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Abstract

This analysis investigates charm production processes in photoproduction and deeply inelastic scat-
tering. The analysed data was collected with the H1 detector at the HERA accelerator in the years
1999-2000 for photoproduction and 2004-2007 for deeply inelastic scattering, corresponding to inte-
grated luminosities of 83 pb−1, respectively 348 pb−1. Dijet events are selected with jet transverse
momenta of at least 5 GeV, respectively 4 GeV, in the central rapidity region. One jet is tagged
by a D∗ meson to be initiated by a charm quark. The other is studied with respect to its mean
integrated jet shape in order to deduce to which fraction it is initiated by a quark or a gluon. The
jet shape is described by the fraction ψ(r) of the jet energy inside a cone of radius r around the
jet axis; it is found that for r = 0.6, ψ(r) is most sensitive to differences between charm and light
quark or gluon jets. The shape is measured as a function of various kinematic variables such as the
jet energy and pseudorapidity, photon virtuality and xobsγ , the fraction of the photon momentum
entering the hard interaction. The photoproduction data is compared to Pythia, the DIS data to
RapGap Monte Carlo simulations. In the Monte Carlo calculation, direct and resolved photon pro-
cesses are simulated separately to compare samples with an enriched fraction of quark, respectively
gluon initiated jets. Deviations at low xobsγ are observed for higher values of Q2, where direct and
resolved expectations are nearly identical, hinting at an overestimation of gluon initiated jets. In
most regions of phase space though, the resolution of the measurement excels the difference between
direct and resolved predictions, allowing a distinction of such event samples.

Kurzzusammenfassung

Ziel dieser Analyse ist die Untersuchung der Charm-Produktionsprozesse in Photoproduktion und
tief-inealstischer Streuung. Die hierfür vewendeten Daten wurden mit dem H1-Experiment am ep-
Speicherring HERA in den Jahren 1999-2000 für Photoproduktion und in den Jahren 2004-2007
für tief-inealstische Streuung gesammelt. Dies entspricht integrierten Luminositäten von 83 pb−1

bzw. 348 pb−1. Es wurden Zwei-Jet-Ereignisse mit transversalen Jet-Energien von mindestens 5
GeV und 4 GeV im zentralen Rapiditätsbereich ausgewählt. Ein Jet wird durch Rekonstruktion
und Zuordnung eines D∗-Mesons als Charm-Jet identifiziert, der andere wird auf seine integrierte
Jet Shape hin untersucht. Der Mittelwert dieser gibt Aufschluss über den Anteil der durch Quarks
bzw. Gluonen ausgelösten Jets in der betrachteten Menge von Ereignissen. Die Jet Shape wird
beschrieben durch den Bruchteil ψ(r) der Jet-Energie innerhalb eines Kegels mit Radius r um die
Jet-Achse; es zeigt sich, dass bei einem Radius r = 0, 6 die grösste Sensitivität auf Unterschiede
zwischen Charm- und leichten Quark- sowie Gluon-Jets erreicht wird. Die mittlere integrierte Jet
Shape wird in Abhängigkeit unterschiedlicher kinematischer Variablen, wie etwa der Jet-Energie
und -Pseudorapidität, der Photon-Virtualität und xobsγ , des Bruchteils des Photon-Impulses, der in
die harte Wechselwirkung eingeht, gemessen. Die Photoproduktions-Daten werden mit der Pythia,
die Daten aus tief-inelastischer Streuung mit der RapGap Monte Carlo-Simulation verglichen. In
den Monte Carlo-Rechnungen werden die direkten und die aufgelösten-Photon-Prozesse separat
simuliert, um Ereignis-Mengen mit angereichertem Anteil an quark- bzw. gluoninduzierten Jets zu
studieren. Für hohe Photon-Virtualitäten werden bei kleinen xobsγ Abweichungen zur Monte Carlo-

Erwartung beobachtet. Dies deutet auf eine Überschätzung von durch Gluonen initierten Jets in
diesem Bereich des Phasenraums hin. In den meisten Bereichen des Phasenraums ist die Auflösung
der Messung besser als die Differenz zwischen den direkten und den aufgelösten Erwartungen, was
eine Unterscheidung zwischen solchen Ereignismengen erlaubt.
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Overblik

Målet med denne analyse er, at undersóge mekanismerne bag produktionen af charm quarks. Hertil
bliver der udnyttet data, der blev vundet ved H1 eksperimentet i ep-acceleratoren HERA i årene
1999-2000 m.h.t photoproduktion og i årene 2004-2007 m.h.t. dyb inelastisk stódning. Dette svarer
til integrerede luminositeter p̊a 83 pb−1 henholdsvis 348 pb−1. Begivenheder med to jets med
transversale impulser af mindst 5 GeV og 4 GeV i det centrale rapiditetsomr̊ade blev udvalgt. En
jet bliver identificeret som charm jet ved at rekonstuere en D∗ meson. Den anden undersóges m.h.t.
dens jet shape. Middelværdien af disse giver udtryk for, til hvilken del disse jets blev udlóst af en
kvark eller en gluon. Herved er jet shape ψ(r) den del af jetenergien indenfor en kegle med radius r
omkring jetaksen. Det viser sig, at ψ(r) er mest sensitiv for forskelle mellem kvark- og gluonjets ved
r = 0, 6. Denne shape bliver bestemt som fuktion af flere kinematiske variabler som jetenergien og -
pseudorapiditeten, fotonvirtualiteten og xobsγ , den del af fotonens impuls, der medvirker i den h̊arde
vekselvirkning. Photoproduktionsdata bliver sammenlignet med Pythia, data fra dyb inelastisk
stódning med RapGap Monte Carlo simulationer. I Monte Carlo beregningerne bliver de direkte
og de oplóste foton processer simuleret separat, for at sammenligne próver med en forhójet andel af
kvark- henholdsvis gluoninitierede jets. Ved stórre værdier af fotonvirtualiteten kan afvigninger ved
små xobsγ iagttages, hvilket hentyder p̊a en overvurdering af gluoninitierede jets. I de fleste omr̊ader
af faserummet er det dog muligt at skelne mellem próver, der er dominerede af direkte henholdsvis
oplóste processer.



Contents

Introduction 1

1 Heavy Flavour Production Mechanisms 3

1.1 Quantum Chromodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Kinematics of Electron Proton Scattering . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Quark Parton Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Factorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Parton Evolution Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Charm Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Hadronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.8 Jet Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.9 Monte Carlo Event Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 HERA and the H1 Experiment 19

2.1 The HERA Storage Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 The H1 Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Central Silicon Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Central Inner Proportional Chamber . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.3 Central Jet Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.4 Central Outer Z Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.5 Backward Proportional Chamber . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.6 Track Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Liquid Argon Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 SpaCal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Electron Taggers and Luminosity System . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Analysis Strategy 33

3.1 Experimental Signature of Resolved Processes . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Jet Shape Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Other Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

v



vi CONTENTS

4 Reconstruction of the Analysis Objects 39
4.1 Reconstruction of the Hadronic Final State . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Jet Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Jet Energy Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Charm Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.1 D* Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.2 Wrong Charge Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Reconstruction Methods for the Event Kinematics . . . . . . . . . . . . . . . . . . . 49
4.5.1 The Electron Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5.2 The Hadron Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.3 The Σ Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.4 The eΣ Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Reconstruction of xobs
γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Data Selection 59
5.1 Selection of Charm Initiated Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Selection of Photoproduction Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Online Trigger Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.2 Offline Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.3 Integrated Luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Selection of DIS Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.1 Online Trigger Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.2 Offline Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.3 Integrated Luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Selection Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Measurement of the Internal Structure of Charm Jets 73
6.1 Reconstruction Quality of the Kinematic Variables . . . . . . . . . . . . . . . . . . . 73

6.1.1 Reconstruction Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.1.2 Correlation between Generated and Reconstructed Variables . . . . . . . . . 77
6.1.3 Purity and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Background Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Control Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4 Mean Integrated Jet Shape at Detector Level . . . . . . . . . . . . . . . . . . . . . . 94

6.4.1 Jet Shape at Fixed Cone Radius . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.5 Detector Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.6 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 Results 115
7.1 Mean Integrated Jet Shape as Function of the Cone Radius . . . . . . . . . . . . . . 115

7.1.1 Photoprodution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.1.2 DIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2 Mean Integrated Jet Shape at Fixed Cone Radius . . . . . . . . . . . . . . . . . . . . 125
7.2.1 Photoproduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2.2 DIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.2.3 Q2 Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



CONTENTS vii

8 Summary and Conclusion 131

A Determination of Optimum Cone Radius 133

B Data Tables 137

Bibliography 143



viii CONTENTS



Introduction

Elementary particle physics explores the smallest constituents of matter and their interactions.
Present experimental data is very successfully described by the Standard Model where matter is
built of six quarks and six leptons. These particles interact via the electroweak and strong forces,
both of which are described in terms of quantum field theories. The theory of the strong interaction
between quarks, mediated by gluons, is called Quantum Chromodynamics (QCD). Calculation of
production cross sections in QCD are performed in perturbation theory with the strong coupling
constant αs as expansion parameter. The convergence of the perturbation series is ensured by the
presence of a hard scale, at which αs is small. In heavy quark production this hard scale can be
provided by the mass of the heavy quark. QCD calculations can thus be tested by studying heavy
quark production.

In ep collisions at HERA the dominant charm (c) production mechanism is the boson-gluon
fusion process. In addition to the cc̄-pair production in the direct process, processes where the pho-
ton exhibits a substructure, so-called resolved photon processes, provide a significant contribution.
Here the photon acts as a source of quarks and gluons that participate in the hard interaction. In
photoproduction where the exchanged photon is quasi-real this contribution is expected to be of
additional importance.

In the investigation of charm production the step beyond the measurement of cross sections
is the separation of the contributions from different processes to the cross section. In particular
this means to what extent charm production can be attributed to the excitation process, where a
quark from the photon participates in the hard interaction. It is this process which in leading order
perturbative QCD produces a hard gluon in addition to a hard charm quark, while the direct and
the remaining resolved processes lead to the production of two quarks as outgoing partons of the
hard subprocess. This raises the experimental question whether a hard gluon can be observed as
byproduct to charm production.

The direct observation of quarks and gluons is rendered impossible by colour confinement,
however; the partons fragment into colour neutral hadrons which form jets. At low energies where
non-perturbative behaviour dominates, the created hadrons are distibuted isotropically in space. At
higher energies jet-like structures are observed that give clear experimental evidence of the partons
coming from the hard interaction. In this context the study of e+e− collisions at PETRA in last
centuries late seventies revealed three-jet events to be initiated by two quarks and an additional
radiated gluon. This allows to refine the above question: Is it possible to deduce the type of
initiating parton from the jet and so constrain the contributing physics process?

Jets are formed by a chain of elementary splitting processes of the initial quark or gluon. The
relative strengths of these splitting processes are determined by the QCD colour factors and differ
between quarks and gluons. Consequently the structure of jets initiated by quarks, respectively

1
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gluons, is different. When considering jets of equal energy, gluon jets are broader and contain more
particles with a generally softer pt spectrum. The study of the internal jet structure thus promises
to be a means to distinguish the initial partons.

The present analysis’ aim is the distinction of events with a charm quark pair from those with a
charm quark and a gluon as final state partons from the hard scattering process. To this end dijet
events are studied where one jet is tagged as being initiated by a charm quark while the shape of
the other jet is analysed. The well established variable ’mean integrated jet shape’ is used as the
tool to achieve this goal. The tagging of the charm initiated jet is performed by the reconstruction
of a D∗ meson in the golden decay channel. The analysis is performed in photoproduction for data
from the HERA 1 running period where the scattered electron has been detected in one of the
two ’electron taggers’ at z = −33 m, respectively z = −44 m, along the electron beam direction,
corresponding to two different inelasticity regions. Further the regime of deeply inelastic scattering
has been studied for HERA 2 data. The integrated luminosity for for the HERA 1 sample amounts
to 51 pb−1, respectively 32 pb−1. The HERA 2 data sample has an integrated luminosity of 348
pb−1.

The outline of this these is as follows: First an overview of the theoretical background is given.
Emphasis here is put on heavy quark production mechanisms as well as quark and gluon jet proper-
ties. The second chapter focuses on the H1 detector and the components relevant for this analysis.
The strategy for the analysis is presented in chapter three. The fourth chapter is dedicated to the
reconstruction of the analysis objects. This includes the hadronic final state, jets, the D∗ meson
as well as the kinematic variables. The selection of the dijet data samples in photoproduction and
deeply inelastic scattering is discussed in chapter five. Chapter six contains the details concerning
the measurement of the jet shape. The results are presented in chapter seven. Finally in chapter
eight the results are summarised and discussed, before an outlook closes the thesis.



Chapter 1

Heavy Flavour Production

Mechanisms

1.1 Quantum Chromodynamics

The interaction between electrically charged particles is precisely described by Quantum Electrody-
namics (QED) with the photon as gauge boson. Analogously Quantum Chromodynamics (QCD)
is the quantum field theoretical description of the strong interaction between colour charged par-
ticles. It is based on the non-Abelian colour symmetry group SU(3)1 and different from QED the
QCD gauge bosons, the gluons, interact with each other as these carry colour charge themselves [1].
Hence gluon exchange involves a change of colour charge between the involved quarks. The coupling
constant of the strong interaction αs reflects the self-interaction of its gauge bosons by a behaviour
opposite to the behaviour of the electromagnetic fine structure constant: At small distances (high
momentum transfers) the coupling is very small while it increases towards larger distances (small
momentum transfers). This running coupling leads to asymptotic freedom at small distances; the
partons become quasi-free particles. The large value of αs at low momentum transfers on the other
hand results in so-called confinement : The quarks are bound in colour neutral states called hadrons.

Cross sections for particle interactions are calculated in perturbative QCD (pQCD) as a power
series in αs. Beyond leading order (LO) diagrams with additional gluons or quarks can yield
large contributions due to the large value of the strong coupling constant. These contibutions are
determined by integration of all particle momenta in the loop. Beyond LO also loop diagrams
appear in the perturbation series which cause divergencies that make renormalisation necessary. As
a consequence a renormalisation scale µr appears which sets the scale for αs. The renormalisation
scale µr with the dimension of an energy has to be large enough so that the power series converges,
i.e. µr >> ΛQCD. Here ΛQCD denotes the scale at which αs gets very large causing divergencies
in the perturbation series, it is of the order of 200 MeV. If µr fulfills this requirement it is referred
to as a hard scale. All physical observables have to be independent of the choice of this scale.

In the production of heavy quarks the high quark mass mc,b,t provides a hard scale, and thus
it is an ideal testing ground for pQCD. In this case, though, the presence of other large scales like
the virtuality of the exchanged gauge boson Q2 or the transverse momenta pt of the quarks cause

1QED is based on the Abelian gauge group U(1)

3



4 CHAPTER 1. HEAVY FLAVOUR PRODUCTION MECHANISMS

the calculation to be more intricate. This multi-scale problem is treated according to the relative
magnitudes of the involved scales [2].

1.2 Kinematics of Electron Proton Scattering

The interaction between electron and proton is in first order QED perturbation theory described
as an exchange of a virtual gauge boson. This is depicted in figure 1.1. If the exchanged boson is
a charged W± boson the electron becomes an uncharged neutrino at the electron vertex. In the
case of neutral gauge boson, γ or Z0, the electron as a particle is conserved. k and k′ denote the
momenta of the incoming, repectively outgoing lepton, p the momentum of the incoming proton.
The negative square four momentum −q2 of the exchanged gauge boson is referred to as Q2:

Q2 = −q2 = −(k− k′)2. (1.1)

The contributions to the cross section caused by W± or Z0 exchange are supressed in relation
to photon exchange by a factor of C,

C =

(

Q2

Q2 +M2
Z0,W±

)2

. (1.2)

Due to the high masses of W± ≈ 80 GeV and Z0 ≈ 91 GeV these contributions can be neglected
for Q2 < 1000 GeV2 in the neutral current case. In the Breit frame2 the negative four momentum
transfer squared Q2 can be regarded in terms of the wave length of the virtual photon λ ≈ 1/Q,
hence the resolution power of the photon for the exploration of the proton structure is given by Q.

Figure 1.1: Schematical diagram of ep scattering including particle momenta.

From the four momenta of the particles entering in the electron proton scattering the following
Lorentz-invariant quantities can be deducted:

2The Breit frame is defined as the frame of reference where the exchanged boson is fully spacelike [3].
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The squared centre-of-mass energy s of the electron proton system:

s = (k + p)2. (1.3)

In the quark parton model (cf. section 1.3) the Bjorken variable x is the momentum fraction of
the struck parton in the proton:

x =
Q2

2p · q . (1.4)

The inelasticity is the energy fraction of the electron carried by the photon in the proton frame
of reference:

y =
p · q
p · k . (1.5)

The energy squared in the photon-proton frame of reference is given by

W 2
γp = (q + p)2. (1.6)

When neglecting electron and proton rest masses the following relations can be derived for the
above quantities:

Q2 = sxy (1.7)

W 2
γp = ys−Q2. (1.8)

The above equations describe the full kinematics of the interaction. They consist of only three
independent quantities. The kinematic region with a photon virtuality of Q2 ≈ 0 (i.e. the photon
is quasi-real) is called photoproduction, the region of Q2 & 2 GeV2 is referred to as deeply inelastic
scattering (DIS).

1.3 Quark Parton Model

The Quark Parton Model describes the constituents of the nucleon as pointlike, non-interacting
particles [4, 5]. These constituents were identified with quarks by J. Bjorken and E. Paschos [6].
In ep scattering a virtual photon is exchanged between the incoming photon and one of the quarks
of the proton. The momentum fraction x carried by the struck quark (cf. equation 1.4) can be
reconstructed by measured quantities of the electron. Figure 1.2 shows the Feynman diagram of the
scattering of the electron off a quark of the incoming proton in the quark parton model. In leading
order QCD gluon emissions and exchanges during the collision can be ignored. In this assumption
the cross section for ep scattering can be determined by the cross section for quasi-elastic electron
quark scattering at a given x and the probability fi(x)dx to find a quark i at that x. It is not possible
to calculate these probability functions by pQCD, thus they have to be determined experimentally.
The probability functions fi(x)dx are referred to as Parton Density Functions (PDF). The proton
structure is parametrised by the proton structure functions F1(x,Q

2), F2(x,Q
2) and F3(x,Q

2) with
F3(x,Q

2) = 0 if Z0 exchange is negligible, which is assumed here. The double differential cross
section as a function of x and Q2 yields
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d2σ

dQ2dx
=

4πα2

xQ4

(

xy2F1(x,Q
2) + (1 − y)F2(x,Q

2)
)

. (1.9)

In the quark parton model for free quarks the Callan-Gross [7] relation relates F1(x,Q
2) and

F2(x,Q
2) if the interacting parton from the proton is a spin-1/2 Dirac particle:

F2(x,Q
2) = 2xF1(x,Q

2). (1.10)

The proton structure function F2(x,Q
2) in the QPM is related to the PDF by

F2(x,Q
2) = x

∑

i

e2i fi(x, ) (1.11)

with the charge ei of the quark i. J. Bjorken predicted the structure function to be independent
of the momentum transfer Q2 [4]. This effect is known as scaling. In that case the increase of Q2

will not disclose new details of the quasi-free partons in the proton once these partons are resolved.
A scaling behaviour was experimentally observed at x ≈ 0.1, in good approximation confirming the
quark parton model [8]. This scaling behaviour is interpreted as scattering off the valence quarks.
Figure 1.3 shows experimental results by H1, ZEUS and various fixed target experiments of F2 as
function of Q2 for different values of x. At low values of x, however, F2 rises sharply with increasing
Q2, indicating scaling violations. These measurements along with other experiments reveal that
only 50% of the proton momentum is carried by the charged valence quarks which gives rise to the
conclusion that the quark parton model does not describe the full proton content.

Figure 1.2: Feynman diagram of deeply inelastic scattering off a quark from the incoming proton
in the quark parton model.

The momentum transfer Q2 is associated with the Compton wavelength governing the resolu-
tion. With increasing Q2 the Compton wavelength decreases and finer structures of the proton
are resolved. The Q2 dependence of F2 at low x is hence interpreted as an increase of gluons and
gluon-induced quark-antiquark pairs (so-called ’sea quarks’), which are visible due to the better
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resolution. As a consequence the ep cross section rises towards higher Q2, as does F2. For a suc-
cesful description of the proton content accounting for the gluon contributions the quark parton
model has to be extended by means of pQCD. In this context the proton structure function F2 in
equation 1.11 can be viewed as the term of order zero in the expansion of F2 as a power series in
αs.

1.4 Factorisation

By means of pQCD it is possible to calculate the hard subprocess on parton level for ep scattering.
Ultraviolet divergencies are treated by introducing a renormalisation scale µr. The choice of this
non-physical parameter should have no impact on the outcome of the calculation. Variation of µr
can thus be used as a test for the validity of the perturbation series.

The inclusive cross section for ep scattering under consideration of processes within the proton
can be computed by means of a factorisation ansatz. The factorisation theorem [9] can be seen as the
field theoretical realisation of the quark parton model. Here a separation is made between the hard
and soft subprocesses. The hard processes correspond to the short distance part and are computable
in pQCD. They describe the interaction of high energy partons. The low energy interactions (long
distance part) correspond to the soft processes. In figure 1.4 the factorisation ansatz and the
separation of hard and soft processes is depicted. The factorisation scale µf differentiates between
the pQCD computable hard matrix element and the soft processes of the parton within the proton
before the hard interaction. These soft processes are included into the PDFs and are not calculated
together with the hard matrix element. A problem with these processes is the radiation of soft
gluons collinear with the quark, leading to divergent logarithmical terms in the perturbation series.
In terms of factorisation the cross section can be expressed as

σ(ep→ eX) =
∑

i

∫ 1

ξ=x

dξfi(ξ, µ
2
f )σ̂i (ŝ, αs (µr) , µf ) . (1.12)

Here σ̂ is the ’hard cross section’ on parton level calculated in pQCD. It is a function of the
centre-of-mass energy

√
ŝ in the parton system after the evolution, the renormalisation scale µr and

the factorisation scale µf . The theorem allows to write the relation between the structure function
F2 and the proton PDF as follows:

F2(x,Q
2) =

∑

i

∫ 1

ξ=x

dξCi

(

ξ

x
,
Q2

µ2
r

,
µ2
f

µ2
r

, αs(µ
2
r)

)

fi(ξ, µf , µ
2
r). (1.13)

The sum again runs over the partons in the proton, the coefficient functions Ci can be calculated
in pQCD.

Though the factorisation theorem is only proven in DIS it is applicable in photoproduction as
well [10]. The PDF fi/h(x, µ

2
f ) is independent of the investigated hard scattering process, it depends

only on the type of hadron h and parton i. The separation between hard and soft subprocesses is
ambiguous, it is defined by the choice of factorisation scheme. The most important of these are the
DIS scheme and the minimal subtraction scheme. In the case of inclusive processes a typical choice
for renormalisation and factorisation scales is µ2

f = µ2
r = Q2 [11]. In the DIS scheme , equation

1.11 holds in all orders of perturbation theory.
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Figure 1.3: Proton structure function F2 as function of Q2 for different values of the Bjorken
variable x. The data points are measured by H1, ZEUS and three fixed target experiments. The
fits used by H1 and ZEUS are based on the DGLAP equations. The points and fit curves are offset
by − logx to enhance the readability.
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Figure 1.4: Schematical view of the factorisation ansatz, separating the hard interaction σ̂i from
the parton evolution.

1.5 Parton Evolution Models

The PDF describes the probability to find a quark or gluon in the proton with a momentum
fraction x at a given Q2. As these PDF cannot be calculated by pQCD they are determined
experimentally. To this end the structure functions are parametrised at an initial scale µ0 and fitted
to the experimental data after evolution to the appropriate scale and calculation of the structure
functions. The evolution equations used for this purpose account for gluon radiation from the quark
as well as gluon splitting into quark or gluon pairs prior to the hard subprocess. Such radiations
can occur more than once causing a parton ladder as depicted in figure 1.4 for gluons. All these
radiative contributions are summed up, the succession depending on the evolution ansatz. The
contributions are ordered according to the longitudinal momentum xi, the transverse momentum
kt,i or the angle θi of the radiated parton. The different approximations lead to different evolution
schemes that also require different PDF input distributions. The three most important parton
evolution schemes are presented in the following.

• The DGLAP3 approach [12, 13, 14, 15] is the most used evolution scheme. In first order of
αs it uses four splitting functions Pab(z) that describe the probability of b radiating a new

3Dokshitzer, Gribov, Lipatov, Altarelli, Parisi
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parton a with momentum fraction z. Assuming an initial scale Q2
0 it is possible to calculate

the parton distribution within the proton at another scale µ2
f > Q2

0. The proton structure
at the initial scale is not predicted by the scheme and has to be determined experimentally.
As the momentum fraction of the radiated parton is smaller than the momentum of the
radiating parton, the integration of the evolution equation does not start at ξ = 0 but at
ξ = x. One assumption of the DGLAP approach is that the transverse momenta kt,i of the
radiated gluons are ordered along the gluon ladder according to k2

t,i � k2
t,i−1. Additionally

the longitudinal momenta xi have to be large relative to the transverse momentum, i.e. the
gluons must be radiated largely collinear. Hence the factorisation in this evolution is referred
to as collinear factorisation. This condition is fulfilled for adequatetely large x. The DGLAP
ansatz is expected to lose its viability for very small x.

• In the BFKL4 approximation [16, 17] the evolution is performed in x, the leading αs ln(1/x)
terms are resummed. This leads to strongly ordered longitudinal momenta zi = xi/xi−1.
BFKL evolution is expected to be valid for medium Q2 and small x.

