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Abstract

Fixed order perturbation theory is not able to describe the transversal momentum spectrum of

a electro-weak gauge boson. It is needed to resum whole classes of enhanced logarithmic terms.

Depending on the phase space region different classes of logarithmic terms can be important.

There are different approaches to sum such logarithmic terms including evolution equations of

parton density functions. The evolution equation DGLAP which is valid for integrated parton

density functions can be used to effectively produce unintegrated parton density functions using

parton shower algorithm, but this approach involves kinematical approximations. With opening

of phase space region Λ2
QCD ≪ µ2 ≪ s at the LHC approaches based on the BFKL and the

CCFM equations are becoming more relevant. The BFKL and the CCFM equations define gen-

uine unintegrated parton density functions which can be convoluted with matrix elements with

off-shell initial state gluons. The off-shell matrix element for Z/W + QQ̄ production was calcu-

lated the Monte Carlo Cascade based on the CCFM evolution equation was used to study the

phenomenology of this process concentrated on observables connected with the electro-weak gauge

boson for the LHC kinematics. The widening of the peak of the transversal momentum spectrum

of the electroweak boson is observed and discussed. The forward jet production using uninte-

grated parton density functions and off-shell matrix elements at the LHC was studied as a probe

for small-x dynamics. Differences in azimuthal decorrelation and harder forward jet transversal

momentum spectrum are discussed.

Zusammenfassung

Störungstheorie in bestimmter Ordnung der starken Kopplung ist nicht in der Lage, die Transver-

saleimplusverteilung von elektro-schwachen Eichbosonen zu beschreiben. Es ist notwendig, ganze

Klassen von führenden logarithmischen Beiträgen aufzusummieren. Abhängig vom Phasenraum

koennen verschiedene Klassen von logarithmischen Beiträgen wichtig sein. Es gibt verschiedene

Ansätze, diese logarithmischen Beiträge zu summieren, wie z.B. in den Evolutionsgleichungen der

Parton Dichte Funktionen. Die Entwicklungsgleichung DGLAP, welche für die integrierte Parton

Dichte Funktion gültig ist, kann benutzt werden, um effektiv unintegrierte Parton Dichte Funk-

tionen mit Hilfe des Parton-Shower Algorithmus zu erzeugen, allerdings beinhaltet dieser Ansatz

kinematische Approximativen. Mit der Erweiterung der Phasenraums am LHC Λ2
QCD ≪ µ2 ≪ s

werden Ansätze basierend auf den BFKL und CCFM Gleichungen zunehmend relevant. Die aus

den BFKL und CCFM Gleichungen definieren unintegrierten Parton Dichte Funktionen können

mit den Matrixlementen mit "Off-shell" Gluoenen verknüpft werden. Die off-shell Matrixelement

Z/W + QQ̄ Produktion wurden berechnet und werden nun im Monte-Carlo Cascade auf der

Grundlage der CCFM Gleichung benutzt um die Phänomenologie dieses Prozesses bei LHC Kine-

matik zu studieren. Die Verbreiterung des transversalen Impulsspektrum der elektroschwachen

Bosonen wird eingehend diskutiert. Die Forward-Jet-Produktion mit unintegrierten Parton Dichte

Funktionen und off-shell Matrixelemente am LHC wurde als Sonde für die Dynamik bei kleinen

x. Unterschiede in der azimuthalen Korrelation und dem härteren Transversalimpulsspektrum

werden diskutiert.
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Chapter 1

Introduction

The large progress made in experimental and theoretical physics in the first half of the
20th century for which grounds were based already in the end of the 19th century by
the discovery of the electron by Joseph Thomson in 1897, continuing with the discovery
of the proton by Ernest Ruthford by his famous experiment in 1919, the discovery of the
Schrödinger equation by Erwin Schrödinger in 1926 and the Heisenberg relations in 1925 by
Werner Heisenberg, the discovery of the Dirac equation in 1928 by Paul Dirac, opened way
to formulation of the quantum field theory and to perturbative approach in a diagrammatic
form used today.

Quantum field theory was with huge success applied to electromagnetic phenomena.
Indeed the most precise agreement of a theory prediction and experiment is the anomalous
magnetic moment of the electron minus 2 agreeing on 8 digits is a unprecedented success
of the quantum electro-dynamics (QED). QED being a abelian gauge theory with gauge
group U(1) is the simplest discovered quantum field theory realised in the nature.

An important step in our understanding of particle physics was the discovery that the
proper field theory describing so called strong interactions is a non-abelian gauge theory
with gauge group SU(3). Quantum chromo-dynamics (QCD) together with experimental
discoveries of quarks explained all the features of particle mass spectra observed and still
successfully predicts and explains experimental particle data. Understanding of the nature
of strong interaction was a big step in understanding the structure and origin of all the
particles which build most of the visible matter in the Universe – hadrons.

Another force which had to be explained was a force causing the particles as leptons
decay on much larger time scales as hadrons. The force was named weak force and it was
found by Sheldon Glashow, Abdus Salam and Steven Weinberg that the correct quantum
field theory describing it is SU(2) gauge theory. Part of the discovery was a finding that the
electromagnetic and the weak interaction can be unified under one quantum field theory.
All the interactions mentioned can be included into one quantum field theory called the
Standard Model of particle physics (shortly called the Standard Model or the SM) with
gauge theory with SU(3) × SU(2) × U(1) symmetry.

One of the still remaining problems of the SM is the question of mass and fermion
families. The SM as a theory would work without having the masses of particles included,
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but experimental evidence shows that even elementary particles without known internal
structure have finite masses. The simplest and quite natural way how to include masses
of particles is to spontaneously break the SU(2) × U(1) symmetry by a scalar field with
a negative vacuum expectation value. The breaking results into emergence of Goldstone
bosons of which all except one disappear. The remaining scalar field is called the Higgs
field and through interactions with weak interaction bosons, leptons and quarks creates
mass terms for these particles.

The interaction we did not mention and which plays a significant role for the existence
of the Universe, but is by present knowledge negligible for the internal structure of matter
is the gravitational force. All the known forces except of gravitational force are studied by
particle physics. Since the strong interaction and weak interaction manifest them selves in
collisions of particles at high energies it is the high energy particle physics which can study
detailed properties of the matter in the Universe and gives answers to questions related to
the origin of the world around us.

In the next chapter, 2, an overview of QCD physics on particle colliders will be done.
Then in the chapter 3 evolution equations of parton density functions, their implementa-
tion in Monte Carlo programs and k⊥-factorisation will be introduced. An overview on
resummation methods for electro-weak gauge boson is done in 5. The chapters 6 and 7
together with Appendix 9 part B and C represent my work during my PhD. studies. In
the chapter 6 the calculation of Z/W/γ + QQ̄ + X in proton-proton collisions is discussed.
This chapter is an extension of 9 part B where a more detailed phenomenological study
was done. In the chapter 7 the calculation of a forward jet production in high energy
factorisation is discussed and some phenomenological results are presented. The part C
of Appendix 9 discusses the method of orthogonal amplitudes used for calculation of the
matrix element g∗ + g∗ → Z/W/γ + QQ̄. The thesis is concluded and summarised in the
chapter 8.



Chapter 2

Overview of QCD at colliders

In high energy experiments two different kinds of interactions, electroweak and strong, play
a significant role. In this chapter we will go through different particle collider types and
will discuss the significance of particular interaction types. We will exclude a discussion of
physics beyond the SM since the topic is too wide and not relevant for our discussions.

2.1 From e+e− to e−p to pp collider

2.1.1 e+e− colliders

The simplest type of a particle collider is a collider which collides electrons and positrons.
The reason is that electrons and positrons are to our present knowledge elementary particles
without internal structure. In a case when the colliding electron and positron annihilate
into a gauge boson the collision process can be therefore treated completely perturba-
tively at high energies, figure 2.1.1 a). Another type of interaction of an electron and an
positron can involve the exchange of almost real photons which can contribute with a non-
perturbative component, figure 2.1.1 b). Initial state radiation in the process e+e− → X
can be described in leading order (LO) and next to leading order (NLO) purely by elec-
troweak interactions, QCD plays a significant role for corrections of the final state.

The cross section for the e+e− annihilation in LO can be written with the hard process
matrix element Me+e−→γ∗/Z→X in simple form

σe+e− =

∫

Ωf

1

2s
|Me+e−→γ∗/Z→X|2dΩf (2.1.1)

or rewritten as a cross section differential in the mass of the s-channel virtual electro-
weak gauge boson

dσe+e−

dM2
Z

=

∫

Ωf

1

2s
|Me+e−→γ∗/Z→X|2δ(s − M2

Z)dΩf , (2.1.2)
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Figure 2.1.1: Processes contributing to e+e− → X, a) annihilation, b) photon exchange.

where Ωf is the final state particle phase space and s is the e+e− collision energy
squared. The factor 1/(2s) is the flux factor for the e+e− collision in the case when the
electron and positron collide head-on. The more general formula for the flux factor reads [1]

1

2Ee+2Ee−|ve+ − ve−|
, (2.1.3)

where Ee+ and Ee− are the energies and ve+ and ve− are velocities of the electron and
positron respectively.

Everything described up to now in this subsection can be calculated entirely in frame-
work of QED. QCD becomes important, when the higher order corrections to the total
cross section of e+e− scattering are calculated, or when n-jet with n > 2 observables are
calculated. Typical higher order diagrams are in the figure 2.1.2. There are also elec-
troweak corrections which are however important only at higher the next to leading order,
because the electroweak coupling constant is approximately 10 times smaller the αS. Since
α ∼ 0.01 and αS ∼ 0.1, the LO - the tree level order cross section is proportional to α2,
the next to NLO contributions are proportional to α2αS and next to NLO corrections are
proportional to α2α2

S and to α3αS.

Figure 2.1.2: Higher order QCD corrections to total e+e− cross section. Left diagram
contributes also to 3-jet cross section.

QCD corrections have been calculated to high orders in fixed order perturbation theory
approach, but also certain classes of logarithmic terms to all orders have been summed,
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summarised in [3]. By looking at diagrams in 2.1.2 we can see that in leading and next to
leading order of the perturbation theory the QCD corrections factorise from the e+γ∗e−

vertex. One can consider two processes: annihilation of e+e− pair into an off-shell photon
and off-shell photon decay into QCD particles.

What is important from the point of view of QCD is that in the e+e− scattering
cross section data, with increasing centre of mass energy

√
s of the collision, a step struc-

ture in the cross section was observed. The steps can be associated with mass thresh-
olds for quark-antiquark production. One can see these threshold effects in plots of ratio
R = (σe+e−→hadrons/σe+e−→µ+µ−), figure 2.1.3. The cross section corresponded to the one
predicted by QED, but was roughly bigger by a factor of 3. The factor 3 was identified
as the contribution of all 3 colours of the quarks. Each step in the in R as a function of√

s corresponds to increase by a contribution from a production channel of a new quark
species.

Electron-positron colliders represent a very clean environment to study perturbative
QCD since it contributes at LO and NLO only in the final state and the non-perturbative
component can be reduced to hadronisation of final state partons. Examples of e+e−

colliders are SLC at SLAC in California (USA), LEP at CERN, PETRA at DESY in
Hamburg, Germany.

2.1.2 e±p colliders

The situation at a collider which collides electrons and protons is more complicated. The
proton is a hadron composed of quarks and gluons which are confined inside of it by the
strong force. The proton will be always a source of a non-perturbative component because
perturbative techniques cannot be applied to its structure, because the typical scale at
which are the gluon and quark field interacting in proton is bellow its mass mp ∼ 1 GeV .
The coupling constant αS(µ) is not a reliable expansion parameter for µ < 1 GeV .

Let us consider now electron-proton scattering via a photon exchange as depicted in
figure 2.1.4. We will first discuss the kinematics of this process. The momenta of the
scattered electron before and after interaction can be, in a frame in which the initial state
electron moves along the z-axis, written in this form

k = (E, E, 0, 0),

k′ = (E ′, E ′ cos θ, E ′ sin θ, 0)
(2.1.4)

where E and E ′ are the energy of the scattered electron before and after the collision
respectively. The angle θ is the angle between the momentum of the electron after the
scattering and the z-axis (the direction of the incoming electron). In figure 2.1.4 q = k−k′

is the 4-momentum of the off-shell photon with off-shellness q2 < 0. The virtuality of the
photon can be used as a hard scale and it is therefore useful to define quantity

Q2 = −q2 = −(k − k′)2 = 2k.k′ = 2EE ′(1 − cos θ) (2.1.5)
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Figure 2.1.3: Quark production threshold effects in e+e− scattering [1].
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For convenience one defines variables

s = W 2 = (p + k)2 = 2p.k,

x =
Q2

2Mν
=

Q2

2M(E − E ′)
,

y =
p.q

p.k
=

E − E ′

E
.

(2.1.6)

In a scattering of two particles are exactly 2 kinematical variables free and all other
variables can be calculated from them. The usual choice is Q2 and x, but also combinations
E ′ and θ, Q2 and ν and x and y are used. The variable y is called inelasticity because
in the laboratory frame it corresponds to the relative energy of the electron transmitted
into proton. The variable s = W 2 describes the invariant energy of the electron-proton
collision.

Figure 2.1.4: Notation used in text for the ep scattering process.

The cross section for this process can be written in a factorised form and can be con-
sidered as a off-mass shell photon-proton scattering times a factor describing the photon
emission from electron times a photon flux factor. To write an expression for the cross
section of photon-proton scattering we will consider coupling of a photon to a proton flux
by

Jµ
p (ξ)Aµ(ξ) (2.1.7)

where Jµ
p (ξ) is the proton flux and Aµ(ξ) the photon flux in the 4-point ξ.

Taking advantage from this structure we can now write the current matrix element of
the transition of the proton state P with momentum p into a state X with momentum pX

〈X(pX)|Jµ
p (ξ)|P (p)〉 = 〈X(pX)|Jµ

p (0)|P (p)〉e−i(p−pX).ξ (2.1.8)

The hadron tensor which carries the information about the cross section from the hadron
side can be written using (2.1.8)

W µν =
1

2

∑

pol.

∑

X,pX

〈P (p)|Jµ
p (0)|X(pX)〉〈X(pX)|Jν

p (0)|P (p)〉(2π)3

× δ(4)(pX − p − q),

(2.1.9)
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By applying the factor 1/2 and summing over polarisations we average over the proton
polarisation states. We consider a massive proton with mass M .

Using an identity for the delta function we can rewrite (2.1.9) into

W µν =
1

2

∑

pol.

∑

X,pX

∫
d4ζ

(2π)4
〈P (p)|Jµ

p (0)|X(pX)〉〈X(pX)|Jν
p (0)|P (p)〉(2π)3

× e−i(pX−p).ζeiq.ζ

(2.1.10)

We can then rewrite last equation using the identity in (2.1.8) to

W µν =
1

2

∑

pol.

∑

X,pX

∫
d4ζ

(2π)4
〈P (p)|Jµ

p (ζ)|X(pX)〉〈X(pX)|Jν
p (0)|P (p)〉(2π)3eiq.ζ (2.1.11)

We can now use the completeness relation
∑

X,pX

|X(pX)〉〈X(pX)| = 1 (2.1.12)

which simplifies (2.1.11) to

W µν =
1

2

∑

pol.

∫
d4ζ

(2π)4
〈P (p)|Jµ

p (ζ)Jν
p (0)|P (p)〉(2π)3eiq.ζ. (2.1.13)

We can write the most general expression for a tensor depending on 4-momenta p and q
because the right-hand side of (2.1.13) depends only on these momenta. The most general
tensor can be written has this form [4]

W µν = −W1g
µν + W2

pµpν

M2
+ W3ǫ

µνκλ pκqλ

M2
+ W4

qµqν

M2
+ W5

pµqν + pνqµ

M2
(2.1.14)

Scalar functions W1, W2, W3, W4 and W5 depend only on Lorentz invariants p.q and
q2. The factor 1/M2 is used to keep all the W -functions of the same dimension.

The equation (2.1.14) does include terms with the Levi-Civita tensor ǫαβγδ, but because
the whole process of photon-proton scattering conserves parity and terms proportional to
Levi-Civita tensor would violate parity. The function W3 = 0. If we would on the other
hand consider also W and Z boson exchange the function W3 6= 0, because of parity
violation in such processes.

The current Jµ
p (x) is being conserved which results into an identity for the tensor W µν

qµW µν = 0 (2.1.15)

which can be used to derive relations between functions W1, W2, W4 and W5 and to
reduce the number of independent functions describing W µν . The relations one obtains are

W5 = −p.q

q2
W2,

W4 = −p.q

q2
W5 +

M2

q2
W1.

(2.1.16)
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The structure of W µν reduces to

W µν = W1

(
− gµν +

qµqν

q2

)
+ W2

1

M2

(
pµ − p.q

q2
qµ
)(

pν − p.q

q2
qν
)

(2.1.17)

The cross section can be written as a contraction of the lepton tensor and hadron tensor
in this way

dσep→X

dΩdE ′ =
α2

Q4

E ′

E
LµνWµν , (2.1.18)

The tensor Lµν also satisfies the condition qµLµν = 0 and that is why in (2.1.17) we
do not have to consider terms proportional to qµ and qν . The application of this leaves us
with an expression for the relevant part of W µν

W µν = −W1g
µν +

1

M2
W2 pµpν . (2.1.19)

What remains is to calculate the Lµν , which is:

Lµν =
1

2

∑

λλ′

ūλ′(k′)γµuλ(k)ūλ(k)γνuλ(k
′) = 2(k′µkν + k′νkµ − k.k′gµν) (2.1.20)

The right-hand side of the equation (2.1.18) then gives

dσep→X

dΩdE ′ =
α2

4E2 sin4 θ
2

(
2W1 sin2 θ

2
+ W2 cos2 θ

2

)
. (2.1.21)

It is convenient to define functions

F1 = MW1,

F2 = νW2.
(2.1.22)

It is possible to fit the functions F1 and F2 by comparing the data with the formula
for the cross section. For this it is enough to measure the energy and the angle θ of the
scattered electron. After obtaining the functions F1 and F2 from experiment in 1960’s at
SLAC linear accelerator it came out that functions F1 and F2 are not functions of 2 variables
θ and E ′, but only one of them. This behaviour is called Bjorken scaling, figure 2.1.6. The
solution to this mysterious behaviour came from Richard Feynman who suggested existence
of almost free constituents of the proton. How the existence of free proton constituents can
explain the Bjorken scaling we should first compare the expressions for the cross section of
deep inelastic electron-proton scattering with cross section of elastic scattering of electron
and point-like proton. The cross section for the latter one reads

dσep→ep

dΩdE ′ =
α2

4E2 sin4 θ
2

( Q2

2M2
sin2 θ

2
+ cos2 θ

2

)
δ
(
ν − Q2

2M

)
. (2.1.23)



CHAPTER 2. OVERVIEW OF QCD AT COLLIDERS 10

Figure 2.1.5: Diagram of photon scattering on one of the partons.

One can find the functions W point
1 and W point

2 , by comparing the equations (2.1.21)
and (2.1.23). The resulting functions are

2W point
1 =

Q2

2M2
δ
(
ν − Q2

2M

)
, W point

2 = δ
(
ν − Q2

2M

)
. (2.1.24)

The model based on the assumption of free proton constituents is called parton model
and the constituents of proton are called partons. The model works in the infinite proton
momentum frame. Each of the partons belong to some parton species i and can carry a
momentum fraction 0 < κ < 1 of the proton momentum. When a photon interacts with
the proton it hits one of the partons. The probability for a parton of species i carrying
a proton momentum fraction κ to be struck by the photon is fi(κ) - parton density. The
functions fi(κ) satisfy normalisation condition

∑

i

1∫

0

dκ κfi(κ) = 1. (2.1.25)

Partons were later identified as quarks and gluons of QCD. Assuming the knowledge of
functions fi(κ), the parton model gives us a possibility to calculate the functions W1 and
W2. We will calculate W2 by convoluting the expression for W point

2 with the sum of parton
densities weighted by charges of the partons squared

F2(x) = νW2(x) =
∑

i

1∫

0

dκ e2
i fi(κ)δ

(
ν − Q2

2Mκ

)
ν

=
∑

i

1∫

0

dκ e2
i fi(κ)δ

(
1 − Q2

2Mκν

)
=
∑

i

1∫

0

dκ e2
i fi(κ)δ

(
1 − x

κ

)

=
∑

i

1∫

0

dκ e2
i fi(κ)

κ2

x
δ
(
κ − x

)
=
∑

i

e2
i xfi(x).

(2.1.26)
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Figure 2.1.6: The Bjorken scaling observed for values of x ∼ 0.2 [2].
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By doing the same exercise we would obtain expression F1(x) = MW1(x) = 1
2

∑
i

e2
i fi(x).

We see that

F2(x) = 2xF1(x), (2.1.27)

which is called Callan-Gross relation and has a specific form because of the spin 1
2

of the partons. If partons would have spin different than 1
2

the equation (2.1.27) would
have a different form. The Callan-Gross relation is valid for a certain kinematic range of
experimental data.

To the end of this chapter we have to comment on Bjorken scaling. Bjorken scaling is
not exact and is violated for small-x and also for x > 0.3 (figure 2.1.6) so the functions
F1(x) and F2(x) will be also functions of Q2: F1(x, Q2), F2(x, Q2). This behaviour was
experimentally discovered at EMC at CERN, SLC at SLAC and at TeVatron and was also
found in HERA data at DESY. From the theoretical point of view the violation of the
Bjorken scaling is caused by higher order QCD corrections to the photon-parton/quark
scattering in figure 2.1.7.

Figure 2.1.7: Diagrams which cause violation of Bjorken scaling.

The final result of this chapter is that the cross section for a process γ∗p → OH + X,
OH being a final state of a hard subprocess γ∗i → OH and i being a parton species, can
be written as convolution of the cross section for the subprocess γ∗p → OH and a PDF
(figure 2.1.8)

dσγ∗p→X+OH
=
∑

i

1∫

0

dξ dσ̂iγ∗→OH
(ξ, Q2)fi(ξ, Q

2), (2.1.28)

where the sum runs through all possible parton species. The cross section for ep →
OH + X can be expressed using (2.1.28)

dσep→X+OH
=

α

2πQ2

1 + (1 − y)2

y
dσγ∗p→X+OH

. (2.1.29)

We did not comment on the Q2 - the scale dependence of the PDFs. We will discuss it
in the section 3.1.
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Figure 2.1.8: Diagrammatic representation of the formula (2.1.28).

2.1.3 pp colliders

The last type of a collider which will be presented here is the p/p̄p or hadron collider.
In hadron colliders both colliding particles introduce a non-perturbative factor. To be
able at all to use perturbation theory for such scattering process one needs to ensure the
presence of a hard scale. A way how to do it is to require a hard jet or any hard subprocess
to happen during the hadron-hadron collision. One can then push the concept from the
section 2.1.2 further and calculate the cross section of the process p/p̄ + p → X + OH ,
where OH is set of particles originating from the hard subprocess, by assuming a collision
of any combination of two partons, one originating from one of the protons and other from
the other one, which can result in the final state X + OH . The formula for the differential
cross section then will be

dσpp→X+OH
=
∑

i,j

1∫

0

dx1

1∫

0

dx2 dσ̂ij→OH
(x1, x2, µ

2)fi(x1, µ
2)fj(x2, µ

2). (2.1.30)

where dσ̂ij→OH
(x1, x2, µ

2) is the partonic cross section which describes the production
of OH in the collision of partons i and j. Partons i and j carry momentum fractions of
their mother protons x1 and x2 respectively. The summation over i and j goes through all
combinations for which the production of X + OH is possible. The partonic cross section
can be differential in some of the kinematic variables of OH in such a way that the presence
of the hard scale µ2 is ensured. For example if OH = {Z} then we can integrate over all
the phase space of the gauge boson Z, because its mass mZ ensures presence of a hard
scale µ2 = m2

Z .
From the experimental point of view hadron colliders present a very complicated setup

to study the hard subprocess. Experimentalists have to deal with the fact that the collision
of the partons in the hard subprocess does not happen in the center of mass frame. In fact
in each hadron-hadron collision is the center of mass frame of the colliding partons different.
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Figure 2.1.9: Schematic diagram of hadron-hadron scattering. In X1 and X2 are included
remnants of protons and produced soft particles.

It is therefore very important to measure the parton density functions at electron-proton
colliders, where the situation is much simpler. The advantage of hadron-hadron colliders is
much higher luminosity and less energy losses through synchrotron radiation which allows
for higher beam energies. The fact that the partonic collision energy is different in every
collision can be viewed as an advantage for discovery searches because a large energy range
is probed. One has more trouble with all what one can "see", but one can "see" more.

