization parameter.

10.3 The Unfolding Result
If not mentioned otherwise, the following results are all based on the choice (10.2.6)
for τ .

10.3.1 The Result and its Statistical Uncertainties
In figures 10.3.1, 10.3.2 10.3.3 the effect of the unfolding procedure can be seen. Both
the unfolding and the bin-by-bin method give consistent results. An important feature
can be seen from figure 10.3.3, which shows that the relative error from unfolding is
larger than the one from the bin-by-bin method.

There are two reasons for this behaviour. Firstly, for the conservative choice of
log τA ' −4.29 the result exhibits negative correlations to neighbouring bins. These
contribute to the statistical uncertainties, making them inconclusive at the same time.

The second reason seems to be more profound. In figure 10.3.4 the statistical errors
of the result with the more progressive choice log τC ' −3.36 is compared to the errors
of bin-by-bin unfolding. This level of regularization corresponds to the proposition of
the global correlation method. As discussed in subsection 4.7.2, this regularization
level gives statistical uncertainties, which can be viewed as a more conclusive measure
for the statistical accuracy. We see, that the statistical uncertainties obtained from
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unfolding are still higher than those from the bin-by-bin method! The discrepancy
takes on values up to 30 %. Obviously, the bin-by-bin method underestimates the
statistical uncertainties in this case.

In figure 10.3.6 and 10.3.7 the full correlation matrixCorr~x and the reduced global
correlation ρi is plotted. Note the non-vanishing off-diagonal elements of Corr~x.
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Figure 10.3.4: Ratio δstat(xi)
δstat(xbbbi ) of statistical uncertainties of unfolding method δstat (xi)

and bin-by-bin method δstat
(
xbbbi

)
. Level of regularization: log τ ' −3.4. For the bin

numbering scheme, see figure (10.1.1).
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Figure 10.3.6: Full matrix Corrstat~x of statistical correlations. Level of regularization:
log τA ' −4.29. For the bin numbering scheme, see figure (10.1.1).
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Figure 10.3.7: Reduced global correlation ρredi for each bin. Level of regularization:
log τA ' −4.29. For the bin numbering scheme, see figure (10.1.1).

10.3.2 Background Systematics
In figure 10.3.8 the different contributions to the statistical uncertainty δstat (xi) ac-
cording to (4.8.1) and the discussion in subsection 4.8.1 are drawn. The plot shows
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the statistical uncertainty from the raw measurement δraw (xi), from the background
statistics δbgr (xi) and from the background scale uncertainty δbsc (xi).

Note, that for the background scale uncertainty the rather conservative choice of
δ (fbgr) = 0.5 was made, see (7.2.4). This reflects the difficulty to determine the
background normalization scale discussed in chapter 7. However, due to the low
background contamination neither the statistical uncertainty δbgr (xi) nor the scale
uncertainty δbsc (xi) of the background play a dominant role in the overall uncertainty.
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Figure 10.3.8: Statistical uncertainty δraw (xi) of the raw measurement, δbgr (xi) from
the background statistics and δbsc (xi) from the background scale uncertainty. For the
bin numbering scheme, see figure (10.1.1).
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Figure 10.3.9: Uncorrelated systematic uncertainty δuncorr (xi) according to (4.8.12)
and statistical uncertainties δstat (xi). For the bin numbering scheme, see figure
(10.1.1).

10.3.3 Uncorrelated Systematics
As discussed in subsection 4.8.1, the statistical uncertainties of the Monte Carlo model
introduce a systematic uncertainty, which is determined according to (4.8.12). The
uncorrelated systematic uncertainties δuncorr(xi) are shown in in figure 10.3.9, together
with the statistical uncertainty δstat(xi) for comparison. Due to the high luminosity
of the Monte Carlo simulation, the contribution of the uncorrelated systematic un-
certainty to the overall error is rather small, taking on values on the permille scale
throughout the phase space.

10.3.4 Correlated Systematics
In this subsection the different sources of correlated systematic uncertainties are propa-
gated to the result. This is done according to subsection 4.8.3, using three independent
response matrices N+λ

ji , NMC
ji and N−λji for each error source λ. This provides us with

two relative shifts δλ+ (xi) and δλ+ (xi) on the result xi in each bin. Exceptional are the
energy resolution uncertainty δRes(Ee) (xi) and the polar angle resolution uncertainty
δRes(θe) (xi), for which only two independent response matrices NRes(Ee)

ji , NMC
ji and

N
Res(θe)
ij , NMC

ji are compared, providing only one shift for each error source.
In figure 10.3.10 to 10.3.25, the procedure is done for the various error sources.

For each source, the systematic shifts δλ± (xi) according to the propagation method
(4.8.19) is calculated, together with the result δλ±offset (xi) of the offset method (4.8.20)
and the result δλ±bbb (xi) of the bin-by-bin method (4.8.21) for comparison. While the
propagation method and the offset method give comparable results for every error
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source λ, they both seem to differ from the bin-by-bin method in some cases. This is
remarkable, since it casts doubt on the systematic error treatment of the bin-by-bin
method in the presence of strong migration effects.

Note, that for the final result, only the result δλ± (xi) of the propagation method
will be used. Moreover, with the exeption of the resolution uncertainties δRes(Ee) (xi)
and δRes(θe) (xi), the systematic shifts will be symmetrized for each source λ, according
to the symmetrization prescription (4.8.22).

Electron Energy Scale. According to chapter 9, the matrices NEe±
ji have been

produced using an input shift of (∆Ee)± = ±50 MeV. From figure 10.3.10 and 10.3.11
it is obvious, that the systematic uncertainty δEe± (xi) dominates the region of small
ye, corresponding to high values of Ee (close to the kinematic peak Ee ' 27.6 GeV).
In this area, δEe± (xi) takes on values clearly above 1 %. This is a consequence of the
migration effects, which occur due to the shift (∆Ee)± in the energy scale and which
predominantly affect the regions of steep ye-dependance. Note, that for small y, the
systematic uncertainty from the propagation method is significantly smaller than that
from the bin-by-bin method.

Electron Polar Angle Scale. According to chapter 9, the matrices N θe±
ji have been

produced using an input shift of (∆θe)± = ±1 mrad. From 10.3.12 and 10.3.13 it can
be seen, that the systematic uncertainty δθe± (xi) dominates the region of small Q2

e,
corresponding to high values of θe (close to the beam pipe at θpipe ' π). In this area,
δθe± (xi) takes on values clearly around 1 to 2 %. From all systematic error sources,
this seems to be the dominating one in most regions. The shape of δθe± (xi) is again
a consequence of migration effects, which occur due to the shift (∆θe)± in the polar
angle scale and which predominantly affect the regions of steep Q2

e-dependance. Note,
that for small ye, the systematic uncertainty from the propagation method is typically
larger than that from the bin-by-bin method.