• The CCFM5 approach [18, 19, 20, 21] is another way of evolving the PDF from the initial to
a new scale. Here only gluons are used in the evolution and the gluon ladder is ordered with
respect to the increasing angle of the emitted gluon: θi > θi+1. Emission under small angles
and not too small x leads to the same sequence as in the DGLAP evolution as the trans-
verse momentum q of the emitted gluon is qi > zi−1qi−1 and zi = xi/xi−1 ≈ 1. For small
x the CCFM description approaches the BFKL model and accelerates the increase of the
parton density towards small x. CCFM requires the unintegrated gluon density distribution
A(xg , k

2
t , µ

2
f ), which depends on x and also on the transverse momentum kt and the factori-

sation scale µf . Contrary to DGLAP the partons have an intrinsic transverse momentum
before entering the hard subprocess.

HERA measurements of F2 are very well described by the DGLAP approach all the way to
the smallest accessible x ≈ 10−4 [22, 23]. Indication towards a better description by CCFM were
found in forward jet production [24]. The inclusive proton structure function F2 contains a large
charm contribution through events with charm quarks in the final state. The measurement of this
contribution, called F cc̄2 , hints towards a better description by CCFM at small x [25].

1.6 Charm Production

Charm and beauty quarks are also referred to as heavy flavours as their masses of mc ≈ 1.5 GeV
and mb ≈ 4.5 GeV are far above the scale of QCD, ΛQCD. HERA energies do not allow for top
pair production and the single top production process has an extremely low cross section.

Because of the high charm quark mass, charm is produced predominantly in boson-gluon fusion
(BGF), while gluons splitting to a charm anti-charm pair g → cc̄ as well as the production of charm
quarks in hadronisation processes is supressed. Figure 1.5 shows the BGF processes. In the direct
process (figure 1.5(1)) the incoming electron emits a photon. The photon interacts with a gluon
from the proton, and a heavy quark pair is produced.

The photon is point-like and colour neutral. It can, however, fluctuate into a quark anti-quark
pair plus gluons and thus indirectly participate in strong interactions. These hadronic constituents

4Balitsky, Fadin, Kuraev, Lipatov
5Ciafaloni, Catani, Fiorani, Marchesini
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of the photon lead to so-called resolved photon events. In the normal resolved process (figure 1.5(2))
a parton from the photon interacts with a parton from the proton. In another possible resolved
process a heavy quark from the photon takes part in the hard interaction (figure 1.5(3)-(5)). These
processes are refered to as charm excitation processes. Especially in photoproduction where the
exchanged photon is almost real, resolved processes dominate. However, the picture of direct and
resolved processes gets ambiguous beyond LO.

The BGF cross section for direct processes in leading order can be expressed as [26]

σγg→QQ̄(s,m2
Q) =

πe2Qααs

s

(

(

2 + 2ω − ω2
)

ln
1 + χ

1 − χ
− 2χ (1 + χ)

)

(1.14)

with ω = 4m2
Q/s and χ =

√
1 − ω2. The terms containing χ represent the threshold behaviour

of heavy quark production; the kinematic region close to the charm production threshold is strongly
favoured resulting in generally small charm quark transverse momenta. The larger mass and smaller
charge of the beauty quark cause a supression of beauty production by a factor of roughly 200 with
respect to charm.

The charm quark mass provides a sufficient hard scale making charm production a good testing
ground for pQCD calculations, even in the absence of other hard scales. In addition charm produc-
tion serves to probe the parton content of the photon and the proton. Here especially the gluon
structure can be investigated, as the cross section is expected to be dominated by gluon-induced
processes. The parton and hadron levels are closely related due to the hard fragmentation of the
heavy quarks (cf. section 1.7).

In this analysis open charm production is explored. Here the partons from the produced cc̄ pair
fragment independently and form jets.
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Figure 1.5: Charm production by boson-gluon fusion in leading order pQCD. (1) shows the direct
process, (2) - (5) the resolved processes. (2) is the ’normal’ resolved process, (3) - (5) are charm
excitation processes.

1.7 Hadronisation

The colour charged quarks do not appear as free particles as a consequence of confinement. Hence
the strongly interacting particles are bound in colourless states. The process of colour charged
quarks forming colour neutral states, known as hadrons, is called fragmentation or hadronisation.
In the case of BGF in the Monte Carlo simulation two partons are produced in the hard process.
These partons produce a parton shower according to the evolution schemes discussed in section 1.5
as a sequence of particle branchings. Beyond a certain threshold, αs becomes so large that pQCD
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is no longer applicable. Hence to describe the fragmentation process, phenomenological models are
used. Two important models are presented in the following.

• String fragmentation (Lund model) [27, 28, 29] is based on the concept that after an
interaction the two particles from a qq̄ pair move away from each other. The colour field
between them is confined in a narrow tube, the so-called string. At larger distances the QCD
potential is proportional to the distance. As soon as sufficient energy is stored within the
string, it breaks up and a new qq̄ pair is produced. When the energy no longer suffices to
produce further pairs the process stops and the created string fragments combine into hadrons.
Gluons create kinks in the strings which influence the angular distribution of the produced
hadrons. Figure 1.6 shows the formation of strings and the creation of new qq̄ pairs.

Mesons

q
q

d
is

ta
n

ce

time

Figure 1.6: String fragmentation model showing the creation of mesons.

• Independent fragmentation is implemented in e.g. the Peterson and the Bowler model.
Here the transition from a quark Q to a hadron H is fully characterised by the momenta of
the quark and the hadron.

A bound stateQq̄ is formed by creating a light quark anti-quark pair qq̄ from the vacuum where
the remaining quark q continues hadronisation on its own. Because of the large difference
in mass the heavy quark Q loses only a small fraction of its energy. Thus the energy of the
heavy quark approximately equals the energy of the hadron containing the heavy quark.

• Cluster fragmentation exploits the property of so-called pre-confinement [30]: At the end
of the perturbative phase, colour-connected partons tend be closely arranged in phase-space,
leading to local colour compensation. The quarks are merged into colour-singlet clusters.
Prior to this, though, each gluon is forced to split into a quark-antiquark pair. Clusters
typically have masses of few GeV and decay independently into hadrons. Too heavy clusters
split into two clusters. Too light clusters decay into a hadron under a slight rearrangement of
energy and momentum with neighbouring clusters. The cluster’s decay channel is based on
the phase space probability.

In the above models the fragmentation can be parametrised in several ways. The Peterson
parametrisation [31] implies that the probability for the fragmentation of a heavy quark solely
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depends on the energy transfer between initial and final state ∆E = EH + Eq − EQ, with the
energies EH of the created hadron, Eq of the light quark and EQ of the initial heavy quark. The
probability DQ→H of a heavy quark to fragment into a hadron containing the heavy quark is then
inversely proportional to the square of the energy difference ∆E. Considering an additional factor
for the longitudinal phase space the fragmentation function is parametrised

DQ→H =
N

z
(

1 − 1
z − εc

1−z

)2 . (1.15)

Here z denotes the fraction of the longitudinal momentum transfered from the heavy quark to the
hadron. The parameter N is for normalisation while εQ characterises how hard the fragmentation
is; heavy quarks are expected to fragment harder. It is proportional to the relation of the quark
masses squared εQ ∝ M2

q /M
2
Q but is usually left as a free parameter as the quark masses are not

exactly known. A typical choice derived from e+e− data for the charm quark is εc ≈ 0.058 [32].

Another way to parametrise the fragmentation is the Bowler fragmentation function [28]:

DQ→H = N
1

z1+bm2
Q

(1 − z)a exp

(

bm2
t

z

)

. (1.16)

The parameters a and b must be determined through measurement.The transverse mass is given

by mt =
√

p2
t +m2

Q with mass mQ and transverse momentum pt of the heavy quark.

The fragmentation variable z cannot be measured directly. The inelasticity of a D∗ meson (cf.
section 4.4) the charm quark fragments to, however, is accessible as the fraction of the photon
energy transfered to the D∗ meson in the proton frame of reference:

zD∗ =
p · pD∗

p · q =
(E − pz)D∗

2yEe
(1.17)

with the four momentum pD∗ of the D∗ meson. (E − pz)D∗ is the difference between energy
and longitudinal momentum of the D∗ meson and Ee is the energy of the incoming electron. It is
expected that the D∗ meson carries a very large energy fraction of the total event, and indeed most
D∗ mesons are observed at high zD∗ [33].

1.8 Jet Structure

Jets are the result of a chain of elementary splitting processes, i.e. parton branchings. Each
branching is characterised by the virtuality Q2 in the particular branching. As the parton shower
develops, Q2 decreases in the consecutive branching processes, hence αs gets larger. The processes
can thus be described by pQCD only up to a given cut-off value of parton virtuality. Beyond that
fragmentation (cf. section 1.7) takes over. The factorisation scale µf marks this boundary in the
Monte Carlo simulation. The internal jet structure is sensitive to hard as well as soft contributions
from QCD, consequentially it can be used to probe both regimes.

The internal structure of the jet is supposed to depend mainly on the primary parton initiating
the jet, less on the particular hard scattering process itself. The differences between quark and
gluon jets arise from the SU(3) group structure of QCD (cf section 1.1). Relative strengths of
different parton branchings lead to differing splitting probabilities for quarks and gluons. Figure
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1.7 shows the possible branching processes of quarks and gluons. The strength of the splittings are
given by the QCD colour factors6

CA = Nc = 3 (1.22)

CF =
N2
c − 1

2Nc
=

4

3
(1.23)

TR =
1

2
(1.24)

with the number of colours Nc. As a result jets initiated by quarks exhibit different properties
than jets induced by gluons. These differences are explored in terms of multiplicity of particles
within the jet and angular jet size.
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Figure 1.7: Quark and gluon splitting processes relevant for the jet development up to order αs
[35].

• Particle multiplicity within the jet can be calculated in pQCD as the average number of
hadrons of type h in a jet initiated by a parton i at scale t [36] by

〈nh(t)〉i =

∫ 1

0

dxDh
i (x, t) (1.25)

6The colour factors are manifestations of the group structure underlying QCD. The dynamics of a gauge group
are completely defined by commutation relations between its generators T i:

ˆ

T i, T j
˜

= i
X

k

f ijkT k (1.18)

with the structure constants f ijk . Summation over all possible colour configurations in the initial, respectively final
states leads to the appearance of combinatorial factors CA, CF and TR, where

X

j,k

fjkmfjkn = δmnCA (1.19)

X

k,η

T k
αηT k

ηβ = δαβCF (1.20)

X

α,β

T m
αβT n

βα = δmnTR. (1.21)

CA, CF and TR are called QCD colour factors [34].
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with the hadron energy fraction x = Eh/Ejet. The probability of a parton i to form a jet that
contains the hadron h with the longitudinal momentum phl = xpil is given by the fragmentation
function Dh

i (x, t). Since it describes a non-perturbative process it cannot be calculated by
pQCD. However, as with the PDF the evolution with a scale t can be computed. When
t→ t+dt the function Dh

i (x, t) can only change via the splitting of a parton i in this interval.
Hence Dh

i (x, t) satisfies the evolution equation

t
∂

∂t
Dh
i (x, t) =

∑

j

∫ 1

x

dz

z

αs
2π
Pij(z, αs(t))D

h
j (x/z, t0). (1.26)

The evolution equation enables the prediction of Dh
i (x, t) at an arbitrary scale t once it is

parametrised at some scale t0. The splitting functions Pij(z, αs(t0)) provide the probability of
an initial parton i to emit a parton j with momentum pj = zpi. In figure 1.7 the fundamental
splitting processes up to order αs are depicted. In leading order the splitting functions yield

Pqq(z) = CF

(

1 + z2

1 − z
+

3

2
δ(1 − z)

)

(1.27)

Pgq(z) = CF

(

1 + (1 − z)
2

z

)

(1.28)

Pqg(z) = TR

(

z2 + (1 − z)2
)

(1.29)

Pgg(z) = 2CA

(

z

1 − z
+

1 − z

z
+ z (1 − z)

)

+ δ(1 − z)
11CA − 4NfTR

6
(1.30)

illustrating the proportionality between the branching probability and the QCD colour factors.
Already the magnitude of the colour factors with TR being the smallest hints at the fact that
gluons splitting to quarks contribute least to the jet formation processes. With CA/CF = 9/4
most branchings are expected for jets initiated by gluons, these are thus on average broader
than quark initiated jets at the same pt.

Solving the DGLAP equations results in a relation between mean multiplicities [36]:

〈nh(t)〉q ∝
CF
CA

〈nh(t)〉g (1.31)

valid for scales t � t0. The difference arises from the greater effective colour charge of the
gluon, proportional to

√
CA, compared to

√
CF for the quark.

In terms of a model the difference becomes descriptive: The dominant asymptotic contribution
to the multiplicity of a quark jet originates in the emission of a highly virtual gluon by the
initial quark. The gluon forms a gluon jet with lower energy than the original quark jet.
Hence one factor of CA is replaced by CF resulting in a reduction of the average multiplicity
by a factor of CA/CF . This scenario is depicted in figure 1.8 [36]. This asymptotic behaviour,
however, holds true only at very large scales [37].
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αsCF

αsCA

Figure 1.8: The structure of jets initiated by a quark, respectively gluon. Gluon jets in general are
broader and contain more particles than quark jets. Typically a quark emits a gluon that develops
into a gluon subjet at a lower energy than a jet originally initiated by gluon.

• In order to determine an angular jet size an event is classified as two-jet event if all but a
fraction ε of the total energy is contained within a pair of cones of half-angle δ. According to
this definition the angular size of a quark, respectively gluon, induced jet for a given small ε
in lowest order yields

δq ∝ exp
π(1 − f2)

4CFαs(s)| ln ε|
(1.32)

δg ∝ exp
π(1 − f2)

4CAαs(s)| ln ε|
(1.33)

with f2 = σ2jet/σtotal [38]. As a consequence the relation between the angular sizes of quark
and gluon jets can be expressed as

δg ∝ δCF /CA
q . (1.34)

as CF /CA = 4/9 the angular jet size of gluon jets is larger than that of quark jets, i.e. gluon
jets are broader than quark jets.

If jets of equal energy produced under the same circumstances are initiated by either a quark
or a gluon the average multiplicity of the jets’ constituents (i.e. hadrons, after the fragmentation)
is predicted by QCD to be larger for gluon jets. Consequently the particle spectrum is softer
and the jet energy is distributed at larger mean angles with respect to the jet axis. Further the
fragmentation function of a gluon jet is softer.

Experiments at LEP have confirmed the differences between light quark and gluon jets predicted
by QCD [37, 39, 40]. Mean charged multiplicity results of the e+e− collider were found to be
consistent with HERA measurements [41].

This analysis investigates the jet structure as a means to find the contributions of gluon and
quark jets to the hadronic final state and in this way to discriminate the charm production processes.
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1.9 Monte Carlo Event Generators

A Monte Carlo event generator is a computer program to model high energy interactions between
the incoming particles. The theoretical predictions implemented in this simulation is an integral
component of a high energy physics experiment. The defined goal is the description of the complete
process from the initial state to the final state consisting of stable hadrons. Random number
generators are used to create events according to their theoretical probability. Afterwards a detailed
simulation of the detector response is performed. In this way the acceptance and efficiency of the
detector for a certain physical process can be studied by reconstructing simulated events analogously
to data events.
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Figure 1.9: Consecutive steps for simulating physics events within a Monte Carlo generator featuring
initial and final state parton showers (PS), the hard matrix element (ME) and hadronisation.

Generation of physics events falls into three categories coinciding with the QCD factorisation
ansatz. The procedure for the initial state consists of generating parton showers, here particularly
emission of gluons. Subsequently the hard matrix element is calculated in leading order perturbation
theory. The final state is formed by parton showers and finally hadronisation. This state of the
generation consists only of stable particles with lifetimes greater than 10−8 s. Later decays are
treated in the detector simulation. Figure 1.9 shows the event generation procedure. In this
analysis three different Monte Carlo event generators are used. In the following these are briefly
introduced.

• The Pythia Monte Carlo generator employs DGLAP evolution with on-shell matrix elements.
In the current analysis the parton density functions CTEQ5L [42] are used. As renormali-
sation scale µr = p2

t + (P 2
1 + P 2

1 + m2
q + m2

q̄)/2 with P 2
1 and P 2

2 as the virtualities of the
incoming particles is used. It is designed for the photoproduction regime and in this analysis
is it used in version 6.1 as a comparison for the photoproduction data. Further it serves to de-
termine reconstruction efficiency, purity and stability in this domain. Eventually the detector
correction in photoproduction has been peformed on the base of the Pythia simulation.
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• The RapGap Monte Carlo generator [43] is based on the DGLAP evolution equations. For
the parametrisation of the proton PDF the fit CTEQ6L [44] is implemented and the renormal-
isation scale µ2

r = Q2 is chosen. In the DIS domain the RapGap Monte Carlo in version 3.1 is
compared to the data and the reconstruction is studied in the same way as in photoproduction
with the Pythia simulation.

• The Cascade Monte Carlo generator [45] applies the kt factorisation for the initial parton
cascade and utilises the CCFM evolution where only gluons are considered. J2003 [46] is
employed as parametrisation of the unintegrated gluon density. The renormalisation scale is
chosen as µr = 4m2

q + p2
t . The Cascade program is applicable to photoproduction as well as

DIS. Here it is used in version 1.2 as a cross check comparison with the data. Additionally it
is utilised to estimate the systematic uncertainty of the detector correction. In Cascade the
hadronic photon component is included in the kt factorisation, hence no explicit distinction
is made between direct and resolved processes.

In addition to the above charm Monte Carlo samples, smaller light quark and beauty samples
were studied in order to compare charm jet shapes with those of uds and b.



Chapter 2

HERA and the H1 Experiment

This chapter gives an overview of the HERA accelerator and the properties of the electron and pro-
ton beams. Furthermore the H1 detector and its subsystems are presented where special emphasis
is put on the systems relevant for this analysis. These include the central tracking detectors, the
liquid argon and backward calorimeters as well as the electron taggers and the trigger system.

2.1 The HERA Storage Ring

The Hadron-Elektron-Ring-Anlage HERA has a circumference of 6336 m and consists of two
separate rings for the electrons (respectively positrons) and the protons. Shown in figure 2.1 is
the HERA collider and its pre-accelerators. Located in the middle of the four straight accelerator
segments are the interaction points where the beams can collide. Two of the four experiments used
only one beam. In the HERMES experiment the electron beam was collided with a polarised gas
target to investigate amongst others the spin structure of the proton. The HERA-B experiment
created nucleon-proton interactions on up to eight wire targets with the aim to verify CP violation
within the B system. The two multi-purpose experiments H1 and ZEUS analyse the collision of the
proton and the electron beam.

The filling scheme of HERA is defined by 220 high frequency sections, so-called bunches, dis-
placed by 96 ns. Not all of these bunches are filled with particles, however, as a time gap is needed
for the extraction of the beams.

The protons are accelerated in three steps before they are injected from PETRA1 into HERA at
40 GeV. Three of these PETRA trains consisting of 60 bunches each can be filled into HERA. Once
inside HERA the protons are accelerated with a high frequency voltage at 52 MHz up to an energy
of 920 GeV. The high frequency voltage is superimposed with a 208 MHz system to compress the
bunch length. This yields a typical bunch length of 1 ns 2 though also satellite bunches in a distance
of 4.8 ns before and after the main bunch are created.

The electrons are accelerated by three pre-accelerators and are injected from PETRA into HERA
at 12 GeV where they are further accelerated to 27.6 GeV. The beam profile in flight direction is
gaussian and the bunches are short enough to make further compressing dispensable.

1
Positron Elektron Tandem Ring Anlage

2Full width at half maximum
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Figure 2.1: The HERA collider and its pre-accelerators.

Located at the beginning and at the end of the PETRA trains are the proton, respectively
electron pilot bunches. These do not have a collision partner and are used in the determination of
the beam induced background which is important for the measurement of the luminosity.

After successful data taking through the years 1992-2000 (HERA 1) the collider has been up-
graded to achieve higher specific luminosity. For this the cross sections of both beams have been
reduced by a factor of three to σx × σy = 118 µm × 32 µm while maintaining the beam currents.
This required amongst others the installation of super conducting magnets within the H1 and ZEUS
detectors resulting in the need to reconstruct the innermost detector regions.

In the beginning of 2004 data taking at H1 was resumed although high background rates in
the starting period compromised data taking so beam currents and the number of filled bunches
had to be reduced for that time. According to schedule HERA was shut down in June 2007.
For the measurement of the longitudinal proton structure function FL, HERA was operated at
lowered proton beam energies during the last months of operation. Figure 2.2 shows the integrated
luminosity H1 was able to take during all of the HERA running time.

2.2 The H1 Detector

The H1 detector shown in figure 2.3 is a multi-purpose detector built to investigate the electron
proton interaction. Protons run through the experiment in z direction electrons in −z direction,
they collide at the interaction point in the middle of the detector. The experiment is constructed
to cover as much as possible of the entire solid angle of 4π around the interaction point. It is built
asymmetrical with more instrumentation in the forward proton direction to take into account the
asymmetrical beam energies.

The following coordinate system is used: The flight direction of the protons defines the positive
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Figure 2.2: Integrated luminosity before (HERA 1) and after (HERA 2) the luminosity upgrade.
The slope i.e. specific luminosity has increased drastically since high background rates in the
beginning of HERA 2 were reduced and full beam currents were viable.

z direction. Perpendicular the xy plane is spanned by the x axis pointing to the center of the
HERA ring and the y axis pointing upwards. The nominal interaction point lies in the origin of
the coordinate system. The polar angle θ is defined relative to the z axis, φ is the azimuthal angle
in the xy plane where φ = 0 corresponds to the x axis.

The H1 detector is built in a shell structure beginning innermost with tracking detectors and
followed by the electromagnetic and hadronic calorimeters. The super conducting solenoid generates
a magnetic field, uniform in the central tracking region, of 1.15 T. The coil is located outside
the calorimeters to avoid adverse effects on the energy measurement of the scattered electron in
particular. The iron return yoke for the magnetic flux is instrumented and is used as a muon
detector. Table 3.1 shows a list of the detector components of H1.

Throughout the years 2001 to 2003 the H1 detector particularly the tracking detector in forward
direction and the trigger systems for the increased interaction rate have been upgraded. One of
these projects was the fast track trigger FTT that enables to select events online based on their
track signature [47, 48].

The detector components important for this analysis are presented in the following sections. An
in-depth description can be found elsewhere [49].

2.3 Tracking

The innermost part of the H1 detector consists of tracking chambers to measure the path of flight
of charged particles, i.e. tracks and the event vertex. The magnetic field causes tracks to be curved,
the curvature of the tracks allows the determination of the momentum and sign of charge of the
particles. Figure 2.4 shows the central tracking system of H1 in the rφ plane. The following detector
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Figure 2.3: Longitudinal drawing of the H1 detector. In table 2.1 the numbered detector components
are specified.
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Number Detector Component Acronym

Tracking Systems
1 Central Silicon Tracker CST
2 Forward Silicon Tracker FST
3 Backward Silicon Tracker BST
4 Central Inner Proportional Chamber CIP
5 Central Outer Z Chamber COZ
6 Inner Central Jet Chamber CJC1
7 Outer Central Jet Chamber CJC2
8 Forward Tracking Detector FTD
9 Backward Proportional Chamber BPC

Calorimetry Systems
10 Electromagnetic Liquid Argon Calorimeter LAr em
11 Hadronic Liquid Argon Calorimeter LAr had
12 Backward Electromagnetic Calorimeter SpaCal em
13 Backward Hadronic Calorimeter SpaCal had

Further Systems
14 Super Conducting Solenoid
15 Instrumented Iron Return Yoke/

Central Muon Detector CMD
16 Forward Muon Detector FMD
17 Time of Flight System TOF
18 Super Conducting Focusing Magnets

Table 2.1: List of the Main H1 Detector Components, cf. figure 2.3
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Figure 2.4: Radial view of the central tracking chambers of the H1 detector. From the innermost
CST(1) going outwards the CIP(2), CJC1(3), COZ(4) and CJC2(5) are shown. The signal wires in
CJC1 and CJC2 are aligned in beam direction and depicted as dots.

components, beginning from the beam pipe and moving outwards, form the H1 tracking system:
The central silicon tracker (CST) is supplemented in forward and backward direction by the other
two silicon detectors FST and BST, respectively. The central inner proportional chamber (CIP) is
used for online event selection through determination of the origin of tracks in z direction. Next
are the two concentrical central jet chambers (CJC1 and CJC2). These measure tracks with high
resolution in rφ and moderate resolution in z direction. To compensate for this the central outer z
chamber (COZ) is built in betwen CJC1 and CJC2 to determine the position in z more precisely.
In backward direction another proportional chamber (BPC) is installed to measure the angle of the
scattered electron.

In the following an overview of the detector components mentioned above is given. Excluded in
this overview are the FST and BST systems as these were not used in this analysis (and were not
even installed for parts of the HERA 2 data taking period). The forward tracking detector (FTD)
figure 2.3 was not used either and will not be mentioned further.

2.3.1 Central Silicon Tracker

The CST [50] performs precision measurements of tracks from charged particles near the interaction
point and extracts exact vertex and track information. It consists of two layers attached to the
beam pipe in radii of 5 cm and 10 cm, respectively and it is adjusted to the beam pipe’s elliptical
cross section. As it has only two layers it cannot reconstruct tracks on its own but is used to
enhance tracks reconstructed by CJC1 and CJC2. It has double sided sensors that contribute track
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points in rφ and z. With the p-doted side the position in the rφ plane is measured. Together with
the CJC the CST reaches a track resolution to the vertex of ∼ 40 µm. With the n-doted side the
z position is determined in this case with a resolution of ∼ 70 µm.

2.3.2 Central Inner Proportional Chamber

The CIP [51, 52] was installed in the course of the HERA 2 upgrade and consists of five active
detector layers. As a multi-wire proportional chamber with pad readout its wires are aligned
parallel to the beam direction. It encloses the CST as a cylinder with radii from 15.7 cm to 19.3
cm. In z direction it covers an area from z = −112.7 cm to z = 104.3 cm which corresponds to an
angular range in θ from 11◦ to 169◦. With a fast response time of ∼ 75 ns the chamber is able to
determine the time of the primary interaction t0 of the event and is used for online event selection.
By using masks tracks are reconstructed and their z vertex position is used for the trigger decision.