The formula (2.1.30) suggests that the calculation of the cross section factorises into
a convolution of two non-perturbative factors associated with the initial state hadrons
and a perturbative factor associated with the hard subprocess. This scheme is called
factorisation. The factorisation in hadron-hadron collisions is used extensively to calculate
cross sections with different hard subprocesses. We will show few applications of (2.1.30) in
later sections of the thesis. However factorisation was proven only for a limited number of
them like for example Drell-Yan production of an electroweak gauge boson [5]. The reason
why the factorisation can for some processes fail is that we are dealing with scattering
of hadronic objects which can interact with QCD particles such as gluons and quarks. If
quarks or gluons appear in the final state they can interact with one of the protons. Such
interaction in principle unsupressed can lead to a violation of factorisation. A detailed
analysis of such effects has been done in [6].



Chapter 3

Evolution equations

In the previous section 2 we have come to conclusion that Bjorken scaling in deep in-
elastic scattering is broken and PDFs depend not only on x, which is proton momentum
fraction carried by the hard subprocess initiating parton, but also on the hard scale Q2.
Bjorken scaling is broken by contribution from graphs with additional parton radiation
(see figure 2.1.7). Since every extra radiation of a parton gives rise to a large logarithmic
correction it is needed to resum all the dominant contributions from all possible graphs.
This is done by the evolution equation for PDFs called the DGLAP [7] equation. The
DGLAP equation is an integro-differential equation for the Q2 dependence of the PDFs.
In the next section we will describe the DGLAP equation and its application to parton
shower programs.

Monte Carlo programs like Pythia [8], Herwig [9], Sherpa [10] and many others
use solutions of DGLAP equation to generate exclusive final states by assuming a proba-
bilistic interpretetaion of the Altarelli-Parisi kernel. In the approach called parton shower
single parton emissions are generated satisfying momentum conservation and with finite
transversal momentum of the emitted parton. Note that the splitting kernel of the DGLAP
equation is derived in limit in which the transversal momentum of the emitted partons is
very small. Numerical methods which use parton shower solutions of the DGLAP equation
go beyond this limit. We will discuss these methods in more detail.

3.1 The DGLAP evolution equation and its Monte Carlo

implementation

In this section we will discuss how one obtains transversal momenta of the initial state par-
tons of the hard subprocess in the framework of the evolution equation DGLAP, although
the DGLAP equation is based on collinear factorisation and holds for integrated PDFs.

To show how can be the DGLAP equation interpreted probabilisticly we will derive it
entirely as an equation for a probability distribution of finding a parton inside a proton
with a proton momentum fraction x and at a scale squared q2.

The collinear factorisation is based on the observation that by having a general parton-
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scattering process with n external legs and by making an i-th leg with four-momentum
pi collinear to a j-th one with four-momentum pj the amplitude squared of such process
factorises into amplitude squared of parton-scattering process with (n − 1) external legs
with partons i and j replaced by parton k with four-momentum pk = pi+pj, the propagator
of the parton k, a factor of αS and a function of the momentum fraction z – Pk→ij(z) called
Altarelli-Parisi splitting function. One can express it a form of

lim
θij→0

|Mn|2 =
αS

πp2
k

Pk→ij(z)|M(n−1)|2 (3.1.1)

The momentum fraction z defines how much of the momentum pk is carried away by
the parton j.

The function
αS

πp2
k

Pk→ij(z) dz dp2
k (3.1.2)

depends on flavour of the partons i and j and can be interpreted as a probability of
the parton of flavour k to split into partons i and j in which j is carying fraction z of
the momentum pk away. One can push the probability interpretation further and find an
expression for the probability of no-emission of a parton in an scale interval (q0, q) with
any fraction of momenta pk emission of a parton after an interval in which no splitting
happened. However, one has to keep in mind that a probabilistic interpretation is valid only
at leading logarithmic accuracy. To go beyond leading order, the renormalisation group
equation formalism is more useful, although there has been some progress in constructing
a parton shower algorithm at NLO accuracy [11].

One can calculate the expression for the probability of no-emission in the scale interval
(q0, q) by cutting it into small infinitesimal pieces and expressing the probability of no
emission of a parton in a infinitesimal interval as

P/i = 1 − αSdq2

πq2
dz Pk→ij(z) (3.1.3)

when one then multiplies each probability 3.1.3 in each interval, one obtains

∆k→ij(q0, q) =

∞∏

l=0

P/l |(ql,ql+dql) = exp

(
−

q2∫

q2
0

dq′2

q′2
αS

π

1−Q2
0

q′2∫

Q2
0

q′2

dz Pk→ij(z)

)
(3.1.4)

called also Sudakov form factor1. We have to point out that we have introduced an
infrared cut-off for the upper and lower limits of integration over z. One can obtain this
form of the cut-offs by considering a lowest possible mass Q0 of any particle in the process.
We will derive it later, but first we will discuss the assumptions behind the derivation of
splitting functions. The splitting functions are derived with an assumption that virtuality

1The name Sudakov form factor originates from work of author of [12] on QED radiation.
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of the parton k with p2
k is much bigger than the virtuality parton j with pj – p2

k ≫ p2
j . The

parton i is assumed to be on-shell with virtuality equal to zero. In fact in the calculation of
the splitting function Pk→ij(z) also the virtuality of parton j is taken to be infinitesimally
small – p2

j ∼ 0. The plus and minus components in the lightcone decomposition of the
particle momenta in the splitting process are related by these equations

p−k =
p2

k

2p+
k

,

p−j =
p2

j + p2

2zp+
k

,

p−i =
p2

i + p2

2(1 − z)p+
k

(3.1.5)

where p is the transverse momentum of one of the daughters of parton k. The minus
components are related by four-momentum conservation equation

p−k = p−j + p−i , (3.1.6)

After applying (3.1.5) to (3.1.6) we get an equation for the virtualities of the partons
i, j and k, z and p2

z(1 − z)p2
k − (1 − z)p2

j − zp2
i = p2. (3.1.7)

The condition for p2 to be positive will give us kinematic limit for z depending on the
virtualities of the partons. We expect pi to be on-shell with a small mass Q0, pj to be off-
shell with small virtuality and pk off-shell with positive virtuality. From this assumptions
and by replacing p2

k with q2 we get

z < 1 − Q2
0

q2
. (3.1.8)

If we would let parton i play the role of the fragmenting parton we would get an
inequality restricting the lower limit of the integral in (3.1.4)

z >
Q2

0

q2
. (3.1.9)

The partons i and j carry small virtuality and are able to radiate other partons and by
doing it repeatedly they reduce their virtuality. We say that the partons evolve from higher
to lower virtuality. When the parton radiates a certain number of partons its virtuality –
the scale variable reaches a value close to ΛQCD. Since the coupling constant αS = αS(q2)
is a function of the scale its value increases with number of radiated partons and reaches
value for which the perturbation theory is not applicable. The parton hadronizes and can
be described only by a non-perturbative object – the fragmentation function of a hadron
H and parton j – dHj(x, q2) which describes what fraction of momenta of the parton is
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carried away by the hadron. The equation which describes the evolution process is called
evolution equation and has this form

dHk(x, q2) = dHk(x, q2
0)+

npf∑

j

q2∫

q2
0

dq′2

q′2
αS

π

1−Q2
0

q′2∫

x

dz

1∫

0

dx′Pj→ik(x/x′)dHj(x
′, q′2)∆(q0, q

′)δ(zx′ − x),
(3.1.10)

where ∆(q0, q
′) is defined by

∆(q0, q
′) =

npf∏

k,j

∆k→ij(q0, q
′), (3.1.11)

number of parton flavours is labeled npf .
We have to point out that equation (3.1.12) is derived by assuming forward evolution

starting from a lower scale where we know an initial condition for the fragmentation func-
tion dHk(x, q2

0). The splitting functions in such case differ from those introduced in previous
paragraph, because we assume that parton j splits into partons i and k which carry frac-
tion fractions of parton j momentum 1 − z and z respectively. The strong ordering of the
virtualities is the same as by assuming evolution from higher scales to lower scales.

Figure 3.1.1: On the momenta variables of splitting.

The figure 3.1.1 explains the variables over which one integrates in the equation (3.1.10).
Obviously one has to integrate over all possible fragmented parton momentum fractions x′

and all possible fractions of momenta caried away by the emitted parton z.
After performing the integral over x′ we get the well known form of the DGLAP equation

dHk(x, q2) = dHk(x, q2
0) +

npf∑

j

q∫

q0

dq′2

q′2
αS

π

1−Q2
0

q′2∫

x

dz

z
Pk→ij(z)dHj(x/z, q′2)∆i(q0, q

′). (3.1.12)
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Figure 3.1.2: Schematic picture of the DGLAP equation.

This equation describes the radiation from the final state particles and describes the
evolution of the fragmentation function dHi(x, q2). The same equation can be obtained by
writing the renormalisation group equation for dHi(x, q2) since it is a description of the
renormalisation scale dependence of the fragmentation function.

One can write a similar equation for the the initial state radiation which describes the
evolution of the parton density functions (PDFs). PDFs at leading order can be interpreted
as probabilities of finding a parton of certain flavour in the colliding hadron. The DGLAP
equation for PDFs fi(x, q2) reads

fj(x, q2) = fj(x, q2
0) +

npf∑

k

q∫

q0

dq′2

q′2
αS

π

1− Q2
0

q′2∫

x

dz

z
Pk→ij(z)fk(x/z, q′2)∆i(q0, q

′). (3.1.13)

The interpretation of the equation (3.1.13) is similar to the interpretation of the equa-
tion (3.1.12).

The DGLAP equation can be solved on a grid in x, Q2 space [13] or by an other method
in which the integral of the right-hand side is evaluated using numerical integration. It can
be also analytically solved using Mellin transform of the equation derivated in q2 [14] where
the right-hand side integral results into a simple product of Mellin transforms of functions
in the integrand. Equations (3.1.12) and (3.1.13) can be implemented into Monte Carlo
showering program. We will describe the implementation in next chapter.

3.1.1 The implementation of the DGLAP equation for initial state

parton shower

There are two possibilities how to proceed by generating the emissions according to the
DGLAP equation using a Monte Carlo method.

The idea of the so called forward evolution is to generate the emissions using probability

∆i(q0, q)
αS

π

dz

z

dq2

q2
Pk→ij(x/z). (3.1.14)

going from a low scale q0 to a higher scale q. The advantage of forward evolution
algorithm for the initial state parton shower is that one starts at a nonperturbative value
of the scale and by generating parton emissions one increases the value of the scale to
the scale of the hard subprocess. Such a evolution seems to be more natural and on first
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sight more straightforward than the backward evolution, but has a big drawback by being
very ineffective. We will shortly sketch the reason for the ineffectivnes. Let us start the
evolution algorithm by choosing the proton momentum fraction of the struck parton x at
the scale qmin. We can now directly use the veto algorithm to produce emissions distributed
according to the emission probability obtained from DGLAP equation. After reaching the
hard subprocess scale one is left with a point of phase space of the hard partonic subprocess.
The problem is that it is not clear if the hard subprocess can happen in the reached phase
space point. The forward evolution algorithm does not take into account kinematical
constraints on the hard subprocess. In practice it often happens that the point in which
the evolution stopped is kinematically not allowed for the hard subprocess and whole event
has to be discarded.

The idea of the backward evolution, which was for the first time constructed in [15],
is to first generate the four-momenta of the particles involved in the hard subprocess and
then use the probability

P̃k→ij(x, z, q, q′) =
dq2

q2

αS

2π
dz Pk→ij(x/z)

fk(
x
z
, q′)

fj(x, q)
∆′(q, q′, x, z). (3.1.15)

to generate every single parton radiation in the chain. Notice that in the formula used
in the (3.1.15) is not used simple PDF of the starting parton, but a ratio of PDFs of before
and after parton radiation. This arrangement leads to a so called modified Sudakov form
factor ∆′(q, q′, x, z) and reproduces the correct PDF after a backward evolution. To see
this one has to realise that by knowing the PDF in the point (x, q) corresponding to j-th
emission of the parton the next (j + 1)-th emission is at scale value q + dq with fraction of
the mother parton momentum z.

It is useful to point out that this probability distribution describes a backward evolution
– by adding a parton emission one goes down to a lower value of the evolution scale q′ < q.
The modified splitting function P̃k→ij(x, z, q, q′) is schematicaly described in Figure 3.1.1.

=

j

i

f (x/z,q’)k

f (x,q)i

Figure 3.1.3: Schematic picture describing the modified splitting function.

The advantage of the backward evolution algorithm is that it generates the endpoints of
parton shower chains already distributed according to the partonic cross section and then
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generates the parton shower in such way that the starting point is distributed according
to the corresponding PDF.

If we know the function (3.1.15) we can use standard methods to generate random
values of q2 and z according to this distribution. In general is the function ∆(q0, q, x, z)
too complicated to be expressed in analytical form. Fortunately there is a way to generate
the desired distribution without tabulating the Sudakov form factor. To generate random
numbers according to the distribution (3.1.15) we can use the fact that the Sudakov form
factor is just a exponent of an integral of the distribution [16].To obtain the exponentiated
distribution we have to apply so called veto algorithm [8].

After generating all n emissions according to backward evolution algorithm, described
in previous paragraphs, and reaching the cut-off scale qmin one is left with set of pairs of
values {(z1, q1), (z2, q2), ..., (zn, qn)}. We assume that for every i ∈ 1, ..., n qi = qi(zi, |pi|),
where pi is the transverse two-momentum of the i-th emitted parton.

This set of values contains almost the whole information about the momenta of the
emitted partons. Using the information from the pair (zi, qi) and the on-shell condition for
the emitted parton one can reconstruct the whole 4-momentum pi. The 4-momentum of
the emitted parton can be written as follows

pi = (1 − zi)pk + yini + pi⊥ (3.1.16)

where pi⊥ is the transversal four-momentum of the emitted parton, ni is an auxiliary
ligth-like four-momentum satisfying condition ni.pk > 0 for every k, yi is momentum
fraction in the direction of n. This kind of decomposition is called Sudakov decomposition.
On-shell condition p2

i = 0 using equation (3.1.16) reads (for a massless parton)

yi =
p2

i /(1 − zi) − (1 − zi)p
2
k

2pk.ni
. (3.1.17)

To calculate the momenta in the chain one needs the complete information about the
vector of the transversal momentum. This can be done by generating a set of polar angles
{φ1, φ2, ..., φn}. We can neglect correlations between the polar angles φi and generate them
randomly independent on each other. The transverse momentum of an i-th parton can be
then calculated form qi, zi and azimuthal angle φi

pi = (|pi|(qi, zi) cos φi, |pi|(qi, zi) sin φi). (3.1.18)

We can also calculate the momentum of the recoiled parton ij simply from momentum
conservation

pj = pk − pi. (3.1.19)

In this setup the parton taking part in the hard scattering subprocess will be off-shell
by order of ∼ q0.

It can be easily shown by trying to solve the DGLAP equation iteratively that it sums
terms proportional to [αS ln(q2/q2

0)]
n for every n. In the next chapters we will show how to

go beyond this logarithmic approximation by including terms proportional to [αS ln(1/x)]n.
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However, the parton shower algorithm goes beyond the standard collinear approximation,
since it generates finite transversal momentum of the exclusive final state and resumms part
of the subleading corrections. The scale dependence of the PDFs is reproduced according
to the correct DGLAP equation.
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3.2 k⊥-factorisation

3.2.1 Motivation for use of k⊥-dependent PDFs

In the section 2 we have discussed some of the collider types and phenomenological ap-
proaches to describe them. In a case when at least one of the colliding particles is a hadron
we have found that the cross section will be a convolution of a non-perturbative factor for
each of the hadrons colliding and a perturbative factor which describes the subprocess at
a hard scale µ2. The non-perturbative factors are called parton density functions (PDFs).
PDFs have a perturbative component because they can be evolved from a low scale, which
has to be determined non-perturbatively, to higher scale by perturbative calculation. The
PDF of a certain parton species i is a function of the proton momentum fraction x carried
by the parton and the scale at which is the hard partonic process happening.

There are some kinematics approximations in the pictured scheme. Let us take as the
hard subprocess in a proton-proton collision to be bottom-antibottom quark pair produc-
tion: pp → X + bb̄. The hard scale in this process is formally ensured by the mass of
the bottom quark, but there are more adequate choices for the hard scale µ2 since also
the invariant mass of the bb̄-pair or the transverse momentum of one the b-quarks can be
much larger then their mass. Now let us investigate the transverse momentum pb, of the
b-quark or b̄-quark. We find a distribution with a turn-over around the b-quark mass. The
cross section is finite because the collinear singularities are regulated by the bottom quark
mass mb. The cross section falls like 1/p2

b for high transverse momenta p2
b . For now we are

not interested in the low pb behaviour where the cross section is finite, but in the high pb

behaviour. The cross section of the pb distribution is governed dominantly by the partonic
cross section for the bb̄-production. For large pb we can neglect the mass of the b-quark

dσ

dΩ
(gg → bb̄)

∣∣∣
1/p2

b→0
≈ α2

S

32ŝ
(t̂2 + û2)

( 1

t̂û
− 9

4ŝ2

)
. (3.2.1)

After introducing the variable β = p2
b/ŝ and z = t̂/ŝ. It can be shown that 0 < β < 1/4

and 0 < z < 1. Then by using kinematic constraints on β and z (4-momentum conservation
and on-shell conditions) one finds that for fixed β there are two solutions for z: read
z1,2 = 1/2 ± 1/2

√
1 − 4β. Using these relations one can rewrite (3.2.1) into

dσ

dΩ
(gg → bb̄)

∣∣∣
1/p2

b→0
≈ α2

S

64

(1 − 2β)(4 − 9β)

p2
b

∼ 1

p2
b

. (3.2.2)

Other channels with quarks in the initial state are suppressed by electroweak coupling or
small PDFs compared to the gluon PDF. This is definitely true for the LHC energies where
gluon channel dominates for most of the processes. However, let us concentrate now on the
transverse momentum of the bb̄ pair pbb̄, the magnitude of the total transverse momentum
of the pair. If one takes the leading order approximation for the hard subprocess matrix
element and naively applies the formula (2.1.30) one obtains that the transverse momentum
pbb̄ = 0. The interpretation of this result is that leading order approximation - α2

S - for the
hard matrix element is not the leading order approximation for the observable pbb̄. The
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leading order approximation for an observable is the first approximation in the series which
gives a non-zero value for the observable. The perturbation series for the observable pbb̄

starts at α3
S order. Diagrams with real emission corrections generate transverse momentum

of the bb̄ pair so the total transverse momentum of the bb̄i, where i is an extra parton
emission, is again 0. The problem is solved and if one wants to approximate the observable
pbb̄ better, all one needs is to invest enough effort to go to higher and higher orders of the
perturbation theory. However if one looks at pbb̄i one sees that it diverges at pbb̄i = 0,
because of the collinear divergence connected to the fact that i is massless, and thus is
unphysical. The singularity is compensated by the virtual correction, but does not change
the fast growing behaviour of the cross section with pbb̄i → 0. The leading order for pbb̄i is
definitely not enough.

The sketched problems rise the question if the picture is consistent and if one cannot
do better. To answer these questions we have to go back to formulation of the parton
model and look in detail what is happening in the derivation of the factorisation formula
like (2.1.30).

What was actually done in the derivation of the formula (2.1.30) was that the correlation
between the transversal momentum of the transverse momentum dependence in the PDFs
and transverse momentum of colliding partons in the initial state of the hard matrix element
was neglected, because it is expected to be small comparing to the hard scale. Then the
transverse momentum in the hard matrix element can be integrated out independently
on the PDFs and the transverse momentum dependence in the PDFs can be integrated
out independently on the hard matrix element. The result is that the matrix element
and the PDFs do not depend on the transverse momenta of the initial state partons.
These partons are on-mass shell so the gauge invariance of the hard matrix element is
easily guaranteed. Obviously, by applying such approximations we are loosing information
about the transverse momentum structure of partonic content of proton and we are loosing
connection to the kinematics of the hard particles. How adequate is it to acquire for the
lost information by fixed order perturbation theory is a complicated question.

In this chapter we will present approaches which go beyond the fixed order approxima-
tion for the transverse momentum of the hard subprocess final state. One of the approaches,
called k⊥-factorisation, addresses also the transverse momentum dependence of the hard
matrix element. We will discuss this approach in more detail for different processes. The
problem is closely related to evolution equations for PDFs and to their parton shower in-
terpretation, so, the next sections of the thesis will be dedicated to their discussion with
focus on the treatment of the kinematics of the hard subprocess. For this purpose we will
study the transverse momentum of the Z boson.
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3.3 The BFKL evolution equation

The BFKL equation found by [17] deals with a situation in which the total collision energy
squared s is much larger than the exchanged momentum squared |t|: s ≫ |t|. In such a
situation logarithmic terms of the form [αS log(1/x)]n are large because the momentum
fraction x is small – x ∼

√
|t|/s ≪ 1 [18]. These logarithmic terms, not taken into account

by the DGLAP equation, are resumed by the BFKL equation. Despite the fact that the
BFKL equation is suitable only for inclusive calculations, it will be useful to describe the
ideas which are behind it. It will allow us to discuss the CCFM equation, which represents
an interpolation between the DGLAP and the BFKL equations, in the next chapter.

The derivation of the BFKL equation (we will summarise the argumentation in [19])
follows from observation that the leading small-x logarithmic contribution can be summed
by assuming multi-regge kinematics [17]. In the multi-regge kinematic regime for three
subsequent emissions of partons, i− 1, i and i + 1 as depicted in the figure 3.3.1, invariant
masses si−1,i of emitted partons i − 1 and i, and si,i+1 of emitted partons i and i + 1
are both much smaller than the invariant mass si−1,i+1 of the pair i − 1 and i + 1 –
si−1,i ∼ si,i+1 ≪ si−1,i+1. This automatically implies ordering of the Sudakov components
of momenta of the emitted partons. If the momenta of the emitted parton k is

qk = αkpA + βkpB + qk⊥, (3.3.1)

where pA and pB are light-like initial state particle momenta, then

1 ≫ αi ≫ αi+1, βi ≪ βi+1 ≪ 1. (3.3.2)

On the other hand the transversal momenta of the emitted partons can be of the same
order qi ∼ qi+1. We can see, that in contrary to the situation in the kinematic regime
under which the DGLAP equation was derived, the transverse momenta in multi-regge
regime are not ordered.

Since the Sudakov variables are directly related to the rapidity of the partons, the
emitted partons are strongly ordered in rapidity.

Figure 3.3.1: Multi-regge kinematics.
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It is easy to see that the multi-regge regime satisfies the condition s ≫ |t| for the four-
momenta pA and pB. Because of the strong ordering, in the case when the emitted parton
couples to another external parton (next in order), one can approximate the coupling by
eikonal coupling

−igSλa ūξ′(qi − qi+1)γ
µuξ(qi) = −igSλa 2qµ

i δξ′ξ + O
(q2

i+1

s

)
. (3.3.3)

To see how multi-regge kinematics applies in praxis we can examine it at the lowest
order of the perturbation series. The lowest order αS contribution to the amplitude of
quark-quark scattering is obtained by calculating the tree Feynman diagram in figure 3.3.2
in which the eikonal coupling is denoted by empty circles. We can use the eikonal ap-
proximation because momentum exchange t = k2 is much smaller than the collision energy
squared. We can go to higher orders by adding real and virtual corrections, see figure 3.3.3.

Figure 3.3.2: Leading contribution to process qq → qq.

(3.3.4)

Figure 3.3.3: Next to leading contribution to process qq → qq.

The polarisations of the initial state and final state are labeled ξ and ξ′ respectively. In
front of the quark spinors uξ(pA) and ūξ′ there is a factor consisting of the strong coupling
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Figure 3.3.4: Emergence of Lipatov effective vertex.

constant gS and colour factor λa. The vertex in this approximation preserves spin of the
quark. It can be shown that the expression for this eikonal vertex does not depend on the
spin of the initial/final state particle which. This is consistent with our assumptions from
the beginning of the chapter.

If we take the leading term of (3.3.3) for upper and lower quark-gluon vertex, we can
write the expression for the leading order amplitude of the process qq → qq in multi-regge
kinematics (in Feynman gauge)

A0
2→2 = i4παSλa ⊗ λa s

k2
δξ′ξδζ′ζ (3.3.5)

where λb, ζ ′ and ζ are the colour factor for the lower quark-gluon vertex and labels of
the polarisation of the lower quark respectively.