Hadron Energy Scale. The effect of the energy scale of the hadronic final state
(HFS) is expected to be rather small, since it affects the reconstructed events only
through the (E − pz)tot-cut (6.3.8). However, the error propagation has been per-
formed using a shift of (∆EHFS)± = ±4% · EHFS as input for the simulation of
NEHFS±
ji . Note in 10.3.14 and 10.3.15, how the shift (∆EHFS)± indeed slightly affects

the data selection, favoring the low-ye-region for positive shifts ∆EHFS. The effect is
on a scale of 2 permille maximum.

Cip Efficiency. The matrices NwCip±
ji have been produced applying the shifted

weight functions wCip± from chapter 8, see figure 8.2.4. Since the Cip Hit Cut is
by construction constrained to the region Ee < 16 GeV (see chapter 6), a significant
uncertainty occurs only in the three highest Q2

e-bins, see 10.3.16 and 10.3.17. The
effect is on a scale of 4 permille maximum. The small systematic uncertainty in the
low-Q2

e-region is an artefact of the regularization procedure.
Ecra Cut Efficiency. The matrices NwECRA±

ji have been produced applying the
shifted weight functions wECRA± from subsection 8, see figure 8.2.9. Recall, that the
ECRA cut is a function of Ee and Re being particularly restrictive at small energies
and small radii. For Re > 55 cm and Ee > 18 GeV it is relaxed completely. This
is reflected in figure 10.3.18 and 10.3.19, which shows, that significant uncertainties
occur only for high ye and low Q2

e. In this region, however, the effect is on a scale of
roughly 1.2 %. The small systematic uncertainties in the low-ye-region is an artefact
of the regularization procedure.
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Vertex Reconstruction Efficiency. The matrices NwV txEff±
ji have been produced

applying the shifted weight functions wV txEff± from subsection 8, see figure 8.2.7.
Recall, that the combined vertex efficiency εV txEff from the CJC vertex reconstruction
and the CIP vertex reconstruction is very high, exhibiting a remaining inefficiency on
the sub permille scale. This is reflected in figures 10.3.20 and 10.3.21, too.

S3 Trigger Efficiency. The matrices NwTrg±
ji have been produced applying the

shifted weight functions wTrg± from subsection 8, see figure 8.2.2. The result is shown
in 10.3.22 and 10.3.23. The effect varies mit Q2

e, reflecting the slight deficiencies in the
S3 trigger description at very low and very high SpaCal radii. The uncertainty adopts
values between 1 and 3 permille. Notice the asymmetry in the shifts δTrg+ (xi) and
δTrg− (xi). This is an artefakt of the high overall S3 trigger effiency, which imposes a
boundary condition on the upshifted weight function wTrg±, see chapter 8.

Electron Resolution Uncertainty. The matrix NRes(Ee)
ji has been produced by a vari-

ation of the electron energy resolution. This is done by implementing an additional
smearing of the reconstructed electron energy with a Gauss-distribution of variance
δGAUSSEe = 200 MeV. Recall from chapter 9, that we have Res (Ee) ' 1 GeV trough-
out the phase space. Therefore, the GAUSS-smearing effectively widens the electron
resolution by:

∆Res (Ee) =
√

(Res (Ee))2 +
(
δGAUSSEe

)2
−Res (Ee) ' 40 MeV (10.3.1)

This number reflects the value motivated in (9.1.3) and (9.1.5).
As an effect of this resolution variation we obtain randomly distributed statistical

fluctuations, see figure 10.3.24. This is not a surprise, since an increase in smearing is
expected to enhance the bin-by-bin correlations and therefore the statistical uncertain-
ties. Note, however, that for small ye, there seems to be a small negative systematic
shift. This can be viewed as an “over-correction” of migration effects done by an un-
folding procedure with the shifted matrix NRes(Ee)

ji . With few exceptions, all shifts
and fluctuations are on a scale signifiantly below 1 %.

Polar Angle Resolution Uncertainty. The matrix NRes(θe)
ji has been produced by

a variation of the electron polar angle resolution. This is done by implementing an
additional smearing of the reconstructed polar angle with a Gauss-distribution of
variance δGAUSSθe = 1.83 mrad. Recall from chapter 9, that we have roughly Res (θe) '
4 mrad troughout the phase space. Therefore, the GAUSS-smearing effectively widens
the electron resolution by:

∆Res (θe) =
√

(Res (θe))2 +
(
δGAUSSθe

)2
−Res (θe) ' 0.4 mrad (10.3.2)

This number reflects the value motivated in (9.2.3) and (9.2.5).
As an effect of this scale variation we again obtain randomly distributed statistical

fluctuations, see figure 10.3.25. All shifts and fluctuations are on a scale signifiantly
below 1 %.

Vertex Shape Reweighting Uncertainty. As pointed out in chapter 8, a z Vertex
shape reweighting has been applied to the Monte Carlo simulation. The matrices
NwV txRew±
ji have been produced applying the shifted weight functions wV txRew± from

chapter 8, see figure 8.3.1. The result is shown in 10.3.27 and 10.3.27.
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Figure 10.3.10: Resulting shifts δEe+ (xi) for electron energy scale variation. Input
shift: (∆Ee)+ = +50 MeV. For the bin numbering scheme, see figure (10.1.1).
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Figure 10.3.11: Resulting shifts δEe− (xi) for electron energy scale variation. Input
shift: (∆Ee)− = −50 MeV. For the bin numbering scheme, see figure (10.1.1).
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Figure 10.3.12: Resulting shifts δθe+ (xi) for electron energy scale variation. Input
shift: (∆θe)+ = +1 mrad. For the bin numbering scheme, see figure (10.1.1).
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Figure 10.3.13: Resulting shifts δθe− (xi) for electron energy scale variation. Input
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Figure 10.3.14: Resulting shifts δEHFS+ (xi) for hadron energy scale variation. Input
shift: (∆EHFS)+ = +4 % ·EHFS. For the bin numbering scheme, see figure (10.1.1).

Bin Number Generator Level

0

1
9

3
9

5
9

7
9

9
9

1
1
9

1
3
9

1
5
9

1
7
9

1
9
9

2
1
9

2
3
9

) i
(x­

H
F

S
E

δ
R

e
la

ti
v

e
 U

n
c
. 