2.3.3 Central Jet Chamber

The main component of the H1 tracking system is the CJC [54]. It consists of two separate chambers:
the inner CJC1 and the outer CJC2. Both chambers have an overall lenght in z from -112.5 cm to
107.5 cm. The CJC enloses the CIP concentrically with an inner radius of 20.3 cm and an outer
radius of 84.4 cm. Requiring that the track is fully confined to at least CJC1 a coverage in θ of
20◦ − 160◦ is reached. CJC1 (2) is subdivided into 30 (60) cells each of which contains 24 (32)
signal wires in the center. These cells are tilted by 30◦ to account for the Lorentz angle. As a
consequence, the tracks, curved by the magnetic field, cross at least one cell border and can thus
be measured in at least two cells. To reconstruct the location of a hit drifting times of the charges
from that location to the signal wires are analysed. With knowledge of the position of the wires,
drift times and drift velocities the exact point in space of a hit is computed. A priori it is unknown
from which side charges drift towards the wire. This leads to a right-left ambiguity. Thus for each
hit a so-called mirror hit is reconstructed. However this ambiguity can be resolved for most tracks
because the wires are slightly staggered.

Through the curvature of tracks caused by the magnetic field the transverse momentum of the
particle can be determined from the reconstruction of the track in the rφ plane. Here the CJC has
a resolution of σpt/pt = 0.005pt GeV−1 ⊕ 0.015 [53].

2.3.4 Central Outer Z Chamber

The cylindrical COZ is positioned between CJC1 and CJC2. Its active length is 2160 mm and its
inner and outer radii are 920 mm and 970 mm, respectively. This corresponds to a θ coverage of
25◦ − 155◦. While the CJC has a high resolution in rφ, measurement of z by charge division has
a resolution of only σz ≈ 22 mm per single hit. Like the CJC the COZ is a drift chamber, but
here the signal wires are perpendicular to the z axis so the z position can be determined exactly
by measuring the drifting times.

The chamber consists of 24 identical rings each measuring 9 cm. Each ring is subdiveded in φ
by the supporting bars into 24 drifting cells. Three pairs of potential wires and four signal wires are
located within each cell totalling 96 signal wires. The z resolution of the chamber is σz ≈ 350 µm
[54].

The thickness of the COZ is 1.5 % of a radiation length X0 for particles passing perpendicular
through the chamber which causes interaction of these particles (energy loss, conversion, multiple



26 CHAPTER 2. HERA AND THE H1 EXPERIMENT

scattering) between CJC1 and CJC2. This fact has to be considered when fitting tracks passing
through CJC1 as well as CJC2.

2.3.5 Backward Proportional Chamber

The BPC is located in backward direction at z = −146 cm directly in front of the backward
calorimeter (SpaCal). It has the shape of a hexagon with a hole in the center for the beam pipe.
The radius of this hole is about 140 mm the outer diameter is about 1600 mm. The BPC is divided
into an upper and a lower part divided by a horizontal non-sensitive strip with a width of 80 mm.
The six layers of wires are arranged in three groups rotated by 60◦ each. The chamber is 136 mm
thick which equals 0.116 radiation lenghts X0.

The BPC supports the SpaCal in the measurement of the scattering angle θ of the electron. It
has a resolution of σθ = 0.5 mrad. Its alignment uncertainty causes a systematic error of σsyst.

θ = 0.8
mrad [55].

2.3.6 Track Reconstruction

Within the solenoid field of the H1 detector charged particles follow a circular path in the rφ
plane by the magnetic field applied in z direction. Thus tracks are described by a helix with the
five parameters κ, dCA, φ, θ, z0. κ is the curvature of the track and a measure of the transverse
momentum pt following the relation

pt = −Q · 0.29979Bz[T] · 1

κ[m−1]

where Bz[T] is the magnetic field in z direction and Q is the charge of the particle. The distance
of closest approach (dCA) is the smallest distance in the rφ plane from the origin of the coordinate
system. Instead of dCA it is common to use the smallest distance d′CA from the track to the primary
event vertex. The azimuth angle φ is the angle of the track in the rφ plane at the dCA. The polar
angle θ is the angle between the track and the z axis. z0 denotes the distance in z from the event
vertex to the dCA.

These parameters can be determined by a circle fit in the rφ plane and a linear match in rz to
the hits in the tracking detectors. Simplified the method first assigns the hits to a track [56, 57].
Initially this assignment is performed for CJC hits in the rφ plane. After this provisional fit hits
from the other tracking systems are successively added and the track fit is repeated. This yields
tracks without the constraint of a common origin i.e. the event vertex.

Based on these tracks the event vertex can be pinpointed in the rφ plane. The tracks originating
from the event vertex in the rφ plane are then used to compute the z position of the event vertex
(z vertex). The vertex position in the rφ plane only varies by a few 100 µm because the beams’
radial extension is very limited. The z vertex position however varies up to ±35 cm. Generally the
primary event vertex can be determined with a very high resolution as information of many tracks
are combined. For tracks compatible with this event vertex, the fit is repeated with the vertex as
additional node in rφ and rz.

This leads to two different kinds of tracks: Vertex fitted tracks have an additional precice point
of reference combining information from several tracks. Non vertex fitted tracks do not use this
supplemental information.
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Figure 2.5: Side view of the liquid argon calorimeter. Visible is the separation into particular
wheels. ’E’ denotes the electromagnetic, ’H’ the hadronic sections.

2.4 Liquid Argon Calorimeter

The liquid argon calorimeter (LAr) covers the central and forward region of the H1 detector in
the angular range of 4◦ < θ < 153◦. It is divided into two sections, the electromagnetic and the
hadronic one. The electromagnetic section is the innermost, i.e. closer to the interaction point,
part and it measures the energy of photons and electrons. The energy of hadrons is determined by
the electromagnetic and the outer hadronic section.

The LAr calorimeter is a sampling calorimeter with active layers of liquid argon and absorbers
of lead in the electromagnetic and of stainless steel in the hadronic section. The thickness of the
elecromagnetic part is equal to about 20-30 radiation lengths while the hadronic part’s is equal to
4.7-7 interaction lengths. Both parts merge continuously, i.e. there is no dead material between
them. The calorimeter is divided into eight wheels in z-direction each of which consists of eight
identical octants. The absorber plates are always aligned such that particles originating from the
interaction point impact with an angle larger than 45◦. To keep the argon in a liquid state the
entire calorimeter is located within a cryostate.

The LAr is a non-compensating calorimeter, it has on average a larger response for electromag-
netic compared to hadronic energy depositions. A software weighting algorithm is applied to correct
for the electromagnetic shower fraction of energy depositions caused by hadrons, examining shower
shapes. Since the shape of low energetic hadronic depositions is irregular, for energy depositions
below ∼ 7−10 GeV in a specific cone weighting factors are applied without detailed analysis of the
shower shape.

The high granularity of all in all roughly 45000 channels ensures a reasonable separation of
electrons and pions as well as a high angular resolution. The electromagnetic section reaches
an energy resolution of σE/E ≈ 11%

√

E/GeV ⊕ 1%. The hadronic section reaches σE/E ≈
50%

√

E/GeV ⊕ 2% [58]. Despite the long time a full signal takes to be collected and the large
number of channels trigger signals for the online event selection can be generated within the latency
time of 2.3 µs of the first trigger level (see trigger section), e.g. high local energy deposition is a
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Figure 2.6: Drawing of the SpaCal (electromagnetic section). The thin lines represent the division
into submodules. Eight submodules are combined into a module (strong lines).

typical trigger condition.

2.5 SpaCal

The spaghetti calorimeter (SpaCal) is located in the backward region of the H1 detector. It is
a sampling calorimeter as the LAr and it uses lead as absorbing and scintillating fibres as active
materials [59]. It is located behind the backward proportional chamber (BPC) at z = −1.6 m. Its
diameter is 160 cm. Like the LAr the SpaCal consists of an electromagnetic and a hadronic section.
Shown in figure 2.6 is an rφ view of the electromagnetic part.

The electromagnetic section consists of roughly 1150 quadratic cells with side length of 40.5
mm and a depth of 250 mm. This depth amounts to a thickness of 27.47 X0, i.e. electrons deposit
their entire energy within the electromagnetic part of the SpaCal. Pairs of cells are grouped into
submodules, a group of eight submodules forms a module.

Scintillating fibres are embedded in into the lead absorber in z direction. With a diameter of
0.5 mm, a ratio of 2.27 between absorbing material and fibres and a Moliere radius of 25 mm the
electromagnetic shower mostly covers several cells which considerably improves the resolution of the
cluster position. The fibres direct the light out the backward end of the detector where the fibres
of each single cell are bundled on a light mixer in front of a photomultiplier. The photomultiplier
transforms the light into an electric pulse which is also amplified. A mesh type photomultiplier
which can be operated in large magnetic fields is used [60].

The energy resolution amounts to σE/E ≈ 7%
√

E/GeV ⊕ 1% [61] and the scattering angle of
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Figure 2.7: The cells of the inner region of the SpaCal before and after reconstruction due to the
luminosity upgrade including their numbering. The origin of the coordinate system is illustratd by
a cross within the central region.

the electron can be measured with a resolution of ∼ 2 mrad. The time resolution is about 1 ns which
predestines the SpaCal to trigger on the scattered electron. It is furthermore possible to supress
beam induced background not originating from the interaction point based on time information
from the SpaCal.

The hadronic section of the SpaCal is constructed in a similar way as the electromagnetic part.
The side length of the cells is about four times the length of the cells in the electromagnetic section
and the ratio between absorber and scintillator is 3.4. The depth is as in the electromagntic part 250
mm. This corresponds to only one hadronic interaction length. The main purpose of the hadronic
section is to veto hadrons in the process of identifying electrons.

In the course of the luminosity upgrade at HERA the new superconducting GG magnet was
installed which caused the necessity to modify the innermost part of the SpaCal. In case of the
hadronic section only some of the inner cells were removed. For the electromagnetic part the so-
called insert, the structure directly adjacent to the beam pipe, was remodeled. This considerably
increased the inner radius. Figure 2.7 shows the electromagnetic section before and after the
reconstruction. Within the HERA 2 data taking period only electron scattering angles of θ > 174.5◦

[62] can be measured i.e. only photon virtualities Q2 > 4 GeV2 can be reached. The center of the
SpaCal is no longer identical to the origin of the xy coordinate system so the Q2 acceptance is
asymmetrical in φ.
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Figure 2.8: The H1 Luminosity system consisting of the electron tagger ET33 at z = −33.4 m
and the photon detector at z = −103.1 m. Not shown here is the second electrn tagger ET44 at
z = −43.2 m.

2.6 Electron Taggers and Luminosity System

In the years 1999-2000 several systems to detect the scattered electron in photoproduction events
(i.e. Q2 < 0.01 GeV2) were installed at H1. These systems consisted of TlCl/TlBr crystal Cerenkov
calorimeters. As the scattering angle for electrons in photoproduction events is too small for them
to be detected in the SpaCal these devices were placed close to the beam pipe at z = −33.4 m and
z = −43.2 m and called ET33 and ET44, respectively. Electrons in events with an inelasticity of
0.2 < y < 0.7 could reach ET33 while the acceptance for ET44 was 0.03 < y < 0.3. A third electron
tagger was installed at z = −8.0 m but as its acceptance is poorly understood it is not included in
this analysis.

During the luminosity upgrade prior to HERA 2 running (2004-2007) several magnets were
added for beam collimation and focusing. For this the electron taggers had to be removed. Though
other taggers were installed for periods, namely ET6 at z = −5.4 m and in 2006 another tagger
at z = −30 m, problems with low event yield and little overall data taking, respectively, have kept
them from entering this analysis. As a consequence the investigated photoproduction events are
limited to HERA 1 running time.

At H1 luminosity is determined by measuring the rate of the Bethe-Heitler process [63]. As
the Bethe-Heitler process ep → epγ is calculatable in Quantum Electro Dynamics to a precision
better than 0.5%, it is well suited for the task. In conjunction with ET33 for HERA 1 and ET6
for HERA 2, respectively, a system to detect the photon formed the H1 luminosity system. This
photon detector (PD) was of similar type as the electron taggers and located at z = −102.9 m for
HERA 1. In HERA 2 the PD was replaced by a sampling calorimeter made of quartz fibres with
a tungsten absorber [64] at z = −101.8 m. In front of the detector a beryllium filter is placed for
background supression as well as a water Cerenkov counter [65].

The electron taggers are only used in the online determination of luminosity and as a crosscheck.
Offline only the photon rate in the PD is used for luminosity calculation. A precision better than
1.5% is reached for determination of luminosity in this analysis for HERA 1. For HERA 2 the
precision amounts to 2.5% - 5.0%.
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2.7 Trigger

At HERA electron and proton bunches collide every 96 ns. This leads to a nominal rate of bunch
crossings of 10.4 MHz. The rate of expected electron proton scattering events is several kHz.
Background events produce a rate three orders of magnitude higher than sought after physics
events. Reading out the H1 detector after an event takes about 1.4 ms during which the detector is
unable to register new events. To reach a dead time of less than 10%, the maximum read out rate
of the detector is limited to 50 Hz [66]. Thus an effective trigger system must be able to supress
background as well as to select only those physics events of interest for later analysis.

To accomplish these goals the trigger system in H1 consists of four levels. On each level the event
rate is gradually reduced while the time available to analyse the remaining events increases. Thus
on higher trigger levels more complex investigations can be made and more detector information
can be considered in the decision to keep or reject an event. Level four finally selects events after
the complete detector has been read out. In total the input rate decreases from 10 MHz at level 1
(L1) to 50 Hz at level 4 (L4). The maximum output rate at L4 is 10 Hz to 50 Hz which is the rate
at which events are permanently stored. The functuality of the H1 trigger levels is as follows [67]:

L1: At trigger level one a decision is made based on special trigger signals from various detector
components. Such a trigger signal, e.g. energy deposition in the liquid argon calorimeter,
forms one of the 256 so-called trigger elements. Logical combinations of trigger elements are
called subtriggers and an event is kept if at least one subtrigger gives a positive decision. All
subdetectors store their data in a 2.3 µs pipeline i.e. the data of 24 bunch crossings are stored
in this pipeline simultaneously. Within this time the L1 decision to keep an event has to be
taken. If this is the case the pipeline is stopped. The time until the pipeline is restarted is
the so-called deadtime in which no further data can be collected.

To reduce the rate of a particular subtrigger it can be scaled down by a specific factor n
(prescale). In this case only every nth positive decision of this subtrigger is considered in the
further chain of data taking basically reducing the integrated luminosity felt by this subtrigger.

The L1 output rate should not be significantly above 1 kHz, otherwise latency time of L2
would contribute significantly to the overall dead time.

L2: After a positive L1 decision the second trigger level begins its calculation. Data from level one
are at the disposal of the L2 trigger systems. The topological triggers and neural networks
combine information of different subsystems. Since the year 2005 also the so-called fast track
trigger refines its L1 decision on L2. These three systems transmit their decision as up to 96
trigger elements which again are combined to subtriggers. Usually one L2 subtrigger validates
exactly one corresponding L1 subtrigger though not every L1 subtrigger has an associated L2
condition. The L2 decision whether to reject an event or to start the full detector readout has
to be made within 20 µs. Since in HERA 1 trigger level three was not active the L2 output
rate had to be below 50 Hz. In HERA 2 the rate could be up to 200 Hz.

L3: Activated within the scope of the commissioning of the fast track trigger in 2005 trigger level
three uses information from level 2 track trigger and other trigger systems. It consists of 16
circuit boards that analyse the data and validates the L1 and L2 decisions. Should all boards
make a negative decision data read out is aborted. The level three decision has to be taken
within 100 µs.
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L4: After complete read out of the detector all data from the event are sent to a computer farm.
Here a complete reconstruction of the event is performed. Afterwards the event is classified
into an L4 event class. It is judged by this classification whether an event is rejected or kept.
If they belong to a physics event class, e.g. specific final state finders select them or a scattered
electron with sufficient high Q2 has been identified, they are kept. For crosschecking also a
small fraction of the events not classified into a physics class is kept with an according weight
factor, the so called L4 weight.

The maximum decision time on L4 is 100 ms.

Even with the above trigger setup it is not always possible to maintain the required rate re-
duction. The prescale factor mentioned in the L1 description is the only viable solution to exploit
the largest possible part of the total bandwidth. As the rates however are strongly dependent
upon the instantaneous luminosity and the current background conditions the prescale factors are
dynamically adjusted to ensure a virtually constant L4 input rate. By means of weight factors
determining priority it is possible to automatically divide the available L4 input rate onto the
particular subtriggers.



Chapter 3

Analysis Strategy

In this analysis the production mechanisms involved in charm production at HERA in photopro-
duction and deeply inelastic scattering are explored. These are in leading order QCD represented
by direct, resolved and excitation processes (cf. chapter 1). In the direct processes (γg → cc̄) and
in the ’normal resolved’ processes (gg → cc̄) a charm quark pair is produced in the hard interaction.
By contrast in the excitation processes (qg → cg and gg → cq) that are supposed to represent the
largest fraction of the resolved photon processes [69] the products of the hard interaction are a
charm quark and a gluon.

A charm enriched event sample is studied consisting of dijet events where one jet is tagged by
a D∗± meson in the so-called golden decay channel D∗± → D0π±

s → K∓π±π±
s (cf. section 4.4)

to originate from a charm quark. The origin of the second jet is investigated by exploiting its
internal structure. The structure of this ’analysed jet’ is expected to depend mainly on the type
of the primary parton. It can originate from a charm quark, a gluon or a light quark. Hence this
approach is sensitive to differences between cc̄ and cg types of events.

3.1 Experimental Signature of Resolved Processes

Direct and resolved processes differ in the way in which the photon participates in the hard interac-
tion. In direct processes the photon enters the hard interaction directly while in resolved processes
the photon interacts via hadronic states. The structure of the photon is resolved and only one par-
ton takes part in the hard subprocess. The difference between these two types of photon interaction
is reflected in the fraction of the photon momentum entering the hard inteaction. The variable xobsγ
represents the fraction of the incoming photon energy which participates in the production of the
two highest-pt jets. In this analysis it is defined as

xobs
γ =

∑

h∈Jet1(E − pz) +
∑

h∈Jet2(E − pz)
∑

h(E − pz)
. (3.1)

where the sums in the numerator run over the particles associated with the two jets and the one
in the denominator over all detected hadronic final state particles. The method for reconstructing
the variable xobsγ is discussed in detail in section 4.6.

Direct and resolved events tend to populate different regions in the xobsγ distribution. For direct

33
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processes xobsγ approaches the value one because the hadronic final state consists of only the two
hard jets and the proton remnant in the forward region which contributes little to

∑

h∈h(E − pz).

In resolved processes, xobsγ can obtain values much closer to zero.

In this analysis the jet structure in direct enriched and resolved enriched event samples is
studied. These samples are defined by xobsγ > 0.75 and xobsγ ≤ 0.75, respectively. This enables to
study separately direct and resolved processes.

3.2 Jet Shape Analysis

The basic aspect of this analysis is to distinguish processes using the difference in the jet structure
of quark, respectively gluon initiated jets. The most common way of resolving the internal jet
structure is to measure the energy distribution perpendicular to the jet axis direction, inspired by
the cone-type algorithms. The physical observable used for this purpose is the integrated jet shape
ψ(r) [70]. It is defined as the fraction of the transverse momentum of the jet deposited within a
cone of radius r around the jet axis with respect to the jet transverse momentum within a cone
with larger radius R = 1,

ψ(r) =

∑

i,ri<r
Pt,i

∑

i,ri<R
Pt,i

(3.2)

with the sums running over the objects in the hadronic final state. The distance between particle
and jet axis ri is measured in the ηφ-plane according to

ri =
√

∆η2
i + ∆φ2

i . (3.3)

Here ∆ηi and ∆φi are the distances of the hadronic final state particle to the jet axis in pseu-
dorapidity η and azimuthal angle φ, respectively. The choice of R = 1 is motivated by the jet
algorithm (cf. section 4.2) and it is supposed that an investigated jet is fully contained within a
cone of this radius. The measurement of the the integrated jet shape is indicated in figure 3.1.

The mean over all jets studied within a selected data sample is determined via

〈ψ(r)〉 =
1

Nevents

∑

events

ψ(r). (3.4)

This mean integrated jet shape is considered separately for the tagged charm initiated jet and
the remaining jet with this second jet in the focus of the analysis. For more details on charm
selection and jet reconstruction cf. sections 4.2 and 4.4.

As discussed in section 1.8 gluon jets are expected to be broader, contain more particles and
exhibit a softer pt spectrum when compared to quark initiated jets. In terms of the mean integrated
jet shape

〈ψ(r)〉gluon < 〈ψ(r)〉quark (3.5)

for all r < R. The fraction of the total transverse momentum of the particles within a radius r
rises slower for broader jets, i.e. the value at a given radius is smaller.
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Figure 3.1: Visual suggestion of the integrated jet shape.

3.3 Other Experiments

The concept of jet shape measurement has been realised by several experiments. Selected results
are briefly presented in the following.

• At the OPAL experiment at the e+e− collider LEP the mean integrated jet shape of light
quark, beauty and gluon initiated jets was measured for high jet energies [40]. In figure 3.2
the mean integrated jet shape of gluon jets is compared to uds, respectively beauty jets. The
gluon jets exhibit a much broader shape than the uds jets but were found to be similar in
shape to beauty jets. All three comply reasonably with pQCD predictions. The analysed
charm quark initiated jets in this analysis are expected to more or less resemble light quark
jets due to the smaller mass difference between the charm and the strange quark, while the
large mass difference between charm and beauty quarks causes a different behaviour in the
respective jet shapes.

• At the H1 experiment the mean integrated jet shape was measured for a flavour inclusive dijet
sample in DIS [71], shown in figure 3.3 The Monte Carlo model LEPTO predicts a fraction
of roughly 80% photon-gluon fusion events with two quarks in the partonic final state, and
reasonably describes the measurement. This confirms the expectation of jets in DIS being
predominantly initiated by quarks.

• In photoproduction the jet shape of a flavour inclusive sample was measured at the ZEUS
experiment [72]. The mean integrated jet shape at the fixed cone radius r = 0.5 is shown in
figure 3.4 as a function of the jet pseudorapidity. With increasing ηjet the jets broaden which
is consistent with the increasing fraction of gluon jets. The Pythia description fails to predict
the strong broadening in the direction of forward pseudorapidities.

• Another ZEUS measurement was performed on a D∗-tagged photoproduction dijet sample
[73, 74]. Figure 3.5 shows the mean integrated jet shape at r = 0.3 as a function of ηjet. In
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Figure 3.2: Mean integrated jet shape for gluon jets compared to light quark jets (left) and beauty
jets (right) as measured by the OPAL experiment.

the most forward ηjet bin the total and the direct-enriched samples differ, here the Monte
Carlo prediction fails to describe the direct-enriched data.

• In photoproduction a flavour inclusive and a charm-enriched dijet sample was studied at the
H1 experiment [35, 75]. The charm tagging is performed by selecting a muon jet, the untagged
jet is studied. In figure 3.6 the mean integrated jet shape for two regions of xobsγ is shown.

The lower xobsγ region is not described by the Monte Carlo simulation, instead the data is
compatible with a pure direct sample.
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Chapter 4

Reconstruction of the Analysis

Objects

This chapter describes the reconstruction of different entities essential for this analysis. First the
reconstruction of the hadronic final state objects using the Hadroo2 algorithm will be elucidated.
These objects serve as input for the jet algorithm necessary to define the jets studied in the analysis.
Another important factor is the identification of a charm quark as initiator of a jet. To this end
the decay of D∗ mesons in the golden channel as charm tag is discussed. Finally the determination
of the variable xobs

γ as a means to possibly distinguish between direct and resolved processes is
discussed.

4.1 Reconstruction of the Hadronic Final State

The particles produced in ep scattering can be measured as tracks within the tracking system or
as energy depositions in the calorimeters. In the area covered by the CJC tracks can be measured
precisely for a transverse momentum up to pt = 25 GeV. The uncertainty of the measurement
increases with increasing pt as discussed in section 2.3.3 whereas the precision of the calorimeter
increases (cf. section 2.4). A limiting factor for the track measurement is the fact that only
charged particles can be detected within the tracking system, on average roughly one third of the
particles are missed by the trackers. The calorimeter detects charged as well as neutral particles
except neutrinos. To optimise the use of the full energy and momentum range information from
calorimeter and tracking system is combined.

For the identification and measurement of hadronic final state (HFS) objects the Hadroo2 algo-
rithm [76] is used. One of the main features of this algoritm is the choice of the source of information
used for the reconstruction of a particle. This choice is based on a comparison of the energy reso-
lution of a track with the corresponding calorimeter cluster. This leads to an important condition
for the algorithm: the avoidance of double counting the energy. The problem of double counting
appears for particles detected as tracks in the tracking system as well as clusters in the calorimeter.
In the case of this scenario the information with the smallest uncertainty in the energy resolution
is used.

The HFS objects defined by the Hadroo2 algorithm can consist of appropriate combinations of
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track and cluster energy information or of only track or only cluster information. The algorithm
decides if the HFS objects are determined from the four-vector defined by the transverse momentum
of the track or by the cluster energy.

The algorithm starts out with selecting the input information, the tracks and the clusters. The
tracks this algoritm uses are from either the central region (20◦ ≤ θ ≤ 160◦), so-called central
tracks, or from the forward region (6◦ ≤ θ ≤ 25◦), so-called forward tracks. A third class, so-called
combined tracks, consists of linked segments from the central as well as the forward region in the
range 6◦ ≤ θ ≤ 40◦. The tracks may origin either from the primary or a secondary vertex. The
preference of assigning the different classes of tracks to be identified as a HFS or to be combined with
a cluster is ordered in the following way: central track, combined track, forward track. The detailed
track selection criteria for HFS objects can be found in [76]. In this analysis the pseudorapidity of
the HFS objects is limited to the central region thus only central tracks are allowed.