To calculate the next order of the perturbation series we have to calculate the ampli-
tudes corresponding to diagrams in figure 3.3.3.

The contribution from the diagrams 3.3.4 can be summed into an three-gluon effective
vertex

Γν
στ (k1, k2) =

2pAτpBσ

s

(
− 2k2

1

βs
pν

A +
2k2

2

αs
pν

B − (k1⊥ + k2⊥)ν

)
(3.3.6)

This expression has to be contracted with effective eikonal vertices of gluon-quark
coupling.

One can show that summing virtual corrections to the propagator (all relevant virtual
corrections in the leading order) results into dressing the bare gluon propagator by a Regge
factor [19, 20]

−i
gµν

k2
→ −i

gµν

k2

( s

|t|
)ǫR(−k2)

→ −i
gµν

k2
i+1

( αi

αi+1

)ǫR(−k2
i+1

)

(3.3.7)

where

ǫR(−k2) =
NCαS

4π2

∫
d2κ

k2

κ2(k − κ)2
. (3.3.8)
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Figure 3.3.5: A gluon emission ladder with virtual corrections.

The modification of the gluon propagator described in relation (3.3.7) is called reggei-
sation of the gluon. Reggeisation of the gluon has to be proven for consistency since it is
not clear if the reggeisation factor includes all the virtual corrections when considering a
whole chain of gluon emissions.

By generalising the above calculations for n real emissions corrections and all the cor-
responding virtual corrections one finds that the amplitude exponentiates and factorises.
The expression for amplitude A(8)σ1···σn

2→(n+2) has this form

A(8)σ1···σn

2→(n+2) = i2sgn+2δλ′
AλA

δλ′
BλB

G(8)
n

i

k2
1

( 1

α1

)ǫR(−k2
1)

×
n∏

i=1

2pµi

A pνi
B

s
Γσi

µiνi+1
(ki, ki+1)

i

k2
i+1

( αi

αi+1

)ǫR(−k2
i+1

)
(3.3.9)

Using the expression (3.3.9) we can calculate the imaginary part of the octet exchange
amplitude using the dispersion relation. It is possible then to write the equation for the
octet exchange amplitude and prove the consistency of reggeisation of gluon. However to
derive the BFKL equation one has to calculate the amplitude for colour singlet exchange
scattering. The colour singlet amplitude will not include the tree level diagram (3.3.5)
contribution and virtual contributions will carry different colour factors. The steps which
lead to the derivation of the BFKL equation are similar to those which were described
above for an octet exchange case. The BFKL equation can be most conveniently written
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for a Mellin transform of the colour singlet exchange amplitude A(1)(s, t)

∞∫

1

d
( s

k2

) ( s

k2

)−ω−1A(1)(s, t)

s
= 4iα2

Sδλ′
AλA

δλ′
BλB

G
(1)
0

×
∫

d2k1d
2k2

k2
2(k1 − q)2

f(ω,k1,k2,q)

(3.3.10)

where q is the transversal component of the momentum exchanged between scattered
particles A and B.

The equation for the quantity f(ω,k1,k2,q) then reads

(ω − ǫR(−k2
1) − ǫR(−(k1 − q)2))f(ω,k1,k2,q) = δ2(k1 − k2)

− NCαS

2π2

∫
d2k′

[
q2

(k′ − q)2k2
1

− 1

(k′ − k1)2

(
1 +

(k1 − q)2k′2

(k′ − q)2k1
2

)]
f(ω,k′,k2,q).

(3.3.11)

The equation (3.3.11) has a important property that it is infrared finite. We are inter-
ested in the case when q = 0 and in such a case the equation simplifies to

(ω − 2ǫR(−k2
1))f(ω,k1,k2, 0) = δ2(k1 − k2) +

NCαS

π2

∫
d2k′f(ω,k′,k2, 0)

(k′ − k1)2
(3.3.12)

Figure 3.3.6: BFKL equation for q2 = 0 momentum exchange.

We will use this form of the BFKL (3.3.12) equation to rewrite it in a way more similar
to the DGLAP, identifying a splitting function, a form factor and a gluon density. For this
purpose we will define a Regge form factor by equation [19, 21]

ln ∆R(z,k2) = −NCαS

π

1∫

z

dz′

z′

∫
d2q′
πq′2 θ(|q′| − µ)θ(|k| − |q′|) = 2 ln(1/z)ǫR(−k2). (3.3.13)

The regge form factor includes all the contributions from the virtual corrections. Note
that we have inserted a collinear cut-off µ for the integration over q′, although, as we
mentioned before, the BFKL equation is infrared finite. The dependence on µ cancels
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between the virtual and real corrections for inclusive quantities, but does not cancel for
exclusive quantities and is important for the formulation of a Monte Carlo algorithm based
on the BFKL equation [22, 23].

The equation (3.3.12) simplifies if we use the fact that

1

ω − 2ǫR(−k2)
=

1∫

0

dz

z
zω∆R(z,k2). (3.3.14)

Using equation (3.3.14) the equation (3.3.12) turns into

f(ω,k1,k2, 0) = δ2(k1 − k2)

1∫

0

dz

z
zω∆R(z,k2)

+
NCαS

π2

∫
d2k′

(k′ − k1)2

1∫

0

dz

z
zω∆R(z,k2) f(ω,k′,k2, 0) θ(|q′| − µ)

(3.3.15)

If we define q′ = k′ − k, k1 = k we get

f(ω,k,k2, 0) = δ2(k − k2)

1∫

0

dz

z
zω∆R(z,k2)

+
NCαS

π2

∫
d2q′

q′2

1∫

0

dz

z
zω∆R(z,k2) f(ω,k + q′,k2, 0) θ(|q′| − µ).

(3.3.16)

The next step which we can do is to perform a inverse Mellin transform

f̃(x,k,k2) =
1

2πi

i∞∫

−i∞

dω x−ωf(ω,k,k2, 0). (3.3.17)

We get

f̃(x,k,k2) =
1

2πi
δ2(k − k2)

1∫

0

dz

z

i∞∫

−i∞

dω
(x

z

)−ω

∆R(z,k2)

+
NCαS

π2

∫
d2q′

q′2

1∫

0

dz

z
∆R(z, k) f̃(x/z,k + q′,k2) θ(|q′| − µ)

(3.3.18)

and in the last step we can evaluate the integral in the first term on the right-hand side
of the equation (3.3.18). We obtain

f̃(x,k,k2) = x δ2(k − k2)∆R(x,k2)

+
NCαS

π2

∫
d2q′

q′2

1∫

0

dz

z
∆R(z,k2) f̃(x/z,k + q′,k2) θ(|q′| − µ)

(3.3.19)
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When we compare expressions for the Regge form factor in the equation (3.3.13) and
Sudakov form factor in the equation (3.1.4) we can identify 1/z singular piece of the gluon
splitting function in the Regge form factor. However by comparing equations (3.3.19)
and (3.1.13) we find this splitting function missing in equation (3.3.19). In addition we
have an extra factor of x in the first term on the right-hand side and also a form factor.
To remove this factor and obtain the splitting function we have to redefine the quantity f̃
from f̃(x,k,k2) → xf̃(x,k,k2). Using this change we obtain

f̃(x,k,k2) = δ2(k − k2)∆R(x,k2)

+
NCαS

π2

∫
d2q′

q′2

1∫

0

dz

z

∆R(z,k2)

z
f̃(x/z,k + q′,k2) θ(|q′| − µ)

(3.3.20)

We can now identify the factor 1/z as the small z singular piece of the gluon-gluon
splitting function. In the last step we will convolute the function f̃(x,k,k2) with an
impact factor Φh(k2) to obtain a function fg(x,k) [24] which we will interpret as an un-
integrated parton density function. The impact factor contains information about the
non-perturbative structure of the colliding particle (usually a hadron h) from which the
gluon undergoing a hard collision originates. We have also to realise that the integration
in z must be restricted in the range from x to 1 because if z should be interpreted as the
momentum fraction the ratio x/z should not be larger than 1. The final form of the BFKL
equation reads

fg(x,k) =
Φh(k)

k2
∆R(x,k2)

+
NCαS

π2

∫
d2q′

q′2

1∫

x

dz

z

∆R(z,k2)

z
fg(x/z,k + q′) θ(|q′| − µ).

(3.3.21)

Such a form of an integral equation, if momentum conservation taken in addition into
account, allows for a probability interpretation and possibility to generate parton branch-
ings and solve the equation in a Monte Carlo program which would allow not only for a
study of the total cross section of particle scattering, but also for studies of more exclusive
states. We will not study such a problem, but go a bit more further, include also the
1/(1 − z) part of the splitting function and QCD coherence effects which are important if
one wants to study exclusive final states.
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3.4 The CCFM evolution equation

One of the effects neglected in the derivation of the BFKL equation is the coherence
effect of QCD radiation. Coherence effect is sub-leading in the kinematical regime in
which the BFKL equation is valid, but it plays a crucial role when one tries to extend
the kinematical range of the BFKL equation and include contributions beyond leading
logarithmic approximation. Coherence is also important for calculation of exclusive final
states since it allows to correctly separate collinear logarithmic contributions from soft
logarithmic contributions.

Coherence can be included into the shower by angular ordering of the emissions. A
certain version of angular ordering of parton shower emissions is used also in Monte Carlo
programs based on DGLAP equation like Herwig [9] and Herwig++ [9]. The Monte
Carlo program Pythia takes the coherence into account by vetoing emission chains which
violate the angular ordering [8].

We will discuss the emergence of the coherence in QCD and its crucial role in the
derivation of the CCFM [25] equation which interpolates between the DGLAP equation
and the BFKL equation by summing logarithmic terms of 1/x and Q2/µ2. We will also
discuss its implementation in the Monte Carlo generator Cascade [26].

3.4.1 Coherence effect of the QCD radiation

One can get an intuitive feeling for the QCD coherence by considering an emission of a
gluon from a colour dipole. The figure 3.4.1 shows schematically that when the angle
between the decaying parton (gluon in the figure) – θ and the emitted gluon is larger than
the angle between the decaying parton and one of the partons forming a dipole – θ′ (gluons
in the figure) the emitted gluon cannot "resolve" the dipole and can be effectively treated
as emitted from the initial decaying parton.

Figure 3.4.1: Soft gluon emission for θ > θ′.

One can see this behaviour on the basis of formulas by expressing the probability of an
emission from a dipole. We will follow the argumentation from [16] . To derive the desired
formula we will assume that the emitted gluon has a 4-momentum q which is much softer
than 4-momentum of any of the external gluons. In such approximation we can use eikonal
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approximation for the three-gluon vertex

pµ
I

pI .q
ta
I (3.4.1)

where pI is the 4-momentum of the external leg from which is the soft gluon emitted (i
labels the external partons) and ta

I is the corresponding colour charge of the external parton
to which the emitted parton couples. The nominator of the expression (3.4.1) comes from
the formula (3.3.3). The denominator is a factor coming from propagator which emerges
after inserting an extra external line.

The amplitude of the soft emission factorises from the amplitude for the process with
3 external particles so that the amplitude for the process with 4 external particles can be
written as their product. The total contribution to the factorised current in the eikonal
approximation will be

Jaµ(q) = − pµ
I

pI .q
ta
I +

pµ
1

p1.q
ta
1 +

pµ
2

p2.q
ta
2 (3.4.2)

where index I means the initial decaying parton and indices 1 and 2 label the final
state partons in the dipole. Every term in the equation (3.4.2) corresponds to an eikonal
coupling of the soft gluon to a different leg of the diagram indicated by the lower index.

The factorised amplitude can be written as

H(pI , p1, p2, q) = h(pI , p1, p2).J(q). (3.4.3)

Because of factorisation we can get now the probability of the soft gluon emission in the
eikonal approximation by squaring the expression for the eikonal current in equation (3.4.2)

J2(q) = −(2tIt1)W1I − (2tIt2)W2I + (2t1t2)W12. (3.4.4)

where

W1I =
pI .p1

(pI .q)(p1.q)
, W2I =

pI .p2

(pI .q)(p2.q)
, W12

p1.p2

(p1.q)(p2.q)
(3.4.5)

The products of the colour charge matrices which we encountered in (3.4.4) depend on
the specific colour charge configuration of the particles in the process. Their values are
just constant coefficients for the functions W1i, W2i and W12 which carry the information
on the singularity structure and general momenta dependence of the emission probability.

Let us now study closer the function W1i. This function is singular when the 4-
momentum q is collinear with pin and p1f . Let us rewrite it as

W1I =
1

E2
q

ξ1I

ξIqξ1q

(3.4.6)

where ξkl is given by

ξkl =
pk.pl

EkEl
= 1 − cos θkl. (3.4.7)
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The energy of parton k is called Ek. We can split W1i into 2 parts singular only in one
point separately

W1I = W 1
1I + W I

1I (3.4.8)

using the expressions for W 1
1I , singular when θIq → 0, and W I

1I , singular when θ1q → 0,
in terms of ξkl

W 1
1I =

1

2E2
q ξ1q

(
1 +

ξ1I − ξ1q

ξIq

)
, W I

1I =
1

2E2
q ξIq

(
1 +

ξ1I − ξIq

ξ1q

)
. (3.4.9)

When θ1q < θ1I the function W 1
1I is positive and can be interpreted as probability for

an emission. In the wave language one can say that the emitted soft gluon interferes with
the dipole constructively. Outside of this region W 1

1I oscillates and integrated over the
azimuthal angle ϕ around the momentum of I gives

π∫

π

dϕ

2π
W I

1I =
1

E2
q ξIq

Θ(θ1I − θ1q) (3.4.10)

Since W 1
1I can be interpreted as a probability only inside the region θ1q < θ1I we can

use the fact that the average of it outside of this region is 0 and define

W̃ I
1I = W I

1IΘ(θ1I − θ1q), (3.4.11)

and replace W̃ I
1I which can be used in a calculation without deviating too much from

the exact value if the correct function W I
1I would be used. The term W̃ 1

1I can identified with
emission from parton 1. As we can see one can say that for angles θ1q > θ1I only terms W̃ 1

1I ,
W̃ 2

2I and W̃12, which can be associated with emissions from partons 1 and 2, contribute
significantly and explain the picture in Fig. 3.4.1. The factorisation mechanism discussed
here can be generalised for any number of external legs of the diagram. Additional care
must be taken when the extra parton is emitted from an inner virtual line. It can be
shown that contribution from such emissions is sub-leading [25]. We will assume that such
factorisation holds. We will consider only emissions from the parton I and assume that
contributions from emissions from parton 1, 2 and all the final state partons are treated
in another way for example by final state radiation algorithm. The dominant contribution
from additional emissions will be in a phase space region in which

θj,I > θj+1,I (3.4.12)

where θjI is angle between the j-th emitted parton and the mother parton I. We will
express the angles θj,I and θj+1,I in terms of components of 4-momenta of the emitting
and emitted partons. First we will write the expressions for 4-momenta qj and qj+1 (see
figure 3.4.2)

qj = zj+1(1 − zj)p +
q2

j

2(p.n)(1 − zj)zj+1

n + qj⊥,

qj+1 = (1 − zj+1)p +
q2

j+1

2(p.n)(1 − zj+1)
n + qj+1⊥,

(3.4.13)
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Figure 3.4.2: On derivation of the formula (3.4.18).

where n is an auxiliary 4-vector which satisfies n2 = 0 and p.n > 0. We will choose n
in such way that 2p.n = s the total collision energy squared. The result does not depend
on the specific choice of n. Cosines of angles θj,I and θj+1,I can be expressed as

cos θi,I = 1 − p.qi

EpEqi

, (3.4.14)

where Ep =
√

s/2 and Eqi
are the energies of particles p and qi. Energies Eqi

for i = j
and i = j + 1 can be expressed as

Eqj
=

√
s

2

(
1 − zj+1(1 − zj) +

q2
j

zj+1(1 − zj)s

)
,

Eqj+1
=

√
s

2

(
1 − zj+1 +

q2
j+1

(1 − zj+1)s

)
.

(3.4.15)

For small angles θi the ratios q2
i /s can be neglected and cos θi = 1 − θ2

i /2. Inserting
equations (3.4.13) and (3.4.15) into (3.4.14) and using the small angle approximations we
get

θj,I ≃
2|qj |

zj+1(1 − zj)s
, (3.4.16)

θj+1,I ≃
2|qj |

(1 − zj+1)s
, (3.4.17)

which translates the ordering condition (3.4.12) into

zi+1|qi+1|
1 − zi+1

<
|qi|

1 − zi
. (3.4.18)

where qi is the transversal momentum of the i-th emitted parton and zi is the mother
parton momentum fraction carried by the i-th emitted parton. The ordering condition as
it is described in equation (3.4.18) is implemented in the Monte Carlo generator Cascade.
The ordering condition (3.4.18) for small momentum fractions of emitted partons zi and
zi+1 changes to

|qi| > zi+1|qi+1|. (3.4.19)
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and by realising for zi+1 → 0 the qi are not ordered which is the situation in BFKL
equation in which there is no ordering of transverse momenta of the emitted partons in the
ladder. We see that angular ordering offers possibility to exploit the small-x dynamics of
BFKL equation and large-x dynamics of the DGLAP equation.

3.4.2 Virtual corrections in the CCFM equation.

We will further work only with gluons. The reasons are that at small-x, when the proton
momentum fraction of the initial state parton in the hard sub-process is small, the mother
momentum fractions of all the emitted partons zi are also small because x =

∏n
i=0 zi. The

splitting functions which include a 1/zi pole are those in which the recoiled particle is a
gluon. The splitting function Pgg(z) is:

Pgg(z) = 2NC

[
1

z
+

1

(1 − z)+
− 2 + z(1 − z) +

(11

12
− nf

18

)
δ(1 − z)

]
. (3.4.20)

It is important to point out that in the small z limit (z → 0) the first term in the
bracket in the equation (3.4.20) dominates, other terms are sub-leading, and in the large z
limit (z → 1) the second and the fifth term in the bracket dominates. We will concentrate
on these two terms leaving the finite terms for later discussion.

The probability density for a splitting of a gluon into two gluons with angular ordering
constraint will be (without inclusion of small-x virtual corrections)

dPθ
i =

αS

2π
dzi

d2q′
i

q′
i
2 P̂gg(zi)Θ(|q′

i| > zi−1|q′
i−1|)Θ(1 − zi − ǫ) (3.4.21)

with the first Θ-function forcing angular ordering and the second introducing an infrared
regulator ǫ, which can be shown has to be ǫ = Q0

|q′| [16]. We have also introduced q′
i =

qi/(1 − zi) the transverse momentum of the emitted parton rescaled by factor 1/(1 − zi).
By P̂gg(z) we denote the gluon to gluon splitting function devoid of its non-singular terms.

We can of course split the probability dPθ
i into a part important for zi → 1 which

will correspond to usual DGLAP equation and into a part important for zi → 0 which
will be outside of the approximation considered by DGLAP and will correspond to BFKL
equation. We can recall the sections 3.1 and 3.3 where virtual corrections in corresponding
approximations and summing relevant logarithmic terms were calculated in a form of Su-
dakov form factor and Regge factor. Similar corrections have to be included also into the
splitting function used in the CCFM equation. The difference between already introduced
virtual correction factors is that to be consistent one should apply the angular ordering
condition (3.4.18) also for the virtual corrections included in them.

The Sudakov form factor will read (see equation (3.1.4))

∆S(q′2
i , (zi−1q

′
i−1)

2) = exp

(
−

q′
i
2∫

(zi−1q
′
i−1

)2

d2q′

q′2

1− Q0

|q′|∫

0

dz
αS

π

NC

1 − z

)
. (3.4.22)
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The Non-Sudakov form factor is

∆NS(k2
i , (zi−1q

′
i−1)

2) = exp

(
−

k2
i∫

(zi−1qi−1)2

dq2

q2

1∫

zi

dz
αS

π

NC

z

)
(3.4.23)

in analogy to Regge form factor used in the BFKL equation (3.3.13) respectively.
The CCFM equation reads

F(x,k,q′2) = F(x,k,q′
0
2
) +

q′2∫

q′
0

2

d2q̄′

q̄′2
NCαS

π

1− Q0

|q′|∫

x

dz

z
F(x/z,k′, q̄′2)

(
∆NS(k′2, (zq̄′)2)

z
+

1

1 − z

)
∆S(q′2

0, (zq̄
′)2),

(3.4.24)

where k′ = k + q. The CCFM equation is very similar to the BFKL equation (3.3.21).
However there are some obvious differences. The CCFM equation includes in addition to
the term singular for z → 0, a term singular for z → 1. Virtual corrections regulating
this singularity have to be included by multiplying the splitting function by the Sudakov
form factor. Another difference comes from the angular ordering in the form presented
above. This means that the unintegrated parton density function F(x,k,q′2) is in not
only function of the transverse momentum of the virtual parton k, but also a function of
the ordering scale q′2. The presence of the term responsible for soft gluon emissions in the
CCFM splitting function provides summation of logarithms of q′2/q′2

0 in addition to the
1/x logarithms summed by the BFKL equation in leading logarithmic precission.

3.5 uPDF evolution equations summary

In the section 5.2 we mentioned approaches of getting uPDFs based on solutions of the
CCFM equation and BFKL equation. Since uPDFs carry information about the transversal
momentum of the partons one can expect that by interpreting the kernels of the CCFM and
the BFKL equations in a probabilistic sense and solving them by parton shower approaches
should not lead to a different results than by solving them using a different numerical or
analytical approach. The uPDFs calculated in both ways should be in principle identical.
However, the probabilistic interpretation of the parton evolution is in a strict sense only
possible for the CCFM equation. In the derivation of the BFKL equation in leading order,
for real and virtual corrections, 4-momentum conservation is violated. It is taken into
account in the CCFM equation. The consistency of uPDFs obtained by the parton shower
algorithm and uPDFs obtained by solving the inclusive CCFM equation was demonstrated
in [26]. The efforts to obtain uPDFs using available data from HERA experiments are
represented by [27–29] and more recent [30].
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Monte Carlo generators Pythia,

Herwig and Cascade

In this section we will describe some of the characteristics of Monte Carlo generators which
were used to calculate results in this thesis.

4.1 Pythia

Monte Carlo generator Pythia [8] is a general purpose Monte Carlo generator with around
500 hard subprocesses available. The initial final state and initial state parton showers are
based on the DGLAP equation [7]. There are several different options for the ordering
of initial state parton showers including k⊥-ordering – ordering in transverse momentum
of the propagator parton, q2-ordering – ordering in virtuality of the propagator parton
and p⊥-ordering – ordering in transverse momentum of the emitted parton. The final
state parton showers are ordered in angle. The hadronisation model, is the Lund string
model [31].

Figure 4.1.1: Schematic picture of MPI with two hard scattering subprocesses.
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Pythia offers also experimentally well tested [32] models for multi parton interac-
tions. The arguments for phenomenological relevance of MPI are based on simple assump-
tions [33]. More sophisticated models of MPI are described in [34]. We will describe here
a simple argumentation on which some of the MPI models are based. As we already ex-
plained in the section 3.2.1 the 2 → 2 subprocesses diverge to infinity with transversal
momentum p of the final state particles p → 0. This strong rise of the partonic cross
section σp causes that its value for certain value of p = pc becomes larger than the total
cross section of pp or ep scattering σp(pc) > σtot. To solve this problem one can interpret
the ratio σp(p)/σtot as the average number of multiple parton interactions in one pp colli-
sion with certain p. Another parton shower chain with a different hard subprocess can be
generated with probability (dσ/dp2)/σtot(s), figure 4.1.1, where

dσ

dp2
=
∑

i,j,k

1∫

0

dx1

1∫

0

dx2

∫
dt̂fi(x1, Q

2)fj(x2, Q
2)

dσ̂k
ij

dt̂
δ

(
p2 − t̂û

ŝ

)
, (4.1.1)

and t̂, û and ŝ are the Mandelstam variables. Partonic cross section is denoted by σk
ij

and PDFs by fi and fj .
In the simplest models it is assumed that the probability of subcollisions are not corre-

lated which leads to Poisson distribution of the number of MPI. Additional chains will not
change the total cross section, but will change observables like jet multiplicity, transversal
momentum spectra and correlations between jets because the parton emissions in the two
parton shower chains are kinematically independent.