­0.002

0

0.002

)
i

(xbbb

­
HFS

E
δ

)
i

(xprop

­
HFS

E
δ

)
i

(xoffset

­
HFS

E
δ

Figure 10.3.15: Resulting shifts δEHFS− (xi) for hadron energy scale variation. Input
shift: (∆EHFS)− = −4 % ·EHFS. For the bin numbering scheme, see figure (10.1.1).
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Figure 10.3.16: Resulting shifts δCip+ (xi) for CIP efficiency variation with shifted
weight function wCip+. See figure (8.2.4) for weight function. For the bin numbering
scheme, see figure (10.1.1).
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Figure 10.3.17: Resulting shifts δCip− (xi) for ECRA cut efficiency variation with
shifted weight function wCip−. See figure (8.2.4) for weight function. For the bin
numbering scheme, see figure (10.1.1).
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Figure 10.3.18: Resulting shifts δECRA+ (xi) for CIP efficiency variation with shifted
weight function wECRA+. See figure (8.2.9) for weight function. For the bin numbering
scheme, see figure (10.1.1).
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Figure 10.3.19: Resulting shifts δECRA− (xi) for CIP efficiency variation with shifted
weight function wECRA−. See figure (8.2.9) for weight function. For the bin numbering
scheme, see figure (10.1.1).
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Figure 10.3.20: Resulting shifts δV txEff+ (xi) for vertex reconstruction efficiency vari-
ation with shifted weight function wV txEff+. See figure (8.2.7) for weight function.
For the bin numbering scheme, see figure (10.1.1).
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Figure 10.3.21: Resulting shifts δV txEff− (xi) for vertex reconstruction efficiency vari-
ation with shifted weight function wV txEff−. See figure (8.2.7) for weight function.
For the bin numbering scheme, see figure (10.1.1).
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Figure 10.3.22: Resulting shifts δTrg+ (xi) for S3 trigger efficiency variation with shifted
weight function wTrg+. See figure (8.2.2) for weight function. For the bin numbering
scheme, see figure (10.1.1).
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Figure 10.3.23: Resulting shifts δTrg− (xi) for S3 trigger efficiency variation with shifted
weight function wTrg−. See figure (8.2.2) for weight function. For the bin numbering
scheme, see figure (10.1.1).
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Figure 10.3.24: Resulting shifts δReso(Ee) (xi) for energy resolution variation. Effective
input shift on resolution: ∆Ee = 40 GeV. For the bin numbering scheme, see figure
(10.1.1).
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Figure 10.3.25: Resulting shifts δReso(θe) (xi) for polar angle resolution variation. Ef-
fective input shift on resolution : ∆θe = 0.4 mrad. For the bin numbering scheme, see
figure (10.1.1).
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Figure 10.3.26: Resulting shifts σV txRew+ (xi) for Z vertex shape reweighting variation
with shifted weight function wV txRew+. See figure (8.3.1) for weight function. For the
bin numbering scheme, see figure (10.1.1).
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Figure 10.3.27: Resulting shifts σV txRew− (xi) for Z vertex shape reweighting variation
with shifted weight function wV txRew−. See figure (8.3.1) for weight function. For the
bin numbering scheme, see figure (10.1.1).
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Figure 10.3.28: Relative shifts δτ+ (xi) and δτ− (xi) for τ variation with ∆τ ' ±1
2τA.

For the bin numbering scheme, see figure (10.1.1).
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10.3.5 Regularization uncertainty
In figure 10.3.28, the impact of the regularization parameter τ on the result is further
studied. As input shift, (∆τ)± = ±1

2τA is chosen, i.e. we change the value of τA by 50%
in both directions. The effect on the unfolding result is studied with the propagation
method (4.8.23) and the offset method (4.8.25) according to subsection 4.8.4. The
result shows shifts significantly below the permille scale.

Note, that according to the discussion in subsection 4.8.4, these shifts do not enter
the total systematic uncertainty.

10.3.6 Total uncertainties
Figure 10.3.29 depicts the total uncorrelated systematic uncertainties δuncorr (xi) ac-
cording to (4.8.12), the statistical uncertainties δstat (xi) according to (4.8.5) and the
total uncertainty δtot (xi) from unfolding, which comprises all statistical, correlated and
uncorrelated error sources. Total uncertainties are obtained by quadratic summation.
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Chapter 11

Radiative Corrections

The result ~x of the unfolding procedure can be viewed as a measurement, which has
sufficiently been corrected for detector effects. Each data point xi is a direct estimate
of the true event count N true

i in bin Bi.
However, as it has been pointed out in chapter 2, the unfolded data distribution

~x contains contributions from a large series of QED processes, such as initial state
radiation (ISR), final state radiation (FSR), QED compton events (QEDC) and plain
Born level events (BORN). Moreover, virtual vertex corrections contribute to the
measured cross section.

In general, the influence of FSR on the measurement is small, because both pho-
ton and electron contribute to the electromagnetic energy deposit Ee in the SpaCal.
However, the influence of ISR and vertex correction can be substantial. In order to
obtain the Born level cross section, bin wise correction factors Ri are determined and
applied to the measurement.

11.1 Determination of Radiative Correction Fac-
tors

For the event generation, the DJANGOH package has been used. Both simulations have
been done using parton density functions from the set CTEQ6L [P+02, B+] (LHAPDF
code: 10041) and comprise 300 million events each.

For the radiative Monte Carlo, the valuesQ2
min = 4 GeV and xmin = 10−5 have been

used as kinematic boundaries. ISR, FSR, QEDC and Born level events are simulated.
Virtual corrections are applied to the QED event vertex. Integration over the phase
space gives for the total generator cross section σradtot = 347570 pb or, equivalently:

Lrad = 863.1 pb−1 (11.1.1)

For the non-radiative Monte Carlo, the values Q2
min = 4 GeV and xmin = 10−4 have

been used as kinematic boundaries. Only Born level events are simulated. No virtual
corrections are applied. Integration over the phase space gives for the total generator
cross section σnoradtot = 293340 pb or, equivalently:

Lnorad = 1022.7 pb−1 (11.1.2)
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In figure 11.1.1 control plots for the generator variables xe, ye and Q2
e are drawn.

Note, that these quantities explicitly refer to the electron kinematics according to
section 2.1. Clearly visible is the effect of initial state radiation (ISR). This process
effectively reduces the available center of mass energy s, leading to smaller Q2

e and
higher ye, see (3.5.2) and (3.5.1).