Before the Hadroo2 algorithm is executed the scattered electron is searched for by the electron
finder and the track and cluster of this candidate are locked and not used by Hadroo2.

The geometrical position of the CJC with respect to the SpaCal and LAr is taken into ac-
count when the cluster position is matched. This is important in order to ensure that the track
extrapolation to the calorimeter surface points to the corresponding cluster. Only the LAr and
the SpaCal are considered in the calometric measurement while e.g. the energy measured in the
instrumented iron from the CMD (tail catcher) is disregarded due to insufficient energy resolution
and non-negligible contribution of noise.

As a first particle hypothesis the pion mass is asumed for the tracks. The energy of a track is
given by

E2
track = p2

track +m2
π =

p2
t,track

sin2 θ
+m2

π. (4.1)

with an uncerainty σEtrack
obtained from standard error propagation of

σEtrack

Etrack
=

1

Etrack

√

σ2
θ

p2
t,track

sin4 θ
cos2 θ +

σ2
pt

sin2 θ
(4.2)

where σθ and σpt
are the errors of θ and pt of the track while neglecting their correlations. The

error of the energy measurement in the case the particle is detected in the calorimeter is estimated
to

(σE
E

)

LAr,expect.
=
σE,LAr,expect.

Etrack
=

0.5√
Etrack

. (4.3)

The uncertainties of equations 4.2 and 4.3 are then compared to decide if tracker or calorimeter
provides the superior measurement. The track is considered to be of good quality if

σEtrack

Etrack
<
σE,LAr,expect.

Etrack
. (4.4)

In the central region this is the case for energies up to 25 GeV (12 GeV, resp. 13 GeV for
forward and combined tracks). In figure 4.1 the extrapolation of a track as a helix to the surface of
the calorimeter is illustrated. Inside the calorimeter the track is extrapolated as a straight line. The
calorimetric energy Econe−cyl. is calculated as the sum of all cluster energies for clusters overlapping
with the volume of a cone with opening angle α = 67.5◦ and a cylinder with a radius of 25 cm for
the electromagnetic part and 50 cm for the hadronic part.
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Figure 4.1: Scematic of the combination algorithm. The axis of the cone as well as the cylinder is
a straight line extrapolation of the particle trajectory into the calorimeter. The distance of closest
approach dca of a cluster is defined with respect to this line. This figure was taken from [76].

The energies of the track Etrack and its associated cluster Econe−cyl. including fluctuations of
both measurements within their standard deviations are compared. If

Econe−cyl. < Etrack ·



1 + 1.96

√

(

σEtrack

Etrack

)2

+
(σE
E

)2

LAr,expect.



 (4.5)

the track is used to define the HFS object and the corresponding clusters are discarded. For
Econe−cyl. > Etrack it is postulated that one of the clusters originates from the charged particle
track and a second from a neutral particle or another track extrapolated into the same calorimetric
volume. The energy difference is considered further in the algorithm as a new cluster.

If the track does not fulfill the requirement of being a good track (cf. equation 4.4) and

Econe−cyl. − 1.96σEcone−cyl.
< Etrack < Econe−cyl. + 1.96σEcone−cyl.

(4.6)

with σEcone−cyl.
= 0.5

√

Econe−cyl./GeV (GeV), the track energy is considered to be compatible
with the calorimetric energy deposition. In this case the cluster energy is used to compute the
four-vector that defines the HFS object.

After all tracks are extrapolated the remaining clusters are used to form the neutral HFS objects.
If more than 95% of the cluster energy are deposited in the electromagnetic part and more than
50% in the first two layers of the calorimeter the energy deposition ocurred most likely due to a
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photon. In this case the electromagnetic energy scale is used for the cluster energy, otherwise the
hadronic energy scale is applied.

Charm events presented in this analysis are well reconstructed by the Hadroo2 algorithm as
the HFS particles are dominated by relatively low energies. A typical control distribution for the
HFS reconstruction algorithm is the ratio of the transverse momenta pt of the HFS objects and the
scattered electron, called the pt balance distribution. Figure 4.2 shows the pt balance distribution of
the DIS data presented in section 5.3 and RAPGAP Monte Carlo simulation. The peak position is
at a value of one which means the transverse momentum of the hadronic final state is predominantly
reconstructed balancing the transverse momentum of the scattered electron.
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Figure 4.2: pt balance distribution at reconstruction level. The distinctive peak at the value 1
indicates sensible reconstruction of the hadronic final state. The Monte Carlo model describes
the data reasonably well. For further details an the pt balance see also section 4.3 on jet energy
calibration.

4.2 Jet Reconstruction

Quarks do not appear as free particles due to their colour. The quarks produced in the hard inter-
action, e.g. the BGF process, are fragmenting into hadrons. Due to the limited transverse momenta
they produce so-called jets of particles. These jets keep some of the kinematical characteristics of
the corresponding quark or gluon though relatively smeared. The reconstruction of these jets of
hadrons is performed using jet algoritms. The resulting jets have to be well correlated in momentum
and angle with the quarks or gluons which produced them.

One very important requirement for a jet algorithm is that it should be as insensitive as possible
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to the effects of hadronisation. Furthermore it is of importance that it is collinear and infrared safe:
In perturbative QCD divergencies occur whenever two massless partons are parallel (i.e. collinear)
or one massless parton has a vanishingly small (i.e. infrared) energy. Both divergencies are cancelled
in the total cross section by virtual contributions. For this cancellation also in the jet calculation
the treatment of two parallel particles must be identical to the treatment of a single particle with
their combined momentum. Similarly the jet must not be affected by the addition of a soft particle.
Experimentally the algoritm must be independent of the resolution of the detector.

The jet finder algorithm used in this analysis is the inclusive kt jet algorithm [77]. Beyond
fulfilling the above requirements this algorithm has other advantages like the fact that the cone
algorithm problem with overlapping jets1 is absent [78].

As in any jet finder the used input is a list of partons, hadrons or particle candidates at detector
level. The kt algorithm is defined by separation variable dij which decides whether the parton or
particle i and j are combined or not using the relative transverse momentum and a recombination
procedure. This procedure defines how partons or particles are to be combined. In this analysis
the algoritm is applied in the laboratory frame using a pt weighted recombination scheme with the
distance parameter R0 = 1, for more details cf. e.g. [79]. The iterative procedure of the algorithm
runs through the following steps:

1. The separation variable is defined for every pair of particles:

di, j = min
(

p2
t,i, p

2
t,j

)

R2
i,j/R0 (4.7)

where the distance Ri,j in the ηφ plane is defined as

Ri,j =

√

(ηi − ηj)
2 + (φi − φj)

2. (4.8)

2. A similar quantity as the separation variable is defined for every particle with respect to the
beam axis:

di = p2
t,i, (4.9)

pt,i denoting the transverse momentum of particle i.

3. The minimum between the distance of each pair of particles and the distance of every single
object with respect to the beam

dmin = min(di, di,j) (4.10)

is determined.

4. If dmin is a single particle distance di, the object i is considered a complete protojet and added
to the output list. The object i is then deleted from the list of particles to be considered
further.

1The cone-type algorithms are based on finding a jet axis for which the amount of energy inside a cone (axis
coincides with the jet axis) with fixed radius has a maximum. A known problem is the overlapping of two jets when
the distance in ηφ falls below a certain value: In the case of a hard parton splitting into another two partons, at
hadron level two jets may be found while there is only one at parton level. Vice versa with two hard partons at the
parton level and only identified jet at hadron level.
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5. If dmin is the distance between two particles di,j , the two objects i and j are merged into a
new pseudoparticle κ which is described by the following variables:

pt,κ = pt,i + pt,j , (4.11)

ηκ =
pt,iηi + pt,jηj

pt,κ
, (4.12)

φκ =
pt,iφi + pt,jφj

pt,κ
. (4.13)

The kt algorithm then returns to the first step now considering the already formed pseudopar-
ticles and the remaining particles. The iteration of the five steps stops when only protojets are
left. The protojets are massless and ardered according to decreasing pt in the output list. Those
protojets with a transverse energy beyond a certain threshold are defined as jets.

In the Monte Carlo simulation jets can be reconstructed on the parton level using partons
produced in the hard scattering process after the parton shower. It is also possible to apply the
algorithm on hadron level using the hadrons of the Monte Carlo events. On detector level the jet
algorithm is run on input from the final state particles in the reconstructed Monte Carlo simulation
as well as on data.

In order to compare theory and experimental data both need to be given on the same level. In
the present analysis this comparison is done on hadron level. The correction of the data for detector
properties is discussed in section 6.5.

4.3 Jet Energy Calibration

The predominant fraction of analysed events is characterised by relatively low values of four mo-
mentum transfer squared Q2 and total transverse momentum pt of the jets (pt ≤ 10 GeV). To
improve the absolute scale of the HFS and jet energy measurement in this regime the Low Pt HFS
and Jet Energy Calibration has been developed by [80]. This calibration has been applied in this
analysis and a short overview will be presented below.

The energy measurement of hadronic showers suffers from the limited visible energy, i.e. the
measurable energy fraction of the shower. This leads to a poor energy resolution and a systematic
deviation resulting in the measured energy being significantly smaller than the energy carried by
the hadron that initiated the shower. The energy measurement has to be corrected for these losses
in order to reconstruct the energy of the initial hadron.

As electrons and protons in HERA are colliding head-on the total transverse momentum of the
initial state is zero, and due to momentum conservation the final state transverse momentum has
to be zero as well. This is utilised by balancing the transverse momentum of the HFS against the
scattered electron: The electron transverse momentum is determined with high resolution by the
reconstruction from the energy and polar angle measured with the backward calorimeter. This
information is used to reevaluate the energy deposition of particles in the calorimeter (LAr and
SpaCal). Tracks are unaffected by the calibration as these are considered to be well measured.

In order to achieve an accurate calibration the segmentation of the calorimeters is taken into
account. This means that different calibration constants are assigned to different parts of the
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calorimeters. Each part of the calorimeters has its own calibration constant which is applied to all
energy clusters measured there. Electromagnetic and hadronic parts of each calorimeter wheel are
calibrated separately as the H1 calorimeter is not compensating.

The calibration constants are derived by means of an iterative procedure. For each wheel j of
the calorimeter the calibration constants are denoted αitem,j for the electromagnetic and αithad,j for
the hadronic calorimeter sections, where it is the iteration step. The initial calibration constants
αit=0
em,j and αit=0

had,j are set to zero. The transverse momentum balance is defined as

P balt =
Pt,h
Pt,e

(4.14)

with the transverse component of the HFS four-momentum pt,h and the transverse momentum
of the scattered electron pt,e. The deviation of pbalt from unity determines corrections to calibration
constants in every iteration step. The following iteration steps are performed:

1. In every iteration a loop over all events in a specially selected calibration sample is performed.
For each event total four-momentum of all HFS particles in every calorimeter wheel is calcu-
lated as a sum of the three components referring to tracks (which are not further calibrated),
electromagnetic and hadronic clusters in the calorimeter:

~P itj = ~Ptrack,j + ~P item,j + ~P ithad,j . (4.15)

2. Calibration constants are applied to the electromagnetic and hadronic clusters and evolve
throughout the iteration. Hence the momenta of clusters are modified during the steps:

~P itj,em =
(

1 + αitem,j
)

~Pem,j (4.16)

~P itj,had =
(

1 + αithad,j
)

~Phad,j . (4.17)

The total four-momentum of the HFS is then the sum of four-momenta in all wheels:

~P it =
∑

j∈wheels

~P itj . (4.18)

3. The new calibration constants for each wheel are calculated with the equations

(

1 + αit+1
em,j

)

=

(

1 + αitem,j
)

〈P itt,h/Pt,e〉W it
em,j

(4.19)

(

1 + αit+1
had,j

)

=

(

1 + αithad,j

)

〈P itt,h/Pt,e〉W it
had,j

. (4.20)

where 〈P itt,h/Pt,e〉W it
em,j

and 〈P itt,h/Pt,e〉W it
had,j

are the mean values of the P itt,h/Pt,e and P itt,h/Pt,e

distributions weighted by the weights W it
had,j and W it

em,j , respectively. Only the weights differ
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among the particular wheels in the calibration procedure, all other quantities remain static.
These weights are set in every event for all electromagnetic and hadronic calorimeter wheels
and depend on the contribution of HFS particles in these wheels to the total Pt balance of
the event.

4. Deviations of 〈P itt,h/Pt,e〉W it
em,j

and 〈P itt,h/Pt,e〉W it
had,j

from unity supply a measure of how well

the HFS is calibrated in each iteration step. Convergence of the iteration can be tracked by
the quantity η defined as

η =
∑

j∈wheels

(

(

〈P itt,h/Pt,e〉W it
em,j

− 1
)2

+
(

〈P itt,h/Pt,e〉W it
had,j

)2
)

. (4.21)

The calibration procedure is stopped when η reaches zero within a required accuracy.

The weights W it
em,j and W it

had,j used in equations 4.19 and 4.20 are determined using a Pt-
projection weighting scheme. This scheme is sensitive not only to the total transverse momentum,
but also to the direction of the momentum vector in the transverse plane. The transverse momentum
of the HFS particles in the wheel can then be projected to the direction of the scattered electron
and thus obtain the real contribution of these particles to the total transverse momentum in the
event (projecting in the direction of the scattered electron is the same as projecting in the direction
of the total HFS momentum vector since these are back-to-back). The P balt distribution is weighted
with W it

em,j for the electromagnetic wheels and W it
had,j for the hadronic wheels with weights defined

in the following way:

W it
em,j =

(

1 + αitem,j
) (Pem,j)proj

P reft

(4.22)

W it
em,j =

(

1 + αithad,j
)

(Phad,j)proj

P reft

(4.23)

where

(Pem,j)proj = |(Pem,j)t cosφem,j | (4.24)

φem,j = arctan
(

(Pem,j)y / (Pem,j)x

)

− φe (4.25)

(Phad,j)proj = |(Phad,j)t cosφhad,j | (4.26)

φhad,j = arctan
(

(Phad,j)y / (Phad,j)x

)

− φe (4.27)

and φe is the azimuthal angle of the scattered electron. φem,j and φhad,j is the difference
between the azimuthal angle of the total momentum of the uncalibrated particles in the electro-
magnetic, respectively the hadronic, part of the wheel and the azimuthal angle of the scattered
electron. (Pem,j)proj , respectively (Phad,j)proj , is then the transverse momentum (Pem,j)t, respec-

tively (Phad,j)t, in the wheel projected in the direction of the scattered electron. The reference

variable of the transverse momentum P reft can be chosen to be either Pt,e or Pt,h. Here P reft = Pt,e
is chosen as the evolving variable Pt,h turns out to lead to divergencies during the iteration process.
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The iterative calibration method is successful in calibrating the hadronic final state and achieves
to enhance the systematic uncertainty of the absolute energy scale down to 2% [80].

4.4 Charm Selection

In this analysis due to their good experimental signature D∗ mesons are used to tag charm pro-
duction processes. The D∗+ (D∗−) meson is an excited cd̄ (c̄d) state with a mass of mD∗ =
2010.0 MeV ± 0.5 MeV [81]. A charm quark hadronises with a probability of f(c → D∗+) =
0.235 ± 0.0099 into a D∗+ meson [82]. The D∗ meson decays via the strong interaction and thus
has a very short lifetime. In 67.7% of the cases it decays into a D0 meson and a charged pion. The
mass of the D∗ meson is only marginally above the mass of the D0-π system resulting in a very low
momentum of the decay particles in the D∗ rest frame. Hence this pion is referred to as ’slow’ pion,
denoted πs. The D0 decays via the weak interaction. For the present analysis the decay channel
into another charged pion (with the same charge as the slow pion) and an oppositely charged kaon
will be studied. This channel

D∗± → D0π±
s → K∓π±π±

s (4.28)

is also called the ’golden’ decay channel due to its good experimental signature and the small
mass difference between the Kπs and the Kππs system which will be discussed in the following.
The total branching ratio for D∗ mesons decaying via the golden channel is BR(D∗ → Kππs) =
(2.57± 0.06)%.

4.4.1 D* Reconstruction

To reconstruct a D∗ meson in the golden channel first a decay of a D0 meson into a kaon and an
oppositely charged pion has to be found. To this end the invariant mass of all possible combinations
of two tracks in the event are computed using the mass hypothesis of a kaon, respectively pion.
If this invariant mass corresponds to the D0 mass of mD0 = 1864.5 MeV ± 0.4 MeV [81] within a
window of 400 MeV the track of the slow pion will be searched among the remaining tracks. For
this for each of the remaining tracks the pion mass is asumed and the invariant mass of the three
particle combination Kππs is computed. Instead of cutting on this observable the mass difference
between the three particle system and the two particle system

∆m = mKππs
−mKπ (4.29)

is computed. To allow a fit of the background the upper boundary for a D∗ candidate is ∆m =
0.170 GeV. The variable ∆m is very convenient as several uncertainties concerning the measurement
cancel. As a consequence the resolution in the measurement of ∆m is mainly governed by the
measurement of the slow pion. The nominal value is given as ∆m = 145.421 MeV ± 0.010 MeV
[81].

Within this analysis an additional cut on the D0 mass is performed beyond the initial cut to
selectD∗ candidates. This narrow cut of ±80 MeV around the nominalD0 mass which correponds to
about 2.5 standard deviations drastically reduces the background. Through this it becomes possible
to fit the ∆m distribution and extract the number of D∗ mesons. For the mKπ distribution no such
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D∗ Candidate Selection
D∗ ∆m < 0.170 GeV

pt,D∗ ≥ 2.0 GeV
|ηD∗ | < 1.5

D0 |mKπ −mD0 | < 80 MeV

Additional Selection for Decay Particles
K,π rend − rstart > 17 cm

pt > 300 MeV
pt,K + pt,π ≥ 2.0 GeV

θ > 20◦

θ < 160◦

πs rend − rstart > 11 cm
pt > 120 MeV
θ > 20◦

θ < 160◦

Table 4.1: Selection criteria for the D∗ candidates and for the tracks considered decay products of
the D∗ meson. The radii rstart and rend denote the first and the last CJC hit of the track.

cut is made, instead the ∆m distribution is cut around ±4 MeV around the nominal value. This
spectrum serves only as a control distribution.

To efficiently measure tracks in the H1 tracking chambers these tracks need a certain transverse
momentum. To this end cuts in pt are imposed on the D∗ candidate and its decay particles. In
addition background can be supressed as particles not originating from the decay of a heavy meson
tend to have smaller transverse momentum. This particularly reduces the possible tracks for the
reconstruction of the slow pion.

As the kaon and the pion carry the additional momentum from the decay of the D0 meson
combinatorial background can be further supressed by cutting on the sum of the transverse momenta
from pion and kaon pt,π + pt,K .

It is furthermore necessary to limit the measurement of the tracks from the decay particles to
areas where these tracks can be efficiently reconstructed. Hence it is required for the tracks of kaon,
pion and slow pion to be measured within a polar angle θ between 20◦ and 160◦ and to have a
minimum radial length of 17 cm for kaon as well as pion and 11 cm for the slow pion. The direction
of the D∗ meson is tightly correlated to the direction of the slow pion but also to the directions
of the kaon and the pion accordingly the polar angle θ of the D∗ meson needs to constrained. A
more common notation is in form of the pseudorapidity η = − ln(tan(θ/2)). To secure adequate
quality of reconstructed tracks the D∗ candidate needs to be detected within |ηD∗ | < 1.5. Table
4.1 summarises the cuts concerning the D∗ reconstruction.

4.4.2 Wrong Charge Combinations

As a means to handle the shape of the background distribution so-called wrong chargeD∗ candidates
are studied. Instead of combining a negatively and a positively charged track to form the D0

candidate two like sign tracks are merged and combined with a third, oppositely charged track as
the slow pion. This means now the three particle system K±π±π∓

s is regarded. This excludes the
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selection of a real D0 meson while the wrongly charged background exhibits the same combinatorics
and functional form in ∆m as the combinatorial background in the signal data sample.

In this analysis the shape of the wrong charge background provides a further constraint in the
fit of the ∆m distribution. Moreover this background distribution is essential in the statistical
subtraction to obtain corrected values for the jet shape in the signal region of the ∆m spectrum.

4.5 Reconstruction Methods for the Event Kinematics

The measurement of the event kinematics in tagged photoproduction (i.e. the scattered electron
is measured in the luminosity detector) and DIS is overconstrained as it relies not only on the
measured properties of the scattered electron. Measurement of the hadronic final state provides a
redundant way to determine the independent quantities Q2 and y. Hence reconstruction of the event
kinematics can be based on either the lepton final state, the hadronic final state or a combination
of both methods [88].

It is convenient to choose the reconstruction method providing the best precision over the entire
kinematic range of interest. In the following the different methods will be discussed in the face of
the kinematic regimes governing this analysis.

4.5.1 The Electron Method

In the reconstruction of the event kinematics using the electron method only the polar scattering
angle θe′ and the energy of the scattered electron Ee′ (Ee denotes the energy of the incoming
electron) are required. The photon virtuality is reconstructed in the following way:

Q2
e = 2EeEe′ (1 + cos θe′) . (4.30)

The inelasticity is given by

ye = 1 − Ee′

2Ee
(1 − cos θe′) . (4.31)

The Bjorken scaling variable x is connected with these two quantities via

xe =
Qe
ye · s

(4.32)

where s is the square of the centre of mass energy.
In the range of ye > 0.1 the electron method is very precise, in addition it is experimentally

very simple. The resolution of this method is given by

δye
ye

=
1 − ye
ye

(

δEe′

Ee′
⊕ δθe′

θe′

)

.2 (4.33)

For y → 0 the resolution deteriorates drastically. By use of the electron method an increase of
the phase space towards lower y in DIS is not possible. In photoproduction a large fraction of the
data collected with the ETag44 is in the kinematic range below y > 0.1. Another problem occurs
in the photoproduction sample: Etag33 and Etag44 are not included in the detector simulation

2A ⊕ B ≡
√

A2 + B2
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of the Monte Carlo calculation, rendering the reconstruction of ye in the Monte Carlo simulation
impossible. Hence this method is avoided in the photoproduction regime of this analysis.

4.5.2 The Hadron Method

The hadron method relies exclusively on the hadronic final state and was introduced by Jacquet
and Blondel [89]. When using conservation of longitudinal momentum and energy,

(

EinP − P inz,P
)

+
(

Ee − Pz,e
)

= 2Ee = Ee′ (1 − cos θe′) +
∑

h∈HFS

Eh (1 − cos θh) , (4.34)

with h ∈ HFS denoting that the sum runs over all hadrons in the hadronic final state, the
inelasticity can be expressed in terms of the hadronic final state as

yh =
2Ee −Ee′ (1 − cos θe)

2Ee
=

Σ

2Ee
(4.35)

with Σ =
∑

h∈HFS Eh (1 − cos θh). The sum is performed over all hadronic final state particles
neglecting their masses.

The resolution of the inelasticity reconstructed with this method is governed by the hadronic
energy resolution:

δyh
yh

=
δΣ

Σ
. (4.36)

As the resolution does not diverge for lower inelasticities this method can be used at low values
of y.

Analoguosly to the above Q2 is reconstructed as

Q2
h = 2Ee (2Ee − Σ) . (4.37)

Due to limited resolution of the energy in the ETag44 and both electron taggers not being
included in the Monte Carlo simulation the hadron method is used in the photoproduction regime
of this analysis, as it does mot require the measurement of the scattered electron. Furthermore a
good resolution at low inelasticities is required as the photoproduction y-range extends to y = 0.05.
Figure 4.3 shows the y distribution of Pythia Photoproduction Charm Monte Carlo reconstructed
with the hadron method.



4.5. RECONSTRUCTION METHODS FOR THE EVENT KINEMATICS 51

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1/
N

 d
N

/d
y

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Pythia MC Generator Level

Reconstructed by Hadron Method

Figure 4.3: Distribution of the inelasticity y in photoproduction on generator level and reconstructed
by the hadron method. Due to the Etag acceptances the y-range is limited to 0.05 < y < 0.65.
Within these boundaries the reconstruction method performs reasonably well.

4.5.3 The Σ Method

Emissions of collinear real photons from the incoming electron before the primary interaction with
the proton (QED initial state radiation) lead to corrections as the initial electron energy in equation
4.35 is fixed to Ee. By replacing Ee with the initial electron energy deduced from the final state
particles this problem is avoided. Using equation 4.34 and combining information from the hadronic
final state and the scattered electron yields the Σ method [88]:

yΣ =
Σ

Σ +Ee′ (1 − cos θe′)
. (4.38)

Again Σ denotes the difference between energies and longitudinal momenta of all hadronic
final state particles Σ =

∑

h∈HFS (Eh − pz,h) =
∑

h∈HFS Eh (1 − cos θh) and is by construction
insensitive to losses in forward direction. The resolution is superior to the hadron method and can
be written as

δyΣ
yΣ

= (1 − yΣ)

(

δΣ

Σ
⊕ δEe′

Ee′
⊕ δθe′

tan(θe′/2)

)

. (4.39)

Within this method the photon virtuality Q2 is given by

Q2
Σ =

E2
e′ sin2 θe′

1 − yΣ
(4.40)

and the Bjorken scaling variable x by
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xΣ =
E2
e′ sin2 θe′

s · yΣ (1 − yΣ)
. (4.41)

The Σ method archieves good resolutions especially at low inelasticities, the resolution of the
photon virtuality is slightly inferior to the e method [90]. Figure 4.4 shows the Q2 distribution
generated by RAPGAP Monte Carlo and the reconstruction by e and Σ methods. While the
reconstruction with both methods show good agreement with the generated Q2 distribution, the e
method exhibits slightly superior consistency.
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Figure 4.4: Q2 distribution generated by RAPGAP Monte Carlo and reconstructed via Σ and e
methods.