4.2 Cascade

The Monte Carlo generator Cascade [26] is able to simulate e±p and pp(p̄) processes. In
Cascade the initial state parton showers are based on CCFM evolution equation with
angular ordering as described in section 3.4.1 (section 3.4). The CCFM equation generates
uPDFs so the partons entering the hard subprocess are off-shell. The off-shellness of the
initial state partons in the hard subprocess is taken into account not only in the kinematics,
but also in the hard matrix element of the subprocess. Processes like heavy quark-antiquark
pair production in e±p and pp(p̄), the higgs production are included. The final state parton
showers are generated using Pythia. Final state parton showers are applied only on
coloured particles from the hard subprocess. The hadronisation of the partons produced in
parton showers is done using Lund string hadronisation model as implmented in Pythia.

The implementation of the CCFM equation is very much analogous to the implementa-
tion of the DGLAP equation described in section 3.1. There are some peculiarities with the
appearance of two scales for αS in the CCFM gluon splitting function and with kinematics
in the backward evolution parton shower algorithm which were overcome by authors of [26].

The second problem is the gluon virtuality. The virtuality of the gluon entering the
hard scattering subprocess can be reconstructed only after the whole chain of branchings
has been generated. There is a kinematical reconstruction implemented in Monte Carlo
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generator Cascade to acquire the correct virtuality of the gluon entering the hard sub-
process. The reconstruction starts from the gluon which is the closest to the proton (the
last one generated in backward evolution) with virtuality

k2
0 =

k2
0

1 − x0
(4.2.1)

The new virtuality of the gluon entering the hard subprocess is typically larger than it
was before the reconstruction. A check is applied if the kinematics allows for production
of particles in the hard subprocess.

It can be easily shown that the correct virtuality of the gluon entering the hard matrix
element is

k2 =
k2

1 − x

(
1 + x

m2
rem

k2

)
, (4.2.2)

where mrem is the invariant mass of all the partons produced except of the hard sub-
process.

4.3 Herwig and Herwig++

Herwig and Herwig++ are general purpose Monte Carlo generators. Initial and final
state parton showers in both Monte Carlo generators Herwig and Herwig++ [9] are
based on the DGLAP equation. They adopt angular ordering of the emissions by defining
a scale Qi [16] by equation

Qi = Ei

√
ξi, (4.3.1)

where Ei is the energy of the i-th propagator parton. The variable ξi is defined using
momentum of the parton which initiates the shower p and the momentum of the i-th
emitted parton qi

ξi =
p.qi

EpEqi

= 1 − cos θpi, (4.3.2)

with Ep and Eqi
being the energies of the partons. The angle θpi is then between the

spacial components of 4-momenta of p and qi. The ordering is defined by equation

Qi+1 < Qi. (4.3.3)

This ordering reduces to [16]

Ei+1θpi+1 < Eiθpi (4.3.4)

in the small angle limit. By rewriting it in way which was done for the equation (3.4.18)
we get

|qi+1|
1 − zi+1

<
|qi|

1 − zi

, (4.3.5)

which is the correct angular ordering in the limit z → 1, but leads to ordering of
transversal momenta for z → 0.
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In Herwig++ for initial state parton shower the evolution variable q̃2 is defined by
relation [9]

(1 − z)q̃2 = −zm2
k + m2

i +
zm2

j

1 − z
− p2

1 − z
, (4.3.6)

where z is the momentum fraction carried by the propagator parton j. Massive partons
with masses mi, mj and mk are assumed in the formula (4.3.6). The relative transversal
momentum p is defined as p = qi − zqk. The formula (4.3.6) is a generalisation of the one
in (4.3.1). The ordering for small angles reduces to (4.3.4) [9].

The ordering for the final state parton showers is defined in an analogous way [9].
The fragmentation in Herwig++ is modelled by implementation of the cluster fragmen-

tation model.
Herwig++ offers also model of MPI described in [35].
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The transverse momentum of the

Z-boson

For the same reasons we explained in the section 3.2 the naive application of the parton
model to Z-boson production will result in a wrong result of the transversal momentum
of the Z-boson pZ⊥ = 0. The O(αS) contribution in fixed order perturbation gives a
reasonable spectrum for large pZ⊥, but fails for small pZ⊥. There is a good motivation to go
beyond fixed order perturbation theory and resum the whole series of potentially dominant
terms. We will discuss different approaches to the resummation in next subsections.

5.1 Analytical approaches

Part of the efforts to calculate the transverse momentum of the Z-boson concentrate on
the cross section of the Z-boson production in hadron-hadron scattering as a function of
pZ⊥ and do not address other possible observables. In these approaches one analytically
resums parton emissions by exponentiation of factorised cross sections or by solving the
renormalisation group equation for parton emission corrections.

The resummation of logarithmic terms of the form αn
S[ln(µ2/q2)]2n−1, where µ is the

hard scale of the process and q is the transversal momentum generated by the emissions of
partons, so called double-logarithmic approximation, for Z boson transversal momentum
distribution has been done in end of 90’s by authors of [36]. The authors found that
leading contribution to the cross section in physical gauge is generated by dressed ladder
diagrams. Every power of αS is accompanied by a second power of [ln(µ2/q2)]n in which
one of the logarithms comes from the collinear singularity and the other originates from the
soft singularity of the emitted parton. The resummation has been done in the transversal
momentum space ensuring the factorisation of the parton emission and the phase space by
strong ordering of the transversal momenta of the emitted partons - q2

i ≫ q2
(i+1). By such a

condition the delta function in the phase space which guaranties the transversal momentum

conservation δ
( n∑

i=1

qi + q
)

reduces to δ(qn + q) and phase space can be factorised and

parton emissions can be resummed by exponentiation.
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The authors of [37,38] have shown that one can resum also subleading terms of the form
αn

S[ln(µ2/q2)]2n−m, where m = 1, ..., 4 when one relaxes the strong transversal momenta
ordering condition, but keeps the transversal momenta ordered. To be able to factorise the
phase space one performs a Fourier transform to b space where the transversal momentum
conservation delta function factorises

∫
d2q

(2π)2
δ
( n∑

i=1

qi + q
)
eib.q = e

−ib.
( n

P

i=1

qi

)
=

n∏

i=1

e−ib.qi . (5.1.1)

One can then perform the resummation in the b space and return to q space by an
inverse Fourier transform.

In the formalism described in [37, 38] the cross section can be written in a compact
form

dσ

dQ2 dy dq2
∼ 4π2α2

9Q2s
(2π)−2

∫
d2b eiq.b

∑

j

e2
j

×
∑

a

1∫

x1

dξ1

ξ1
fa/1(ξ1, 1/|b|) ×

∑

b

1∫

x2

dξ2

ξ2
fb/2(ξ2, 1/|b|)

× exp

{
−

Q2∫

1/b2

dµ̄2

µ̄2

[
ln
(Q2

µ̄2

)
A(αS(µ̄)) + B(αS(µ̄))

]}

× Cja

(x1

ξ1
, αS(1/|b|)

)
Cj̄b

(x2

ξ2
, αS(1/|b|)

)

+ Y (q, Q, x1, x2).

(5.1.2)

In equation (5.1.2) Q2 is the hard scale of the process, s is the proton-proton collision
energy squared, ej are the charges of the annihilating quark and antiquark, x1 and x2 are the
momentum fractions of the initial state partons which can differ from the quark-antiquark
pair in higher orders of the perturbation theory. The indices a and b run over parton
species. The cross section is a Fourier transform of a convolution of PDFs fa/1 and fb/2,
the Sudakov form factor is represented by an exponential of an integral of perturbatively
calculable functions A and B and coefficient functions C which characterise the transition
from partons a and b in the initial state to annihilating quark-antiquark pair jj̄ and the Y
term. The factors included in the convolution integral (the first term) include pieces of the
hard subprocess which are singular for q2 → 0. This part of the cross section dominates
in the region where q2 ≪ Q2, but is valid also for q2 ≤ Q2. The term Y includes the finite
and at most singular as q−2 for q2 → 0 pieces of the cross section.

The authors of [37, 38] were able to calculate the functions A, B, C and Y . The steps
which have to be done to calculate these functions in any order of the perturbation theory
are well defined.

The resummation method fails when q ≫ µ2 roughly around the electroweak gauge
boson mass m2

Z ∼ µ2 since the method is not valid for too large q2. Since the fixed
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order calculation works for large q2 one can interpolate between these too regimes and
obtain the full differential cross section. The authors of [39] pointed out that the cross
section calculated in the b space is unstable in the region of interpolation and performed a
resummation in q space which stabilises the cross section and allows for easier interpolation
with the fixed order cross section.

The authors of [40] argue that simultaneous resummation of the logarithms of 1/x in
addition to logarithms of µ2/q2 might be important for the shape of the gauge bosons
transversal momentum differential cross section. They find that these additional terms
lead to a broadening of the turnover peak of the distribution.

In [41] the authors resummed simultaneously logarithmic terms of 1/x and µ2/q2 by
solving analytically the CCFM equation [25] in b space and obtaining uPDFS which were
calculated in [42]. The formula for the cross section described in [41] is formally identical
to the standard resummation formula introduced in [37]. The authors also studied differ-
ent non-perturbative factors which affect the spectrum of the transversal momentum of
electroweak boson.

The electroweak boson production can be considered as one of the main contributions
to the Higgs boson production background. The authors of [43] considered electroweak
boson production and bb̄ production from two independent parton evolution chains. For
this purpose they calculated W production from a single evolution chain by solving the
leading order BFKL equation and convoluting the resulting uPDFs with the dominant
contribution diagrams, with t-channel quark exchanges, of the subprocess g∗g∗ → Wqiq̄j ,
with g∗ being off-shell gluon and i and j labelling the flavours of the quarks.

5.2 Semi-analytical approaches

Another approach to resummation of enhanced logarithmic terms and keeping track of
the transverse momentum of the parton emissions is based on formulating the evolution
equations for PDFs or transverse momentum dependent PDFs also called unintegrated
PDFs - uPDFs and their numerical solving. Semi-analytical methods allow for calculation
of a wider range of observables. The special class of methods to solve the evolution equation
is based on Monte Carlo generators and was shortly described in separate subsection.

Although there was some development in the direction of quark uPDFs [44], the formal-
ism in which the CCFM equation was derived is most consistent for purely gluon evolution
chains. That is why the authors of [45] consider a hard subprocess g∗g∗ → Z/W±/γqiq̄j in
pp scattering which allows for gauge boson production with gluons in initial state. How-
ever, also the channels g∗qi → Z/W±/γqj and q̄iqj → Z/W±/γ were considered. The cross
section for Z/W±/γ production was obtained by convolution of the hard off-shell matrix
element with uPDFs calculated numerically by solving the CCFM equation in k space by
a Monte Carlo method, with k being the transversal momentum of the initial state gluon
and by uPDFs generated by the KMR [46] method in which the PDFs are evolved by the
DGLAP equation and only in the last splitting, the one closest to the hard subprocess,
is left unintegrated and in fact generates the transversal momentum of the initial state
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parton. The authors of [46] define an uPDF of parton species a using a partial derivative
of the integrated PDF according to the logarithm of the scale squared ln µ2:

Aa(x,k2) =
∂fa(x, µ2)

∂ ln µ2

∣∣∣∣
µ2=k2

=
αS(k2)

2π

∑

a′

1−∆∫

x

dz Paa′fa′

(x

z
,k2
)
. (5.2.1)

The most right side of the equation (5.2.1) follows after applying the DGLAP equation.
Since the virtual contribution does not change the k it can be resummed to give the no-
emission probability in a form of a Sudakov form factor

Ta(k, µ) = exp

(
−

µ2∫

k2

dk′2

k′2
αS(k′2)

2π

∑

a′

1−∆∫

0

dz′ Pa′a(z
′)

)
(5.2.2)

The probability to find a parton a with transversal momentum k which initiates the
hard subprocess at the scale µ is

Aa(x,k2, µ2) =
∂fa(x, µ2)

∂ ln µ2

∣∣∣∣
µ2=k2

= Ta(k, µ)
αS(k2)

2π

∑

a′

1−∆∫

x

dz Paa′fa′

(x

z
,k2
)
. (5.2.3)

The uPDF Aa(x,k2, µ2) becomes a function of two scales only in the last step of the
evolution when the transversal momentum of the parton which initiates the hard subpro-
cess is generated. Before this step the transversal momentum in the evolution remains
untouched. The proper choice of the cut-off parameter ∆ = |k|/(|k| + µ) appearing in
equations (5.2.1), (5.2.2) and (5.2.3) to regularise the integrals over the momentum frac-
tion z was in [46] chosen to acquire for angular ordering of the gluon emissions1. It follows
from the relation µ > z|k|/(1 − z). The authors of [46] further discuss also inclusion of
ln 1/x corrections.

For the initial state quarks only valence quarks were considered using standard PDFs.
In the process of calculating the cross section one integrates over the phase space of quark
and antiquark in the final state of g∗g∗ → Z/W±/γqiq̄j and g∗qi → Z/W±/γqj. The
collinear and soft singularities connected with emission of these quarks were regulated by
considering massive quarks.

The same authors as in the previous paragraph discussed in [47] also the sea-quark
contribution to the production cross section of electroweak gauge boson. In this work
they considered also the subprocesses g∗q → γq, qq̄ → γg and qiq̄j → Z/W ∗ with sea-
quarks in the initial state. The uPDFs for the sea-quarks being produced according to
the KMR framework. Only the last splitting g → qq̄ produces the unintegrated sea-quark
distribution.

In the publication [48] we studied the process g∗g∗ → Z/W±qiq̄j with the motivation to
describe hard subprocess electroweak boson production with off-shell gluons in the initial

1Importance of angular ordering for gluon emissions is explained in section 3.4.
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state by convoluting it with CCFM uPDFs. We also studied Z/W± production associated
with heavy quark-antiquark pair. The calculation and discussion of phenomenological
results will be described in section 6.



Chapter 6

Drell-Yan production in heavy

quark-antiquark anihilation

In this section we will focus on the Drell-Yan production of electro-weak gauge bosons
- Z, W and γ - by emphasising the heavy quark-antiquark anihilation - QQ̄ → Z/W/γ
- channel in proton-proton collisions. Consideration of heavy quarks in the initial state
naturally leads to appearance of heavy quarks in the final state. We can show it easily by
considering backward evolution of such a heavy quark. To evolve it backwards it had to
radiate gluon or a heavy quark. In latter case the radiated heavy quark will be the one
appearing in the final state. Heavy quark radiation has to happen at some scale because by
evolving the heavy quark backwards by gluon emissions the scale will decrease close to the
heavy quark mass mQ. At such a point the mQ will be the natural hard scale. To get lower
in scale one then needs, because of momentum conservation, to radiate the heavy quark.
The non-perturbative scale is at the order of the proton mass mp < mQ as we consider
quarks heavier than the proton to be heavy. That is why we do not expect to find a heavy
quark inside a proton at the scale of the proton mass. From an experimental point of view
to be able to say if the gauge boson was produced in a heavy quark-antiquark anihilation
one needs to have an identified QQ̄ pair. For reasons listed above one should rather talk
about electro-weak gauge boson production in association with heavy quark-antiquark pair
- pp → QiQ̄jZ/W/γ + X.

We will describe two approaches to the calculation of this process and discuss them in
more detail in next subsections. However let us first discuss the importance of this process
in context of LHC physics.

The most important extensions of the Standard Model (SM) of particle physics which
will be looked for at LHC are its supersymmetric (SUSY) extensions. SUSY models predict
at least a fermion partner for each boson from the SM and a boson partner for each fermion
from the SM. In addition SUSY SM extensions predict at least four Higgs particles and their
fermionic superpartners. These superpartners of SM particles were not yet discovered so
they have to be heavy enough to be not produced at colliders except the LHC. This implies
that supersymmetry is broken since exact supersymmetry predicts the superpartners to
have equal masses [49]. Final states in pp collisions predicted by SUSY models consist
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of multi-jets and missing mass - undetected energy - which is a consequence of the large
masses (multi-jets) of the supersymmetric particles and the so called R-parity which forces
the conservation of the number of superparticles and leads to a stable lightest superparticle.
R-parity is not required by the most general SUSY lagrangian [49]. Since the gauge boson
W can decay into a lepton l and an undetected neutrino νl the process pp → QiQ̄jZ/W/γ
can mimic such final states. In case when the heavy quark-antiquark pair consists of
b-quarks the missing energy can originate from a decay b → cW → clνl.

The process pp → QiQ̄jZ/W/γ +X is also background to SM Higgs production. Espe-
cially for the process called Higgsstrahlung in which Higgs is produced in association with
Z boson by being emitted from it as bremsstrahlung. The Higgs can then decay into a bb̄
pair producing exactly the same final state as the process pp → bb̄Z + X. The Z particle
in the latter process is emitted from the b-quark line. By replacing it by Higgs particle and
assuming the same decay as for the Z (for example Z/H → µ+µ−) we get directly another
Higgs production channel for which is this process a background.

6.1 Z and W production associated with heavy quark-

antiquark pair in k⊥-factorisation.

In this section we will discuss the calculation of Z, W and γ bosons production associated
with heavy quark-antiquark pair in k⊥-factorisation in proton-proton collisions at LHC -
pp → QiQ̄j +Z/W/γ+X, where indices i = j in case of Z and γ production. We will focus
on the hard subprocess in which we expect the final state particles to be produced. One
would naively expect initial states of the hard subprocess to consist from these channels:

• QiQ̄j → QiQ̄k + Z/W/γ

• qiQ̄j → QkQ̄j + W

• gg → QiQ̄j + Z/W/γ

We will be working in fixed flavour number scheme so we treat the heavy quarks only
perturbatively. The mass of heavy quarks is taken into account in the hard scattering
matrix element. We will also drop the contribution of channels with massless quarks in the
initial state. Those should be included for phenomenological reasons in a full calculation.
There is no reason to leave them out in a collinear calculation since the PDFs for sea
and valence quarks are available. The situation in k⊥-factorisation is more complicated.
There are models for sea-quark uPDFs [42, 46] and evolution equation for valence quarks
is available. However we can argue that gluon uPDFs are sufficient for phenomenological
studies. On such assumption is based also the Monte Carlo generator Cascade. The main
argument on phenomenological sufficiency of gluon uPDFs is based on the gluon uPDF
dominance at the LHC energies especially at small-x. To show relevance of the assumption
of the gluon dominance in the context of the gg → Z/W/γ + QiQ̄j production we have
to show that the gluons in the hard subprocess for this process at the LHC carry mostly
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k⊥-factorisation.

small proton momentum fraction. A typical scale in the hard subprocess is the Z/W mass
mZ/W ∼ 100 GeV . Assuming this we can calculate the typical proton momentum fractions

carried by the electroweak gauge boson using simple formula x ∼
√

m2
Z/W

s
∼ 0.007 which

is a value at which the gluon PDF dominates. In contrast of typical proton momentum

fraction at TeVatron, where x ∼
√

m2
Z/W

s
∼ 0.04 which does not allow for gluon dominance.

Other arguments for pure gluon phenomenology are based on suppression of sea-quark
contribution in the BFKL framework. As we know in BFKL the gluon reggeizes. Quark
reggeizetion can be also obtained, but the resulting cross section is suppressed by factor
of

√
s
−1

. The reggeized quark represents leading contribution to the sea-quark uPDFs
in the framework of BFKL equation. However there are studies which looked at the
contribution of reggeized quarks and argue for their relevance by showing a good agreement
with data [50]. Valence quarks can be in neglected in our study because their PDFs, in
contrast to sea-quark PDFs growing with decreasing x, are strongly suppressed at small-x.
In the case of light sea-quarks the g∗qq vertex generates the sea-quark which annihilates
with an anti-quark to produce the electro-weak gauge boson. In this way the last splitting
in the evolution which would produce the sea-quark distribution is included in the hard
matrix element.

Figure 6.1.1: Diagrams for W and Z production.

Figure 6.1.2: Diagrams for W and Z production.
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Figure 6.1.3: Probability distribution of xg in Z/W + QQ̄ in Monte Carlo generator
Cascade.

For the reasons listed above we will describe the calculation of W/Z/γ electroweak gauge
bosons associated with a pair of heavy quark and antiquark produced with gluons in the
initial state in so called gluon-gluon fusion with both gluons off-shell. The arguments from
the previous paragraph also apply to electroweak boson production associated with light
quarks which would in the framework of having only gluons in the initial state correspond
(as done in [45]) to Drell-Yan gauge boson production process.

In next subsections we will describe kinematics of the 2 → 3 subprocess with initial state
particles off-shell. Then we will discuss the gauge invariance of the matrix element. Further
we will discuss details of the calculation including method of orthogonal amplitudes. We will
discuss some aspects of the results - how more correct kinematics mimics next to leading
order effects and affects the transversal momentum spectra of particles. The calculation
was published [48] and is included in the Appendix.

6.1.1 Discussion of the kinematics

We would like to calculate and study production of W/Z/γ + QQ̄ at the LHC energy
14 TeV . This energy region allows particles to be produced in the regime in which |t| ≪ s
(t is the momentum exchange squared and s the total energy squared of the proton-proton
collision), but still keeping |t| ≫ ΛQCD. A consequence is that the initial state particles
are allowed to and quite often carry small fractions of the protons 4-momenta. To show
that this is also the case for g∗g∗ → W/Z/γ +QQ̄, we can plot the probability distribution
of proton momentum fraction xg carried by the initial state gluon in figure 6.1.3. The
distribution peaks at rather small xg ∼ 10−2 and extends to lower xg values.

Formally the calculation in k⊥-factorisation with off-shell quarks assumes a kinematic
regime described above, but is valid also for larger values of the proton momentum fractions
carried by initial state gluons.
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Cascade.

To illustrate that the transversal momenta of initial state off-shell gluons are signif-
icantly large to affect observables connected to transversal momenta of the final state
particles we show also the kg transversal momentum distribution of the initial state gluon
in figure 6.1.4. We see that it extends to rather large values.

In the following subsections we will use qA and qB to denote the 4-momenta of the
initial state protons also assigned to initial state auxiliary quarks. 4-momenta k1 and k2

will be the final state quarks 4-momenta.

6.1.2 Discussion of the gauge invariance

The matrix element of the process g∗g∗ → Z/W/γ + QiQ̄j can be calculated in two dif-
ferent ways. A closer look on their relation reveals the nature of the mechanism of gauge
invariance of the hard matrix elements calculated in k⊥-factorisation. We will present both
ways of calculation and discuss the relation between them in this section.

We will not only discuss the SU(3) gauge invariance of the matrix element, but also
study the broken gauge symmetry of the SU(2) which comes into play because of presence
of electroweak gauge bosons in the final state.

SU(3) gauge invariance

From the QCD point of view the two calculation methods/ways differ in the choice
of diagrams, the set of diagrams which has to be taken into account, and the choice of
polarisation densities for the initial and final state gluons. It should be pointed out, to cause
no confusion, that ghost diagrams, as we will see, do not appear in any of the calculations.
Let us discuss the first method. The arguments which we will use are independent on the
choice of the final state particles we are considering so we will call them in the following
simply Sf as final state. Of course it does not make sense to consider the process g∗g∗ → Sf

without having in mind that it is only a subprocess of the process pp → Sf + X with Sf
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created in collision of two off-shell gluons originating from pp collisions. What is nontrivial
about this consideration is that we expect the subprocess g∗g∗ → Sf to factorise from the
larger hadronic process. By taking this into account we realise that it should not matter if
we consider protons colliding or other particles, because, if factorisation works, it does not
change the nature of the subprocess and by that also the hard matrix element. To simplify
the calculation we can then consider the process qAqB → g∗g∗ + qAqB → Sf + qAqB (we
will label qA and qB also the four-momenta of the corresponding quarks). Now we have
to calculate the hard matrix element of this process by considering also the kinematics of
the process and extract the hard matrix element of the subprocess g∗g∗ → Sf . Of course
in the end we should see that it factorises from the larger quark-quark scattering process
to validate our assumption about the factorisation of the subprocess and to approve the
simplification of the calculation by the replacement of the protons by quarks. By adapting
the kinematics from the previous subsection, |t| ≪ s, we realise that we can neglect the
component in the direction of the momentum of qB of the momentum of gluon coupling to
qA (see the diagrams in Fig. 6.1.2). The vertex of the coupling of the gluon to the quark
is then modified to the eikonal vertex as was described in the section 3.3 (see equation
(3.3.6)). So, we have the effective polarisation vectors of the gluons

ǫµ
A(qA) =

2qµ
A√
s
, (6.1.1)

ǫµ
B(qB) =

2qµ
B√
s

(6.1.2)

called ’non-sense’ polarisations. The factor 1/
√

s ensures that the polarisation vector
is dimensionless. The factor 2 is just a matter of definition. The motivation for this name
is that these polarisation vectors are not normalized to 1 as usual polarisation vectors,
however this does not prevent us to interpret them as polarisation vectors.