In figure 11.1.2 the radiative correction factors Ri are depicted for each bin Bi.
These typically take on values around ∼ 80 %, while exhibiting a falling y-dependence.
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Figure 11.1.2: Correction factors Ri for different bins in Q2
e.
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11.2 Systematic Uncertainties from Radiative Cor-
rections

For the systematic uncertainty which is introduced by the radiative correction factors
Ri on the Born level cross section σBornr , a global value of

δrad (Ri) ' 0.3% (11.2.1)

is adopted. In [A+09], this is number is obtained from comparisons of the analytical
cross section computations employing different mathematical approaches. In particu-
lar, the calculations from the packages HERACLES [KSM92] and HECTOR [ABB+96] were
compared, which feature a leading order calculation and a leading-logarithm approach,
repectively.



Chapter 12

Cross Sections and F2 Structure
Function

In this chapter, the result of the measurement is discussed. We present both the
reduced cross section σr and the F2 structure function and compare it to previous
measurements. Moreover, we discuss differences between the cross sections from the
unfolding method and the bin-by-bin method.

12.1 Reduced Cross Sections
In figure 12.3.1, the reduced Born level cross section σBornr according to (2.2.2) and
(5.1.9) is drawn. It is contrasted to the functional shape according to the pdf set
H1PDF2000 (σH1PDF2000

r ) [A+03] . The error bars depict the statistical uncertainty
∆stat

(
σBornr

)
, see (4.8.5), and the total uncertainty ∆tot+r

(
σBornr

)
including the con-

tributions of the radiative corrections, see (5.2.1). An additional luminosity error of
δ (Ldata) = 2% needs to be added to obtain the full uncertainty, see section 6.1. Note,
that the bin center correction is done implicitly by assigning each data point a bin
center (Q2

e, ye) according to the mean value theorem. See the discussion in section 5.3
for details.

We continue the comparison in figure 12.3.2, which shows the ratio of σBornr and
σH1PDF2000
r . The error bars depict the relative statistical uncertainty δstat

(
σBornr

)
and the total uncertainty δtot+r

(
σBornr

)
of σBornr . While the overall ratio is close

to 1, a rising trend is visible with both ye and Q2
e. Note the remaining statistical

fluctuations, which arise due to the rather conservative choice of the regularization
level (log τ = log τA ' −4.29, see chapter 10). These fluctuations can be accounted
for in a fit procedure by the full correlation matrix Corrstat+uncorr~σ , see figure 12.3.3.
It provides correlations for both statistical and uncorrelated systematic error sources.

In figure 12.3.4, both the reduced Born level cross section σBornr and the reduced
radiative cross section σradr are given. They are compared to the functional shape
according to the data set H1PDF2009 (σH1PDF2009

r ) [Kre, A+09] and the generator
cross section of the full radiative Monte Carlo simulation (σgenr ), which is based on
H1PDF2009 by reweighting. The error bars depict the total uncertainties ∆tot

(
σradr

)
and ∆tot+r

(
σBornr

)
, while for the Born level cross section the contributions of the
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radiative corrections are included. The luminosity error is not included.
The comparison is continued in figure 12.3.5, which shows the ratio of σBornr

and σH1PDF2009
r . Again, the error bars depict the relative statistical uncertainty

δstat
(
σBornr

)
and the total uncertainty δtot+r

(
σBornr

)
of σBornr . In addition to the

slope with ye and Q2
e, which reoccurs in this comparison, a global difference of roughly

2-3 % is visible between our measurement σBornr and σH1PDF09
r . Therefore, the mea-

surement of this analysis seems to affirm rather the H1PDF2000 fit than the one from
H1PDF2009. Note however, that the luminosity measurement is afflicted with the
rather large systematic uncertainty of δ (Ldata) ' 2%, see (6.1.2).

The total uncertainties are depicted in figure 12.3.6. The points shows the statis-
tical uncertainty δstat

(
σBornr

)
and the cumulated error δcorr

(
σBornr

)
of all correlated

systematic error sources. The statistical uncertainty δstat
(
σBornr

)
rises with both ye

and Qe. The correlated error sources are dominated by the scale uncertainties on Ee
and θe. While the energy scale uncertainty mainly affects the low ye region (up to 2%
uncertainty), the polar angle uncertainty affects the region of low Q2

e (small scattering
angles, up to 2% uncertainty). At very low Ee and Re the systematic uncertainty on
the ECRA cut efficiency correction comes into play (up to 1.2%), which is visible at
very high bins in ye.

The lines in 12.3.6 depict cumulated errors. δstat+uncorr
(
σBornr

)
comprises the sta-

tistical error and the total uncertainty of all uncorrelated error sources, which origi-
nate from the Monte Carlo statistics. The total error δtot+r

(
σBornr

)
also includes the

correlated error sources and the uncertainty from the radiative corrections. Finally,
δtot+r+l

(
σBornr

)
contains all error sources including the luminosity error, see (5.2.2).

For δtot+r
(
σBornr

)
we obtain a total precision of roughly 2.5 % troughout the kinemat-

ical plane.
In appendix A, the measured cross sections, its uncertainties and global correlations

are given in a tabular form.

12.2 Comparison with Bin-By-Bin Method
In figure 12.3.7 the result σBornr is compared to the bin-by-bin method σBorn,bbbr . The
error bars correspond to the relative statistical uncertainties δstat

(
σBornr

)
of the un-

folded result. The high level of compatability of both results σBornr and σBorn,bbbr is
evident, the ratio is close to 1 throughout the covered phase space.

As expected, the ratio of statistical uncertainties, δstat
(
σBornr

)
/δstat

(
σBorn,bbbr

)
is

significantly greater than 1, see figure 12.3.8. As discussed in chapter 10, this reflects
both the bin-to-bin correlations as well as the underestimation of statistical uncertainty
by the bin-by-bin method.

12.3 Structure Function F2

As discussed in chapter 2, the structure function F2 (x,Q2) can be determined from
the reduced cross σBornr (x,Q2) by the application of a small correction which accounts
for FL (x,Q2), see (2.2.1). The result is shown in figure 12.3.9. For FL (x,Q2), the
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pdf set H1PDF2000 has been employed. Again, the error bars depict the statistical
uncertainty ∆stat (F2) and the total uncertainty ∆tot+r (F2).