4.5.4 The eΣ Method

The eΣ method combines the advantages of the e method and the Σ method. At high inelasticities
the e method is used while at low y it is reconstructed via the Σ method. The photon virtuality is
reconstructed using the e method. The following equations define the eΣ method:

Q2
eΣ = Q2

e (4.42)

yeΣ =
2Ee′Σ

(Σ +Ee′ (1 − cos θe′))
2 (4.43)

xeΣ =
Q2
e

yΣ · s . (4.44)

In figure 4.5 the y distribution for DIS generated by RAPGAP Monte Carlo and reconstructed
via the eΣ method is shown. Ratio plots for yh in photoproduction and for yeΣ and Q2

eΣ in DIS
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are shown in figures 4.6 and 4.7. The relative resolutions of the inelasticity y, the negative four
momentum squared Q2 as well as other kinematic quantities is discussed in further detail in section
6.1.2.

Analysis Regime Reconstruction Method
HERA 1 Photoproduction Hadron Method
HERA 2 DIS eΣ Method

Table 4.2: Summary of the applied reconstruction methods.
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Figure 4.5: Distribution of the inelasticity in DIS on generator level and reconstructed by the eΣ
method. The polar angle θe′ of the scattered electron in the Monte Carlo sample is limited to the
backward calorimeter region causing a slump at y = 0.7 due to the geometrical acceptance of the
calorimeter.
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Figure 4.6: Ratio of y reconstructed with the hadron method to generated y with PYTHIA Monte
Carlo in the photoproduction regime.
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Figure 4.7: Ratio of reconstructed to generated values for y (left) and Q2 (right) in DIS. Events
generated with RAPGAP Monte Carlo, y and Q2 reconstructed with the eΣ method.

4.6 Reconstruction of xobs
γ

In analogy to the Bjorken variable x describing the momentum fraction of the struck quark within
the proton the variable xγ represents the fraction of the incoming photon energy which participates
in the hard interaction. The momentum fraction carried by the incoming parton from the photon
side is in leading order defined in the following way:
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xLO
γ =

pp · ppart

pp · pγ
. (4.45)

Here pp, pγ and ppart denote the four momenta of the proton, the photon and the parton entering
the hard interaction from the photon side, respectively. For direct processes equation 4.45 is exatly
equal to one, for resolved processes it is smaller than one. In the colinear approximation, i.e. when
the parton and the photon have the same direction, xLO

γ can be written as

xLO
γ =

Epart

Eγ
(4.46)

where Eγ is the photon energy and Epart is the energy of the parton from the photon side
participating in the hard interaction. In photoproduction Eγ is associated with the beam energy
Ee via the inelasticity y as Eγ = yEe. Thus xγ can be determined from the transverse energies Et,j

and rapidities ŷj of the outgoing hard partons:

xLO
γ =

∑

j=outgoing part. Et,je
−ŷj

2yEe
(4.47)

with

Et,j =
√

E2
j − pz,j , (4.48)

ŷj =
1

2
ln

(

Ej + pz,j
Ej − pz,j

)

(4.49)

As it is not possible to measure partons directly it is necessary to rewrite equation 4.47 in terms
of measurable quantities. To this end the sum over the outgoing partons is replaced by the sum
over hadronic jets. In ep scattering with two outgoing particles as it is the case in boson-gluon
fusion the variable xobs

γ is defined as

xobs
γ =

∑

jet=1,2Et,jete
−ŷjet

2yEe
(4.50)

where the sum in the numerator runs over the two jets with highest transverse momentum
within the event. For massless jets Et,jete

−ŷjet = (E − pz)jet. Thus follows

xobs
γ =

∑

jet=1,2(E − pz)jet

2yEe
. (4.51)

Within this analysis this definition will be used in a form that also holds true for deeply inelastic
scattering:

xobs
γ =

∑

h∈Jet1(E − pz) +
∑

h∈Jet2(E − pz)
∑

h(E − pz)
. (4.52)

Here the sum in the numerator runs over all particles associated with the two highest transverse
energy jets and the sum in the denominator runs over all detected hadronic final state particles.
This is valid for the dijet sample. In the case of only one jet and an isolated D∗ meson xobs

γ is
defined in the following way:
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xobs
γ =

∑

h∈D∗(E − pz) +
∑

h∈Jet(E − pz)
∑

h(E − pz)
(4.53)

where the first term in the numerator is the sum over the particles the D∗ meson decays into,
i.e. the kaon and two pions for the golden decay channel. The second term sums over the particles
in the analysed jet.

In the above definition xobs
γ is limited to the range 0 < xobs

γ ≤ 1. Direct processes peak at

xobs
γ = 1 though a smearing is caused by parton showers and hadronisation effects so also values

smaller than one are observable. Resolved processes populate the lower regions in the xobs
γ spectrum.

Though overlapping a clear separation is possible in photoproduction. For deeply inelastic scattering
(DIS) the overlap increases considerably. Figure 4.8 shows charm MC PYTHIA for photoproduction
and RAPGAP for DIS. In both cases direct and resolved processes are simulated at detector level,
i.e. smearing effects are already included.

Figure 4.8: Simulated xobs
γ distribution at detector level. Shown to the left is the photoproduc-

tion sample by the PYTHIA Monte Carlo Generator. To the right the DIS sample generated by
RAPGAP is shown. Both show the samples after final data selection. The distributions are nor-
malised to the integrated luminosity corresponding to the particular data taking period (i.e. HERA
1 Electron Tagger data for photoproduction and HERA 2 DIS data). In the PYTHIA sample the
resolved contribution is further subdivided into the normal hadronic-like resolved component and
charm excitation processes.

With higher photon virtuality the fraction of resolved events decreases rapidly, i.e. in DIS the
fraction of direct events is much larger than in photoproduction which is clearly visible in the figure.
By cutting the data sample into two regions of low and high values of xobs

γ , respectively, a sample

of resolved enriched events can be obtained at low values for xobs
γ , though this is still dominated
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by direct events. As the fraction of resolved processes decreases with increasing four momentum
transfer Q2 a further enrichment can be reached by segmenting the sample into a low and a high
Q2 sample, see figure 4.9.

Figure 4.9: Simulated xobs
γ distribution for the DIS sample divided into a low and a high Q2

sample. For Q2 ≤ 9 GeV2 the resolved fraction is nearly equal to the fraction of direct events at
low xobs

γ . The right distribution shows events with Q2 > 9 GeV2 and is strongly dominated by
direct processes.



58 CHAPTER 4. RECONSTRUCTION OF THE ANALYSIS OBJECTS



Chapter 5

Data Selection

In this chapter the criteria for ep-events entering the analysis are discussed. The first section
explores the general selection of charm jets, while the following sections cover the different data
samples: Section 5.2 focuses on the HERA 1 photoproduction data collected by means of the
electron taggers installed in the years 1999 and 2000. Section 5.3 covers the selection of the HERA
2 DIS data collected in the years 2004 through 2007. Table 5.5 summarises the final selection cuts.

5.1 Selection of Charm Initiated Jets

The reconstruction of jets and the energy calibration were described in detail in sections 4.2 and
4.3. In this analysis events with at least two jets are selected. While jets associated with charm
production tend to have high transvese momenta, in particular higher than the D∗ meson used for
charm tagging, uds background events may show high jet multiplicities but generally have low total
transverse momenta. A cut on the transverse momentum of pt,jet1 > 5 GeV for the highest-pt jet
and a cut of pt,jet2 > 4 GeV for the second-highest-pt jet are applied. To ensure good reconstruction
the selected jets are limited to a pseudorapidity range of −1.9 < ηjet < 1.9.

In section 4.4 the reconstruction of D∗ mesons was discussed. In addition to the cuts defined
there for the basic selection of D∗ candidates more restricting cuts are applied in the final selection.
To drastically suppress combinatorial background and thus enhance the signal-to-background ratio
the transverse momentum of the D∗ candidate is required to be pt,D∗ ≥ 2.6 GeV. Analoguosly the
cut on the sum of transverse momenta of the pion and the kaon is raised to pt,π + pt,kaon ≥ 2.4
GeV. The figures 5.5 and 5.6 show the final ∆m distribution and the fit to obtain the total number
of D∗ mesons for photoproduction. Figure 5.11 shows the same for DIS.

To associate a jet with a charm quark the jet containing a D∗ meson is searched for by requiring
agreement between the reconstructed direction of the D∗ meson and the jet axis. For the jet to
contain the D∗ meson the deviation of its momentum vector from the jet axis must be smaller than
∆R =

√

∆η2 + ∆φ2 < 11, where ∆η and ∆φ are the deviations in the η-φ plane. If this is fulfilled
the jet is considered a D∗ jet.

1This choice is motivated by the size of the distance parameter in the jet reconstruction algorithm cf. section 4.2,
defining the maximum angular extent of a jet

59
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The jet analysed for its jet shape properties is the highest-pt jet not associated with a D∗ meson.
By means of this choice the analysed jet is free of any bias from the selection of the D∗ candidate.
To assure a clear separation no overlap between jets is allowed and the D∗ candidate must fulfil a
minimum distance requirement in the η-φ plane of ∆R > 1.5 to the axis of the second jet.
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Figure 5.1: Distance in η-φ between the identified D∗-jet and the highest-remaining-pt jet for HERA
2 signal events compared to the Monte Carlo simulation. The distinct peak around the value π
visualises the back-to-back topology in φ.

The selection of jets is independent of the kinematic range and run periods relevant to this
analysis. The selection criteria discussed above are valid in the HERA 1 photoproduction regime
as well as in the HERA 2 deeply inelastic scattering regime.

5.2 Selection of Photoproduction Events

A photoproduction event is selected through the detection of the scattered electron in the electron
tagger. For this analysis the tagger at z = −33.4 m (ET33) as well as the tagger at z = −43.2 m
(ET44) have been used. This means that the electron is scattered by a very small angle of π−θe′ <
5 mrad, constraining the value of the photon virtuality to Q2 < 0.01 GeV2 (Photoproduction
implies that the photon entering the hard interaction is quasi real, i.e. Q2 ≈ 0 GeV2). The
selection of these events is detailed below.

5.2.1 Online Trigger Selection

The events are selected by the subtriggers S83 (electron in ET33) and S84 (electron in ET44). Both
are combinations of level one (L1) trigger elements from the z-vertex trigger, the DCRPh trigger
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and the luminosity system without any level two (L2) conditions. In the following a description
will be given of the triggers which provide the trigger elements for the subtriggers used.

• The z-Vertex Trigger is based on signals from the multiwire proportional chambers CIP,
COP and FPC to provide rough information about the primary interaction vertex along the
beam axis. Each of the above chambers consists of two independent layers. By building rays
from the hits of the 16 φ-sectors of the chambers straight lines pointing to the z-axis are con-
structed. The intersections of these lines with the z-axis are filled into a histogram consisting
of 16 bins in φ and 16 bins in z. Each ray contributes one entry to the z-vertex histogram.
Rays originating from real particles end up in the same or adjacent bins whereas combinato-
rial background is randomly distributed. The process is illustrated in figure 5.2. The trigger
element zVtx_sig_1 fires if the histogram shows a significant peak. Both subtriggers S83 and
S84 use this trigger element. More detailed information can be found in [83, 84].

Figure 5.2: The z-vertex trigger: Particle trajectories (full lines) cause hits in the double layers of
CIP, COP and FPC. Rays through the pads (dotted lines) are extrapolated to the z-axis. Only
rays from particle trajectories form a significant peak in the z-vertex histogram.

• The DCRPh Trigger uses 10 out of the 56 wire layers of the CJC. A track can be parametrised
in the r-φ plane by a curvature κ and an azimuthal angle φ at the distance of closest approach
(dca′) to the vertex, cf. section 2.3.6. The signals caused by measured tracks are compared
to predefined masks in the two dimensional κ-φ space for small values of dca′. Tracks from
cosmic muons and beam induced background events have a large dca′. The number of posi-
tive and negative tracks above two programmable transverse momentum thresholds is counted
separately. Validation of a mask leads to a positive trigger decision. The subtriggers S83 and
S84 require the trigger element DCRPh_Tc which fires if at least three track masks above 400
MeV are found. The DCRPh trigger is described in more detail in [85, 86].

• The Luminosity System Trigger provides the trigger elements LU_ET, LU_ET_44 and
LU_PD_low. The former two fire if an energy deposition above an adjustable threshold (6-9
GeV) is found in ET33, respectively ET44. The trigger element LU_PD_low functions in a
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similar way and fires if more than a given threshold (5-7 GeV) energy is deposited in the pho-
ton detector. This element is coupled via a logical AND NOT and serves as a veto against
Bethe-Heitler processes.

Additionally both subtriggers contain trigger elements from the time-of-flight system (ToF) as
a veto to supress background from beam-gas and beam-wall events from outside the interaction
region.

S83 : (zVtx_sig>1) && (DCRPh_Tc) && LU_ET && !LU_PD_low && !VETO

S84 : (zVtx_sig>1) && (DCRPh_Tc) && LU_ET_44 && !LU_PD_low && !VETO

Trigger Element Description
zVtx_sig>1 Significant maximum in the z-vertex histogram
DCRPh_Tc At least three track masks above 450 MeV
LU_ET Energy deposition in the ET33
LU_ET_44 Energy deposition in the ET44
LU_PD_low Energy deposition in the Photon Detector
VETO Veto from Veto Wall, Time-of-Flight detectors

Table 5.1: Trigger elements associated to the subtriggers S83 and S84, || denoting the logical OR,
&& denoting the logical AND and ! representing the logical NOT.

5.2.2 Offline Event Selection

In order to remove possible background due to proton beam gas interaction or cosmic showers
contained in the online selected data sample a cut on the reconstructed value of the z-coordinate
of the primary vertex of |zvertex| < 35 cm is performed. The number of signal events decreases
rapidly with increasing distance of the reconstructed primary vertex to the nominal interaction
point as can be seen in figure 5.3. At high values of zvertex the distribution approaches a plateau
of background-only events which are discarded by the cut.

Due to geometry and beam optics the taggers ET33 and ET44 have a limited acceptance for
electrons from photoproduction events. Besides the restriction of Q2 < 0.01 GeV2 due to the small
scattering angle the acceptance is highly dependent on the inelasticity y. A parametrisation of
the acceptance is available for the different run periods [87]. Due to different beam conditions the
acceptance in the year 2000 has been slightly lower than in 1999 for the ET33. For the ET44 the
acceptance has been shifted towards slightly lower inelasticities y in the year 2000 as compared to
1999. The acceptances of both taggers is shown in figure 5.4. To ensure an acceptance above 10%
an inelasticity cut of 0.29 < y < 0.65 is required for the ET33. For the ET44 the inelasticity is
constrained to 0.05 < y < 0.15. These cuts are illustrated in figure 5.4 by the dashed lines. These
and all other cuts are summarised in table 5.5.

Neither of the taggers is included in the detector simulation of the Monte Carlo calculations. For
comparison of data and Monte Carlo each Monte Carlo event is weighted by a factor corresponding
to the acceptance determined by the above parametrisation.
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Figure 5.3: Distribution of the z-coordinate of the reconstructed primary vertex for photoproduction
data. Also shown is the Monte Carlo distribution of signal events. The dashed lines indicate the
cut at |zvertex| < 35 cm.

Figure 5.4: Acceptance of the ET33 (left) and ET44 (right) as function of the inelasticity y.
The parametrisations also include inefficiencies due to the trigger requirements and due to cuts
on the position of the energy deposition of the scattered electron within the tagger. Each year
is subdivided into several periods during which the acceptance was constant. The vertical lines
indicate the selected y-region to achieve acceptances of higher than 10%.
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Figure 5.5: Distribution of the difference ∆m between the invariant mass of the D* candidate and
the D0 candidate after photoproduction jet selection for the ET33 sample. The dotted lines indicate
the signal region.
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Figure 5.6: Distribution of the difference ∆m between the invariant mass of the D* candidate and
the D0 candidate after photoproduction jet selection for the ET44 sample.
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5.2.3 Integrated Luminosity

For the HERA 1 photoproduction selection only good and medium quality runs2 were included.
Furthermore trigger phase two or higher is requested, this means that high voltage is 100% on and
the track triggers are active (see below). High voltage on the following subdetectors is requested:
CJC1, CJC2, CIP, SpaCal, LAr, LUMI, ToF and VETO.

The total integrated luminosity collected with the subtrigger S83 is 59.3 pb−1. However, due
to high rates a prescale factor p has been applied to the subtrigger, i.e. only every p-th time the
subtrigger has fired the event is accepted. The mean prescale factor for S83 in the analysed data
is 〈p〉 = 1.16. This is taken into account by downscaling the luminosity by this factor, leading to a
corrected integrated luminosity for the subtrigger S83 of LS83 = 51.1 pb−1. The subtrigger S84 is
treated in a similar way yielding a corrected luminosity of LS84 = 31.8 pb−1.

The figures 5.5 and 5.6 show the ∆m distribution between the invariant mass of the D* candidate
and the D0 candidate as described in section 4.4. The number of D* mesons is determined through
the fit of the peak and the background. The dotted lines indicate the signal region used for this
analysis. The measurement of the jet shape variables is performed within this region and the
integrals of the total fit function and the background function are considered in the determination
of the fraction for the background subtraction. This is described in more detail in the following
chapter.

Year Lepton Type LS83

[

pb−1
]

LS84

[

pb−1
]

1999 electron 6.9 4.3
1999 positron 17.8 11.1
2000 positron 26.4 16.4

Table 5.2: Lepton type and prescale corrected luminosity for the subtriggers S83 and S84 in the
different HERA 1 data taking periods.

5.3 Selection of DIS Events

In a DIS event with 3.4 GeV2 ≤ Q2 ≤ 100 GeV2 the incoming electron is scattered into the
backward calorimeter (SpaCal). Requiring the polar angle of the scattered electron θe′ to be larger
than 155◦ ensures a reconstruction by the SpaCal, furthermore the overlap region with the LAr
calorimeter is avoided. This provides a measurement of the scattering angle θe′ and the energy Ee′
of the electron with good resolution. The following section details the online and offline selection
of the DIS events.

5.3.1 Online Trigger Selection

The 2-Jet D* DIS events in this analysis are collected by the subtrigger S61. S61 uses L1 conditions
from the SpaCal and FTT triggers. These two triggers contributing trigger elements to S61 are
presented below.

2To be of at least medium quality the CJCs, Calorimeters and Luminosity system must be fully operational.
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• The SpaCal Inclusive Electron Trigger uses information from the electromagnetic section
of the backward calorimeter (SpaCal) to identify the scattered electron. It is segmented into
overlapping arrays of 4 × 4 cells each wherein energies are summed up for the trigger. The
energy sum is compared to three different energy thresholds from 100 MeV to 20 GeV. The
subtrigger S61 requires the element SPCLe_IET>2 corresponding to an energy deposition of
9 GeV in the SpaCal to fire. Additional trigger elements are calculated separately for radii
(≤ 16 cm) close to the beam axis. The trigger element SPCLe_IET_Cen_3 corresponds to an
energy deposition of 9 GeV in the central SpaCal region. The subtrigger S61 combines both
of these trigger elements by a logical OR.

• The Fast Track Trigger (FTT) digitises the analogue pulses from the CJC wires via a
difference-of-sample algorithm and returns the chargeQmeasured at a time t on the respective
CJC wire. The algorithm looks for hits by searching for charges Q exceeding the noise level.
Time information can be extracted with a precision of 3 ns. Charge and time information
is filled into shift registers which are then used in order to perform a parallel search for
track segments in all trigger cells. Hereby also wires from neighbouring cells are taken into
account to allow for tracks crossing cell boundaries. The track segments are then compared
to predefined masks of possible track combinations.

The trigger cells consist of four groups of three wires each (three in CJC1 and one in CJC2),
i.e in total only 12 of the 56 wire layers in the CJCs are taken into account. This results in a
very fast online track reconstruction allowing track information to be considered in the trigger
decision. Offline the track reconstruction is refined. The subtrigger S61 requires the trigger
element FTT_mul_Td>0 which fires if at least one track with more than 900 MeV is found
(in the beginning of FTT data taking the very similar condition FTT_mul_Tc>1 requiring two
tracks above 400 MeV was active instead). Figure 5.7 shows the division into trigger cells and
the trigger layers in the CJCs.

Figure 5.7: Radial view of the CJC. The left drawing shows the division into trigger cells and the
wires from neigbouring cells taken into account for reconstruction of track segments. The right
drawing gives an overview of both CJCs and the 4 × 3 wire layers used by the FTT.
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The FTT was comissioned in the beginning of data taking in the year 2005. A minor fraction
of the DIS data sample was collected prior to this in the year 2004. At this time the requirement
of a track within the central tracking chambers was provided by the DCRPh trigger analogue to
the description of the online selection of photoproduction events.

The subtrigger S61 consists of several additional trigger elements from the CIP, Veto Wall and
Time-of-Flight Detectors to veto background events. A list of these elements is provided in table
5.3.

S61 : (SPCLe_IET_Cen>2||SPCLe_IET_Cen_3) && (FTT_mul_Td>0) && !VETO && !CIPVETO

Trigger Element Description
SPCLe_IET_Cen>2 Energy deposition of > 9 GeV in SpaCal
SPCLe_IET_Cen_3 Energy deposition of > 9 GeV in central SpaCal region
FTT_mul_Td>0 Track in CJC with pt > 900 MeV
VETO Veto from Veto Wall, Time-of-Flight detectors
CIPVETO:(CIP_mul>11)&&(CIP_sig==0) Veto from CIP

Table 5.3: Trigger elements associated to the subtrigger S61, || denoting the logical OR and &&
denoting the logical AND and ! representing the logical NOT.

5.3.2 Offline Event Selection

Equivalent to the selection of photoproduction events a cut on the z-coordinate of the primary
event vertex of |zvertex| < 35 cm is applied. The zvertex distribution is displayed in figure 5.8.
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Figure 5.8: Distribution of the z-coordinate of the reconstructed primary vertex for DIS data.
Also shown is the Monte Carlo distribution of signal events. The dashed lines indicate the cut at
|zvertex| < 35 cm.
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The kinematic range of the DIS measurement is restricted to 3.4 GeV2 ≤ Q2 ≤ 100 GeV2,
caused by the geometrical acceptance of the backward calorimeter. The Q2 distribution for values
of Q2 from 1.5 GeV2 to 10 GeV2 is shown in figure 5.9. The cut at Q2 = 3.4 GeV2 ensures
reasonable SpaCal acceptance. At lower values of Q2 the electromagnetic shower is only partly
contained in the backward calorimeter. The SpaCal acceptance furthermore limits the inelasticity
to the region 0.02 < y < 0.7.
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Figure 5.9: Distribution of the four momentum transfer squared Q2 for signal events at low values
of Q2. The data is compared to the Monte Carlo simulation and the cut used for the analysis is
indicated as a dashed line.

As the energy measurement towards the inner edge of the SpaCal becomes unreliable a further
cut on the radial position of the cluster is applied. Only clusters with a minimum radial distance
of 12 cm are accepted. This distance is determined with respect to the intersection of the electron
beam with the plane of the backward calorimeter.

In general the electron beam has non-zero angle with respect to the z-axis of the coordinate
system of the H1 detector. This circumstance is also referred to as beam tilt. The beam tilt is
corrected for by recalculating the position of the cluster using corrected angular parameters of the
scattered electron.

A fraction of the inner SpaCal region is hit by the synchrotron radiation fan of the electron beam.
The corresponding cells are taken out of the trigger. To exclude these cells from the selection a box
cut which covers the corresponding region of the backward calorimeter is applied. The radial cut
as well as the box cut are illustrated in figure 5.10 which also shows the impact coordinates of the
scattered electron in the SpaCal plane.

In addidition some cells do not provide trigger signals due to electronic problems, other cells with
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malfunctioning photomultipliers cannot be used for energy measurement. A detailed investigation
of these problems was performed by [55, 91]. All these cells are excluded from the selection.

Table 5.5 gives a summary of all applied cuts.
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Figure 5.10: Inner SpaCal hitmap showing the distribution of the reconstructed impact positions
of the scattered electrons in the backward calorimeter (HERA 2 data). No cuts are applied. The
radial and box cuts are shown.

5.3.3 Integrated Luminosity

Also in the HERA 2 DIS part of this analysis only good and medium quality runs are included and
trigger phase two or higher is requested (i.e. high voltage is 100% on and stable prescale settings
are enabled). High voltage of the following subdetectors is requested: CJC1, CJC2, CIP, SpaCal,
LAr, LUMI, VETO and ToF.

The prescale factor of the subtrigger S61 is kept very close to one. The integrated luminosity
for the years 2004 through 2007 corrected for high voltage settings and prescale factors amounts to
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L = 347.6 pb−1. Table 5.4 shows the integrated luminosities of the individual years, the colliding
lepton type and the average prescale factor. Fig 5.11 shows the ∆m distribution of the selected D*
candidates.

Year Lepton Type Avg. Prescale L
[

pb−1
]

2004 positron 1.02 48.8
2005 electron 1.02 107.8
2006 electron 1.00 55.1
2006 positron 1.01 88.4
2007 positron 1.00 47.5

Table 5.4: Colliding lepton type and average prescale factors as well as the corrected integrated
luminosity for the subtrigger S61 in the HERA 2 data taking period. Note that S61 is virtually
prescale-free.
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Figure 5.11: Distribution of the difference ∆m between the invariant mass of the D* candidate and
the D0 candidate after jet selection for the DIS sample. The dotted lines indicate the signal region.