We can also reduce the number of diagrams when we modify the three-gluon vertex as
we did in the section about the BFKL equation 3.3 in the equation (3.3.6). However after
calculating the matrix element and performing the collinear limit by averaging over the
polar angles φA and φB of the transversal momenta kA⊥ and kB⊥ and taking the limits
kA⊥ → 0 and kB⊥ → 0 and comparing with the matrix element calculated with on-shell
initial state gluons in the standard way (summing the proper set of diagrams with proper
polarisation sums) we discover that results differ by a factor. More precisely

Mon−shell =

[
α2β2s2

t1t2
MI

off−shell

]

t1=0,t2=0

(6.1.3)

where the subscript means the angular averaging and limits t1 → 0 and t2 → 0. The
factor α2β2s2

t1t2
does not depend on the character of the final state Sf - it is universal, and it

can be calculated for simpler process and applied to the one of interest.
The interpretation of this fact is that by letting gluons explicitly couple to the quark

line we have chosen a certain model of uPDFs for the gluons. If we would calculate the
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Figure 6.1.5: Replacing protons by quarks.

process pp → Sf we would obtain the correct proton uPDFs. We will comment on the
origin of the factor later after the description of the second approach to the calculation.

In the second approach there are only 5 diagrams, those used in the case when the
initial state gluons are on-shell and physical polarisation sums are used for gluon lines.
We are taking the initial state gluons to be off-shell and in this approach we choose their
polarisation vectors as

ǫµ
A(kA) =

kµ
A⊥

|kA⊥|
, (6.1.4)

ǫµ
B(kB) =

kµ
B⊥

|kB⊥|
(6.1.5)

These polarisation vectors have the property that they are normalized to 1. Another
nice property is that after angular averaging and the on-shell limit we obtain exactly the
on-shell result

Mon−shell =
[
MII

off−shell

]
t1=0,t2=0

(6.1.6)

We will describe shortly how one obtains the polarisation vectors (6.1.4). The key
point is the observation that

pµ
Ad(n)

µν (kA) =
kA⊥ν

α
, pµ

Bd(n)
µν (kB) =

kB⊥ν

β
. (6.1.7)

where d
(n)
µν (k) is a gluon polarisation tensor in the axial gauge

d(n)
µν (k) = −gµν +

nµkν + kµnν

n.k
− n2 kµkν

(n.k)2
(6.1.8)

Using the polarisation vectors (6.1.1) contracted with (6.1.8) one obtains the polarisa-
tion vectors (6.1.4) times some factor. This factor is included in the formula (6.1.3), but is
absent in the formula (6.1.6). In this way of calculation the model PDFs do not appear in
the calculation and are removed by special definition of the polarisation vectors. On the
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other hand the calculation is not manifestly gauge invariant. The removal of the model
PDFs works in principle only in the axial gauge. The existence of a connection between
these two approaches justifies k⊥-factorisation and shows that the calculation formally dif-
fers from the calculation in the collinear factorisation only by the fact that initial state
gluons are off-shell and by a specific choice of the polarisation density.

SU(2) gauge invariance

In the publication [48] we note that there is freedom in choosing the polarisation sum for
the massive electroweak gauge boson. The gauge freedom can be parametrised in following
way

dW/Z
µν (q) = −gµν +

qµqν

q2 − ξm2
W/Z

(1 − ξ) (6.1.9)

Since the gauge symmetry is broken one needs to add diagrams with goldstone bosons.
The propagator for the goldstone boson is parametrised by the same parameter ξ and takes
the form

i

q2 − ξm2
W/Z

. (6.1.10)

By choosing ξ = 0 the goldstone boson diagrams do not contribute. However, from
computational reason it is more efficient to choose a gauge in which the polarisation sum
of the gauge boson simplifies to −gµν . In such a gauge the goldstone boson diagrams are
necessary.

The coupling constants of the quark-goldstone boson coupling can be easily derived
from the Yukawa part of the Standard Model Lagrangian.

6.1.3 Discussion of some aspects of the results

In this section we will discuss results published in [48]. We will focus on the transversal
momentum distribution of the electroweak boson Z. For this purpose we will get back to
the publications [40] mentioned in the section 5.1 in which the authors demonstrated how
the small-x logarithm resummation can affect the transversal momentum of the Z boson at
the LHC. In their formalism, motivated by [37], the cross section for Z production can be
written as a convolution of PDFs, coefficient functions and modified Sudakov form factor
in impact parameter b space

dσ

dydq2
=

σ0

s

∫
d2b

(2π)2
e−iq.b(C ⊗ f)(x1, b0/b∗)(C ⊗ f)(x2, b0/b∗)

× e−SP (b∗,Q)−SNP (|b|,Q)−b2ρ(x1)−b2ρ(x2) + Y (q, Q, x1, x2),

(6.1.11)

where σ0 is the born cross section for the Z production, s is the proton-proton collision
energy squared, Q is the hard scale of the process and the transversal momentum of Z
is labeled by q. The PDFs f and coefficient functions C are functions of the momentum
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Figure 6.1.6: Transverse momentum distributions of the produced Z gauge bosons. Cal-
culation with massive b-quarks. Both calculations are in LO of perturbation series.

fractions x1 and x2 and of the scale µ = b0/b∗, b0 is a commonly appearing constant
factor 2e−γE , γE being the Euler gamma constant. The function Y is the finite part of
the Z production cross section. The parameter b∗ is related to the impact parameter by
the relation b∗ = |b|/

√
1 + b2/(0.25 GeV −2) and together with the non-perturbative form

factor SNP was introduced to take non-perturbative effects into account. The form factor
SP is the form factor calculated in [37]. The key modification to the [37] approach are
the terms b2ρ(x) (x = x1 and x = x2) which mimic a modification of the form factor
by resummation of terms of the form αn

S ln(q2/Q2)l ln(1/x)m. In the study done in [40] a
simple form of the function ρ was chosen

ρ(x) = c0

(√
1

x2
+

1

x2
0

− 1

x0

)
. (6.1.12)

The parameters x0 and c0 are constants which set the strength of the small-x effects.
parameter x0 sets the value of x for which the small-x dynamics starts to be important.
Note that the function ρ(x) → c0/x for small values of x and becomes small for large values
of x. The authors of [40] demonstrated that the factors e−b2ρ(x1,2) for small-x cause the
transversal momentum distribution of Z to get broader. At the TeVatron collision energy
1 TeV is the effect negligible and is pronounced only when one restricts the Z phase space
to large rapidities |yZ| > 2, but is significant at the LHC energy 14 TeV even when one
integrates over the whole phase space of the Z boson.

We can now look at the cross section of the Z boson in the light of the results of [40].
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Figure 6.1.7: Comparison of cross sections differential in transverse momentum of the
produced Z gauge boson. Calculation with massless b-quarks. The applied cuts are de-
scribed in the text.
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The cross section of g∗g∗ → ZQQ̄ differential in pZ calculated using formula B.10 with
A(x1,2,k

2
1, Q

2) being uPDFs which obey the CCFM equation, is plotted in figures 6.1.6, 6.1.7
and 6.1.8 (see also section B.3). In comparison with the cross section calculated using fixed
order matrix element the turn-over of the pZ distribution calculated in k⊥-factorisation is
much broader which is apparent mostly from the plot 6.1.8. There are, however, some de-
tails which have to be pointed out. The transversal momentum of the Z boson in the fixed
order calculation of the comparison is in leading order balanced with the transversal mo-
mentum of the quark-antiquark pair pqq̄. Each gqq̄ vertex contributes with a logarithm of
k2

1,2/µ
2. On the other hand, in k⊥-factorisation uPDFs resum the whole set of logarithmic

terms. One can therefore expect a similar effect of broadening of the transversal momen-
tum spectrum as discussed in [40]. A broader pZ spectrum can therefore be expected and
as we can see also results from the calculation in the k⊥-factorisation framework.

We have discussed the behaviour of the pZ spectrum in energy range around ∼ 20 GeV
around the peak of the distribution. The behaviour at large p2

Z > m2
Z in k⊥-factorisation

matches the behaviour of the pZ in fixed order perturbation theory. This can be understood
from the fact that in k⊥-factorisation at large pZ the transversal momenta of the initial
state off-shell gluons are much smaller than pZ and can be neglected. Effectively the process
g∗g∗ → ZQQ̄ with off-shell gluons behaves at large transversal momenta as gg → ZQQ̄
with on-shell gluons. The limit for very small gluon virtualities k2

1,2 → 0 was checked also
analytically.

Our result for the transverse momentum spectrum of the electroweak gauge boson Z
– pZ is consistent with theoretical expectations predicted before by [40] and shows sig-
nificant modification of the transverse momentum spectrum at the turn-over compared to
transverse momentum spectra calculated at a fixed order perturbation theory. As expected
the cross sections agree at very large values of |pZ | where the transverse momentum of the
initial state gluons from uPDFs can be neglected. These results are a strong indication of
consistency of the calculation [48] and show its importance for the physics at the LHC.

6.2 Z and W production associated with heavy quark-

antiquark pair in Herwig++

6.2.1 Introduction

Monte Carlo generators are important tools for predicting signals and their backgrounds
measured at modern particle colliders such as the LHC and the TeVatron. In last decades
a lot of effort was spent to include theoretical predictions into Monte Carlo generators to
make them more reliable and to make them agree with data. Special attention was paid
to the production of heavy quarks. What makes the appearance of heavy quarks in the
hard process special is their heaviness - the fact that the mass of the quarks can not be
neglected compared to the hard scale of the process. The mass of the heavy quark is a
new scale in the hard process and results in appearance of logarithmic terms of the form
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[αS ln(µ2/m2
Q)]n [51] in perturbation series. These logarithms are potentially important

because they get large for for large scale values.
There are two approaches to solve the problem of the heavy quark mass. First one is

called fixed flavour-number scheme (FFNS). This approach completely ignores the logarith-
mic terms. Heavy quarks in FFNS appear only in the final state of the hard subprocess.
Only massless flavours - mq < ΛQCD are treated as partons. The second approach is called
variable flavour-number scheme (VFNS). In VFNS there can be heavy quarks in the initial
state of hard subprocess, but are treated as massless [52]. Massive qurks are treated as in-
finitely heavy below some scale µT and as massless above scale µT . The number of flavours
at the scale µT usually chosen to be µT = mQ changes form n to n + 1. VFNS cannot
describe threshold effects. It does not take into account that heavy flavour quarks can be
generated only for ŝx = µ2(1/x − 1) ≥ 4m2

Q, where ŝx is the energy between the evolving
quark and the hard subprocess at the scale µ2, and introduces error O(m2

Q/µ2). It is valid
only for µ2 ≫ m2

Q where the error vanishes. The threshold effects are described in FFNS
where the mass effects are kept in the fixed order hard subprocess matrix elements and the
mass is fully taken into account. The error which FFNS introduces is O(Λ2

QCD/m2
Q). The

perturbative expansion of the hard matrix element behaves like

|M(αS(µ2), m2
Q/µ2)|2 =

∞∑

n=1

n∑

p=q

Cn,pα
n
S(µ2) lnn−p(µ2/m2

Q), (6.2.1)

where the coefficients Cn,p are finite functions of µ2 and q is a process dependent number.
In FFNS one truncates the expansion (6.2.1). When µ2/m2

Q → ∞ the terms not taken
into account represent a potentially large contribution and the truncated part does not
approximate the correct behaviour of the process. It would be desirable to resum all the
contributions in (6.2.1) which is done in VFNS.

The aim of a Monte Carlo generator should be to describe the threshold effects, to
resumm the logarithmic terms and to treat the heavy quarks as massive particles.

In case of not neglecting the mass of the heavy quark in a Monte Carlo generator
the mentioned logarithms would be resummed by the showering algorithm, which controls
the evolution of the parton density functions and simulates soft parton radiation, taking
into account that heavy quarks undergo a similar evolution/shower process as massless
particles. How the parton showering of the initial state heavy partons should be modified
compared to the massless case is subject of this paper. In case of the Monte Carlo generator
Herwig++ modifications which include the mass of heavy quarks has been done for the
final state showering algorithm.

There is another aspect of inclusion of massive quarks into Herwig++ initial state
parton shower algorithm. In case of Drell-Yan electro-weak gauge boson (γ, Z or W±)
production in proton-proton scattering a fraction of the gauge bosons is produced in anni-
hilation of heavy quarks. When the heavy quarks are tagged the proper description of the
hard subprocess in FFNS would be achieved by calculating the matrix element gg → V QQ̄
where V is the gauge boson and Q and Q̄ are the heavy quark and anti-quark. The inte-
gration of a matrix element with three particles in the final state is time consuming and
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as was mentioned in the previous paragraph we would loose the resummation of the terms
with powers of logarithms of ratio of heavy quark mass and the hard scale. If one would
on the other hand produce the emissions of heavy quarks by shower algorithm then the
terms with powers of logarithms would be resummed in Sudakov formfaktors.

6.2.2 Transverse momentum of b-quark jets in

Fortran Herwig and in Herwig++

To motivate the effort we have to make to treat the mass effects for heavy quarks, to treat
the heavy quarks differently than massless partons, we will review here the problems with
bottom quark production in Fortran Herwig and Herwig++ Monte Carlo programs.

The process in which heavy quarks appear naturally is the Drell-Yan process where the
gauge boson, a Z boson or a photon, is produced in quark-antiquark annihilation. Most of
the gauge bosons are produced in light quark annihilation, but there is a fraction of events
in which two heavy quarks annihilate to produce the gauge boson. To tag on such processes
one can tag the heavy flavour by measuring the properties meson to which the heavy quark
fragmented. The fragmented heavy quark will be typically part of a jet of particles which
it produces by parton radiation. We will call the jet which includes a b-quark a b-jet.

To investigate the properties of the production of b-jets in a Monte Carlo generator one
can study the properties of the distributions of observables of b-jets simulated on parton
level neglecting the decay and hadronization effects.

We have plotted the correlation transversal momentum and pseudo-rapidity of the b-
jet (Fig. 6.2.1) from Fortran Herwig. In the plot one can see a gap in the transversal
momentum from 0 GeV to 4 − 5 GeV . This gap is caused by a cut on the minimum
transversal momentum of the radiated particle in the splitting. The cut is important
in the case of Q → Qg where g is the radiated gluon in the final state. A cut on the
minimum transversal momentum of the radiated gluon should in such case simulate the
dead-cone [53] effect - suppression of gluon radiation from propagating heavy quark below
scale mQ. To keep the code of Monte Carlo generator Herwig the cut on the final state
showered particle is not only applied to gluons, but also to quarks. There is no reason to
expect dead-cone effect in the splitting g → QQ̄.

6.2.3 Initial state splitting functions in quasi-collinear limit

The inclusion of effects connected by taking the mass of the heavy quark into account
should generate the dead-cone effect and avoid the presence of the cut in all the splittings
present in the Monte Carlo generator Herwig.

To include mass effects into the parton showers we decided to calculate the initial state
splitting functions in the quasi-collinear limit. In quasi-collinear limit, similarly to the usual
collinear limit, one assumes that the transversal momentum of the emitted parton is small,
but on the other hand one assumes that mQ ∼ pQ⊥, where mQ is the mass of the heavy
emitted parton and pQ⊥ is its transversal momentum. The result of this approximation is
that the splitting functions will depend not only on the momentum fraction of the splitted
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Figure 6.2.1: Rapidity-transversal momentum correlation plot.

Figure 6.2.2: Schematic diagram of the calculation of the splitting function.

parton z, but also on the ratio
mQ

pQ⊥
. We have calculated the splitting functions in the quasi

collinear limit. The results are:

PgQ

(
z,

mQ

pQ⊥

)
= TR

( 2m2
Q

m2
Q + p2

Q⊥
z(1 − z) + z2 + (1 − z)2

)
,

PQg

(
z,

mQ

pQ⊥

)
= CF

(
−

2m2
Q

z2m2
Q + p2

Q⊥
z(1 − z) +

1 − z2

z

)
,

PQQ

(
z,

mQ

pQ⊥

)
= CF

(
−

2m2
Q

(1 − z)2m2
Q + p2

Q⊥
z(1 − z) +

1 − z2

1 − z

)
.

(6.2.2)

The index Q labels the heavy quark flavour. Because we consider the gluon as a massless
parton the splitting function Pgg(z, mQ/pQ⊥) remains only a function of the momentum

fraction z. The factors TR and CF are colour factors 1
2

and
N2

C−1

2NC
respectively.

It is easy to see that in the limit mQ → 0 we get from the splitting functions 6.2.2 the
usual Altareli-Parisi splitting functions for massless quarks and gluons.
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6.2.4 Evolution of massive b-quarks in Herwig++

The evolution of parton showers in Monte Carlo Herwig++ (and in Fortran Herwig

as well) goes backwards from the hard subprocess to the proton. This means in praxis
that first the momenta of b-quarks and Z boson are generated, the hard matrix element
for Drell-Yan production of Z boson is calculated and then the parton shower follows by
lowering the scale starting from the hard scale Q to Q0 were the parton shower ceases
reproducing the correct parton density functions.

In Pythia Monte Carlo generator this has been done [8].
To implement the possibility to treat the heavy quark emission separately we have

written a routine which generates the b-quark emission independently of the following
parton shower routine. The independent routine will give us freedom to choose a different
evolution scale for the splitting of gluon into a heavy quark-antiquark pair, to apply, as
well as to remove, various cuts on the phase space variables and to include mass effects
into the splitting function. At this level of the project we neglect the emissions of gluons
by the heavy (anti)quark. The first branch will be the gluon splitting into a heavy quark-

antiquark pair. This means that we will implement only the splitting function PgQ

(
z,

mQ

pQ⊥

)
.

The probability of emission of a heavy quark from a backward evolving heavy antiquark
in a given scale interval (q̃, q̃ + dq̃) with any z is

dPgQ(q̃, x, mQ) =
αS(q̃)

2π

dq̃

q̃

∫ 1

x

dz PgQ

(
z,

mQ

pQ⊥

) x
z
fg(x/z, q̃)

xfb(x, q̃)
(6.2.3)

where x is the momentum fraction of heavy (anti)quark in the hard subprocess QQ̄ →
Z(γ).

The probability expression in equation 6.2.3 uses already all the variables and functions
which are present in the parton shower algorithm. There are few places where we can
include the mass of the heavy quark: the splitting function, the scale and the parton
density function (PDF) of the heavy quark.

Of course we have to treat both quarks, but the procedure is the same for the other
heavy quark so we focus only on one. The probability of not radiating a gluon in the same
interval is

P/Q(q̃, x, mQ) = 1 − dPgQ(q̃, x, mQ) (6.2.4)

The probability of no emission going from higher scale q̃0 to q̃ is a product of probabil-
ities 6.2.4 and is an exponential of expression 6.2.3

∆(q̃0, q̃, x, mQ) = exp

(
−
∫ q̃0

q̃

dq̃′

q̃′
αS(q̃′)

2π

∫ 1

x

dz PgQ

(
z,

mQ

pQ⊥

) x
z
fg(x/z, q̃′)

xfb(x, q̃′)

)
(6.2.5)

The expression ∆(q̃0, q̃, x, mQ) is called the Sudakov formfaktor. Finally the probability
of emission of a heavy antiquark from a backward evolving heavy quark going from higher
scale q̃0 to q̃ is a product of the probabilities 6.2.5 and 6.2.3

PgQ(q̃, x, mQ) =
αS(q̃)

2π

dq̃

q̃
∆(q̃0, q̃, x, mQ)

∫ 1

x

dz PgQ

(
z,

mQ

pQ⊥

) x
z
fg(x/z, q̃)

xfb(x, q̃)
(6.2.6)
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Figure 6.2.3: Schematic diagram of bb̄ annihilation into Z boson with b̄ originating form
g → bb̄ splitting.
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Figure 6.2.4: Transversal momentum spectrum of the Z boson for different evolution
scales.
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Figure 6.2.5: Transversal momentum spectrum of the b/b̄ quark for different evolution
scales.

We will pay special attention to the scale variable q̃ (appearing in all equations in this
chapter). In the original parton shower algorithm in Herwig++ we have: q̃ ∼ Eθ, where
E is the energy of the incoming parton and θ is the angle between the daughters in which
the incoming particle decays. This is important because it takes coherence effects into
account. There is no reason to prefer this scale over other choices in case of quark emission
by a gluon. On the other hand the spectrum of transversal momentum of the emitted heavy
quark will strongly depend on the choice of the scale. One needs some criteria to choose
the correct scale. One of such criteria is to compare the transversal momenta spectra of
the final state b, b̄ and Z in a case where the b and b̄ come from parton showers with
the transversal momentum spectra of the same particle calculated using the full matrix
element of the subprocess gg → Zbb̄. We compared the spectra produced by the our heavy
quark backward evolution with the spectra obtained from Monte Carlo generator MCFM

where the full subprocess gg → Zbb̄ is implemented.
We have compared the spectra of transverse momenta (6.2.4 and 6.2.5) calculated in

our approach with those obtained from Monte Carlo generator MCFM [54] using

1. q̃ = pQ⊥,

2. q̃ = pQ⊥/
√

1 − z and

3. q̃ = pQ⊥/(1 − z)

where the second choice approximately corresponds to the virtuality of the evolved b-
quark. The third choice approximately corresponds to the standard Herwig++ evolution
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Figure 6.2.6: Invariant mass of the bb̄ pair from Herwig++ and Mcfm

variable. As one can see from the figures 6.2.4 and 6.2.5, the best agreement of the
transverse momenta spectra, at low values, are obtained by choosing q̃ = pQ⊥/

√
1 − z.

The transverse momenta spectra differ at large values of pQ⊥ and pZ⊥ because the parton
shower fails in this region. The reason is that the evolution scale is restricted by the mass of
the gauge boson. To correct for the high transverse momenta one needs to include matrix
element corrections.

Interesting is also comparison of invariant mass of the bb̄ pair mbb̄ spectra for which we
chose as the scale, according to the results from plots 6.2.4 and 6.2.5, the virtuality of the
b-quark. We see in figure 6.2.6 difference not only for large values of mbb̄, but also for small
values of mbb̄.



Chapter 7

Forward jets at the LHC in high energy

factorisation

In this section we will describe details of the calculations results of which are published
in [55] also included in the chapter 9.

As we mentioned in previous sections, by considering a region of phase space in which
the proton momentum fractions of the initial state partons are small, contributions to
the scattering cross section of the form [αS ln (1/x)]n become important and need to be
resummed to save the predictivity of the perturbative approach. The importance of the
small-x resummation should be more apparent if the phase space region in which x is very
small is more dominant. It would be therefore interesting to study processes which are
dominated by small x phase space region at very small x theoretically and also experimen-
tally. One should observe deviations of the predictions from calculations without small x
resummation with the data. On the other hand one can test the predictions of the small
x resummation.

Attempts to probe small x phase space region and test the available theoretical ap-
proaches have been done with HERA [56] data and TeVatron data [57]. On this data many
known approaches were tested and further improved and new approaches were developed
to produce predictions which could be compared with data.

A lot of work was invested to describe the HERA forward jet measured by experiments
H1 and ZEUS.

Most of the theoretical calculations dedicated for solving the problem of forward jets is
based on the calculation of the cross section using the BFKL Green function. The authors
of [58] calculated the azimuthal angle correlation between the outgoing lepton and and a
jet separated from the outgoing lepton by a rapidity distance Y as a function of Y . They
made prediction of this quantity for electron proton collider LHeC which is now under
discussion [59]. Similar calculations have been performed in [60].

Forward jets as a probe of small-x dynamics have become again important with com-
ing of awaited start of the LHC. Very interesting are the prospects to measure processes
probing the small x phase space region at the LHC [61–63]. An unprecedented forward
rapidity coverage can be obtained by the forward calorimeters [64] of the CMS experiment.
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Although the most forward calorimeters (rapidity range from 5.2 to 6.6) are not able to
resolve jets in rapidity, they are able to measure the energy deposit and the azimuthal
angle of the jet. In combination with a forward calorimeter (rapidity range from 3 to 5) it
will be possible to measure jets in a relatively large interval of forward rapidities.