For comparison, the structure functions according to H1PDF2000 [A+03] and H1PDF2009
[Kre, A+09] are given (FH1PDF2000

2 and FH1PDF2009
2 ), together with a fit based on

ZEUS data (FZEUS2005
2 ) [C+03].
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Figure 12.3.1: The measured reduced cross section σBornr is shown. The error
bars correspond to the statistical uncertainty ∆stat

(
σBornr

)
and the total uncertainty

∆tot+r
(
σBornr

)
including the contributions of the radiative corrections, see (5.2.1). An

additional luminosity error of δ (Ldata) = 2% needs to be added to obtain the full un-
certainty. For comparison, the functional shape according to the pdf set H1PDF2009
(σH1PDF09

r ) [Kre, A+09] is plotted.
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Figure 12.3.2: Ratio of σBornr and σH1PDF2000
r (H1PDF2000) [A+03]. The error

bars correspond to the statistical uncertainty δstat
(
σBornr

)
and the total uncertainty

δtot+r
(
σBornr

)
including the contributions of the radiative corrections, see (5.2.1). An

additional luminosity error of δ (Ldata) = 2% needs to be added to obtain the full
uncertainty.



144 CHAPTER 12. CROSS SECTIONS AND F2 STRUCTURE FUNCTION

B
in

 N
u

m
b

e
r
 G

e
n

e
r
a
to

r
 L

e
v
e
l

0

19

39

59

79

99

119

139

159

179

199

219

239

Bin Number Generator Level

0

1
9

3
9

5
9

7
9

9
9

1
1
9

1
3
9

1
5
9

1
7
9

1
9
9

2
1
9

2
3
9

­0
.2

­0
.1

0 0
.1

0
.2

0
.3

0
.4
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Figure 12.3.4: The measured reduced cross sections. Both, σBornr for the Born level
result and σradr for the full radiative measurement. The error bars depict the total
uncertainties ∆tot

(
σradr

)
and ∆tot+r

(
σBornr

)
, while for the Born level cross section the

contributions of the radiative corrections are included. An additional luminosity error
of δ (Ldata) = 2% needs to be added to obtain the full uncertainty. For comparison, the
functional shape according to the pdf set H1PDF2009 (σH1PDF09

r ) [Kre, A+09] is plotted,
as well as the generator cross section σgenr of the full radiative Monte Carlo model
(reweighted to H1PDF2009). The error bars correspond to the statistical uncertainty
∆stat

(
σBornr

)
and ∆stat (σr), respectively.
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Figure 12.3.5: Ratio of σBornr and σH1PDF2009
r (H1PDF2009) [Kre, A+09]. The error

bars correspond to the statistical uncertainty δstat
(
σBornr

)
and the total uncertainty

δtot+r
(
σBornr

)
including the contributions of the radiative corrections, see (5.2.1). An

additional luminosity error of δ (Ldata) = 2% needs to be added to obtain the full
uncertainty.
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Figure 12.3.6: Different contributions to the total relative uncertainty. The markers
shows the statistical uncertainty δstat

(
σBornr

)
and the cumulated error δcorr

(
σBornr

)
of all correlated systematic error sources. The lines depict cumulated errors:
δstat+uncorr

(
σBornr

)
contains the statistical error and the total uncertainty of all un-

correlated error sources. The total error δtot
(
σBornr

)
also includes the correlated error

sources, while for δtot+r
(
σBornr

)
also the uncertainty from the radiative correction is

added. δtot+r+l
(
σBornr

)
contains all error sources including the luminosity error.



148 CHAPTER 12. CROSS SECTIONS AND F2 STRUCTURE FUNCTION

Cross Sec.
Ratio of

)Born
rσ(

stat
δ

Born,bbb
rσ / Born

rσ

e
y

0.2 0.4 0.6
0.95

1

1.05

2 15.2 GeV≈ 
e
2Q 2 15.2 GeV≈ 
e
2Q

e
y

0.2 0.4 0.6
0.95

1

1.05

2 17.2 GeV≈ 
e
2Q 2 17.2 GeV≈ 
e
2Q

e
y

0.2 0.4 0.6
0.95

1

1.05

2 19.8 GeV≈ 
e
2Q 2 19.8 GeV≈ 
e
2Q

e
y

0.2 0.4 0.6
0.95

1

1.05

2 22.2 GeV≈ 
e
2Q 2 22.2 GeV≈ 
e
2Q

e
y

0.2 0.4 0.6
0.95

1

1.05

2 25.0 GeV≈ 
e
2Q 2 25.0 GeV≈ 
e
2Q

e
y

0.2 0.4 0.6
0.95

1

1.05

2 28.2 GeV≈ 
e
2Q 2 28.2 GeV≈ 
e
2Q

e
y

0.2 0.4 0.6
0.95

1

1.05

2 32.0 GeV≈ 
e
2Q 2 32.0 GeV≈ 
e
2Q

e
y

0.2 0.4 0.6
0.95

1

1.05

2 36.0 GeV≈ 
e
2Q 2 36.0 GeV≈ 
e
2Q

e
y

0.2 0.4 0.6
0.95

1

1.05

2 40.5 GeV≈ 
e
2Q 2 40.5 GeV≈ 
e
2Q

e
y

0.2 0.4 0.6
0.95

1

1.05

2 46.0 GeV≈ 
e
2Q 2 46.0 GeV≈ 
e
2Q

e
y

0.2 0.4 0.6
0.95

1

1.05

2 52.0 GeV≈ 
e
2Q 2 52.0 GeV≈ 
e
2Q

e
y

0.2 0.4 0.6
0.95

1

1.05

2 58.5 GeV≈ 
e
2Q 2 58.5 GeV≈ 
e
2Q

e
y

0.2 0.4 0.6
0.95

1

1.05

2 66.5 GeV≈ 
e
2Q 2 66.5 GeV≈ 
e
2Q

e
y

0.2 0.4 0.6
0.95

1

1.05

2 79.5 GeV≈ 
e
2Q 2 79.5 GeV≈ 
e
2Q

e
y

0.2 0.4 0.6
0.95

1

1.05

2 99.0 GeV≈ 
e
2Q 2 99.0 GeV≈ 
e
2Q

Figure 12.3.7: Ratio plot of σBornr to the unfolding result and of the bin-by-bin method
σBorn,bbbr . The relative statistical uncertainties δstat

(
σBornr

)
are drawn.
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Figure 12.3.8: Ratio of statistical uncertainties from unfolding (δstat(σBornr )) and from
the bin-by-bin method δstat(σBorn,bbbr ).
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Figure 12.3.9: The structure function F2. The error bars ∆tot+r (F2 (xe, Q2
e)) contain

the statistical uncertainty and the total uncertainties including radiative corrections.
An additional luminosity uncertainty of 2% has to be applied. For comparison, the ex-
pected shape according to the pdf sets H1PDF2009 (FH1PDF09