5.4 Selection Summary

In table 5.5 all cuts applied to select the photoproduction and DIS samples are shown. Figure 5.12
shows the event display of a two-jet DIS event with a reconstructed D* meson. The back-to-back
topology in φ of the two jets is visible, as is the energy deposition of the scattered electron in
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the SpaCal. The detailed view on the lower right reveals a secondary vertex from the D0 decay
reconstructed with CST information. The primary decay particle was a D∗−. Note, however, that
this event is chosen for demonstration; the D∗ meson does not fulfil the angular requirement (cf.
section 5.1) with respect to the jets.

Cut Photoproduction Deeply Inelastic Scattering

Subtrigger S83,S84 S61
Scattered Electron in ET33/ET44 in SpaCal
Q2 [GeV] < 0.01 3.4...100
y 0.05...0.15, 0.29...0.65 0.02...0.7
|zvtx| [cm] < 35 < 35
Jets
# ≥ 2 ≥ 2
pt,Jet1(2) [GeV] ≥ 5(4) ≥ 5(4)
|ηJet| < 1.9 < 1.9
D*
∆m [GeV] < 0.17 < 0.17
|mKπ −mD0 | [GeV] < 0.08 < 0.08
pt,D∗ [GeV] ≥ 2.6 ≥ 2.6
|ηD∗ | < 1.5 < 1.5
pt,K [GeV] > 0.3 > 0.3
pt,π [GeV] > 0.3 > 0.3
pt,K + pt,π [GeV] ≥ 2.4 ≥ 2.4
pt,πs

[GeV] > 0.12 > 0.12
K,π Tracklength [cm] > 17 > 17
πs Tracklength [cm] > 11 > 11
Signal Region
∆m [GeV] 0.144 ≤ ∆m ≤ 0.147 0.144 ≤ ∆m ≤ 0.147

Integrated Luminosity [pb]−1 51.1 / 31.8 347.6

Table 5.5: Summary of all selection criteria for the photoproduction and DIS data samples. The
cuts for the selection of a D* sample have already been discussed in section 4.4. After the initial
D* selection these cuts are partially more restricting to improve the D* signal.
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Figure 5.12: Event display of a dijet event with a reconstructed D* meson. The electron is scattered
into the backward calorimeter tagging this as a DIS event, the proton remnant traverses the forward
tracker. In the upper schematic the detector is shown in the rz plane. Below the central tracking
system is shown in the rφ plane. On the right hand side a detailed view of the reconstructed tracks
around the primary event vertex is given.



Chapter 6

Measurement of the Internal

Structure of Charm Jets

This chapter focuses on all aspects of the jet structure measurement. First quality checks on the
measured variables are performed. This includes a discussion on efficiency and the correlation
between generated and reconstructed quantities. Next the background subtraction method is de-
scribed and the determination of the statistical errors is shown. In order to be able to correct the
data for detector effects by means of the Monte Carlo simulation it is necessary that the data are
well described by the simulation. To confirm this the agreement between Monte Carlo and data is
studied for several control distributions.

The mean integrated jet shape is presented at detector level subtracted for the aforementioned
background. Finally the method for correcting the data for detector effects is discussed together
with the systematic uncertainties.

6.1 Reconstruction Quality of the Kinematic Variables

In the measurement of the mean integrated jet shape (cf. chapter 3) efficiencies enter through the
detector corrections described in section 6.5. These efficiencies are studied to ensure that the Pythia
and RapGap Monte Carlo descriptions of the data are sufficient to make them applicable for the
correction of the data to hadron level.

The fraction of events lost due to inefficiencies of the detector components and cuts from the
event selection is given by (1 − εtot). Here εtot is the total efficiency that factorises into

εtot = εtrig · εrec (6.1)

with the trigger efficiency εtrig and the reconstruction efficiency εrec. The trigger efficiency is
defined as the fraction of events satisfying the detector level selection cuts listed in table 5.5 that
are actually triggered. The absolute magnitude of the trigger efficiency, however, is not important
for this analysis.

The trigger efficiencies for the trigger elements composing the subtrigger S61 have been studied
in detail by [55, 91], yielding efficiencies in the studied region above 98%.

73
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The photoproduction subtriggers S83 and S84 are not included in the Monte Carlo simulation.
This is accounted for by weighting the generated events by the respective electron tagger acceptance
(as shown in figure 5.4). The mean electron tagger (ET33 or ET44) acceptance is calculated by
averaging the acceptance function over the visible region using the Pythia Monte Carlo simulation
[92]:

AET
MC =

∑Nrec

i aET (yi, ri)

Nrec
(6.2)

with the number of Monte Carlo events reconstructed in the visible region Nrec, the measured
electron tagger acceptance aET parametrised as a function of the inelasticity yi and the run period
ri of the reconstructed event. This acceptance already includes inefficiencies of the luminosity
trigger elements. It amounts to about 40% for the respective electron tagger in the visible region
and does not differ for direct and resolved events.

The other factor in determining the total efficiency, the reconstruction efficiency εrec, is discussed
below.

6.1.1 Reconstruction Efficiency

The reconstruction efficiency includes the efficiency of all selection cuts, except of the trigger re-
quirements, and the event reconstruction itself. It is determined with the Monte Carlo simulation
and it is calculated as the fraction of the events reconstructed in the visible region after applying
the selection cuts with respect to all generated events in the visible region:

εrec =
N(D∗

rec)rec&vis cuts

N(D∗)gen,vis
. (6.3)

The visible region is defined by the cuts in table 5.5 for detector level and in table 6.1 for hadron
level. Detector level denotes the level at which particles are measured in the detector and hadron
level means the level of decayed hadrons, i.e. in the Monte Carlo simulation the hadron level is
the level before the generated, hadronised and then decayed particles are sent through the detector
simulation.

Figure 6.1 shows the reconstruction efficiency for photoproduction events in bins of the analysed-
jet quantities Ejet, ηjet and pt,jet as well as the event kinematics, y, xobsγ determined from the Pythia
Monte Carlo simulation. No significant dependency on any of the studied variables is present and
the behaviour is similar for direct and resolved events. The overall reconstruction efficiency amounts
to about 50%.

For the DIS events the reconstruction efficiencies are shown in figure 6.2. These are determined
from the RapGap Monte Carlo simulation. Here the overall reconstruction efficiency is about 70%.
Also notable is a slighly higher reconstruction efficiency for resolved events.
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Figure 6.1: Reconstruction efficiency for direct and resolved photoproduction events as function of
the variables E, η and pt of the analysed jet as well as y and xobsγ . The efficiencies are calculated
with the Pythia Monte Carlo simulation.
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Figure 6.2: Reconstruction efficiency for direct and resolved DIS events as function of the variables
E, η and pt of the analysed jet as well as Q2, y and xobsγ . The efficiencies are calculated with the
RapGap Monte Carlo simulation.
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Cut Photoproduction Deeply Inelastic Scattering

Q2 [GeV2] < 0.01 3.4...100
y 0.05...0.15, 0.29...0.65 0.02...0.7
Jets
# ≥ 2 ≥ 2
pt,Jet [GeV] ≥ 5(4) ≥ 5(4)
|ηJet| < 1.9 < 1.9
D*
pt,D∗ [GeV] ≥ 2.6 ≥ 2.6
|ηD∗ | < 1.5 < 1.5

Table 6.1: Phase space selection cuts determining the visible region for the photoproduction and
DIS Monte Carlo samples at hadron level.

6.1.2 Correlation between Generated and Reconstructed Variables

The relation between generated variables and their reconstruction as well as the resulting resolutions
are studied in the Monte Carlo simulation to confirm that the widths of the analysis bins are
adequate. This is done separately for direct and resolved events in photoproduction as well as in
DIS.

Figures 6.3 and 6.4 show the correlations for photoproduction direct and resolved events using
the Pythia Monte Carlo. The jet observables Ejet, ηjet and pt,jet are studied. Here the subscript
jet denotes the analysed, i.e. the highest pt not-D∗ jet within |ηjet| < 1.9. Furthermore the
correlation for the inelasticity y and the variable xobsγ are investigated. In the figures 6.5 and 6.6
these correlations and additionally the relationship between generated and reconstructed photon
virtuality Q2 are shown using the RapGap Monte Carlo simulation. Best correlations are observed
in the variables ηjet, y and Wγp. Overall the variables are well correlated and similar correlations
are observed for direct and resolved events.

More quantitatively the difference between generated and reconstructed variables can be char-
acterised by the relative deviation of the reconstructed variable from the generated one. For a
variable v the relative resolution R can be expressed as

R(v) =
vrec − vgen

vgen
. (6.4)

The resolutions for the above variables are shown in figure 6.7 for photoproduction and in figure
6.8 for deeply inelastic scattering. Distributions for direct and resolved events are shown separately.
The resolution is comparable for direct and resolved events for most of the variables, though the
resolution for resolved events is slighly worse for the variable xobsγ . This is expected due to the
different and more complex shape of resolved photon events.

The analysis bins chosen for the final differential jet shapes (cone radius is fixed and the above
quantities are varied, cf. chapter 7) are broader than the full width at half maximum of the shown
resolutions. The resolution of the jet axis measurement is taken into account in the determination
of the systematic uncertainties. These are discussed in section 6.6.
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Figure 6.3: Reconstructed against generated variables for direct photoproduction events as sim-
ulated by the Pythia Monte Carlo. The index ’jet’ denotes the analysed jet. The dashed lines
indicate the applied cuts. The solid line serves as a reference to guide the eye.
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Figure 6.4: Reconstructed against generated variables for resolved photoproduction events as simu-
lated by the Pyhia Monte Carlo. The index ’jet’ denotes the analysed jet. The dashed lines indicate
the applied cuts. The solid line serves as a reference to guide the eye.
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Figure 6.5: Reconstructed against generated variables for direct DIS events as simulated by the
RapGap Monte Carlo. The index ’jet’ denotes the analysed jet. The dashed lines indicate the
applied cuts. The solid line serves as a reference to guide the eye.
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Figure 6.6: Reconstructed against generated variables for resolved DIS events as simulated by the
RapGap Monte Carlo. The index ’jet’ denotes the analysed jet. The dashed lines indicate the
applied cuts. The solid line serves as a reference to guide the eye.
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Figure 6.7: Relative resolution for photoproduction events in the jet variables Ejet, ηjet and pt,jet
and in the event variables y and xobsγ . The distributions are simulated separately for direct and
resolved events by the Pythia Monte Carlo. All distributions are normalised to unity.
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Figure 6.8: Relative resolution for DIS events in the jet variables Ejet, ηjet and pt,jet and in the
event variables Q2, y and xobsγ . The distributions are simulated separately for direct and resolved
events by the RapGap Monte Carlo. All distributions are normalised to unity.
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6.1.3 Purity and Stability

Migrations between bins are characterised by purity and stability. These two quantities are defined
as the number of simulated events generated within a certain bin and reconstructed in the same
bin, divided by the number of reconstructed events in that bin for purity, respectively divided by
the number of generated events in the bin for stability. Purity Pi and stability Si are given by

Pi =
Ni,rec&gen
Ni,rec

, (6.5)

Si =
Ni,rec&gen
Ni,gen

(6.6)

where the index i denotes the analysis bin and Nrec, respectively Ngen, the number of recon-
structed, respectively generated, events in that bin. High values for purity and stability indicate
a high resolution in the analysed quantity relative to the bin width, with infinite resolution corre-
sponding to purities and stabilities equal to one. A common requirement is for purity and stability
to be larger than 0.3.

Purities and stabilities are studied for the analysed quantities Ejet, pt,jet, ηjet, y, x
obs
γ , for DIS

also Q2. For photoproduction these are shown in figures 6.9 and 6.10, respectively, for DIS in figures
6.11 and 6.12.

The Pythia charm Monte Carlo simulation is used for photoproduction. Results are shown
separately for direct and resolved events. With the exception of the high xobsγ bin the purities for
resolved events are slightly lower than those of direct events. All purities are above 0.3, the lowest
being the lower pt bin with a value slightly under 0.4. On average the purities in photoproduction
are around 0.6. The stabilities follow the same trend as the purities but are altogether higher with
an average value around 0.8.

In DIS the RapGap charm Monte Carlo is used to compute the purities and stabilities, also
separating direct and resolved events. The purities in DIS are higher than in photoproduction,
the lowest value is again obtained in the lowest pt bin. The average is around 0.8, stabilities look
similar.

6.2 Background Subtraction

The sample of D∗ mesons obtained as described in the chapter concerning event selection is not
a pure sample of charm hadrons. The background contribution to the measured quantities has to
be statistically subtracted. The measured jet shapes are average values containing both signal and
background from the total jet sample:

ψmeas =
1

N

N
∑

i=1

ψi, (6.7)

the sum running over number N of selected events. The statistical error of the measured jet
shape is given as a standard deviation
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Figure 6.9: Purities of photoproduction events in the jet variables Ejet, ηjet and pt,jet and in the
event variables y and xobsγ . The purities are calculated separately for direct and resolved events by
the Pythia Monte Carlo.
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Figure 6.10: Stabilities of photoproduction events in the jet variables Ejet, ηjet and pt,jet and in the
event variables y and xobsγ . The stabilities are calculated separately for direct and resolved events
by the Pythia Monte Carlo.
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Figure 6.11: Purities of DIS events in the jet variables Ejet, ηjet and pt,jet and in the event variables
Q2, y and xobsγ . The purities are calculated separately for direct and resolved events by the RapGap
Monte Carlo.



88 CHAPTER 6. MEASUREMENT OF THE INTERNAL STRUCTURE OF CHARM JETS

 [GeV]jetE
5 10 15 20 25 30

S
ta

b
ili

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RAPGAP Direct

RAPGAP Resolved

jet
η

-1.5 -1 -0.5 0 0.5 1 1.5

S
ta

b
ili

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RAPGAP Direct

RAPGAP Resolved

 [GeV]
t,jet

p
4 5 6 7 8 9 10 11 12 13

S
ta

b
ili

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RAPGAP Direct

RAPGAP Resolved

]2 [GeV2Q
5 10 15 20 25

S
ta

b
ili

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RAPGAP Direct

RAPGAP Resolved

y
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

S
ta

b
ili

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RAPGAP Direct

RAPGAP Resolved

obs
γx

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
ta

b
ili

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RAPGAP Direct

RAPGAP Resolved

Figure 6.12: Stabilities of DIS events in the jet variables Ejet, ηjet and pt,jet and in the event
variables Q2, y and xobsγ . The stabilities are calculated separately for direct and resolved events by
the RapGap Monte Carlo.
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σstat(ψ
meas) =

√

∑N
i=1 (ψ(r)meas

i − 〈ψ(r)〉meas)
2

N − 1
. (6.8)

The measured jet shape can be expressed as composed of components originating from the signal
and the background, respectively:

ψmeas = (1 − fback) · ψsig + fback · ψback (6.9)

where ψsig and ψback are the average values for the signal and the background jet sample,
respectively, and fback is the fraction of background jets in the total jet sample

fback =
Nback

N tot
. (6.10)

This background fraction is determined by integrating the functions fitted to the D∗ peak and
the background within the signal region. The mean integrated jet shape for the background jet
sample can be obtained by studying only wrong charge combinations of reconstructedD∗ candidates
(cf. section 4.4). The background subtracted signal yields

ψsig =
ψmeas − fback · ψback

1− fback
(6.11)

and has a statistical error of

σstat(ψ
sig) =

1

1 − fback
·

√

σ2
stat(ψ

meas) + (fbackσ2
stat (ψback))

2
+

(

ψmeas − ψback

1 − fback

)2

σ2
stat(f

back).

(6.12)

In order to reduce the statistical error of the signal it is necessary to have a convenient signal-
to-background ratio, i.e. a small value of fback. This is ensured by the narrow cut on the signal
region in the ∆m distributions of 0.144 GeV ≤ ∆m ≤ 0.147 GeV (cf. figures 5.5, 5.6 and 5.11).
Depending on the kinematic region the value of fback varies between 0.4 and 0.7.

In figure 6.13(a) right charge data (corresponding to ψmeas) and wrong charge data (ψback) of
the integrated jet shape at a cone radius of r = 0.6 are shown together with the RapGap charm
Monte Carlo expectation. Also shown are the separate direct and resolved contributions. Figure
6.13(b) shows the background corrected distribution of the data (ψsig). The background subtracted
data is in good agreement with the signal Monte Carlo. The shown distributions are from the DIS
sample in the lowermost jet energy bin. The other bins in the analysis exhibit a similar behaviour.
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Figure 6.13: Integrated jet shape of the right charge (ψmeas(r = 0.6)) and wrong charge data
(ψback(r = 0.6)) together with the total RapGap charm Monte Carlo and its direct and resolved
components on detector level (a). The Monte Carlo distribution is normalised to the integrated
lumonisity of the data. In (b) the background subtracted data (ψsig(r = 0.6)) is shown with the
same Monte Carlo.

In figure 6.14 the mean integrated jet shape is shown for right and wrong charge data as well
as the background subtracted data. Also shown is the RapGap charm Monte Carlo expectation
as well as RapGap uds Monte Carlo. The uds Monte Carlo agrees reasonably with the wrong
charge distribution. The right charge data alone is not described. However, after subtraction of
the background, the signal data is in good agreement with the charm Monte Carlo simulation.
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Figure 6.14: Mean integrated jet shape of right and wrong charge data as well as background
subtracted data. Also shown are RapGap Monte Carlo expectations of charm and uds events on
detector level.

6.3 Control Distributions

In section 6.1 the reconstruction quality, i.e. the correlation between detector level and generated
hadron level has been explored as one necessary condition to enable the correction of the measured
jet shapes at detector level to hadron level. Another condition that needs to be fulfilled is a
reasonable description of the data by the Monte Carlo simulation at detector level. To this end the
distributions of various variables are studied with respect to the agreement between data and the
Monte Carlo simulation.
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Figure 6.15: Distributions of xobsγ , xBjorken, the number of jets, the polar angle θjet and the
transverse momentum Pt,jet of the analysed jet as well as the transverse momentum Pt,D∗ of the
D∗ meson. The measurement is performed in the signal region and the data points are corrected
for wrong charge background. The data are compared to the Pythia Monte Carlo simulation.
Direct and resolved expectations are shown separately. The Monte Carlo prediction is scaled to the
integrated luminosity of the data.
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Figure 6.16: Distributions of xobsγ , xBjorken, the number of jets, the azimuthal angle φe of the
scattered electron, the transverse momentum Pt,jet of the analysed jet as well as the transverse
momentum Pt,D∗ of the D∗ meson. The measurement is performed in the signal region and the
data points are corrected for wrong charge background. The data are compared to the RapGap
Monte Carlo simulation. Direct and resolved expectations are shown separately. The Monte Carlo
prediction is scaled to the integrated luminosity of the data.
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These control distributions for the photoproduction sample are shown in figure 6.15. Here the
Pythia Monte Carlo simulation is compared to the data. The particular contributions of direct
and resolved photon events (the further separation of the resolved events into charm excitation and
hadron-like resolved events is depicted as well) is visualised. The variables xobsγ and xBjorken are
shown as well as jet and D∗ variables (the number of jets, polar angle of the investigated jet as well
as the transverse momentum of the jet and the D∗ meson). The distributions are measured without
cuts on the particular quantity, i.e. the distribution of the number of jets is plotted without a cut
on the number of jets.

The data is overall well described by the Pythia Monte Carlo, though the simulation overesti-
mates the number of few-jet (zero or one) events in relation to more-jet (two or three) events. The
data distributions are corrected for background in a similar way as described in section 6.2.

For the DIS and RapGap Monte Carlo sample, control plots are shown in figure 6.16. Here
also the distribution of the measured azimuthal angle φe of the scattered electron is displayed. As
expected this distribution exhibits no dependency on φe (though a dent around zero degrees is
observable, a remnant from the SpaCal geometry cut, cf. section 5.3.2). At large the Monte Carlo
simulation is in good agreement with the data.

6.4 Mean Integrated Jet Shape at Detector Level

The core measurement of the present analysis is the mean integrated jet shape of charm initiated
jets in photoproduction and DIS. The integrated jet shape is calculated according to equation 3.2.
The mean values of these are determined by means of equation 3.4.
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Figure 6.17: Mean integrated jet shape 〈ψ(r)〉 in photoproduction at detector level as function of
the cone radius r for three different regions of the jet energy Ejet. Pythia charm Monte Carlo
prediction is shown together with separate direct and resolved expectations. Only statistical errors
of the data are shown. The statistical errors of the Monte Carlo simulation are negligible.
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Figure 6.18: Mean integrated jet shape 〈ψ(r)〉 in photoproduction at detector level as function of
the cone radius r for two different regions of Wγp. Pythia charm Monte Carlo prediction is shown
together with separate direct and resolved expectations. Only statistical errors of the data are
shown. The statistical errors of the Monte Carlo simulation are negligible.
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Figure 6.19: Mean integrated jet shape 〈ψ(r)〉 in photoproduction at detector level as function of
the cone radius r for two different regions of xobsγ . Pythia charm Monte Carlo prediction is shown
together with separate direct and resolved expectations. Only statistical errors of the data are
shown. The statistical errors of the Monte Carlo simulation are negligible.
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Figure 6.20: Mean integrated jet shape 〈ψ(r)〉 in DIS at detector level as function of the cone
radius r for three different regions of the jet energy Ejet. RapGap charm Monte Carlo prediction is
shown together with separate direct and resolved expectations. Only statistical errors of the data
are shown. The statistical errors of the Monte Carlo simulation are negligible.
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Figure 6.21: Mean integrated jet shape 〈ψ(r)〉 in DIS at detector level as function of the cone radius
r for three different regions of Wγp. RapGap charm Monte Carlo prediction is shown together with
separate direct and resolved expectations. Only statistical errors of the data are shown. The
statistical errors of the Monte Carlo simulation are negligible.
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Figure 6.22: Mean integrated jet shape 〈ψ(r)〉 in DIS at detector level as function of the cone
radius r for two different regions of xobsγ . RapGap charm Monte Carlo prediction is shown together
with separate direct and resolved expectations. Only statistical errors of the data are shown. The
statistical errors of the Monte Carlo simulation are negligible.

To study a jet sample unbiased by the selection of theD∗ meson, the highest-Pt jet not associated
with the D∗ meson is analysed. The data are corrected for background as described in section 6.2.
These measurements are compared to the Pythia Monte Carlo prediction in the photoproduction
regime and to the RapGap Monte Carlo for DIS. Additionally, the prediction for direct and resolved
events are shown separately. All Monte Carlo calculations have passed the detector simulation in
order to be on the same reconstruction level as the data.

Figures 6.17 through 6.19 show the mean integrated jet shape 〈ψ(r)〉 in photoproduction as a
function of the cone radius r in three regions of the Ejet, two regions of Wγp and two regions of xobsγ ,
respectively. The gap between the two Wγp regions is caused by the acceptances of the electron
taggers ET33 and ET44 (cf. section 5.2.2). The lower xobsγ bin can be viewed as a resolved enriched

sample, while the upper xobsγ bin is enriched in direct processes. The Pythia Mone Carlo predicts

slightly more narrow jets at low jet energies and high values of xobsγ . The data suggest a slightly
higher fraction of gluon jets in these bins. The overall description of the data by the Pythia Monte
Carlo is good.

In the figures 6.20 through 6.22 the mean integrated jet shapes for DIS are shown in three bins
of the jet energy Ejet and the energy in the photon-proton frame of reference Wγp (note the three
consecutive Wγp bins as opposed to photoproduction) and in two bins of xobsγ . In DIS the difference
between direct and resolved jet shapes as predicted by the RapGap Monte Carlo is much smaller
than in photoproduction. The prediction is in good agreement with the data, though jets above 14
GeV are predicted slightly more narrow than the data suggest.

6.4.1 Jet Shape at Fixed Cone Radius

In order to visualise the mean integrated jet shape as a function of different physical variables a
fixed cone radius of r = 0.6 is chosen.
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Figure 6.23: Distributions of the mean integrated jet shape at fixed value r = 0.6 at detector level
as function of Ejet, ηjet, Pt,jet, Wγp and xobsγ in photoproduction. Pythia charm Monte Carlo
prediction is shown together with separate direct and resolved expectations. Only statistical errors
of the data are shown. The statistical errors of the Monte Carlo simulation are negligible.
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Figure 6.24: Distributions of the mean integrated jet shape at fixed value r = 0.6 at detector level
as function of Ejet, ηjet, Pt,jet, Wγp, x

obs
γ and Q2 in DIS. RapGap charm Monte Carlo prediction is

shown together with separate direct and resolved expectations. Only statistical errors of the data
are shown. The statistical errors of the Monte Carlo simulation are negligible.
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Figure 6.25: Distributions of the mean integrated jet shape at fixed value r = 0.6 at detector level
as function of xobsγ in two regions of Q2. RapGap charm Monte Carlo prediction is shown together
with separate direct and resolved expectations. Only statistical errors of the data are shown. The
statistical errors of the Monte Carlo simulation are negligible.

This choice is motivated by the maximum discrimination power found at this cone radius, i.e.
the value of the difference between direct and resolved expectations divided by the statistical error of
the measurement is found to reach its maximum at r = 0.6. The study of the optimum cone radius
is performed in greater detail in appendix A. At this radius again the quantities of the jet energy
Ejet, the energy in the photon-proton rest frame Wγp as well as xobsγ are varied. Additionally, the
mean integrated jet shapes are studied under varying pseudorapidity ηjet and transverse momentum
Pt,jet of the analysed jet, and in the case of the DIS sample at different four momentum transfer
squared Q2. The data points are plotted in the centre of each bin and the bin boundaries are listed
in appendix B.

Shown in figure 6.23 are the mean integrated jet shapes 〈ψ(r = 0.6)〉 as function of the variables
named above for the photoproduction sample. The comparison with the Pythia Monte Carlo
simulation as well as the separate direct and resolved prediction are also shown. Minor discrepancies
occur at the high pseudorapidity bin which is better described by the resolved component alone and
in the highest transverse momentum region where the direct component describes the data well.
However, within the statistical errors the data is well described by the Pythia simulation.