Azimuthal decorrelations between jets separated in rapidity in hadron-hadron collisions
have been studied in the BFKL framework in [65]. In the first two references from [65] the
authors used the NLO BFKL kernel stabilised by collinear resummation. The importance
of the NLO corrections was shown in [66]. The scheme is motivated by [67] in which two
approximately equally hard jets separated by a large rapidity distance were studied. In
such a situation the collinear evolution between the hard jets, which assumes monotonous
growth of the factorisation scale from the non-perturbative object at a small scale to a hard
object at a large scale, should be suppressed because of existence of two equally large scales.
This jet configuration is called Mueller-Navalet jets by authors of [67]. The relevance of
Mueller-Navalet jets and azimuthal correlation between them was further discussed in [68]
and [69].

In [22] and [23] the authors calculated the azimuthal correlation of Mueller-Navalet
jets using a Monte Carlo implementation of the BFKL equation. The BFKL equation
they implemented into a Monte Carlo program was formally at leading order, but they
included also subleading effects as the momentum conservation and running coupling.
For the purpose of Monte Carlo implementation they reformulated the BFKL equation by
’unfolding’ the summation over the gluon intermediate gluon emissions and by making their
contributions explicit. They introduced an infrared cut-off µ0 on the transversal momenta
of the emitted gluons to separate unresolved and resolved emissions. By iteratively solving
the resulting BFKL equation with the µ0 cut-off they obtained a solution which can be
directly implemented in a Monte Carlo generator to obtain exclusive final states. In the
limit µ0 → 0 they reproduced the BFKL equation.

The approach to calculate forward jet cross section and various observables in [55]
(see also section 9) adopts the high energy factorisation scheme and attempts to describe
forward jet production in asymmetric kinematical situation using CCFM gluon uPDF and
a parton shower algorithm to describe gluon emissions.

7.1 Forward jets in asymmetric kinematical situation

Let us first recall the motivation for this calculation. The LHC will open larger phase space
region allowing for hard subprocess at a typical scale µ2 ≫ ΛQCD having at the same time
the total proton-proton collision energy s ≫ µ2. In such situation the momentum fraction
x carried at least by one of the exchanged partons can be very small x ∼

√
µ2/s ∼ 10−5. It

is known that the small-x region – x < 10−2 is dominated by the gluon density. The gluon
density function is much larger than other PDFs. To probe partons carrying a very small
proton momentum fractions x1,2 at the LHC energy, it is necessary to assume that x1 ≫ x2.
To see this we can assume x1 ∼ x2 and take µ2 = (2 × 50)2 GeV2 and s = 140002 GeV2 –
the LHC proton-proton collision energy. One finds x1,2 ∼

√
µ2/s = 4× 10−3. By requiring
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one of the partons to be around x1 ∼ 0.1, we can approach x2 ∼ 10−5 with the other one.
The consequence of such a kinematical arrangement will be that all the particles produced
in the final state of the hard subprocess will be highly boosted into the high rapidity region
in the direction of the proton from which the large-x parton originated. The rapidity of
the system of the final state particles will be

yS =
1

2
ln
(x1

x2

)
∼ 5. (7.1.1)

From simple calculations we made in the previous paragraph we can see that one should
look for experimental evidence of small-x dynamics in a rather large rapidity region. There
are experiments close to the LHC interaction points ready to measure particle production
at very large forward rapidities [61–63]. Similar measurments, however at higher pro-
ton momenta fractions, were already performed at the HERA accelerator and the data
could not be satisfactory described by conventional Monte Carlo generators like Pythia

or Herwig and O(αS) and O(α2
S) calculations.

In the situation when the momentum fraction of the proton carried by the parton is
very small high energy logarithms could be important. To resum them we can adopt the
framework developed in [25] for unintegrated parton distribution functions.

7.2 Kinematics and dynamics

We are interested in a kinematical regime where jets are produced at large rapidity y at
the forward region in association with a high-pt event - a jet in the central rapidity region.
This selects configuration in proton proton scattering where a parton with a small longi-
tudinal momentum fraction of the proton scatters with a parton carrying relatively large
longitudinal momentum fraction of the second proton. We consider p⊥ of the observed
jets to be high enough (eg, |p| ≥ 10 GeV ) for a perturbative treatment to apply. Because
of the asymmetric kinematics, the process is sensitive to significant correlations among
high-p⊥ produced across a large rapidity interval. These rapidity correlations receive con-
tribution from regions not ordered in the transverse momenta. Taking this into account
requires going beyond collinear approximations, and therefore computing k⊥ dependent
matrix elements and showering. The underlying factorization formula for the forward-jet
cross section is schematically

σ(forward−jet) =
∑

a

∫
d2k

2π

1∫

0

dx1

1∫

0

dx2 σ̂ag∗(x1, x2,k)fa(x1, µ)fg∗(x2,k, µ) (7.2.1)

where µ2 is on the order of p2
⊥, parton g∗ is small-x and off-shell, while parton a is large-x

and near mass shell. The hard event depends on matrix elements Mag∗ with one off-shell
incoming line.

In this arrangement one uses small x dynamics for the gluon and on the other hand
large x dynamics for the valence quark.
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7.2.1 Calculation of matrix element

We expect 3 hard subprocesses to dominate the forward jet production. In all of them
there is an off-shell gluon and other on-shell parton:

qg∗ → qg, (7.2.2)

gg∗ → gg, (7.2.3)

gg∗ → qq̄. (7.2.4)

From subprocesees (7.2.2), (7.2.3) and (7.2.4) the qg∗ channel will be dominant because
quark PDFs dominate over gluon PDFs at x ∼ 1. However the partonic cross section
of the subprocess (7.2.3) is one order larger than the one of (7.2.2) which compensates
the suppression of the gluon PDFs at large x. The result is that the subprocess (7.2.3)
contributes to the forward jet cross section in magnitude comparable with the contribution
of the subprocess (7.2.2). The partonic cross section of the subprocess (7.2.4) is roughly 3
orders smaller than the partonic cross sections of (7.2.2) and (7.2.3) and there is additional
suppression by the gluon PDF which results in negligible contribution of (7.2.4) to the
forward jet cross section.

Next we will illustrate the derivation of the unpolarised matrix elements for subpro-
cess (7.2.2), (7.2.3) and (7.2.4) in high energy factorisation with the example of the sub-
process (7.2.2).

To calculate the qg∗ → qg matrix element we follow the kT factorisation prescription.
This allows by a certain choice of polarisation sum of incomming gluon to generalise the
qg → qg stattering to processes where incomming gluon is off-shell. The convinient way to
parmetrise the four momenta of initial and final states particles is the following:

k = α1 p1 + k⊥ (7.2.5)

q = β1 p2 (7.2.6)

k′ = α′
1 p1 + β ′

1 p2 + k′
⊥ (7.2.7)

q′ = α′
2 p1 + β ′

2 p2 + q′⊥ (7.2.8)

where p1 = (
√

s
2
, 0, 0, 0) and p2 = (0, 0, 0,−

√
s
2
) are the four-momenta of the beam protons,

k, q, k′ and q′ are the initial state gluon, valence quark, final state gluon and final state
quark four-momenta respectively. The initial state gluon is off-shell by k2 = −k2, while
the other partons satisfy q2 = 0, q′2 = 0, k′2 = 0 . The longitudinal components expressed
in the Lorentz invariant expressions are:

α1 =
k · p2

p1 · p2
, β1 =

q · p1

p1 · p2

α′
1 =

k′ · p2

p1 · p2
, β ′

1 =
k′ · p1

p1 · p2
, α′

2 =
q′ · p2

p1 · p2
, β ′

1 =
q′ · p1

p1 · p2
(7.2.9)

(7.2.10)
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Figure 7.2.1: Set of diagrams of q g∗ → q g with initial state gluon off-shell and initial
state quark on-shell.

The expressions for the amplitude reads:

Mξξ′ = −i g2
Sūξ(q

′)
[
ǫ̂∗λ′ta

q̂ + k̂

(q + k)2
u tb ǫ̂λ + ǫ̂∗λ′tb

k̂′ − q̂

(k′ − q)2
ta ǫ̂λ

+ iǫ∗µλ′ V
abc
µνκǫ

κ
λ

dνζ

(q − q′)2
tc γζ

]
uξ′(q)

(7.2.11)

where "hat" on a momentum variable means contraction with a gamma matrix, ǫλ ≡ ǫµ
λ(k′)

is the polarization of initial state gluon, ǫ′λ ≡ ǫµ
λ(k′) is the polarization of final state gluon,V

is the triple gluon vertex

V abc
µνκ = fabc[−gµν(k

′ − 2k)κ − gµκ(k + k′)ν + gνκ(2k
′ − k)µ] (7.2.12)

and u (ū) denotes u ≡ u(q, ζ) (ū ≡ ū(q′, ξ)) and the dνζ in lightcone gauge is

dνζ = gνζ −
p1 ν(q − q′)ζ + p1 ζ(q − q′)ν

p1 · (q − q′)
(7.2.13)

where p is a lightlike vector satisfying p2
1 = 0. Using the kT factorisation prescription the

sum over polarisation on incomming gluon is:

∑

λ

ǫµ
λ(k)ǫν

λ(k) =
2kµ

Tkν
T

k2
(7.2.14)

while for outgoing gluon we have:

∑

λ′

ǫµ
λ′(k

′)ǫν
λ(k

′) = −gµν +
k′

µ p1 ν + k′
ν p1 µ

p1 ·k′ (7.2.15)

We then obtain for the unpolarized matrix element squared |M|2

|M|2 =
1

4

1

Nc(N2
c − 1)

(
CAC2

FAabelian + C2
ACFAnon−abelian

)
(7.2.16)
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where

Aabelian = (4παs)
2

(
k · q
p1 · q

)2
(p1 · q)2 + (p1 · q′)2

k′ · q k′ · q′ (7.2.17)

and

Anon−abelian = (4παs)
2

(
k · q
p1 · q

)2
(p1 · q)2 + (p1 · q′)2

2k′ · q k′ · q′
(

2k′ · q′ p1 · q
−t k′ · p1

+
2k′ · q p1 · q′
−t k′ · p1

− 1

)

(7.2.18)
with CA = Nc, CF = (N2

c − 1)/(2Nc) and Nc being the number of colours. The limit
k⊥ → 0 can be performed and the collinear matrix element for qg → qg is recovered.

The derivation of the matrix elements for subprocesses (7.2.3) and (7.2.4) is analogous
to the derivation described above. However, there is another way how to derive the same
expressions for the matrix elements by using 2 → 3 processes and performing the small x
limit. The initial partons in a 2 → 3 process carry momenta p1 and p2. By performing
the limit in which the 4-products between p2 and 4-momenta k, q, k′ and q′ and among
each other are of the same order and very small compared to dot-products with p1 one
obtains the matrix element for a 2 → 2 subprocess with momentum k being off-shell times
a simple calculable factor. For a cross check the matrix elements were derived also using
last mentioned method.

7.3 Implementation into Monte Carlo program

There are collinear singularities present in the matrix elements which have to be avoided
by cuts on transversal momenta of the final state partons.

We use running coupling in our calculations αS(µ2
R). We choose the scale for µ2

R =
max(k′2,q′2).

To avoid the collinear singularities we applied cuts |k′| > |k′
min| and |q′| > |q′

min| on
final state transversal momenta. To obtain the proper collinear limit we choose |q′

min| =
|k′

min|. Transversal momenta of the final state partons provide a hard scale which also
ensures factorization. We have implemented the matrix element into the Monte Carlo
generator Cascade. We have to note that in the program the parton showers from the
valence quark side are at the moment not available. Only parton showers from the initial
gluon side are available. However, we can safely say that the presence of extra radiation
from the valence quark side will not make a significant contribution to jet cross sections
because the gluon radiation from a quark is dominated by soft emissions and we expect
that they will not affect the jet analysis.

7.4 Results

The calculation described in previous section is important especialy for jet production
at very forward rapidity intervals at the LHC experiments. To investigate experimentaly
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measurable quantities we focus our attention on existing detector of CMS experiment which
is covering very forward rapidity region: the Hadronic Forward (HF)-CMS calorimeter
covering the pseudo rapidity region 3 < η < 5.

Inspired by the analyses done for Mueller-Navalet jets described in the beginning of the
section 7 we have studied azimuthal angle correlations ∆φ of a forward jet in HF rapidity
region and a jet in the central rapidity region |η| < 2 (later referred to as central rapidity
region). We expect that the central jets will be dominantly produced from the parton
showers from the gluon evolution chain. The forward jets will be mostly produced by the
fragmentation of hard subprocess partons.

We are also interested in the energy flow, transversal momentum and jet multiplicity
in forward and central rapidity region which are directly affected by the parton shower
algorithm.

We compare our results with the results obtained from Pythia Monte Carlo generator
which is based on collinear factorization, we also check the influence of a model for multiple
parton interactions (MPI). Since the unintegrated CCFM parton showers increase the
decorrelation between jets and predict higher jet multiplicities, it is interesting to compare
the CCFM parton showers with DGLAP parton showers with a MPI model to see how
MPI can mimic CCFM effects and to which degree these two are distinguishable. We
will therefore compare our results obtained using the CCFM parton showers with those
obtained using Pythia with MPI model switched on.

7.4.1 Transversal momentum and energy flows in forward rapidity

region

Because of the higher jet activity produced in a CCFM based shower and a different
treatment of transversal momentum we expect differences in the spectra of transversal
momentum of jets especially in the forward rapidity regions.

To calculate the cross sections we have chosen the gluon uPDF set A0. For the ini-
tial state quark density we used non-singlet quark CTEQ6.0 PDF evolved by the CCFM
equation. In Pythia we used CTEQ 5L PDFs and default p2

⊥ and opening angle ordered
parton showers [8]. We have used options with MPI switched on and off and MPI model
switched by the default option for MSTP(82).

We select one jet in the central rapidity region |ηcj| < 2 and the other one jet as
the hardest jet in the forward region 3 < ηfj < 5 with a transversal momentum of the
jet |pfj | > 35 GeV . We have to require a second jet because the hard subprocess was
calculated for two jets. One jet observable is not relevant because a virtual correction
would be necessary to remove the singularity from the real 2 → 2 sub-graphs.

In figure 7.4.1 we have plotted the transversal momentum of jets in the rapidity region
3 < ηfj < 5, where ηfj is the rapidity of the forward jet, requiring jet in the forward
rapidity region and simultaneously requiring a jet in the central rapidity region |ηcj| < 2.
From the plot in figure 7.4.1 we can see that the cross section as a function of transversal
momentum of the jets calculated using Cascade is comparable with the cross section
obtained from Pythia with MPI switched off. One can see that the MPI increase the
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Figure 7.4.1: Transversal momentum of jets in for pseudo-rapidity of jets 3 < ηj < 5.

observed cross section up more for lower transversal momentum of the jets and make the
distribution steeper. The shape of the transversal momentum spectrum calculated using
Cascade is slightly harder than the one predicted by Pythia which can be seen from
slightly different slopes of distributions.

In the plot of forward jet multiplicity, figure 7.4.2, the first number of the interval of the
bin gives the information on the number of jets with transversal momentum pfj > 35 GeV
and pfj > 20 GeV respectively. On the y axis is the fraction of the events with certain
forward jet multiplicity.

Jet multiplicity plot in figure 7.4.2 shows that the number of forward jets selected to
be in the rapidity region 3 < ηfj < 5 is very similar for Pythia without MPI and CCFM
based parton shower in Cascade. CCFM based parton shower produces slightly more
very high jet multiplicity, njf ≥ 3, events. The cross section for the production of forward
jets predicted by Pythia with MPI parton showers is higher than the one predicted by
Cascade with CCFM parton showers.

In the figure 7.4.3 is azimuthal correlation plotted in rapidity region 3 < ηfj < 5. The
figure 7.4.3 shows that the shape and also the size of the cross section for CCFM based
parton shower is very similar to the one obtained from Pythia without MPI. Pythia with
MPI predicts much bigger cross section than Cascade and Pythia without MPI. This
is consistent with previous plot in figure 7.4.1. The cross section calculated in Cascade

is flatter at ∆φj ∼ π than the one calculated in Pythia. This is consistent with the
transversal momentum spectrum (figure 7.4.1) which is harder for Cascade than for
Pythia.

Last we discuss (figure 7.4.4) the average azimuthal deviation from a back-to-back con-
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jet pair.

figuration |π − |∆φ|| of two hardest jets with pj > 20 GeV depending on the relative
rapidity distance of the jets |∆y|. No restriction on the jet rapidity was imposed. In this
case Pythia with MPI predicts roughly 40% bigger average |π − |∆φ|| than the uninte-
grated parton shower Monte Carlo. The |π − |∆φ|| distribution calculated in Cascade

has the same shape as the distribution calculated in Pythia without MPI which predicts
slightly smaller |π − |∆φ|| then the CCFM based parton shower Monte Carlo. The large
value of |π − |∆φ|| in Pythia is caused by the presence of MPI which slightly increases
this quantity.
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Summary and Conclusions

To describe the transversal momentum spectrum of a electro-weak gauge boson it is nec-
essary to go beyond fixed order perturbation theory. It is needed to resum whole classes
of enhanced logarithmic terms. Depending on the phase space region different classes of
logarithmic terms can be important. There are different approaches to sum such loga-
rithmic terms including evolution equations of parton density functions. The evolution
equation DGLAP which is valid for integrated parton density functions can be used to ef-
fectively produce unintegrated parton density functions using parton shower algorithm, but
this approach involves kinematical approximations. With opening of phase space region
Λ2

QCD ≪ µ2 ≪ s at the LHC approaches based on the BFKL and the CCFM equations are
becoming more relevant. The BFKL and the CCFM equations define genuine unintegrated
parton density functions which can be convoluted with matrix elements with off-shell initial
state gluons.

Off-shell matrix elements for Z/W + QQ̄ production were calculated and Monte Carlo
Cascade based on the CCFM evolution equation was used to study phenomenology.
Special attention was given to observables connected with the electro-weak gauge boson
for the LHC kinematics. The widening of the turn-over of the transversal momentum
spectrum of the electroweak boson is observed and discussed. It was pointed out in [40]
that the turn-over of the transversal momentum spectrum of the electro-weak gauge boson
becomes wider by taking the small-x dynamics into account. The results were compared
with results obtained in collinear factorisation in LO and NLO calculated using Monte
Carlo generator MCFM. We conclude that some of the effects of NLO and even higher
order collinear calculation are already included in the LO kT -factorization calculation.

To improve the calculation additional channels to the process g∗g∗ → Z/W/γ + qq̄ can
be included. As we already mentioned this was done in [45] in the KMR approach for the
quark uPDF, but one can go beyond this approach by using off-shell g∗ → qq̄ splitting
function or by using one-loop CCFM equation for the quark uPDF [41, 42] or even by
defining evolution of the quark uPDF the way it was done in [50] and implementing itno
Monte Carlo shower program.

The forward jet production using unintegrated parton density functions and off-shell
matrix elements at the LHC was studied as a probe for small-x dynamics. We have anal-
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ysed the high-energy factorisation that serves to sum consistently higher orders in αs both
the logarithmic corrections in the large rapidity interval and those in the hard jet trans-
verse energy. The gauge-invariant (though not on shell) high-energy amplitudes, which
are needed to evaluate the factorisation formula for forward jet hadroproduction were de-
termined. The hard matrix elements were implemented in a fully exclusive Monte Carlo
program and phenomenology of forward jets was studied. The results were compared with
calculation using Monte Carlo generator Pythia. Differences in azimuthal decorrelation
and harder forward jet transversal momentum spectrum were discussed. Due to uninte-
grated transversal momentum from the uPDFs and by taking it into account in the hard
matrix elements the parton showers are better approximation for multijet final states than
parton showers based on collinear factorisation. MPI used in Pythia predicts much more
jet activity than the unintegrated shower and there are a differences in azimuthal decorrela-
tion and transversal momentum distributions which could be used to estimate the amount
of MPI and small-x dynamics required to describe data at the LHC.

The inclusive cross section of the forward jet production is dependent on an arbitrary
cut on transversal momentum of the final state particles which have to be applied to
regularise the partonic cross section. It would be possible to remove the dependence on
this cut by approximating the hard subprocess matrix element by product of a splitting
function and matrix element for a 2 → 1 process for small t = (q − q′)2 and u = (q − k′)2

(as defined in section 7), including also virtual corrections in a form of a Sudakov form
factor, and define a suitable matching between the regime with full matrix element and
approximation.



Chapter 9

Appendix



A Discussion of the method of orthogonal amplitudes 1

A Discussion of the method of orthogonal amplitudes

When we want to calculate amplitude squared of some process in quantum field theory
usually we deal with expressions of the form

|MΓ|2 = Tr{ūλ(k1, m1) Γ̂ uζ(k2, m2)ūζ(k2, m2) Γ̂† uλ(k1, m1)}, (A.1)

where uλ(k1, m1) and uζ(k2, m2) are spinors of final or initial state fermions in diagram
connected by a fermion line. In this chapter we will present a simple way - method of
orthogonal amplitudes [70] - to calculate such expressions and avoid encounter of long
resulting formulas.

In the method of orthogonal amplitudes one defines gamma matrices Ôi, i ∈ {1, ..., 4}
in such a way that

(Ôi, Ôj) = Tr{ūλ(k1, m1)Ôiuζ(k2, m2)ūζ(k2, m2)Ô
†
juλ(k1, m1)} = ‖Ôi‖2δij , (A.2)

where ‖Ôi‖ is a norm of the operator Ôi defined by the operator dot-product in equa-
tion (A.2).

Let us define objects Si
λζ(k1, m1; k2, m2) by relation

Si
λζ(k1, m1; k2, m2) = ūλ(k1, m1)Ôiuζ(k2, m2). (A.3)

Then the relation (A.2) translates into equation

Si
λζ(k1, m1; k2, m2)S

j†
ζλ(k1, m1; k2, m2) = ‖Si‖2δij . (A.4)

Since objects Si
λζ depend on the spin indices of fermions in the process - λ, ζ and on the

choice of the operator - index i, it can be interpreted as a certain projection of the fermion
spin state. It caries information about the spin configuration of the fermions on the fermion
line. Projection have to be done for each fermion line separately, because each fermion line
in a diagram corresponds to an independent trace over spin indices.

If one adopts matrix formalism for the objects Si
λζ , which are indeed nothing more than

2 × 2 matricies, one can write instead of (A.4)

(Si,Sj)u(2) = Tr{Si.Sj†} = ‖Si‖2
u(2)δij. (A.5)

Let us point out that the trace in the equation (A.5) is over different indices than in equation
(A.2). Matrices form a basis in the space of 2 × 2 matrices with complex components -

C2×C2, satisfying the relation Si∗ = SiT - u(2) which is indeed a 4-dimensional Lie algebra.
A practical choice of operators Ôi is to choose two four-vectors L and K which satisfy

the relations

L2 = −1, K2 = −1, L.K = 0, (A.6)

L.k1 = 0, K.k1 = 0, L.k2 = 0, K.k2 = 0. (A.7)
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Using four-vectors K and L one can construct the operators Ôi

Ô1
S = 1, (A.8)

Ô2
S = K̂, (A.9)

Ô3
S = L̂, (A.10)

Ô4
S = K̂L̂. (A.11)

However, we know that there are projectors on the spin states constructed from gamma
matrices. It must be possible to express these projectors, in the sense of objects one to one
correspondence of matrices Si, as linear combination of operators Ôi

S. The goal is to find
coefficients ai in the expansion of the spin projectors by solving the equation

ūλ(k1, m1)
(
1± γ5

2

)
uζ(k2, m2) = ūλ(k1, m1)

( 4∑

i=1

a±
i Ôi

S

)
uζ(k2, m2). (A.12)

The coefficients can be obtained using the formula (A.2)

a±
i =

(
1± γ5

2
, Ôi

S

)/
‖Ôi

S‖2. (A.13)

The coefficients for this particular choice of operators Ôi
S are

a±
1 =

1

2
, (A.14)

a±
2 = 0 , (A.15)

a±
3 = 0 , (A.16)

a±
4 = ∓1

2

ǫκµνσkκ
1kµ

2 KνLσ

m1m2 + k1.k2

. (A.17)

These coefficients can be used to calculate the polarised matrix elements - not averaged
over the spin of fermions. If we use orthogonal amplitudes in our calculation to derive the
unpolarised matrix element it is straight forward, using the coefficients (A.14) to obtain
matrix elemnts for certain polarisation states of fermions.