2 ) [Kre, A+09], H1PDF2000
(FH1PDF00

2 ) [A+03] and ZEUS2005 (FZEUS2005
2 ) is plotted [C+03].
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Conclusion

In this analysis the double differential inclusive neutral current ep→ eX cross section
has been measured for 106 data points in the kinematic range of 0.06 < y < 0.6 for
the inelasticity and 14 GeV2 < Q2

e < 110 GeV2 for the squared momentum exchange.
In previous measurements, detector effects such as migration and inefficiency have

been treated by a bin-by-bin efficiency correction. In this analysis, two dimensional
unfolding in y and Q2 has been applied for the first time. Different regularization
methods have been systematically tested and compared. In particular, the algebraic
method, the global correlation method and the L curve method have been studied.
All three methods give similar results, which are consistent with the result from the
standard bin-by-bin method. However, the statistical uncertainties from unfolding are
larger than those from the standard bin-by-bin method for all tested regularization
prescriptions. Differences on the systematic uncertainties are pronounced in regions
of large variations of the data distribution.

The global correlation method gives the smoothest solution which minimizes the
correlation between the data points. In this case, a difference of the order of 20− 30%
is found for the statistical uncertainties in comparison to the bin-by-bin correction
method. This reflects the effect of migration on the statistical error, a contribution that
is not accounted for by the traditional (bin-by-bin) error treatment. The bin-by-bin
method indeed underestimates the statistical uncertainty. However, for these smooth
distributions the transition from the bin-by-bin method to the unfolding method does
not affect the mean values of the cross section measurement.

For the algebraic method, the statistical uncertainty is of the order of 1 − 2%
and exhibits a rising trend with y and Q2. The correlated systematic uncertainty of
this analysis takes on values of 1 − 2% as well. At values of small inelasticity y it is
dominated by the scale uncertainty on the electron energy Ee, where it takes on values
around δEe (σr) ' 2%. For small values of the squared momentum exchange Q2, the
uncertainty of the polar angle measurement dominates, giving values of δEθ (σr) ' 2%.
The total uncertainty including all statistical and systematic error sources takes on
values between 2 − 3% throughout the kinematic range of this analysis. In addition,
a luminosity uncertainty of δ (Ldata) ' 2% must be considered.

The results are compatible with the pdf fit H1PDF2000 [A+03], although the ratio
exhibits a slight rising trend with both y and Q2. Similar statements can be made for
the comparison with H1PDF2009 [Kre, A+09], which however exhibits an additional
normalization difference of 2− 3%. This difference is not an artefact of the unfolding
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method.
This work improves the understanding of both statistical and systematic uncertain-

ties of the inclusive cross section measurement in the domain of the SpaCal calorimeter.
Moreover, the bin-to-bin correlations are assessed for the first time. The results and
correlations obtained here lend themselves for a systematic analysis of the structure
function and its overall normalization to improve the extraction of the PDF. That
additional step, however, was beyond the scope of this analysis.



Appendix A

Cross Sections, Uncertainties and
Correlations

The following pages contain the measured reduced cross sections in tabular form. Only
bins with sufficient efficiency (ε > 70%) and no overflow bins are shown. The level of
regularization corresponds to the algebraical method, i. e. log τA = −4.29.

For each bin Bi, both the radiative and the Born level cross section are given (σradr

and σBornr ). Moreover, the functional value of the structure fuction F2 is given. Each
of these values is related to a bin center (Q2

e, ye, xe) which is given in the last three
columns of the table. The values of Q2

e and ye have been calculated with (5.3.5) and
(5.3.6), then xe is obtained from (2.1.7).

The relative uncertainties are given for the following combination of error sources:

• Relative statistical uncertainty δstat
(
σBornred

)
, according to (4.8.5).

• Relative systematic uncertainty δuncorr
(
σBornred

)
from uncorrelated error sources,

see (4.8.12).

• Relative systematic uncertainty δcorr
(
σBornred

)
from all correlated error sources,

added up in quadrature. See (4.8.19) and (4.8.22) for the systematic uncertainty
of a single error source λ.

• Total relative systematic uncertainty δtot
(
σBornred

)
comprising of all error sources

except radiative corrections and luminosity.

• Total relative systematic uncertainty δtot+r
(
σBornred

)
comprising of all error sources

including radiative corrections but except luminosity.

• Total relative systematic uncertainty δtot+r+l
(
σBornred

)
comprising of all error sources

including radiative corrections and luminosity.

Moreover, the global correlation ρi is given for each bin Bi.
Due to the amount of data, the bin-to-bin correlations ρij have been suppressed in

this table. They can be obtained in electronic form from the author.
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SS
SEC

T
IO

N
S

Bin
Bi

σradr σBornr F2

δstat(
σBornr

)
[%]

δuncorr(
σBornr

)
[%]

δcorr(
σBornr

)
[%]

δtot(
σBornr

)
[%]

δtot+r(
σBornr

)
[%]

δtot+r+l(
σBornr

)
[%]