In figure 6.24 the mean integrated jet shapes for DIS are displayed together with the RapGap
Monte Carlo prediction including separate direct and resolved predictions. With the exception of
minor deviations the Monte Carlo simulation is in good agreement with the data. As the fraction
of resolved events is higher at lower Q2 (cf. figure 4.9) the jet shapes in two regions of Q2 are
studied as a function of xobsγ . This can be seen in figure 6.25. At low xobsγ the difference between
the direct and resolved prediction vanishes, effectively eliminating the discriminating power of the
jet shape measurement in this region. This feature is independent of the chosen cone radius, as
the mean integrated jet shape at low xobsγ in DIS is very similar for direct and resolved events, cf.

figure 6.22. At high values of xobsγ and at high Q2 the measured jet shape agrees with the RapGap
Monte Carlo, though direct events alone are sufficient to descibe the data; in the lower Q2 region
even the direct Monte Carlo underestimates the data slightly.
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6.5 Detector Correction

To correct the measured data to the hadron level, detector correction factors need to be applied.
The ’hadron level’ is defined as the hadronic final state consisting of all stable particles except the
scattered electron and photons radiated by the electron. In this context ’stable’ implies particles
that are not decayed by the generators in the standard Monte Carlo event generation, i.e. particles
with a lifetime of τ ≥ 0.33 ·10−10 s. Simulated particles at detector level are obtained after applying
the detector simulation to the particles at hadron level. By applying the detector corrections the
results become independent of the detector with which the measurement was performed. Through
this step it is possible to compare the data to the results of other experiments as well as to the
theoretical predictions as they are implemented in the Monte Carlo generators. In this analysis the
detector corrections account for detector and trigger inefficiencies, geometrical acceptance, limited
resolutions, particle interactions with the inactive material of the detector as well as the efficiency
of the jet reconstruction and event selection.

To be able to use the Monte Carlo simulation to correct the data, the simulation has to describe
the data distributions reasonably well. As shown earlier in section 6.3 this is the case for both the
photoproduction and the DIS sample.

The corrected mean integrated jet shape in each bin i of the variables considered in this analysis
and at each r is calculated in the following way:

〈ψ(r)〉corri = CMC
i × 〈ψ(r)〉meas

i (6.13)

where 〈ψ(r)〉meas
i is the measured men integrated jet shape discussed above. The correction

factor is determined using the Monte Carlo simulation:

CMC
i =

〈ψ(r)〉MChad

i

〈ψ(r)〉MCdet

i

(6.14)

with the mean integrated jet shape 〈ψ(r)〉MChad

i at hadron level and 〈ψ(r)〉MCdet

i at detector
level, respectively.

The quantity 〈ψ(r)〉MChad considers jets built of the final decay products of hadrons while
〈ψ(r)〉MCdet considers the reconstructed detector response in form of the jets of hadronic final state
objects. Two Monte Carlo samples are used to determine the correction factors. One is used with
the generated quantities, in the other one the detector simulation is applied additionally and the
reconstructed quantities are used. At detector level the cuts listed in table 5.5 are applied. The
hadron level is defined by the phase-space cuts listed in table 6.1.

In photoproduction the Pythia charm Monte Carlo simulation is chosen to calculate the correc-
tion factors, in DIS the RapGap charm Monte Carlo is used. In both cases a signal Monte Carlo is
chosen as the data sample is already corrected for background and hence only represents the charm
contribution.

Figures 6.26 and 6.27 show the detector correction factors for all analysis bins in photopro-
duction, figures 6.28 through 6.30 show the factors for DIS. In both photoproduction and DIS the
factors are also shown separately for direct and resolved events.

At low values of the cone radius r the deviations of the correction factors from the value one
are largest. The factors converge towards one as also the radius r increases to one. At the radius
r = 0.6 the deviation of CMC from one is usually smaller than 2%.
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Figure 6.26: Detector correction factors for the mean integrated jet shape 〈ψ(r)〉 in photoproduc-
tion. The factors are determined separately in three regions of the jet energy Ejet as well as in two
regions of the proton-photon reference system Wγp and xobsγ ,respectively, using the Pythia Monte
Carlo simulation. The factors are shown for the total Monte Carlo and separately for direct and
resolved processes. The error band and bars represent the statistical uncertainty of the Monte Carlo
simulation.
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Figure 6.27: Detector correction factors for the mean integrated jet shape 〈ψ(r = 0.6)〉 in photopro-
duction as a function of the variables Ejet, ηjet, Pt,jet, Wγp and xobsγ , determined using the Pythia
Monte Carlo simulation. The factors are shown for the total Monte Carlo and separately for direct
and resolved processes. The error band and bars represent the statistical uncertainty of the Monte
Carlo simulation.
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Figure 6.28: Detector correction factors for the mean integrated jet shape 〈ψ(r)〉 in DIS. The
factors are determined separately in three regions of the jet energy Ejet and the proton-photon
reference system Wγp, respectively, as well as in two regions of xobsγ , using the RapGap Monte
Carlo simulation. The factors are shown for the total Monte Carlo and separately for direct and
resolved processes. The error band and bars represent the statistical uncertainty of the Monte Carlo
simulation.
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Figure 6.29: Detector correction factors for the mean integrated jet shape 〈ψ(r = 0.6)〉 in DIS
as a function of the variables Ejet, ηjet, Pt,jet, Wγp, x

obs
γ and Q2, determined using the RapGap

Monte Carlo simulation. The factors are shown for the total Monte Carlo and separately for direct
and resolved processes. The error band and bars represent the statistical uncertainty of the Monte
Carlo simulation.
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Figure 6.30: Detector correction factors for the mean integrated jet shape 〈ψ(r = 0.6)〉 in DIS
as a function of the variable xobsγ in two regions of Q2, determined using the RapGap Monte
Carlo simulation. The factors are shown for the total Monte Carlo and separately for direct and
resolved processes. The error band and bars represent the statistical uncertainty of the Monte Carlo
simulation.

6.6 Systematic Uncertainties

The relative systematic uncertainty of the mean integrated jet shape is defined as the deviation
σrelsyst from the central value 〈ψ(r)〉central if a given parameter of the analysis is varied

σrelsyst =
〈ψ〉varied − 〈ψ〉central

〈ψ〉central . (6.15)

with 〈ψ〉varied as the obtained value of the mean integrated jet shape after the variation of one
of the studied uncertainties. It is calculated for the variation of the hadronic energy scale and
for jet axis smearing. Both calculations are performed at detector level, i.e. before the detector
corrections are applied. The systematic error of the detector calculation is studied in a similar way.
The estimated uncertainties are detailed below.

• An energy scale variation of the hadronic final state objects is performed. Here the energy
of pure cluster objects is varied by ±4% and the energy of pure track objects by ±2% [68].
For combined objects consisting of clusters as well as tracks a variation of ±3% is applied. It
is found that pure cluster objects as well as combined objects contribute 40% to the total jet
transverse momenta while pure track objects contribute 20% [35].

The variation is performed in all analysis bins by separately scaling the energy of all hadronic
final state particles up and down. The mean integrated jet shape is found to decrease when
the hadronic energy scale is varied to increasing values and vice versa. In photoproduction
the maximum decrease is found to be 0.15%, the largest increase 0.07%. In DIS the maxi-
mum deviation was −0.19% and +0.08%. The highest deviation was taken to estimate the
systematic uncertainty of the hadronic energy scale yielding 0.15% for photoproduction and
0.2% for DIS.
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• Jet axis smearing is applied in the polar angle θ and the azimuthal angle φ. Both jet
angles are convoluted with a Gaussian smearing of 2.5◦. The choice of the smearing factor
is motivated by the angular resolution of the jet axis in θ and φ as computed in the Monte
Carlo simulation. This is shown in figure 6.31. The smearing results in a maximum negative
deviation of the mean integrated jet shape of 0.6% in photoproduction and 0.7% in DIS.
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Figure 6.31: Resolutions of the polar angle θ and the azimuthal angle φ of the analysed jet. The
resolutions are computed separately for photoproduction using the Pythia Monte Carlo and for DIS
using the RapGap Monte Carlo simulation.

• The signal extraction uncertainty is estimated by scaling the fitting function of the D∗

signal up, respectively down, by 5%. This is done while keeping the function fitted to the
background constant. The magnitude of this scaling is motivated by the uncertainty of the
number of D∗ events obtained from the fit of the ET33 data in photoproduction, cf. figure
6.32(a).
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Figure 6.32: ∆m distribution of the ET33 selection in photoproduction including the fit describing
signal and background (a). The function describing the signal is scaled down by 5% in (b) and up
by 5% in (c). Also displayed is f back, the fraction of background events in the ∆m signal region
between the dashed lines as obtained by the fits. The function describing the background is not
subject to the variation.
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Figure 6.33: ∆m distribution of the ET44 selection in photoproduction including the fit describing
signal and background (a). The function describing the signal is scaled down by 5% in (b) and up
by 5% in (c). Also displayed is f back, the fraction of background events in the ∆m signal region
between the dashed lines as obtained by the fits. The function describing the background is not
subject to the variation.

In DIS the same scaling is used as in photoproduction. The variation has direct impact on
the determination of the background fraction f back (cf. equation 6.10) detailed in section 6.2.
Figures 6.32 and 6.33 show the ∆m distributions in photoproduction (separately for ET33
and ET44) including the fitted functions. Next to the nominal fit the scaled versions are
shown. The impact on the background fraction is indicated. The same is displayed in figure
6.34 for DIS.

The mean integrated jet shapes prove to be insensitive to the variation of the signal fit.
For the photoproduction sample the largest deviation due to the fit variation is found in the
medium bin of the pseudorapidity ηjet(r = 0.6) of the jet and its size is 0.8%. In DIS the mean
integrated jet shape changes by no more than 0.1% as a consequence of the fit variation. These
values are taken as estimates of the systematic uncertainties due to the signal extraction.
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Figure 6.34: ∆m distribution of the DIS selection including the fit describing signal and background
(a). The function describing the signal is scaled down by 5% in (b) and up by 5% in (c). Also
displayed is f back, the fraction of background events in the ∆m signal region between the dashed
lines as obtained by the fits. The function describing the background is not subject to the variation.
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Figure 6.35: Comparison of the detector correction factors calculated by the Pythia and Cascade
Monte Carlo simulations in photoproduction for the mean integrated jet shape 〈ψ(r)〉. The error
bars represent the statistical uncertainty of the Monte Carlo simulation. For the determination of
the systematic uncertainty the value of 〈ψ(r = 0.6)〉 has been studied.
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Figure 6.36: Comparison of the detector correction factors calculated by the Pythia and Cascade
Monte Carlo simulations in photoproduction for the mean integrated jet shape 〈ψ(r = 0.6)〉. The
comparison is performed as a function of the variables Ejet, ηjet, Pt,jet, Wγp and xobsγ . The error
bars represent the statistical uncertainty of the Monte Carlo simulation.
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Figure 6.37: Comparison of the detector correction factors calculated by the RapGap and Cascade
Monte Carlo simulations in DIS for the mean integrated jet shape 〈ψ(r)〉. The error bars represent
the statistical uncertainty of the Monte Carlo simulation. For the determination of the systematic
uncertainty the value of 〈ψ(r = 0.6)〉 has been studied.
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Figure 6.38: Comparison of the detector correction factors calculated by the RapGap and Cascade
Monte Carlo simulations in DIS for the mean integrated jet shape 〈ψ(r = 0.6)〉. The comparison
is performed as a function of the variables Ejet, ηjet, Pt,jet, Wγp, x

obs
γ and Q2. The error bars

represent the statistical uncertainty of the Monte Carlo simulation.
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Figure 6.39: Comparison of the detector correction factors calculated by the RapGap and Cascade
Monte Carlo simulations in DIS for the mean integrated jet shape 〈ψ(r = 0.6)〉. The comparison
is performed as a function of the variables xobsγ in two regions of Q2. The error bars represent the
statistical uncertainty of the Monte Carlo simulation.

• The detector correction uncertainty is estimated by calculating the detector corrections
with an alternative Monte Carlo simulation. Both the photoproduction and the DIS correc-
tions have been performed utilising two Cascade Monte Carlo samples. These corrections
have been compared to the Pythia and RapGap simulations for photoproduction and DIS,
respectively. The comparison between the correction factors is shown in figures 6.35 and 6.36
for photoproduction and in figures 6.37 through 6.39 for DIS. The largest difference of the
correction factors in the different Monte Carlo models at the value 〈ψ(r = 0.6)〉 is taken as
the systematic error on the detector correction. The largest deviations in photoproduction
between the Pythia and Cascade models are found in the lowest Wγp region and are of the
order of 2%. In DIS the largest deviation between RapGap and Cascade are of the order of
1% in the medium Ejet bin.

For the final estimation of the systematic error the largest deviations originating from the studied
uncertainty on 〈ψ(r = 0.6)〉 are a added in quadrature. It is hereby assumed that the uncertainties
are independent. Table 6.2 summarises the systematic uncertainties of the analysis.

Error Source Variation Photoproduction δ [%] DIS δ [%]
Hadronic Energy Scale ±4%, ±2%, ±3% 0.15 0.20
Jet Axis Smearing θ ± 2.5◦, φ± 2.5◦ 0.58 0.71
Signal Extraction signal fit ±5% 0.80 0.10
Detector Correction Pythia, resp. RapGap vs. Cascade 2.16 0.85

Total 2.38 1.13

Table 6.2: Summary of the systematic uncertainties.
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Chapter 7

Results

In the following chapter the mean integrated jet shapes corrected for detector effects are presented.
In the presented distributions all systematic uncertainties determined in section 6.6 are considered.
First the jet shapes as a function of the cone radius are shown in different regions of the jet energy,
the energy in the photon-proton frame of reference and xobsγ . This is performed separately for
photoproduction and DIS. The data distributions are compared to Pythia, respectively RapGap,
as well as Cascade Monte Carlo expectations.

Next the jet shape is studied with respect to several selected variables at a fixed cone radius
of r = 0.6 (cf. appendix A). This again is done separately for photoproduction and DIS and
accompanied by Monte Carlo comparison.

Finally the jet shape as function of xobsγ is presented in increasing Q2 regions.

7.1 Mean Integrated Jet Shape as Function of the Cone Ra-

dius

In chapter 6 the extraction of the mean integrated jet shape is discussed in detail. The visible
region is defined by the phase space cuts in table 6.1. The analysed jet is always the highest-pt jet
not associated with a D∗ meson. All distributions are presented at hadron level. Numerical values
of the data and Monte Carlo simulation are listed in appendix B.

7.1.1 Photoprodution

For the photoproduction sample the mean integrated jet shape is shown in figure 7.1 in three
different regions of the jet energy Ejet. Figure 7.3 shows the jet shape in two regions of Wγp and
figure 7.5 in two regions of xobsγ . Also shown is the Pythia charm Monte Carlo prediction as well as
the contributions from direct and resolved photon processes. In figures 7.2, 7.4 and 7.6 these same
distributions are normalised to the Pythia charm Monte Carlo prediction.

The measurements at the smallest cone radii is characerised by low statistics. This is particularly
visible at the lower values of Ejet, though the direct prediction is still within errors. Apart from
this and also due to large statistical errors the data agrees well with the Monte Carlo expectation.
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Figure 7.1: Mean integrated jet shape 〈ψ(r)〉 in photoproduction as function of the cone radius r
for three different regions of Ejet. The data is corrected for detector effects. The Pythia charm
Monte Carlo prediction is shown together with separate direct and resolved expectations, all at
hadron level. The statistical errors of the Monte Carlo simulation are negligible. The inner error
bars of the data points represent the statistical errors while the outer bar represents the statistical
and systematic uncertainties added in quadrature.
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Figure 7.2: Ratio of the data points from figure 7.1 with respect to the total Pythia charm Monte
Carlo prediction. Direct and resolved expectations are shown separately and also in relation to the
total Pythia prediction.
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Figure 7.3: Mean integrated jet shape 〈ψ(r)〉 in photoproduction as function of the cone radius r
for two different regions of Wγp. The data is corrected for detector effects. ThePythia charm Monte
Carlo prediction is shown together with separate direct and resolved expectations, all at hadron
level. The statistical errors of the Monte Carlo simulation are negligible. The inner error bars of
the data points represent the statistical errors while the outer bar represents the statistical and
systematic uncertainties added in quadrature.
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Figure 7.4: Ratio of the data points from figure 7.3 with respect to the total Pythia charm Monte
Carlo prediction. Direct and resolved expectations are shown separately and also in relation to the
total Pythia prediction.
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Figure 7.5: Mean integrated jet shape 〈ψ(r)〉 in photoproduction as function of the cone radius
r for two different regions of xobsγ . The data is corrected for detector effects. The Pythia charm
Monte Carlo prediction is shown together with separate direct and resolved expectations, all at
hadron level. The statistical errors of the Monte Carlo simulation are negligible. The inner error
bars of the data points represent the statistical errors while the outer bar represents the statistical
and systematic uncertainties added in quadrature.
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Figure 7.6: Ratio of the data points from figure 7.5 with respect to the total Pythia charm Monte
Carlo prediction. Direct and resolved expectations are shown separately and also in relation to the
total Pythia prediction.
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Comparison with Other Monte Carlo Simulations
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Figure 7.7: Ratio of the photoproduction data points from figures 7.1, 7.3 and 7.5 with respect to
the total Pythia charm Monte Carlo prediction. Also shown is the Cascade charm Monte Carlo
prediction as well as Pythia b and uds expectations.
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It is apparent, however, that in the regions of low Ejet and Wγp the data is also well described by
the resolved prediction alone. High Ejet and Wγp jets tend to contain less gluons as suggested by
the data which in these regions behaves slightly more direct-like.

For the broader picture and to verify the degree to which charm jets can be distinguished from
light quark jets as well as b jets figure 7.7 shows the normalised data and Pythia charm Monte
Carlo in comparison with the b and uds jet expectations.1 Also shown is the Cascade charm Monte
Carlo simulation.

The pure b and light quark jets differ significantly in shape from the charm (and gluon) jets.
The uds jet expectations are more narrow as these by construction have no contribution from gluon
jets. In the region of high xobsγ though, the light quark jet prediction is slightly broader than the
analysis jets (charm and gluon jets) due to the latter themselves containing less gluon jets and uds
jets being broader than pure charm jets. Jets initiated by a beauty quark on the other hand exhibit
a broader jet shape than the analysed jets, even in the low xobsγ regime which is strongly enriched
in resolved photon events, i.e. a large fraction of these jets is initiated by a gluon.

Within the Cascade Monte Carlo model no explicit resolved component is generated. Instead
a hadronic photon component is already included in the kt factorisation. The Cascade charm
simulation describes the data to a similar degree as the Pythia charm simulation, though in general
the description is slightly worse. An exception is the high Wγp bin where the Cascade prediction is
better.

The numerical values of the data and Pythia charm Monte Carlo prediction from the figures
7.1, 7.3 and 7.5 can be found in tables B.1, B.2 and B.3.

7.1.2 DIS

The mean integrated jet shapes for the DIS sample are shown in figures 7.8, 7.10 and 7.12 in
three regions of Ejet and Wγp and two regions of xobsγ , respectively. These are compared to the
RapGap charm Monte Carlo as well as the direct and resolved photon expectations. Figures 7.9,
7.11 and 7.13 show the data and simulation normalised to the RapGap charm prediction. The
overall prediction is in good agreement with the data, though in the highest Ejet and Wγp regions
deviations can be observed, suggesting that the contribution of gluon jets is underestimated.

The data normalised to the RapGap charm prediction is compared to the light quark and b jet
expectation in figure 7.14. In DIS the fraction of resolved photon events and thus gluon initiated
jets is substantially smaller than in photoproduction resulting in the analysis jets to be mainly
composed of jets initiated by a charm quark. These again are more narrow. Light quark and b jets
appear significantly broader.

Also shown in figure 7.14 is the Cascade charm Monte Carlo simulation, which achieves an
almost equally good description of the data as the RapGap charm Monte Carlo.

The numerical values of the data and Pythia charm Monte Carlo prediction from the figures
7.8, 7.10 and 7.12 are listed in tables B.4, B.5 and B.6.

1A b and a uds one-jet Monte Carlo sample is studied where the jets are initiated by the particular quark, i.e. no
resolved photon component.
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Figure 7.8: Mean integrated jet shape 〈ψ(r)〉 in DIS as function of the cone radius r for three
different regions of Ejet. The data is corrected for detector effects. RapGap charm Monte Carlo
prediction is shown together with separate direct and resolved expectations, all at hadron level.
The statistical errors of the Monte Carlo simulation are negligible. The inner error bars of the data
points represent the statistical errors while the outer bar represents the statistical and systematic
uncertainties added in quadrature.
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Figure 7.9: Ratio of the data points from figure 7.8 with respect to the total RapGap charm Monte
Carlo prediction. Direct and resolved expectations are shown separately and also in relation to the
total RapGap prediction.
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Figure 7.10: Mean integrated jet shape 〈ψ(r)〉 in DIS as function of the cone radius r for three
different regions of Wγp. The data is corrected for detector effects. RapGap charm Monte Carlo
prediction is shown together with separate direct and resolved expectations, all at hadron level.
The statistical errors of the Monte Carlo simulation are negligible. The inner error bars of the data
points represent the statistical errors while the outer bar represents the statistical and systematic
uncertainties added in quadrature.
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Figure 7.11: Ratio of the data points from figure 7.10 with respect to the total RapGap charm
Monte Carlo prediction. Direct and resolved expectations are shown separately and also in relation
to the total RapGap prediction.
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Figure 7.12: Mean integrated jet shape 〈ψ(r)〉 in DIS as function of the cone radius r for two
different regions of xobsγ . The data is corrected for detector effects. RapGap charm Monte Carlo
prediction is shown together with separate direct and resolved expectations, all at hadron level.
The statistical errors of the Monte Carlo simulation are negligible. The inner error bars of the data
points represent the statistical errors while the outer bar represents the statistical and systematic
uncertainties added in quadrature.
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Figure 7.13: Ratio of the data points from figure 7.12 with respect to the total RapGap charm
Monte Carlo prediction. Direct and resolved expectations are shown separately and also in relation
to the total RapGap prediction.
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Comparison with Other Monte Carlo Simulations
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Figure 7.14: Ratio of the DIS data points from figures 7.8, 7.10 and 7.12 with respect to the total
RapGap charm Monte Carlo prediction. Also shown is the Cascade charm Monte Carlo prediction
as well as RapGap b and uds expectations.
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7.2 Mean Integrated Jet Shape at Fixed Cone Radius

At the fixed cone radius of r = 0.6 the mean integrated jet shape is plotted against different
kinematic and jet variables. This is done separately for photoproduction (section 7.2.1) and DIS
(section 7.2.2). Of special interest is the variable xobsγ as the kinematic region of low xobsγ (xobsγ <
0.75) is enriched in resolved photon events, while direct events exhibit a distinguished peak at
xobsγ = 1. The mean integrated jet shape 〈ψ(r = 0.6)〉 as function of xobsγ is thus studied in three

different regions of Q2: In photoproduction (Q2 < 0.01 GeV2) as well as for low (3.4 GeV2 ≤ Q2 ≤
9 GeV2) and high (9 GeV2 < Q2 ≤ 100 GeV2) Q2 in DIS. This is performed in section 7.2.3.

7.2.1 Photoproduction
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Figure 7.15: Distributions of the mean integrated jet shape in photoproduction at fixed value
r = 0.6 at hadron level as function of the variables Ejet, ηjet, Pt,jet and Wγp. The Pythia charm
Monte Carlo prediction is shown together with separate direct and resolved expectations. The
statistical errors of the Monte Carlo simulation are negligible. The inner error bars of the data
points represent the statistical errors while the outer bar represents the statistical and systematic
uncertainties added in quadrature.
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The mean integrated jet shape as a function of the energy, pseudorapidity and transverse momentum
of the jet as well as the energy in the photon-proton frame of reference for the photoproduction
sample is shown in figure 7.15.

The description of the data by the Pythia Monte Carlo simulation is good. Due to the large
fraction of resolved photon events in the photoproduction sample a description of the data within
errors is also provided by the resolved prediction alone. An exception to this behaviour is apparent
in the highest bin of the transverse momentum of the jet. Here the estimate of the mean integrated
jet shape by the total Pythia charm Monte Carlo falls far below the measured value, but is still
in full agreement with the direct expectation, suggesting an overestimation of the fraction of gluon
jets at high jet transverse momenta.

The distribution of the mean integrated jet shape as function of xobsγ is shown in context with
the DIS measurement in section 7.2.3. The numerical values from the above distributions can be
found in appendix B.

7.2.2 DIS

In DIS the mean integrated jet shape at fixed cone radius is measured as function of Ejet, ηjet, Pt,jet,
Wγp and xobsγ as it is performed for the photoproduction sample. Additionally the dependency on
the negative four momentum transfer squared Q2 is studied. These distributions are shown in
figures 7.16 and 7.17 and compared with the RapGap charm Monte Carlo prediction as well as the
direct and resolved expectations. Overall the data is well described by the Monte Carlo simulation
which in DIS is dominated by direct processes. In the region of the highest transverse momenta of
the jet, the highest jet energies and the highest energies in the photon-proton frame of reference
though, the jets are slightly broader than expected, hinting at an underestimation of the fraction
of gluon jets.

The numerical values of the mean integrated jet shapes from these distributions are listed in
appendix B.
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Figure 7.16: Distributions of the mean integrated jet shape in DIS at fixed value r = 0.6 at hadron
level as function of the variables Ejet and ηjet. The RapGap charm Monte Carlo prediction is shown
together with separate direct and resolved expectations. The statistical errors of the Monte Carlo
simulation are negligible. The inner error bars of the data points represent the statistical errors
while the outer bar represents the statistical and systematic uncertainties added in quadrature.
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Figure 7.17: Distributions of the mean integrated jet shape in DIS at fixed value r = 0.6 at hadron
level as function of the variables Pt,jet, Wγp, x

obs
γ and Q2. The RapGap charm Monte Carlo

prediction is shown together with separate direct and resolved expectations. The statistical errors
of the Monte Carlo simulation are negligible. The inner error bars of the data points represent the
statistical errors while the outer bar represents the statistical and systematic uncertainties added
in quadrature.