Coefficients in a similar expansion for a general operator Γ̂ can be obtained in the same
way The coefficients can be obtained using the formula (A.2)

gi =
(
Γ̂, Ôi

S

)/
‖Ôi

S‖2. (A.18)

The expression from equation (A.1) can be reconstructed by formula

|MΓ|2 =

4∑

i=1

g2
i ‖Ôi

S‖2 =

4∑

i=1

(
Γ̂, Ôi

S

)2/‖Ôi
S‖2. (A.19)

If Γ̂ consists from products of more than one gamma matrix then the number n of
gamma matrices in products in traces which have to be calculated analytically (if one
chooses to do it that way) is reduced from 2n + 2 to roughly n + 3. In practice it means
that the complexity of the analytical expressions can be significantly reduced.
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Abstract

We calculate and analyze Z and W± production in association with quark-antiquark pair
in kT -factorization. Numerical calculations are performed using the Monte Carlo generator
Cascade for proton proton collisions at LHC energy. We compare total and differential
cross sections calculated in kT -factorization approach with total differential cross sections
obtained in LO and NLO calculations in collinear factorization approach. We provide
strong evidence that some of the effects of the NLO and even higher order collinear calcu-
lation are already included in the LO kT -factorization calculation.
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B.1 Introduction

In the following years new discoveries are expected at the LHC concerning physics within
the Standard Model and beyond it. The discovery of the Higgs boson and exclusion or
affirmation of possible extensions or alternatives to the Standard Model will be of special
interest. To be able to measure the proposed signals of processes which open the access to
new physics a very good understanding of the detectors and their responses to produced
particles will be needed. An accurate calibration of particle detectors could be achieved
by using processes with well known cross sections in which particles with well known
properties are produced. A calibration of LHC detectors using W or Z signals is proposed
in several publications [71]. Moreover, the W or Z production is important because it
plays a significant role in background processes connected to Higgs production. Another
experimental motivation is provided by the possibility to measure the luminosity via Z
boson production [72].

At the Tevatron collider W/Z production takes place at a typical x =
√

M2
W /s ≈ 0.04

and hence is dominated by scattering of quarks. Because of the much higher energy, proton
scattering at LHC will allow smaller proton energy fractions and will be dominated by gluon
scattering.

The W mass provides a hard scale and allows a perturbative calculation of the hard ma-
trix element. The resummation of large logarithms of the form [αs ln(µ2/Λ2

QCD)]n (where
µ2 ∼ M2

W , µ2 ≫ Λ2
QCD) can be performed in the framework of the Dokshitzer-Gribov-

Lipatov-Altarelli-Parisi (DGLAP) equation [7], leading to the collinear factorization into
conventional parton densities and a hard scattering matrix element. While in the conven-
tional collinear approach the longitudinal momentum fraction is considered to be dominant,
such that the transverse momenta of the partons can be neglected as well as their virtual-
ities, at small x the transverse momenta entering the hard matrix element should become
relevant.

At the LHC the larger center of mass energy allows W/Z production at even smaller x
such that the production of particles will be dominated by gluon-gluon fusion. Moreover,
in this situation we have to deal with two different large scales (s ≫ µ2 ≫ Λ2

QCD) and
logarithms of the form [αs ln(1/x)]n arise which have to be resummed. This is realized by
the leading logarithmic (LL) Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [17] or the
Ciafaloni-Catani-Fiorani-Marchesini (CCFM) evolution equation [25] which additionally
resums terms of the form [αs ln(µ2/Λ2

QCD)]n and [αs ln(µ2/Λ2
QCD) ln(1/x)]n. Just as for

DGLAP, it is possible to factorize the cross section into a convolution of process-dependent
hard matrix elements with universal parton distributions. But as the virtualities and
transverse momenta are no longer ordered (as it is the case in DGLAP evolution), the
matrix elements have to be taken off-shell, and the convolution has to be made also over
transverse momenta with the so-called unintegrated parton densities. This factorization
scheme is called kT -factorization [73,74] or semi-hard approach [75] and will be used in this
work.

There is also the notion of transverse momentum dependent (TMD) parton distributions
[76]. But although in these approaches the transverse momentum of the parton is taken into
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account as well, this is only the case on the side of the parton density. The matrix element
is calculated with incoming on-shell partons, and transversal momenta of the incoming
partons are neglected. It has been shown [6] that factorization within this approach is
violated beyond NLO. In case of the kT -factorization approach used in this work this is
also expected. Indeed, it is well known that in the BFKL approach beyond NLO multiple
gluon exchange in the t-channel has to be taken into account.

In this paper we calculate and analyze Z and W production associated with two quark
jets provided by gluon-gluon fusion in kT -factorization. We assume quasi-multi-Regge-
kinematics (QMRK) where the cluster of W/Z and the two quarks is well separated in
rapidity from the proton remnants while the kinematics within that cluster is considered
without any further assumption. In particular, we take into account the mass of the
quarks. In this kinematic regime a gauge independent off-shell matrix element can be
extracted due to high energy factorization. A similar calculation has been done in [77],
where the authors calculated photon (instead of Z/W ) production in the same framework.
We calculated the matrix element independently and extended it to massive gauge bosons.
In our work on massive gauge bosons production we especially focus on the predictions for
LHC and compare with a collinear factorization based calculation.

The paper is organized in the following way: In section 2 we describe notation, kine-
matics of the process and the calculation of the matrix element. In section 3 we present nu-
merical results obtained from a calculation using the Monte Carlo generator Cascade [26],
where the matrix element squared was implemented. In section 4 we summarize the results
and offer conclusions.

B.2 Kinematics of Z/W production and calculation of the hard

matrix element

We label the 4-momenta of incoming hadrons with masses mA and mB by p′A and p′B,
respectively. In the center of mass system they can be expressed in terms of invariant light
like vectors pA and pB

p′A =pA +
m2

A

s
pB, p′B =pB +

m2
B

s
pA. (B.1)

In the case of protons at the LHC we have m2
A = m2

B = m2
p which satisfies the relation

m2
p

s
≪ 1. Therefore, we can neglect the masses in Eqs. (B.1) and use pA,B instead of p′A,B.
It is convenient to use Sudakov decomposition for all momenta present in the calculation

(see also Fig. B.11) by decomposing them into components proportional to pA and pB, and
a remainder perpendicular to both of them

ki = αipA + βipB + ki⊥, (B.2)

where i ∈ {1, 2, W (Z)} for outgoing particles, and

q1 =αpA + βq1
pB + q1⊥, q2 =αq2

pA + βpB + q2⊥ (B.3)

1These and the following diagrams were drawn in JaxoDraw [78].
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Figure B.1: Labeling and flow of momenta of the process pp → q (W/Z) q̄ X.

for the gluons entering the hard matrix element. It is also convenient to introduce Euclidean
two dimensional vectors ~ki and ~qj which satisfy the relations ~k 2

i = −k2
i⊥ ≥ 0 and ~q 2

j =
−q2

j⊥ ≥ 0.
In QMRK we have

α ≫βq1
, q2

1 = − ~q 2
1 = t1, (B.4)

β ≫αq2
, q2

2 = − ~q 2
2 = t2, (B.5)

αiβi =
m2

i + ~k 2
i

s
, (B.6)

where i ∈ {1, 2, W (Z)}, and mi are the corresponding masses of outgoing particles. The
invariants t1 and t2 describe the momentum transfer between the cluster formed by the
quarks and the W (Z) boson on one hand and the incoming protons on the other hand.
Due to the strong ordering in α and β one can neglect terms proportional to βq1

and αq2

in the calculation.
It is useful to introduce a set of Mandelstam variables describing the system

ŝ =(q1 + q2)
2 = αβs − (~q1 + ~q2)

2, (B.7a)

ŝ1 =(k1 + kW )2, ŝ2 =(k2 + kW )2, (B.7b)

t̂1 =(q1 − k1)
2, t̂2 =(q2 − k2)

2, (B.7c)

û1 =(q1 − k2)
2, û2 =(q2 − k1)

2, (B.7d)

related by

û1 + t̂2 + ŝ = t1 + t2 + m2
2 + ŝ1, û2 + t̂1 + ŝ = t1 + t2 + m2

1 + ŝ2. (B.8)

It is convenient to introduce transverse masses defined by

mi⊥ =

√
m2

i + ~k2
i , mq⊥ =

√
ŝ + (~q1 + ~q2)2, (B.9)
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and longitudinal momentum fractions of the produced particles xi = αi

α
. Combining these

relations with Eqs. (B.6, B.7) one finds that – in the end – the matrix element of W or Z
production associated with a quark-antiquark pair can be expressed in terms of independent
Mandelstam variables defined in Eqs. (B.7), transverse masses and variables x1,2,W (Z).

In the kT -factorization formalism the hadronic and partonic cross section are related
as follows:

dσ(pp → q (W/Z) q̄ X) =

∫
dα

α

∫
d~q2

1

∫
dφ1

2π
A(α, ~q2

1, µ
2)

×
∫

dβ

β

∫
d~q2

2

∫
dφ2

2π
A(β, ~q2

2, µ
2)dσ̂(g∗g∗ → q (W/Z) q̄), (B.10)

where A is the unintegrated gluon density in a proton and φ1,2 is the angle of ~q1,2 with
respect to some fixed axis in the azimuthal plane. Argument µ2 of unintegrated gluon
densities is factorization scale. The partonic cross section is denoted by dσ̂.

Since the incoming gluons of the matrix element entering this partonic cross section
are off-shell, the calculation differs from that of a hard matrix element in the collinear
approach significantly. To guarantee gauge invariance, the process with off-shell incoming
particles has to be embedded into the scattering of on-shell particles. The extracted off-
shell matrix element is of course independent of the specific choice of the particles in which
the scattering process is embedded. Therefore, we replace the protons by quarks for the
calculation of the hard matrix element. All diagrams for the discussed process are shown
in Fig. B.2.

The first two rows of Fig. B.2 include also non-factorizing (‘non-resonant’) diagrams
which factorize only in the sum. To make this factorization apparent already at this level,
one can sum up the different diagrams of one gluon production in quark-quark scattering
leading to one effective diagram with an effective vertex (see Fig. B.3). By working in
Feynman gauge one obtains the well known Lipatov vertex [79]:

Γν
στ (q1, q2) =

2pAτpBσ

s

(
2t1 + m2

q⊥
βs

pν
A −

2t2 + m2
q⊥

αs
pν

B − (q1⊥ − q2⊥)ν

)
. (B.11)

It can be shown that this vertex obeys the Ward identity. By this procedure, the first two
rows of Fig. B.2 are each replaced by just one diagram.

Strong ordering of Mandelstam variables s and t1,2 allows us to make a simplification
of the coupling of gluons to incoming quarks. By neglecting the exchanged momentum
in the vertex, we get an eikonal vertex which does not depend on the spin of the particle
coupled to gluon and preserves its spin. In detail, it reads

−iū(λ′
1, pA − q1)γ

µu(λ1, pA) −→ −2ipµ
Aδλ′

1
,λ1

. (B.12)

With the help of Eq. (B.12) it is possible to remove the external quark lines and attach
so-called ‘non-sense’ polarizations to the incoming gluons:

ǫµ
q1

=

√
2 pµ

A√
s

, ǫν
q2

=

√
2 pν

B√
s

. (B.13)
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Figure B.2: Full set of diagrams contributing to W/Z production via off-shell gluon-gluon
fusion.

Instead of Feynman gauge, one can choose an appropriate axial gauge [73] n · A = 0
with the gauge vector

nµ = apµ
A + bpµ

B with a, b ∈ C. (B.14)

The contraction of the eikonal coupling (B.12) with the gluon polarization tensor in this
gauge

d(n)
µν (q) = −gµν +

nµqν + qµnν

nq
− n2 qµqν

(nq)2
(B.15)

then reads

pµ
Ad(n)

µν (q1) =
q1⊥ν

α
, pµ

Bd(n)
µν (q2) =

q2⊥ν

β
. (B.16)

Figure B.3: Diagrams contributing to the Lipatov vertex.
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In such a physical gauge the ‘non-resonant’ diagrams vanish since the direct connection
of two eikonal couplings gives pµ

Ad
(n)
µν pν

B = 0 (in other words: the Lipatov vertex is to be
replaced by the usual three gluon vertex).

In the case of heavy quark production the polarization sum for the s-channel gluon
reduces to its Feynman gauge analogue −gµν due to the heavy flavor current conservation.
The same simplification takes place in our calculation. Nevertheless, we have to stress
that in general the polarization sum stays in its complex form. Of course, both ways to
calculate the matrix element are equivalent due to gauge invariance.

The sum over the physical polarizations η of the W boson reads

∑

η

ǫµ(η, kW )ǫ∗ν(η, kW ) = −gµν +
kµ

Wkν
W

m2
W

. (B.17)

It is equivalent to replace the polarization sum by
∑

η

ǫµ(η, kW )ǫ∗ν(η, kW ) → −gµν , (B.18)

and to add also the contribution of the Goldstone boson emission diagrams, where the
W boson is replaced by a Goldstone boson with mass mW . This is in analogy of using
the Feynman-t’Hooft gauge instead of the unitary gauge. We have calculated the squared
matrix element in both ways as a crosscheck.

Expressions for the single diagrams in Fig. B.2 – where the first diagrams are already
combined using the Lipatov vertex of Eq. (B.11) – are listed here (the hat marks contraction
with Dirac-matrices):

Mab
1µν = −igwg2

sKW/Z ū[tb, ta]
Γ̂µν(q1, q2)

ŝ

−k̂2 − k̂W + m1

ŝ2 − m2
1

ǫ̂(vq − aqγ
5)v,

Mab
2µν = −igwg2

sKW/Z ūǫ̂(vq − aqγ
5)

k̂1 + k̂W + m2

ŝ1 − m2
2

[tb, ta]
Γ̂µν(q1, q2)

ŝ
v,

Mab
3µν = −igwg2

sKW/Z ūtaγµ
k̂1 − q̂1 + m1

t̂1 − m2
1

tbγν
−k̂2 − k̂W + m1

ŝ2 − m2
1

ǫ̂(vq − aqγ
5)v,

Mab
4µν = −igwg2

sKW/Z ūǫ̂(vq − aqγ
5)

k̂1 + k̂W + m2

ŝ1 − m2
2

taγµ
q̂2 − k̂2 + m2

t̂2 − m2
2

tbγνv,

Mab
5µν = −igwg2

sKW/Z ūtaγµ
k̂1 − q̂1 + m1

t̂1 − m2
1

ǫ̂(vq − aqγ
5)

q̂2 − k̂2 + m2

t̂2 − m2
2

tbγνv,

Mab
6µν = −igwg2

sKW/Z ūǫ̂(vq − aqγ
5)

k̂1 + k̂W + m2

ŝ1 − m2
2

tbγν
q̂1 − k̂2 + m2

û1 − m2
2

taγµv,

Mab
7µν = −igwg2

sKW/Z ūtbγν
k̂1 − q̂2 + m1

û2 − m2
1

taγµ
−k̂2 − k̂W + m1

ŝ2 − m2
1

ǫ̂(vq − aqγ
5)v,

Mab
8µν = −igwg2

sKW/Z ūtbγν
k̂1 − q̂2 + m1

û2 − m2
1

ǫ̂(vq − aqγ
5)

q̂1 − k̂2 + m2

û1 − m2
2

taγµv,

(B.19)
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with the short hand notations ū ≡ ū(λ, k1), v ≡ v(λ′, k2), ǫ̂ ≡ ǫ̂(η, kW ), and where η, λ
and λ′ label the helicity/ spins of the corresponding particles. Color factors are represented
by Gell-Mann matrices ta, tb. The factors vq, aq and KW/Z encode the W and Z coupling.
For W boson we have vq = aq = 1 and KW = Vud

1
2
√

2
, where Vud is the corresponding

element of Cabibbo-Kobayashi-Maskawa matrix. For Z we have au = 1
2
, vu = 1

2
− 4

3
sin2 θW

and ad = −1
2
, vd = −1

2
+ 2

3
sin2 θW and KZ = 1

2 cos θW
, where θW is the Weinberg angle. In

the latter case m1 equals m2, and mW is replaced by mZ .
If we make use of the Eq. (B.18) to replace the polarization sum, one has to add

diagrams and corresponding amplitudes with Goldstone bosons with couplings

−igwKW/Z

(m2 − m1

mW/Z

vq −
m1 + m2

mW/Z

aqγ
5
)
. (B.20)

Finally, the square of the amplitude averaged over initial helicities and colors of gluons
and summed over spins/ helicities and colors of final particles can be written as

1

4

1

(N2
c − 1)2

|M|2 =
1

4

1

(N2
c − 1)2

∑

λ,λ′,η,a,b

Trcolor

{∣∣∣∣∣

8∑

i=1

ǫµ
q1

ǫν
q2
Mab

iµν

∣∣∣∣∣

2}
. (B.21)

By evaluating the traces over the products of Gell-Mann color matrices, one encounters
two possible cases of color factors

Tr{tatbtatb} = − 1

4

N2
c − 1

Nc
, Tr{tatbtbta} =

1

4

(N2
c − 1)2

Nc
, (B.22)

where Nc = 3 is the number of colors.
Finally, the expression for the partonic off-shell cross section appearing in Eq. (B.10)

to calculate the hadronic cross section is

dσ̂(g∗g∗ → q (W/Z) q̄ ) =(2π)4δ(4)
(
q1 + q2 − k1 − k2 − kW/Z

)
×

× 1

2αβs

α2β2s2

t1t2

1

4

1

(N2
c − 1)2

|M|2
∏

i∈{1,2,W}

d3ki

(2π)32E(ki)
.

(B.23)

The origin of the specific form of the flux factor and prefactor α2β2s2

t1t2
is formulated in

[73,74]. We summarize the most relevant aspects here. An important feature of the whole
calculation is that it is possible to recover the result obtained in collinear factorization by
neglecting the transverse momenta of the gluons when they enter the hard matrix element
and instead integrate over them only in the gluon densities. Due to factorization it is pos-
sible to keep this connection not only for the full cross section, but also for gluon densities
and hard matrix element separately as well, provided that the explicit manifestations of
the factorization formulae are phrased.

The key point is the observation that
〈
2
q1⊥µq1⊥ν

q2
1⊥

〉
φ1

= −g⊥
µν =

〈
2
q2⊥µq2⊥ν

q2
2⊥

〉
φ2

. (B.24)
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As shown in Eqs. (B.14-B.16), in an appropriate gauge the polarization sum
2pAµpBν

s
can be

replaced by
2q1⊥µq2⊥ν

αβs
. Since in this gauge one has to deal with exactly the same diagrams

as in the on-shell calculation, by dressing the off-shell matrix element squared with the
prefactor α2β2s2

t1t2
and performing the averaging over azimuthal angles of the ‘incoming’

gluons, followed by taking the limit t1, t2 → 0, one gets the collinear limit of the matrix
element squared. The flux factor for off-shell gluons is defined as for on-shell gluons with

1
2αβs

. As the matrix element is gauge invariant, this connection remains valid when one
performs the current calculation in a different gauge.

Due to the off-shellness of the incoming gluons and the three particle final state the
final result of the matrix element squared is rather lengthy. For that reason, we calculated
it independently and in different ways. One calculation followed directly the derivation
above using Feynman gauge for the gluons, and has been performed using Mathematica.
A second calculation written in Form [80,81] used an axial gauge as described above such
that the Lipatov vertices in (B.19) are to be replaced by standard three-gluon-vertices.
Moreover this second method used the method of orthogonal amplitudes, described in [70],
which affects the fermionic part of the matrix element and with which one is able to treat
the matrix element squared in a more compact way.

For this second method a few technical details are elaborated in the remainder of this
section. The method of orthogonal amplitudes is based on expressing an generic amplitude
M̃ (with one quark line) in terms of a set of four independent operators Ôi, i ∈ {1, .., 4},
which satisfy orthogonality relations Tr{Ôi(k̂2 − m2)Ôj(k̂1 + m1)} = ‖Ôi‖2δij for any

possible i and j, where ‖Ôi‖ is the “norm” of the operator Ôi. The projection of M̃ by an
operator Ôi is performed in the following way

M̃i =
1

‖Ôi‖
∑

λ,λ′

M̃ v̄(λ′, k2)Ôiu(λ, k1). (B.25)

The matrix element squared then has the following form

∑

λ,λ′

|M̃|2 =
∑

i

|M̃i|2. (B.26)

In our case the matrix element consists of up to five Dirac-matrices (neglecting γ5), after
squaring one has to evaluate traces of up to twelve of them. In contrast the method of
orthogonal amplitudes leads only to traces of up to eight Dirac-matrices.

If one wants to consider also the Z or W± coupling in the Feynman diagram, one
encounters a technical problem connected with the appearance of the Dirac-matrix γ5 in
the expression for the amplitude, leading to terms which include Levi-Civita tensors which
later cancel. To avoid this complication, one can split the expression for the amplitude
into two parts, one which does not include γ5 and the other one which does (to separate
the vector and axial part of the Z or W boson coupling). For the part with γ5 one uses a
base of operators Ôiγ

5. It is easy to check that they satisfy the same orthogonality relation
like the operators Ôi. One also easily see that projections of amplitudes in which γ5 occurs
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do not contain terms with Levi-Civita tensors. In doing so, we extend the method of
orthogonal amplitudes in a natural way.

Another complication comes from the presence of color factors in the expressions which
are not numbers but matrices. To treat the projections as numbers, it is necessary to
separate the Feynman diagrams into three groups according to different color factors,
namely

Cab
1 = tatb − tbta,

Cab
2 = tatb,

Cab
3 = tbta,

(B.27)

which form a vector Cab = (Cab
1 , Cab

2 , Cab
3 ) (components of Cab are color factors of Mab

(1,2)µν ,

Mab
(3−5)µν and Mab

(6−8)µν correspondingly). One can then build an corresponding vector

containing the sums of Feynman diagrams without the color factors F = (F1,F2,F3) such
that

Mab = (Cab)TF . (B.28)

The Lorentz indices have been dropped for simplicity. Using the matrix

Cij = Tr{Cab
i Cba

j }, (B.29)

the expression for the square of the matrix element takes the form

|M|2 = F †CF , (B.30)

where combinations of Fi and F∗
j are calculated using the projection method introduced

in Eqs. (B.25, B.26). For the final simplification we have diagonalized the matrix C.
After diagonalization of the matrix C only two diagonal elements remain nonzero. This
is expected because the quarks in the final state, in this process, can occur only in two
possible color states.

B.3 Numerical studies

The last missing pieces needed to calculate the hadronic cross section using Eq. (B.10), are
the unintegrated gluon densities. As mentioned in the introduction, there are two equations
suited to describe the evolution of an unintegrated gluon density, namely BFKL [17] and
CCFM [25], respectively. Both have been shown to agree on the leading logarithms in small
x [82], but the CCFM evolution is valid in the domain of larger x as well and, moreover,
matches in this region with DGLAP. Therefore, we base our numerical studies on an
unintegrated gluon density obeying the CCFM equation, which has been implemented in
the Monte Carlo generator Cascade [26]. We also investigate how the results change
when using uPDFs generated by a different procedure known as KMR [46].

For this purpose, we implemented the matrix element squared as described above into
Cascade. This implementation will be available in the next version of Cascade.

We have used the unintegrated parton distribution function (uPDF) CCFM 2003 set 3
for the numerical calculation.
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To investigate the calculated matrix element as accurately as possible, we neglect in
this first study the effect of hadronization of the final state. We study in detail rapidity
and transverse momentum distributions of the produced gauge boson, quark and antiquark
which (if one assumes that quarks approximately determine jets) are the most important
observables in the experiment.

Furthermore, we compare the kT -factorization approach to the collinear one. For this
purpose, we compare the distributions obtained by our transverse momenta dependent ma-
trix element with distributions obtained from the Monte Carlo generator Mcfm [54] which
provides a calculation of the same process in the collinear limit. In that case the transverse
momenta coming from the evolution are neglected. We also investigate in Sec. B.3.3 how
the variation of unintegrated parton densities affect the azimuthal angle and transverse
momenta distributions.

As an artefact of the perturbative calculation, the results depend on the renormalization
scale µR and the factorization scale µf . In the CCFM formalism the hardest scale is set by
the emission angle of the hardest subcollision. It can be expressed in terms of the energy
of the subcollision µf =

√
ŝ + (~q1 + ~q2)2. For the comparison with collinear factorization

calculations we have used as renormalization scale µR = mZ in kT -factorization calculation
and in collinear calculation as well. We have also investigated other possible choices (see
subsection B.3.3).