ρ
Q2
e

[GeV2] ye xe

28 1.062 0.947 0.948 0.81 0.28 1.02 1.42 1.42 2.45 0.279 27.82 0.090 0.0030
29 1.041 0.928 0.929 0.84 0.18 1.09 1.48 1.48 2.48 0.183 31.52 0.090 0.0030
30 1.030 0.923 0.924 0.92 0.24 1.29 1.66 1.66 2.60 0.242 35.48 0.090 0.0040
31 1.029 0.925 0.926 0.96 0.20 1.21 1.64 1.64 2.59 0.198 39.91 0.090 0.0040
32 1.022 0.920 0.921 0.96 0.17 1.21 1.62 1.62 2.58 0.175 45.33 0.090 0.0050
33 1.031 0.933 0.933 1.07 0.15 1.40 1.85 1.85 2.72 0.152 51.27 0.090 0.0060
34 1.007 0.913 0.914 1.09 0.19 1.41 1.87 1.87 2.73 0.192 57.69 0.090 0.0060
35 1.009 0.915 0.916 1.10 0.19 1.28 1.79 1.79 2.69 0.188 65.56 0.090 0.0070
36 0.962 0.876 0.877 0.96 0.22 0.90 1.40 1.40 2.44 0.223 78.11 0.090 0.0090
37 0.918 0.841 0.842 1.17 0.00 1.01 1.66 1.66 2.60 0.000 97.25 0.090 0.0110
47 1.271 1.065 1.068 0.80 0.44 1.31 1.62 1.62 2.57 0.439 24.83 0.150 0.0020
48 1.211 1.018 1.021 0.92 0.44 1.40 1.81 1.81 2.70 0.445 28.05 0.150 0.0020
49 1.232 1.041 1.044 0.96 0.37 1.44 1.87 1.87 2.74 0.371 31.78 0.150 0.0020
50 1.209 1.021 1.024 1.03 0.42 1.72 2.11 2.11 2.91 0.417 35.77 0.150 0.0020
51 1.209 1.027 1.030 1.06 0.35 1.60 2.06 2.06 2.87 0.349 40.23 0.150 0.0030
52 1.216 1.041 1.044 1.00 0.38 1.56 1.96 1.96 2.80 0.379 45.68 0.150 0.0030
53 1.207 1.030 1.032 1.16 0.34 1.82 2.30 2.30 3.05 0.339 51.67 0.150 0.0030
54 1.201 1.025 1.027 1.14 0.29 1.79 2.25 2.25 3.01 0.287 58.12 0.150 0.0040
55 1.175 1.011 1.014 1.10 0.34 1.64 2.08 2.08 2.88 0.341 66.04 0.150 0.0040
56 1.149 0.995 0.998 0.96 0.31 1.12 1.60 1.60 2.56 0.312 78.68 0.150 0.0050
57 1.049 0.906 0.908 1.14 0.00 1.28 1.84 1.84 2.72 0.000 97.95 0.150 0.0060
66 1.407 1.135 1.141 0.89 0.26 1.56 1.85 1.85 2.72 0.259 22.15 0.210 0.0010
67 1.371 1.109 1.115 0.83 0.23 1.57 1.83 1.83 2.71 0.228 24.89 0.210 0.0010
68 1.373 1.115 1.121 0.84 0.35 1.59 1.85 1.85 2.72 0.354 28.12 0.210 0.0010
69 1.374 1.122 1.128 0.98 0.27 1.65 2.02 2.02 2.84 0.267 31.85 0.210 0.0010
70 1.341 1.099 1.105 1.06 0.33 1.96 2.31 2.31 3.05 0.329 35.85 0.210 0.0020
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71 1.384 1.143 1.149 1.07 0.32 1.75 2.15 2.15 2.94 0.320 40.31 0.210 0.0020
72 1.392 1.146 1.152 1.08 0.26 1.69 2.11 2.11 2.91 0.261 45.78 0.210 0.0020
73 1.384 1.142 1.148 1.17 0.34 1.94 2.37 2.37 3.10 0.336 51.78 0.210 0.0020
74 1.352 1.124 1.129 1.29 0.26 1.92 2.46 2.46 3.17 0.264 58.25 0.210 0.0030
75 1.296 1.073 1.079 1.26 0.34 1.76 2.29 2.29 3.04 0.343 66.18 0.210 0.0030
76 1.313 1.088 1.093 1.09 0.27 1.14 1.73 1.73 2.65 0.267 78.84 0.210 0.0040
77 1.195 0.993 0.998 1.38 0.00 1.28 2.06 2.06 2.87 0.000 98.13 0.210 0.0050
86 1.525 1.206 1.217 0.89 0.24 1.69 1.96 1.96 2.80 0.236 22.17 0.270 0.0010
87 1.488 1.173 1.184 0.89 0.24 1.68 1.95 1.95 2.79 0.242 24.91 0.270 0.0010
88 1.512 1.194 1.205 0.92 0.23 1.66 1.95 1.95 2.80 0.230 28.15 0.270 0.0010
89 1.496 1.186 1.197 0.97 0.24 1.72 2.03 2.03 2.85 0.241 31.88 0.270 0.0010
90 1.503 1.199 1.210 1.12 0.22 1.97 2.33 2.33 3.07 0.215 35.88 0.270 0.0010
91 1.501 1.201 1.212 1.07 0.21 1.79 2.15 2.15 2.94 0.207 40.35 0.270 0.0010
92 1.507 1.206 1.217 1.08 0.21 1.71 2.09 2.09 2.89 0.213 45.82 0.270 0.0020
93 1.514 1.218 1.229 1.24 0.19 1.91 2.37 2.37 3.10 0.191 51.83 0.270 0.0020
94 1.519 1.222 1.232 1.25 0.27 1.80 2.27 2.27 3.03 0.272 58.30 0.270 0.0020
95 1.446 1.166 1.177 1.37 0.29 1.62 2.27 2.27 3.02 0.290 66.24 0.270 0.0020
96 1.424 1.161 1.171 1.17 0.00 1.04 1.72 1.72 2.64 0.000 78.91 0.270 0.0030
105 1.604 1.236 1.253 1.01 0.24 1.76 2.08 2.08 2.88 0.243 19.69 0.325 0.0010
106 1.564 1.211 1.229 1.11 0.24 2.11 2.44 2.44 3.15 0.242 22.19 0.325 0.0010
107 1.591 1.234 1.252 1.11 0.24 1.99 2.33 2.33 3.07 0.243 24.93 0.325 0.0010
108 1.609 1.245 1.263 1.16 0.23 1.95 2.33 2.33 3.07 0.234 28.17 0.325 0.0010
109 1.610 1.258 1.276 1.20 0.23 1.97 2.37 2.37 3.10 0.230 31.91 0.325 0.0010
110 1.634 1.276 1.294 1.34 0.21 2.19 2.65 2.65 3.32 0.212 35.91 0.325 0.0010
111 1.638 1.288 1.306 1.28 0.20 1.95 2.41 2.41 3.13 0.203 40.39 0.325 0.0010
112 1.548 1.210 1.228 1.35 0.20 1.93 2.44 2.44 3.16 0.198 45.86 0.325 0.0010
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113 1.605 1.262 1.279 1.51 0.19 2.04 2.64 2.64 3.31 0.195 51.87 0.325 0.0020