7.2.3 Q2 Dependency

Direct and resolved photon processes are distinguished in the variable xobsγ . While in resolved
processes only a fraction of the photon momentum participates in the hard interaction, this fraction
xobsγ exhibits a clear maximum at unity for direct processes. The mean integrated jet shape as a
means to differentiate between the generally broader gluon initiated jets and the spatially more
confined jets initiated by the charm quark is thus studied in two regions of xobsγ .

The fraction of resolved photon events changes with increasing Q2, as does the jet shape itself.
The mean integrated jet shape at the fixed radius r = 0.6 as function of xobsγ is compared for three
different Q2 regions in figure 7.18.

The Pythia Monte Carlo prediction is in good agreement with the photoproduction data. The
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Figure 7.18: Distributions of the mean in-
tegrated jet shape in photoproduction and
in two different Q2 regions in DIS at fixed
value r = 0.6 at hadron level as function of
xobsγ . Pythia, respectively RapGap charm
Monte Carlo prediction is shown together
with separate direct and resolved expecta-
tions. The statistical errors of the Monte
Carlo simulation are negligible. The inner
error bars of the data points represent the
statistical errors while the outer bar repre-
sents the statistical and systematic uncer-
tainties added in quadrature.
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difference between direct and resolved photon events though, is of the same magnitude as the error
on the data.

Due to a much larger data sample and a better signal-to-background ratio the error on the DIS
data is significantly smaller. Apparently though, the RapGap expectation for direct events is very
similar to the resolved photon prediction at low xobsγ . Apart from the predictiction at high Q2 and

low xobsγ where the data suggests broader jets than the Monte Carlo predicts, the decription of the
data by the simulation is very good. The mean integrated jet shape expectation for direct and
resolved photon events in DIS at low xobsγ , however, is basically identical.
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Chapter 8

Summary and Conclusion

In this analysis the mechanisms of charm production are studied in photoproduction and DIS. Pro-
duction of charm in ep collisions at HERA is dominated by boson-gluon fusion (BGF). Beyond the
direct photon process γg → cc̄, resolved processes, where quarks and gluons from the photon par-
ticipate in the hard interaction contribute significantly. This contribution decreases with increasing
photon virtuality Q2. While in the ’normal’ resolved process, a charm quark pair is produced in
the hard interaction via gg → cc̄, the charm excitation processes cg → cg, cq → cq which repre-
sent the largest fraction of the resolved processes produce a charm quark and another parton. By
studying the shapes of high pt jets that result from the hadronisation of the outgoing BGF partons,
the fraction of direct, respectively resolved processes is investigated. This is possible because the
shape of the jet is strongly dependent on its initiating parton. Thus the average jet shape makes it
possible to explore the relative composition of the production processes.

In this analysis photoproduction data from the years 1999 and 2000 and DIS data from the years
2004 through 2007 was used. In photoproduction event kinematics were reconstructed by measuring
the scattered electron with electron taggers 33 m, respectively 44 m from the interaction point in
electron flight direction. In DIS the scattered electron was measured in the backward calorimeter.
Dijet events with transverse jet momenta above 5 GeV (4 GeV for the second jet) were selected
where one jet was tagged as charm jet by the reconstruction of a D∗ meson. The total integrated
luminosity of the photoproduction data amounts to 51.1 pb−1 for ET33 and 31.8 pb−1 for ET44.
The integrated luminosity of the DIS data is 347.6 pb−1.

The mean integrated jet shape 〈ψ(r)〉 was studied in different regions of the kinematic variables
Ejet, Wγp and xobsγ . Further, the mean integrated jet shape at a fixed cone radius 〈ψ(r = 0.6)〉
was studied as a function of the jet energy Ejet, pseudorapidity ηjet and transverse momentum
pt,jet, Wγp as well as xobsγ and in DIS also as a function of Q2. All distributions were background
subtracted and corrected for detector effects.

The dependence of 〈ψ(r)〉 on the mentioned variables was compared to the Pythia Monte Carlo
prediction for photoproduction and RapGap for DIS. The direct and resolved photon contributions
to the total prediction were studied separately. Additionally, a comparison with the Cascade Monte
Carlo simulation was performed. In this simulation no explicit differentiation between direct and
resolved photon processes is made. As a cross check also light quark and beauty only Monte Carlo
simulations were studied.
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The data is found to be well described by the Monte Carlo prediction. In photoproduction the
events are dominated by resolved photon processes. The fraction of these events decreases strongly
in DIS which is dominated by direct events. In the photoproduction region of high jet transverse
momenta the data suggests more narrow jets than the total Pythia Monte Carlo predicts. The data
is nevertheless in full agreement with the direct prediction, hinting at an underestimation of the
fraction of direct events in photoproduction at high jet transverse momenta. A further clarification
requires considerably more statistics.

In several regions of phase space the resolution of the jet shape measurement is better than
the difference between the direct and resolved photon Monte Carlo simulation. This allows to
technically distinguish between such types of event samples. In DIS though, in the region of low
xobsγ the mean integrated jet shape for direct events is basically identical to the resolved expectation,
rendering an experimental distinction in this region futile. The similar shape of jets originating from
direct processes and those from resolved can be explained by a hard gluon radiation prior to the
BGF in low xobsγ direct events. This can result in the two highest-pt jets being both charm initiated
or initiated by a charm quark and a gluon, thus having the same signature as jets originating from
resolved processes.



Appendix A

Determination of Optimum Cone

Radius

In order to determine the cone radius best suited for comparison of different regions in several kine-
matic variables, some sort of discriminating power is to be quantified. As the goal is to distinguish
direct and resolved photon processes, the difference in the mean integrated jet shape between direct
and resolved events is studied with respect to the cone radius. This is performed for each analysis
bin, i.e. in each kinematic region where the jet shape is computed. This is done in DIS only, as the
splitting between direct and resolved events is less distinct here. To this end the Rapgap Monte
Carlo simulation is used. The cone radius is varied in steps of 0.1 from 0.3 to 0.8 (the maximum of
the splitting is found in this interval and approaches zero towards 0.0 and 1.0).

To allow for a graphical representation each analys bin is attached to a number. The analysis
bin numbers and their associated kinematical regions are summarised in tabel A.1.

On the other hand the total error on the data points limits the possible resolution of the mean
integrated jet shape. This error decreases as the radius approaches 0, respectively 1. A maximum
discriminating power is expected for large direct/resolved splitting and small errors on the data
points. Thus the ratio between the splitting and the error is computed.

In figure A.1 and A.2 the splitting between direct and resolved mean integrated jet shapes as
expected by the Rapgap Monte Carlo is shown for cone radii between 0.3 and 0.8. Also shown is
the error on the data points and the ratio between the two histograms. The mean of this ratio is
indicated by a dashed line.

For the computed radii the ratio between direct/resolved splitting and the error on the data,
which provides a gauge for the discriminating power, exhibits a maximum at the cone radius r = 0.6.
When comparing the mean integrated jet shape in adjacent regions of phase space, say in different
regions of xobsγ , this is thus done at this cone radius.
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Analysis Bin Number Kinematic Region

1 xobsγ < 0.75
2 xobsγ ≥ 0.75

3 xobsγ < 0.75, Q2 ≤ 9 GeV2

4 xobsγ ≥ 0.75, Q2 ≤ 9 GeV2

5 xobsγ < 0.75, Q2 > 9 GeV2

6 xobsγ ≥ 0.75, Q2 > 9 GeV2

7 5.0 GeV ≤ Ejet < 9.0 GeV
8 9.0 GeV ≤ Ejet < 14.0 GeV
9 14.0 GeV ≤ Ejet < 30.0 GeV
10 −1.9 ≤ ηjet < 0.1
11 0.1 ≤ ηjet < 0.9
12 0.9 ≤ ηjet < 1.9
13 4.0 GeV ≤ Pt,jet < 6.0 GeV
14 6.0 GeV ≤ Pt,jet < 9.0 GeV
15 9.0 GeV ≤ Pt,jet < 13.0 GeV
16 40 GeV ≤Wγp < 180 GeV
17 180 GeV ≤Wγp < 230 GeV
18 230 GeV ≤Wγp < 280 GeV

19 3.4 GeV2 ≤ Q2 < 6.0 GeV2

20 6.0 GeV2 ≤ Q2 < 14.0 GeV2

21 14.0 GeV2 ≤ Q2 < 25.0 GeV2

Table A.1: Assocation of each kinematic region in the analysis to a number. The numerical repre-
sentaion of the analysis bins is used on the x-axis in the histograms in figures A.1 and A.2.
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Figure A.1: Splitting between direct and resolved Monte Carlo predictions at the respective cone
radius from 0.3 to 0.5 for the kinematic bins used in the analysis (left), the error on the data in the
same bins (middle) and ratio of the two histograms (right). The dashed lines in the right histograms
show the mean ratio, a larger ratio indicates a larger discriminating power.
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Figure A.2: Splitting between direct and resolved Monte Carlo predictions at the respective cone
radius from 0.6 to 0.8 for the kinematic bins used in the analysis (left), the error on the data in the
same bins (middle) and ratio of the two histograms (right). The dashed lines in the right histograms
show the mean ratio, a larger ratio indicates a larger discriminating power.
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Data Tables

40 GeV ≤Wγp ≤ 130 GeV

r 〈ψ(r)〉data 〈ψ(r)〉MC 〈ψ(r)〉MC
dir 〈ψ(r)〉MC

res
〈ψ(r)〉data

〈ψ(r)〉MC

0.1 0.0904828 0.0905177 0.111653 0.0834726 0.999614
0.2 0.236391 0.274695 0.313637 0.261715 0.860558
0.3 0.437977 0.467748 0.519758 0.450411 0.936352
0.4 0.603553 0.632093 0.67779 0.61686 0.954849
0.5 0.702422 0.756695 0.789396 0.745794 0.928277
0.6 0.832957 0.8519 0.873621 0.844659 0.977764
0.7 0.895662 0.917183 0.92746 0.913758 0.976536
0.8 0.950094 0.953543 0.963195 0.950326 0.996382
0.9 0.978644 0.983503 0.985718 0.982765 0.995059
1.0 1.00000 1.00000 1.00000 1.00000 1.00000

170 GeV < Wγp ≤ 280 GeV

r 〈ψ(r)〉data 〈ψ(r)〉MC 〈ψ(r)〉MC
dir 〈ψ(r)〉MC

res
〈ψ(r)〉data

〈ψ(r)〉MC

0.1 0.133194 0.0954836 0.125166 0.0855894 1.39494
0.2 0.320132 0.275796 0.337239 0.255315 1.16076
0.3 0.487825 0.463549 0.536 0.439398 1.05237
0.4 0.629004 0.621778 0.690953 0.59872 1.01162
0.5 0.764976 0.746041 0.797065 0.729033 1.02538
0.6 0.843141 0.837163 0.875707 0.824315 1.00714
0.7 0.91513 0.902549 0.928733 0.893821 1.01394
0.8 0.950581 0.947676 0.962649 0.942685 1.00307
0.9 0.972118 0.978087 0.984062 0.976096 0.993897
1.0 1.00000 1.00000 1.00000 1.00000 1.00000

Table B.1: The mean integrated jet shape 〈ψ(r)〉 at hadron level at different values of the cone
radius r in two regions of Wγp for photoproduction data. Also listed are the total, direct and
resolved Pythia Monte Carlo predictions. the last column shows the ratio of the mean integrated
jet shape in data over the Monte Carlo values.
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5 GeV ≤ Ejet ≤ 9 GeV

r 〈ψ(r)〉data 〈ψ(r)〉MC 〈ψ(r)〉MC
dir 〈ψ(r)〉MC

res
〈ψ(r)〉data

〈ψ(r)〉MC

0.1 0.122732 0.0910672 0.109329 0.08498 1.34771
0.2 0.276376 0.269646 0.306901 0.257227 1.02496
0.3 0.410211 0.454792 0.507249 0.437306 0.901975
0.4 0.571244 0.616407 0.669849 0.598592 0.926733
0.5 0.721212 0.742631 0.787191 0.727778 0.971158
0.6 0.827557 0.837578 0.870825 0.826496 0.988036
0.7 0.91688 0.904387 0.927472 0.896693 1.01381
0.8 0.955916 0.95017 0.963812 0.945623 1.00605
0.9 0.979449 0.980005 0.985735 0.978095 0.999433
1.0 1.00000 1.00000 1.00000 1.00000 1.00000

9 GeV < Ejet ≤ 14 GeV

r 〈ψ(r)〉data 〈ψ(r)〉MC 〈ψ(r)〉MC
dir 〈ψ(r)〉MC

res
〈ψ(r)〉data

〈ψ(r)〉MC

0.1 0.15618 0.0983974 0.12355 0.0900131 1.58723
0.2 0.305744 0.288029 0.343289 0.269609 1.0615
0.3 0.524892 0.481188 0.546575 0.459392 1.09082
0.4 0.639537 0.636247 0.699551 0.615146 1.00517
0.5 0.767105 0.759632 0.805469 0.744353 1.00984
0.6 0.841128 0.845782 0.87786 0.83509 0.994496
0.7 0.900893 0.907783 0.929783 0.900449 0.992411
0.8 0.941284 0.949319 0.963145 0.944711 0.991535
0.9 0.970704 0.980897 0.984602 0.979662 0.989609
1.0 1.00000 1.00000 1.00000 1.00000 1.00000

14 GeV < Ejet ≤ 30 GeV

r 〈ψ(r)〉data 〈ψ(r)〉MC 〈ψ(r)〉MC
dir 〈ψ(r)〉MC

res
〈ψ(r)〉data

〈ψ(r)〉MC

0.1 0.131114 0.101329 0.138429 0.0889626 1.29394
0.2 0.294329 0.287662 0.372449 0.2594 1.02317
0.3 0.495862 0.484587 0.573843 0.454835 1.02327
0.4 0.678449 0.638497 0.719415 0.611524 1.06257
0.5 0.798366 0.749448 0.810692 0.729033 1.06527
0.6 0.845045 0.835017 0.88415 0.81864 1.01201
0.7 0.914441 0.898891 0.930991 0.888191 1.0173
0.8 0.956844 0.946311 0.962686 0.940853 1.01113
0.9 0.968464 0.978573 0.9838 0.97683 0.98967
1.0 1.00000 1.00000 1.00000 1.00000 1.00000

Table B.2: The mean integrated jet shape 〈ψ(r)〉 at hadron level at different values of the cone
radius r in three regions of Ejet for photoproduction data. Also listed are the total, direct and
resolved Pythia Monte Carlo predictions. the last column shows the ratio of the mean integrated
jet shape in data over the Monte Carlo values.
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xobsγ ≤ 0.75

r 〈ψ(r)〉data 〈ψ(r)〉MC 〈ψ(r)〉MC
dir 〈ψ(r)〉MC

res
〈ψ(r)〉data

〈ψ(r)〉MC

0.1 0.161819 0.0965883 0.131842 0.0848372 1.67535
0.2 0.311081 0.281076 0.35078 0.257841 1.10675
0.3 0.447052 0.464236 0.529933 0.442337 0.962984
0.4 0.587913 0.622707 0.683226 0.602535 0.944124
0.5 0.735819 0.744172 0.791886 0.728268 0.988774
0.6 0.821366 0.835539 0.873421 0.822911 0.983038
0.7 0.903815 0.901897 0.927131 0.893486 1.00213
0.8 0.941715 0.9478 0.960755 0.943481 0.99358
0.9 0.959631 0.97963 0.985148 0.97779 0.979586
1.0 1.00000 1.00000 1.00000 1.00000 1.00000

xobsγ > 0.75

r 〈ψ(r)〉data 〈ψ(r)〉MC 〈ψ(r)〉MC
dir 〈ψ(r)〉MC

res
〈ψ(r)〉data

〈ψ(r)〉MC

0.1 0.115552 0.111418 0.120049 0.0912774 1.0371
0.2 0.295659 0.312444 0.331233 0.268603 0.946278
0.3 0.492923 0.511849 0.534002 0.46016 0.963024
0.4 0.645882 0.666599 0.690122 0.611713 0.96892
0.5 0.767209 0.783254 0.79857 0.747518 0.979515
0.6 0.849221 0.866009 0.876195 0.84224 0.980614
0.7 0.917211 0.92252 0.929442 0.906368 0.994246
0.8 0.956273 0.959596 0.964066 0.949167 0.996537
0.9 0.984107 0.98371 0.985169 0.980308 1.0004
1.0 1.00000 1.00000 1.00000 1.00000 1.00000

Table B.3: The mean integrated jet shape 〈ψ(r)〉 at hadron level at different values of the cone
radius r in two regions of xobsγ for photoproduction data. Also listed are the total, direct and
resolved Pythia Monte Carlo predictions. the last column shows the ratio of the mean integrated
jet shape in data over the Monte Carlo values.
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5 GeV ≤ Ejet ≤ 9 GeV

r 〈ψ(r)〉data 〈ψ(r)〉MC 〈ψ(r)〉MC
dir 〈ψ(r)〉MC

res
〈ψ(r)〉data

〈ψ(r)〉MC

0.1 0.0997323 0.105229 0.107832 0.0960388 0.947768
0.2 0.305714 0.299956 0.305383 0.280799 1.0192
0.3 0.480977 0.492633 0.500501 0.464854 0.97634
0.4 0.640279 0.652278 0.660604 0.622886 0.981604
0.5 0.766709 0.770915 0.777828 0.746508 0.994545
0.6 0.86669 0.857818 0.862905 0.839858 1.01034
0.7 0.928673 0.917472 0.920874 0.905462 1.01221
0.8 0.959871 0.957197 0.95917 0.950233 1.00279
0.9 0.98335 0.983608 0.984441 0.980668 0.999737
1.0 1.00000 1.00000 1.00000 1.00000 1.00000

9 GeV < Ejet ≤ 14 GeV

r 〈ψ(r)〉data 〈ψ(r)〉MC 〈ψ(r)〉MC
dir 〈ψ(r)〉MC

res
〈ψ(r)〉data

〈ψ(r)〉MC

0.1 0.118752 0.117462 0.12224 0.100595 1.01098
0.2 0.358803 0.330388 0.341543 0.291006 1.08601
0.3 0.53872 0.525525 0.538984 0.478009 1.02511
0.4 0.692572 0.676598 0.689048 0.632645 1.02361
0.5 0.812419 0.785423 0.794655 0.752829 1.03437
0.6 0.875961 0.864225 0.870754 0.841176 1.01358
0.7 0.928905 0.919125 0.923237 0.904608 1.01064
0.8 0.965882 0.957214 0.959358 0.949648 1.00906
0.9 0.989199 0.9827 0.983566 0.979645 1.00661
1.0 1.00000 1.00000 1.00000 1.00000 1.00000

14 GeV < Ejet ≤ 30 GeV

r 〈ψ(r)〉data 〈ψ(r)〉MC 〈ψ(r)〉MC
dir 〈ψ(r)〉MC

res
〈ψ(r)〉data

〈ψ(r)〉MC

0.1 0.112941 0.130352 0.133548 0.119066 0.866436
0.2 0.318927 0.3482 0.356885 0.317538 0.915931
0.3 0.477738 0.536454 0.546071 0.502499 0.890548
0.4 0.627669 0.679187 0.688368 0.646776 0.924147
0.5 0.742551 0.783691 0.790981 0.757955 0.947505
0.6 0.83287 0.859326 0.864221 0.842046 0.969213
0.7 0.90995 0.914696 0.917574 0.904536 0.994811
0.8 0.949003 0.953844 0.955583 0.947706 0.994925
0.9 0.982871 0.981106 0.98178 0.978725 1.0018
1.0 1.00000 1.00000 1.00000 1.00000 1.00000

Table B.4: The mean integrated jet shape 〈ψ(r)〉 at hadron level at different values of the cone
radius r in three regions of Ejet for DIS data. Also listed are the total, direct and resolved RapGap
Monte Carlo predictions. the last column shows the ratio of the mean integrated jet shape in data
over the Monte Carlo values.
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40 GeV ≤Wγp ≤ 180 GeV

r 〈ψ(r)〉data 〈ψ(r)〉MC 〈ψ(r)〉MC
dir 〈ψ(r)〉MC

res
〈ψ(r)〉data

〈ψ(r)〉MC

0.1 0.109709 0.114002 0.115995 0.106964 0.962344
0.2 0.332857 0.318564 0.324237 0.298538 1.04487
0.3 0.510446 0.511547 0.520507 0.479916 0.997847
0.4 0.669769 0.666102 0.675653 0.632383 1.0055
0.5 0.786342 0.779602 0.787422 0.751995 1.00865
0.6 0.866061 0.861643 0.86746 0.841108 1.00513
0.7 0.926471 0.918806 0.922565 0.905533 1.00834
0.8 0.961336 0.957411 0.959572 0.94978 1.0041
0.9 0.988268 0.983342 0.984231 0.980202 1.00501
1.0 1.00000 1.00000 1.00000 1.00000 1.00000

180 GeV < Wγp ≤ 230 GeV

r 〈ψ(r)〉data 〈ψ(r)〉MC 〈ψ(r)〉MC
dir 〈ψ(r)〉MC

res
〈ψ(r)〉data

〈ψ(r)〉MC

0.1 0.106068 0.118698 0.122415 0.105576 0.893597
0.2 0.330119 0.324981 0.332817 0.297318 1.01581
0.3 0.499824 0.515439 0.524279 0.484231 0.969705
0.4 0.647521 0.666479 0.674875 0.636839 0.971555
0.5 0.772445 0.778407 0.785334 0.753952 0.992341
0.6 0.86113 0.859603 0.864524 0.84223 1.00178
0.7 0.922894 0.916832 0.919915 0.905947 1.00661
0.8 0.958512 0.956064 0.957777 0.950018 1.00256
0.9 0.980943 0.982472 0.983088 0.980301 0.998443
1.0 1.00000 1.00000 1.00000 1.00000 1.00000

230 GeV < Wγp ≤ 280 GeV

r 〈ψ(r)〉data 〈ψ(r)〉MC 〈ψ(r)〉MC
dir 〈ψ(r)〉MC

res
〈ψ(r)〉data

〈ψ(r)〉MC

0.1 0.119135 0.120193 0.123721 0.107738 0.991191
0.2 0.306708 0.328024 0.335959 0.30001 0.935019
0.3 0.468398 0.518373 0.527239 0.487074 0.903593
0.4 0.634967 0.668465 0.676975 0.638422 0.949887
0.5 0.760087 0.779459 0.785896 0.756736 0.975147
0.6 0.847126 0.860645 0.865163 0.844694 0.984293
0.7 0.926763 0.917192 0.920304 0.906208 1.01043
0.8 0.962076 0.956114 0.957905 0.949789 1.00624
0.9 0.98798 0.982408 0.983314 0.979213 1.00567
1.0 1.00000 1.00000 1.00000 1.00000 1.00000

Table B.5: The mean integrated jet shape 〈ψ(r)〉 at hadron level at different values of the cone
radius r in three regions of Wγp for DIS data. Also listed are the total, direct and resolved RapGap
Monte Carlo predictions. the last column shows the ratio of the mean integrated jet shape in data
over the Monte Carlo values.
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xobsγ ≤ 0.75

r 〈ψ(r)〉data 〈ψ(r)〉MC 〈ψ(r)〉MC
dir 〈ψ(r)〉MC

res
〈ψ(r)〉data

〈ψ(r)〉MC

0.1 0.122758 0.109761 0.110128 0.108464 1.11842
0.2 0.319206 0.302441 0.302559 0.302025 1.05543
0.3 0.482772 0.490159 0.490554 0.488763 0.984929
0.4 0.628781 0.645382 0.646805 0.64036 0.974277
0.5 0.759165 0.762719 0.763921 0.758474 0.99534
0.6 0.858792 0.849666 0.850617 0.846309 1.01074
0.7 0.924686 0.910888 0.911555 0.908532 1.01515
0.8 0.958703 0.953242 0.953762 0.951408 1.00573
0.9 0.988916 0.981844 0.982202 0.980579 1.0072
1.0 1.00000 1.00000 1.00000 1.00000 1.00000

xobsγ > 0.75

r 〈ψ(r)〉data 〈ψ(r)〉MC 〈ψ(r)〉MC
dir 〈ψ(r)〉MC

res
〈ψ(r)〉data

〈ψ(r)〉MC

0.1 0.102052 0.118243 0.122151 0.104446 0.86307
0.2 0.330395 0.327079 0.336428 0.294076 1.01014
0.3 0.506785 0.519437 0.531585 0.476551 0.975643
0.4 0.668837 0.671338 0.683176 0.629546 0.996275
0.5 0.785303 0.782553 0.792263 0.748273 1.00351
0.6 0.862354 0.862883 0.870036 0.83763 0.999387
0.7 0.924999 0.919062 0.923754 0.902497 1.00646
0.8 0.961092 0.957268 0.959914 0.947927 1.004
0.9 0.983998 0.982986 0.984057 0.979206 1.00103
1.0 1.00000 1.00000 1.00000 1.00000 1.00000

Table B.6: The mean integrated jet shape 〈ψ(r)〉 at hadron level at different values of the cone
radius r in two regions of xobsγ for DIS data. Also listed are the total, direct and resolved RapGap
Monte Carlo predictions. the last column shows the ratio of the mean integrated jet shape in data
over the Monte Carlo values.
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Herrn Dr. Benno List danke ich sehr für die Übernahme der Betreuung meiner Analyse, das
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Bedanken möchte ich mich auch bei Alexander Grünwald für den regen Austausch von Erfahrungen
und die vielen Diskussionen.

Ausserdem gilt mein Dank meiner Familie, besonders meinen Eltern, die mir immer Rückhalt
gegeben haben. Schließlich gilt mein besonderer Dank Eva, die mit ihrer ausdauernden und
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