114 1.560 1.227 1.244 1.59 0.21 1.90 2.59 2.59 3.27 0.212 58.35 0.325 0.0020
115 1.622 1.276 1.293 1.58 0.25 1.50 2.31 2.31 3.06 0.245 66.29 0.325 0.0020
116 1.504 1.192 1.209 1.47 0.00 0.95 1.91 1.91 2.76 0.000 78.97 0.325 0.0020
124 1.660 1.259 1.283 1.09 0.24 1.41 1.84 1.84 2.72 0.242 17.19 0.375 0.0000
125 1.670 1.264 1.289 1.03 0.25 1.68 2.03 2.03 2.85 0.253 19.70 0.375 0.0010
126 1.668 1.262 1.287 1.19 0.24 1.95 2.35 2.35 3.08 0.240 22.20 0.375 0.0010
127 1.706 1.296 1.322 1.16 0.28 1.80 2.21 2.21 2.98 0.278 24.94 0.375 0.0010
128 1.693 1.300 1.326 1.26 0.25 1.77 2.27 2.27 3.02 0.251 28.18 0.375 0.0010
129 1.689 1.289 1.316 1.30 0.22 1.76 2.28 2.28 3.03 0.223 31.92 0.375 0.0010
130 1.695 1.307 1.333 1.43 0.22 1.93 2.50 2.50 3.20 0.224 35.92 0.375 0.0010
131 1.717 1.314 1.340 1.38 0.22 1.65 2.26 2.26 3.02 0.217 40.40 0.375 0.0010
132 1.735 1.329 1.355 1.40 0.21 1.47 2.14 2.14 2.93 0.208 45.87 0.375 0.0010
133 1.716 1.331 1.357 1.60 0.22 1.54 2.35 2.35 3.09 0.216 51.88 0.375 0.0010
134 1.714 1.327 1.353 1.68 0.21 1.30 2.28 2.28 3.03 0.211 58.35 0.375 0.0020
135 1.664 1.303 1.328 1.71 0.16 0.98 2.13 2.13 2.92 0.155 66.30 0.375 0.0020
136 1.624 1.259 1.283 1.68 0.00 0.50 1.92 1.92 2.77 0.000 78.98 0.375 0.0020
144 1.714 1.273 1.307 0.96 0.23 1.32 1.69 1.69 2.62 0.231 17.19 0.425 0.0000
145 1.715 1.274 1.308 1.09 0.23 1.57 1.97 1.97 2.81 0.229 19.70 0.425 0.0000
146 1.764 1.316 1.351 1.21 0.24 1.73 2.18 2.18 2.96 0.242 22.20 0.425 0.0010
147 1.705 1.279 1.314 1.28 0.24 1.66 2.17 2.17 2.95 0.241 24.94 0.425 0.0010
148 1.804 1.350 1.387 1.29 0.23 1.49 2.06 2.06 2.87 0.228 28.18 0.425 0.0010
149 1.814 1.370 1.406 1.31 0.21 1.43 2.03 2.03 2.85 0.207 31.92 0.425 0.0010
150 1.778 1.349 1.385 1.49 0.20 1.54 2.25 2.25 3.01 0.204 35.92 0.425 0.0010
151 1.828 1.388 1.424 1.43 0.20 1.24 2.01 2.01 2.84 0.203 40.40 0.425 0.0010
152 1.833 1.384 1.420 1.46 0.20 1.03 1.92 1.92 2.78 0.197 45.88 0.425 0.0010
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153 1.759 1.336 1.372 1.74 0.21 1.01 2.17 2.17 2.95 0.213 51.88 0.425 0.0010
154 1.749 1.326 1.361 1.84 0.20 0.73 2.16 2.16 2.95 0.196 58.36 0.425 0.0010
155 1.712 1.298 1.332 1.93 0.00 0.47 2.18 2.18 2.96 0.000 66.31 0.425 0.0020
163 1.790 1.301 1.344 1.24 0.21 1.50 2.02 2.02 2.84 0.214 15.12 0.475 0.0000
164 1.808 1.331 1.376 1.00 0.20 1.18 1.61 1.61 2.56 0.204 17.20 0.475 0.0000
165 1.804 1.314 1.360 1.14 0.21 1.37 1.86 1.86 2.73 0.212 19.70 0.475 0.0000
166 1.806 1.322 1.369 1.32 0.22 1.52 2.09 2.09 2.89 0.220 22.20 0.475 0.0000
167 1.820 1.341 1.389 1.32 0.21 1.37 1.99 1.99 2.82 0.210 24.94 0.475 0.0010
168 1.860 1.378 1.426 1.37 0.19 1.24 1.94 1.94 2.79 0.192 28.18 0.475 0.0010
169 1.872 1.387 1.436 1.38 0.19 1.14 1.89 1.89 2.75 0.190 31.92 0.475 0.0010
170 1.931 1.426 1.475 1.55 0.18 1.12 2.04 2.04 2.86 0.177 35.93 0.475 0.0010
171 1.894 1.396 1.445 1.54 0.16 0.89 1.92 1.92 2.77 0.157 40.40 0.475 0.0010
172 1.902 1.419 1.468 1.62 0.17 0.73 1.92 1.92 2.77 0.165 45.88 0.475 0.0010
173 1.897 1.388 1.436 1.81 0.20 0.75 2.13 2.13 2.92 0.196 51.89 0.475 0.0010
174 1.837 1.373 1.420 1.96 0.12 0.83 2.30 2.30 3.05 0.125 58.37 0.475 0.0010
175 1.792 1.341 1.388 2.45 0.00 1.06 2.86 2.86 3.49 0.000 66.32 0.475 0.0010
183 1.807 1.298 1.355 1.29 0.15 1.43 2.00 2.00 2.83 0.147 15.12 0.525 0.0000
184 1.878 1.340 1.399 1.09 0.15 1.07 1.60 1.60 2.56 0.147 17.20 0.525 0.0000
185 1.901 1.372 1.433 1.25 0.15 1.22 1.83 1.83 2.71 0.150 19.70 0.525 0.0000
186 1.898 1.375 1.437 1.42 0.15 1.34 2.05 2.05 2.86 0.147 22.21 0.525 0.0000
187 1.853 1.344 1.407 1.47 0.14 1.23 2.01 2.01 2.84 0.142 24.94 0.525 0.0000
188 1.880 1.371 1.434 1.50 0.13 1.12 1.97 1.97 2.81 0.126 28.18 0.525 0.0010
189 1.898 1.380 1.444 1.53 0.12 1.05 1.96 1.96 2.80 0.119 31.92 0.525 0.0010
190 1.984 1.434 1.498 1.68 0.11 1.09 2.13 2.13 2.92 0.110 35.93 0.525 0.0010
191 1.973 1.447 1.511 1.72 0.10 1.00 2.14 2.14 2.93 0.100 40.41 0.525 0.0010
192 2.010 1.470 1.534 1.78 0.16 1.04 2.21 2.21 2.98 0.163 45.88 0.525 0.0010
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193 2.021 1.511 1.574 2.00 0.11 1.42 2.64 2.64 3.31 0.112 51.89 0.525 0.0010
194 1.912 1.402 1.464 2.31 0.00 1.86 3.13 3.13 3.72 0.000 58.37 0.525 0.0010
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