B.3.1 Comparison with LO collinear calculation

Our calculation of the hard matrix elements includes W± and Z production in association
with all possible quark-antiquark channels in gluon gluon fusion. Since the basic structure
of all these matrix elements is very similar, we present results only for the typical case
of Zbb̄ production at LHC energies of

√
s = 14TeV. The mass of the b-quark used is

mb = 4.62 GeV. For the collinear factorization calculations we use the parton densities
CTEQ6L1 [83].

The total cross sections are comparable in magnitude, though they differ considerably:
0.406 nb in kT -factorization and 0.748 nb in collinear factorization. The difference of total
cross sections stems from the different behavior at low transversal momenta of final state
particles (discussed later in this section) where contributions from transversal momenta of
the initial state gluons play a significant role. It can be seen that that applying a cut on
the transversal momentum of the Z boson pZ⊥ > 50 GeV the difference of the total cross
sections becomes smaller. With this additional cut one obtains cross sections of 0.118 nb
in kT -factorization and 0.141 nb in LO collinear calculation.

The total cross sections for other final states of interest are given in Tab. B.1.

The transverse momentum and rapidity distributions of the vector boson are shown in
Fig. B.4 and B.5, respectively. The comparison of the kT -factorization approach to the
collinear shows that they agree in transversal momentum distributions of Z at high values
of this quantity. This is no surprise, since at high pZ⊥ the contribution from initial state
gluon transverse momenta is expected to become small.
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Figure B.4: Transverse momentum distributions of the produced Z gauge bosons. Cal-
culation with massive b-quarks. Both calculations are in LO of perturbation series.
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Figure B.5: Rapidity distribution of the produced Z gauge bosons. Calculation with
massive b-quarks. Both calculations are in LO of perturbation series.



B Z and W± production associated with quark-antiquark pair in

kT -factorization at the LHC 15

final state Zcc̄ Zbb̄ Ztt̄ W+sc̄, W−cs̄
σtot [nb] 0.430 0.406 0.525 · 10−3 1.92

Table B.1: Total cross sections for different final states, calculated in kT -factorization
using Cascade.
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Figure B.6: Distributions of the rapidity distance between quark and antiquark. Calcu-
lation with massive b-quarks. Both calculations are in LO of perturbation series.

The rapidity distributions of the Z show a similar behavior, except for the overall
normalization (Fig. B.5).

To elaborate the difference between kT - and collinear factorization, we investigate more
exclusive observables, like the cross section differential in rapidity distance between quark
and antiquark (Fig. B.6). Both calculations show a two peak structure with a minimum at
zero rapidity, but the kT -factorization result has a considerably shallower minimum. The
minimum in the case of NLO collinear calculation gets shallower – bringing together both
calculations – when one again applies a cut on pZ⊥ > 50 GeV as one can see in Fig. B.7.

In the distribution of the azimuthal angular distance of Z and max(pb,⊥, pb̄,⊥) (Fig. B.8)
we observe that the region from 0 to π/2 is forbidden within the collinear calculation due to
momentum conservation, which is not the case for kT -factorization. This is caused by the
contribution from initial state gluon transversal momentum which allows the transversal
momenta of Z, b and b̄ to be unbalanced. A larger spread of possible configurations causes
that the distribution in the kT -factorization calculation flattens.
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Figure B.7: Distributions of the rapidity distance between quark and antiquark. Calcu-
lation with massive b-quarks. A cut on pZ⊥ > 50 GeV has been applied.
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Figure B.8: Distributions of the distance in azimuthal angle of Z and highest p⊥ quark or
antiquark. Calculation with massive b-quarks. Both calculations are in LO of perturbation
series.
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B.3.2 Comparison with NLO collinear calculation

In collinear factorization the physical effect of the intrinsic transverse momenta of the initial
gluons can not be described until higher order corrections are taken into account. Then
additional real emissions lead to off-shell gluons and their transverse momenta. Therefore,
the significant differences between a calculation in the collinear factorization framework and
kT -factorization framework shown in the previous section encourage us to compare our LO
calculation in kT -factorization with a NLO collinear calculation, since CCFM evolution
includes the high-energy part of the NLO collinear corrections. Since there are two off-
shell initial gluons in a kT -factorized pp-collision, one could even call for a higher order
collinear calculation to compare2.

To compare with a collinear NLO calculation, we use again the Monte Carlo generator
Mcfm. This Monte Carlo generator provides the process gg → Zbb̄ at NLO only in the
massless quark limit. To avoid divergences, additional cuts are applied on transversal
momenta of quarks, on the invariant mass of the bb̄ pair, and on transversal momenta
of a gluon which is produced in diagrams of real NLO corrections. Transversal momenta
of produced quark, antiquark and gluon have to satisfy the condition p⊥ > 4.62GeV
(corresponding to the mass of the b-quark). These cuts on quark (antiquark) momenta are
automatically applied in Mcfm when one is performing a calculation involving massless
quarks (antiquarks). We choose the parton density functions set CTEQ6M [83]. The same
cuts on transversal momenta of quark and antiquark are then applied in Cascade as well.

For the total cross sections, we obtain in the NLO collinear factorization calculation
1.04 nb, and in the kT -factorization calculation 0.429 nb. The difference of the total cross
sections in kT -factorization calculation and the NLO calculation in collinear factorization is
of the same origin as the difference between the total cross sections in section B.3.1 where
comparison of kT -factorization calculation and NLO calculation in collinear factorization
is discussed. This is again illustrated by a cut on pZ⊥ > 50 GeV diminishing the difference
between the cross sections (0.125 nb for the kT -factorization calculation and 0.165 nb for
the NLO calculation in collinear factorization).

The result for the cross sections differential in the transversal momentum of Z can be
seen in Fig. B.9. The cross section changes especially at small pZ⊥ (see Fig. B.10) from LO
to NLO calculation, and the difference between collinear calculation and kT -factorization
calculation becomes more pronounced. We observe that the maximum of the distribution in
the NLO calculation (Mcfm) stays approximately at same value of transversal momenta
and the shape of the peak is very different from the one we obtain in kT -factorization.
Nevertheless, the pZ⊥ distributions match at very high pZ⊥ (O(102GeV)).

The rapidity distribution of the Z (Fig. B.11) shows no major difference in shape in
kT -factorization approach, LO and NLO collinear factorization approach.

2Although we argue that already the LO kT -factorization calculation includes in some sense higher order
corrections, one might ask for an extension to NLO. So far kT -factorization based on CCFM evolution
has been formulated only at LO. On the other hand, since the BFKL equation has been calculated at
NLO accuracy [84], in the small x regime kT -factorization can be formulated at NLO accuracy as well
[24]. Nevertheless, an implementation into a Monte Carlo generator is still outstanding. Moreover, the
calculation of an off-shell 2 → 3 process at one loop order is far beyond the scope of this work.
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Figure B.9: Comparison of cross sections differential in transverse momentum of the pro-
duced Z gauge boson. Calculation with massless b-quarks. The applied cuts are described
in the text.
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Figure B.11: Comparison of cross sections differential in rapidity of the produced Z
gauge boson (logarithmic scale). Calculation with massless b-quarks. The applied cuts are
described in the text.

We consider the cross section differential in the total transversal momentum of the Zbb̄
system pZbb̄⊥ in Fig. B.12. In the NLO collinear calculation a non-zero pZbb̄⊥ is generated
by the emission an additional gluon, while at LO it is always balanced to zero. At low pZbb̄⊥
we see the consequence of the cut on the transverse momenta of the outgoing particles in
Mcfm (a small gap between 0 GeV and 4.62 GeV in pZbb̄⊥ histogram). Since there are no
parton showers or soft gluon re-summation [85] included in the Mcfm NLO calculation,
one observes a steep rise of the cross section towards zero transverse momentum because
the matrix element diverges when approaching pZbb̄⊥→0 GeV. On the other hand, uPDFs
include corrections similar to parton shower effects, treated consistently, which causes the
turnover in the cross section of the kT -factorization calculation. Here, the entire transversal
momentum of the Zbb̄ system stems from the transversal momenta of initial state gluons.
Interestingly, there is a difference not only at low values of pZbb̄⊥, but also at high values
of pZbb̄⊥. Differetial cross sections at high pZbb̄⊥ have a similar slope, but differ by a factor
of ∼ 3. This behavior contrasts with the behavior of distributions of pZ⊥ in figures B.9
and B.4 where at large values of pZ⊥ the differential cross sections overlap. However
the behavior at small values of pZbb̄⊥ in case of collinear calculation, as mentioned in the
begining of paragraph, is much different from the pZ⊥. Because of the divergence we observe
more events with low pZbb̄⊥. Since the normalization for both distributions is the same,
compensation of low pZbb̄⊥ behavior in collinear factorization case causes difference at high
pZbb̄⊥ with kt-factorization, but doesn’t change much the slope of the distribution. We
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Figure B.12: Comparison of cross sections differential in the p⊥ of the system Zbb̄.
Calculation with massless b-quarks. The applied cuts are described in the text.

expect that resummation effects at low values of pZbb̄⊥ would taim the growth of the cross
section in collinear factorization and would dicrease the difference with kt-factorization.

The cross sections differential in the difference of azimuthal angles of Z and b or b̄ quark
with higher transversal momentum – ∆φZhb – is shown in Fig. B.13. Going from LO to
NLO, the collinear calculation reveals a broader distribution like in the kT -factorization
case. Nevertheless, the kT -factorization result shows a more homogeneous spread of the
azimuthal angle distance. This difference origins partly in the difference of the transversal
momentum distributions at low values (see Fig. B.10). A cut on low values (pZ⊥ > 50 GeV)
of the transversal momentum of the Z boson results in steeper ∆φZhb distributions as
shown in Fig. B.14. Still, the the kT -factorization result is flatter than the NLO collinear
factorization calculation giving an indication that there is a contribution from the total
transversal momentum of the Zbb̄ system generated by both uPDFs.

B.3.3 Variation of the Cascade results on uPDF and renormalization scale

To estimate the uncertainty coming from the different choices of uPDF sets, we calculate
the cross sections differential in either the transverse momentum of the Z boson or ∆φZhb

(distance in polar angle between Z and max(pb⊥, pb̄⊥)) using different sets of uPDFs, namely
CCFM J2003 set 1, 2, 3 [86] and CCFM set A0 [87], which are all obtained from fits to
HERA F2 data [88]. In addition we use the unintegrated parton density by [46], referred
to as KMR. The resulting plots are shown in Figs. B.15 and B.16. We do not show the
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Figure B.13: Comparison of cross sections differential in distance in azimuthal angle of
Z and higher p⊥ b/b̄. Calculation with massless b-quarks. The applied cuts are described
in the text.
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Figure B.14: Comparison of cross sections differential in distance in azimuthal angle of Z
and higher p⊥ b/b̄. Calculation with massless b-quarks. An additional cut on pZ⊥ > 50 GeV
has been applied.
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uPDF Total cross section [nb]
CCFM J2003 set 1 0.369
CCFM J2003 set 2 0.147
CCFM J2003 set 3 0.406

CCFM set B0 0.277
CCFM set A0 0.378

KMR 0.190

Table B.2: Total cross sections of the process pp → Zbb̄ + X for different sets of uninte-
grated parton distribution functions.

µR Total cross section [nb]
mZ 0.406
2mZ 0.392
1
2
mZ 0.607√

m2
Z + p2

Z⊥ 0.467

2
√

m2
Z + p2

Z⊥ 0.381
1
2

√
m2

Z + p2
Z⊥ 0.585

Table B.3: Total cross sections for different renormalization scale µ.

distributions for set 1, because they are very close to distribution for the set 3, to keep the
plot clear.

The total cross sections obtained for different uPDFs can be seen in Tab. B.2. The
total cross section varies for these different uPDFs about 45%, while the shape of the
distributions is hardly effected except of the KMR. KMR set uses completely different
evolution equations and a deviation is not surprising.

As a last point to discuss, we turn to the scale dependence. As already mentioned in the
beginning of section B.3 the factorization scale is fixed by the emission angle of the hard
subprocess. However, there is still freedom in choice of the renormalization scale which
should be of order of the typical scale of the hard subprocess.

We consider two possible choices: the constant renormalization scale µ1 = mZ and the
scale µ2 =

√
m2

Z + p2
Z⊥, which are varied by factor of 2, so µ has values 2µ1,

1
2
µ1 and 2µ2,

1
2
µ2. The results for the pZ⊥ and the ∆φZhb distribution can be seen in Figs. B.17 and

B.18, respectively. The values of the cross section for individual choices of the scale are
summarized in Tab. B.3. One can see that a running αS does not affect the shape of the
distributions, but only the total cross section.
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Figure B.15: Transverse momentum distributions of produced Z gauge boson calculated
in Cascade using massive quarks. Cases with different uPDFs compared.
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in Cascade using massive quarks. Cases with different renormalization scales µR com-
pared.
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B.4 Summary and Conclusions

In this paper we have calculated the matrix element for the process g∗g∗ → W/Zqiq̄j ,
taking into account the virtuality and transversal momenta of the initial gluons in the kT -
factorization formalism. We have implemented the matrix element squared in the Monte
Carlo generator Cascade and have calculated the total and differential cross sections of
this process in proton proton collisions for the LHC at energy of

√
s = 14TeV. We have

compared our results with results obtained in collinear factorization (using Mcfm). The
total cross sections differ by a factor of ∼ 2. There are differences in distributions which
are sensitive to compensation of transversal momenta of particles in the final state coming
from rather fundamental differences between the two approaches.

We found the most significant differences in the cross section differential in the az-
imuthal angle between the Z boson and higher pT quark or antiquark – ∆φZhb. While
for a LO calculation in collinear factorization a region of values of ∆φZhb is kinematically
forbidden, in kT -factorization the whole range of ∆φZhb is allowed. This is because of
neglecting the contribution of transversal momenta of initial state gluons in calculation of
matrix element in collinear factorization. The NLO collinear calculation (where transversal
momentum is generated by real corrections) shows already the same qualitative behavior
as the kT -factorization calculation. However, there remains a difference in the shape of
the distribution of ∆φZhb compared to the kT -factorization calculation. We also compared
cross sections differential in the transversal momentum of the Zbb̄ system – pZbb̄⊥. In
collinear factorization and lowest order perturbation theory (α2

S), the observable pZbb̄⊥ is
exactly zero. For a non-zero contribution in collinear factorization higher order corrections
are needed. The kT -factorization gives non-zero contribution already at α2

S order. We have
compared cross sections differential in pZbb̄⊥ calculated in NLO in collinear calculation and
LO in kT -factorization. The distributions have different shape at low values of pZbb̄⊥. At
high values of pZbb̄⊥ there is a difference in magnitude, but the slopes don’t differ much. We
expect that collinear factorization result with included resummation effects for low pZbb̄⊥
would approach the one of kT -factorization.

We have calculated the cross sections differential in the transversal momentum of the
produced boson. The maximum of the distribution in the kT -factorization calculation is
at higher transversal momenta compared to the collinear one. This shows the sensitivity
of this distribution on parton evolution model and treatment of kinematics.

We conclude that in some of the effects of NLO and even higher order collinear calcu-
lation are already included in the LO kT -factorization calculation.
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Abstract

At the Large Hadron Collider (LHC) it will become possible for the first time to investigate
experimentally the forward region in hadron-hadron collisions via high-pT processes. In the
LHC forward kinematics QCD logarithmic corrections in the hard transverse momentum
and in the large rapidity interval may both be quantitatively significant. We analyze
the hadroproduction of forward jets in the framework of QCD high-energy factorization,
which allows one to resum consistently both kinds of corrections to higher orders in QCD
perturbation theory. We compute the short-distance matrix elements needed to evaluate
the factorization formula at fully exclusive level. We discuss numerically dynamical features
of multi-gluon emission at large angle encoded in the factorizing high-energy amplitudes.
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C.1 Introduction

Experiments at the Large Hadron Collider (LHC) will explore the region of large rapidities
both with general-purpose detectors and with dedicated instrumentation, including forward
calorimeters and proton taggers [61–64, 89–91]. The forward-physics program involves a
wide range of topics, from new particle discovery processes [89, 92, 93] to new aspects of
strong interaction physics [91, 94, 95] to heavy-ion collisions [96, 97]. Owing to the large
center-of-mass energy and the unprecedented experimental coverage at large rapidities, it
becomes possible for the first time to investigate the forward region with high-pT probes.

The hadroproduction of a forward jet associated with a hard final state X is pictured
in Fig. C.1. The kinematics of the process is characterized by the large ratio of sub-
energies s1/s ≫ 1 and highly asymmetric longitudinal momenta in the partonic initial
state, k1 · p2 ≫ k2 · p1. At the LHC the use of forward calorimeters allows one to measure
events where jet transverse momenta pT > 20 GeV are produced several units of rapidity
apart, ∆y >∼ 4 ÷ 6 [61, 64, 91]. Working at polar angles that are small but sufficiently far
from the beam axis not to be affected by beam remnants, one measures azimuthal plane
correlations between high-pT events widely separated in rapidity (Fig. C.2).

1

p

p

jet

X
s

s >> s

1k

2
k

1

2

forward
A

B

Figure C.1: Jet production in the forward rapidity region in hadron-hadron collisions.

The presence of multiple large-momentum scales implies that, as was recognized in [67–
69], reliable theoretical predictions for forward jets can only be obtained after summing
logarithmic QCD corrections at high energy to all orders in αs. This has motivated ef-
forts [22,98–100] to construct new algorithms for Monte Carlo event generators capable of
describing jet production beyond the central rapidity region. Note that an analogous ob-
servation applies to forward jets associated to deeply inelastic scattering [101,102]. Indeed,
measurements of forward jet cross subsections at HERA [56] indicate that neither fixed-
order next-to-leading calculations nor standard shower Monte Carlo generators [56,98,103],
e.g. Pythia or Herwig, are able to describe forward jet ep data. Improved methods to
evaluate QCD predictions are needed to treat the multi-scale region implied by the forward
kinematics.

In this work we move on from the observation that realistic phenomenology in the LHC
forward region will require taking into account at higher order both logarithmic corrections
in the large rapidity interval (of high-energy type) and logarithmic corrections in the hard
transverse momentum (of collinear type). The theoretical framework to resum consistently
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both kinds of logarithmic corrections in QCD perturbation theory is based on high-energy
factorization at fixed transverse momentum [104].

Figure C.2: (Left) High-pT events in the forward and central detectors; (right) azimuthal
plane segmentation.

This formulation depends on unintegrated distributions for parton splitting, obeying
appropriate evolution equations, and short-distance, process-dependent matrix elements.
The unintegrated-level evolution is given by evolution equations in rapidity, or angle, pa-
rameters. Different forms of the evolution, valid in different kinematic regions, are avail-
able. See [105–108], and references therein, for recent work in this area and reviews. The
short-distance matrix elements, needed in the evaluation of the factorization formula, are
the subject of this paper. We obtain their explicit expressions in a fully exclusive form, in-
cluding all partonic channels, and present results of numerically integrating them over final
states. Such matrix elements, though not on shell, are gauge invariant and perturbatively
calculable. They factorize in the high energy limit in front of (unintegrated) distributions
for parton splitting not only in the collinear emission region but also at finite angle. In par-
ticular, they can serve to take into account effects of coherence from multi-gluon emission,
away from small angles, which become important for correlations among jets across long
separations in rapidity. We give a numerical illustration of the high-kT behavior resulting
from such finite-angle radiation.

On one hand, once convoluted with the small-x gluon Green’s function according to the
method [104,109], these matrix elements control the summation of high-energy logarithmic
corrections, contributing both to the next-to-leading-order BFKL kernel [84] and to the jet
impact factors [110, 111]. On the other hand, they can be used in a shower Monte Carlo
implementing parton-branching kernels at unintegrated level (see e.g. [11, 112] for recent
works) to generate fully exclusive events. We leave these applications to a separate paper.

The paper is organized as follows. After recalling the factorized form of the cross
subsections in Sec. C.2, we present the high-energy amplitudes in Sec. C.3, and discuss
basic properties and numerical results in Sec. C.4. We summarize in Sec. C.5.

C.2 High-energy factorized cross subsections

High-energy factorization [104] allows one to decompose the cross subsection for the process
of Fig. C.1 into partonic distributions (in general, unintegrated) and hard-scattering ker-
nels, obtained via the high-energy projectors [104,109] from the amplitudes for the process
p1 + p2 → p3 + p4 + 2 massless partons. The basic structure is depicted in Fig. C.3.
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With reference to the notation of Fig. C.3, let us work in the center of mass frame of
the incoming momenta

p1 =
√

S/2(1, 0, 0T ) , p2 =
√

S/2(0, 1, 0T ) , 2p1 · p2 = S , (C.1)

where, for any four-vector, pµ = (p+, p−, pT ), with p± = (p0 ± p3)/
√

2 and pT two-
dimensional euclidean vector. Let us parameterize the exchanged momenta in terms of
purely transverse four-vectors k⊥ and k⊥1 and longitudinal momentum fractions ξi and ξi

as
p1 − p5 = k1 = ξ1p1 + k⊥1 + ξ1p2 , p2 − p6 = k2 = ξ2p2 + k⊥ + ξ2p1 . (C.2)

For high energies we can introduce strong ordering in the longitudinal momenta, ξ1 ≫ |ξ2|,
ξ2 ≫ |ξ1|. Further, we make the forward region approximations (p4 + p6)

2 ≫ (p3 + p4)
2,

k1 ≃ ξ1p1, k2 ≃ ξ2p2 + k⊥, so that

p5 ≃ (1 − ξ1)p1 , p6 ≃ (1 − ξ2)p2 − k⊥ , ξ1 ≫ ξ2 . (C.3)

It is convenient to define the rapidity-weighted average of dijet transverse momenta,

QT = (1 − ν)pT4 − νpT3 , where ν = (p2 p4)/[(p2 p1) − (p2 p5)] , (C.4)

and the azimuthal angle
cos ϕ = QT · kT /|QT ||kT | . (C.5)

We consider the differential jet cross subsection in QT and ϕ.
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Figure C.3: (a) Factorized structure of the cross subsection; (b) a graph contributing to
the qg channel matrix element.

According to the factorization [104, 110], the jet cross subsection can be computed as
(Fig. C.3a)

dσ

dQ2
T dϕ

=
∑

a

∫
dξ1 dξ2 d2kT φa/A(ξ1)

dσ̂

dQ2
T dϕ

(ξ1ξ2S, kT , QT , ϕ) φg∗/B(ξ2, kT ) , (C.6)

where the sum goes over parton species, φ are the parton distributions defined from the
unintegrated Green’s functions introduced in [109] for both gluon and quark cases, and σ̂ is
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the hard cross subsection, calculable from the high-energy limit of perturbative amplitudes
(Fig. C.3b).

The physical picture underlying Eq. (C.6) is based on the fact that initial-state parton
configurations contributing to forward production are asymmetric, with the parton in the
top subgraph being probed near the mass shell and large x, while the parton in the bottom
subgraph is off-shell and small-x. Eq. (C.6) embodies this picture through the longitudinal
and transverse momentum dependences of both φ and σ̂.

For phenomenological studies we will be interested in coupling Eq. (C.6) to parton
showers to achieve a full description of the associated final states. To this end we need the
matrix elements defining the hard-scattering kernels in a fully exclusive form. We give the
results in the next subsection.

C.3 Matrix elements for fully exclusive events

The matrix elements determining the hard-scattering kernels σ̂ can be viewed as a suitably
defined off-shell continuation of scattering amplitudes at lower order [104]. They can be
obtained by applying to scattering amplitudes M the high-energy eikonal projectors [104,
109],

MH = P H µ1µ2...
(eik) Mµ1µ2...(k1, k2, {pi}) , P H µ1µ2...

(eik) ∝ 2kµ1

⊥1k
µ2

⊥2√
k2
⊥1k

2
⊥2

. (C.7)

Although they are not evaluated on shell, they are gauge invariant and their expressions are
simple. The utility of these matrix elements is that in the high-energy limit they factorize
not only in the collinear emission region but also in the large-angle emission region. As
long as the factorization is carried out in terms of distributions for parton splitting at fixed
transverse momentum, as in Eq. (C.6), they can be useful to include coherence effects [110]
from multi-gluon emission across large rapidity intervals, not associated with small angles.

The results for the matrix elements in exclusive form are given by

Mqg→qg = C1A(ab)
1 + C1A(nab)

1 , Mgg→qq = C2A(ab)
2 + C2A(nab)

2 , Mgg→gg = C3A3

(C.8)
where

A(ab)
1 =

(
k1 k2

k1 p2

)2
(k1 p2)

2 + (p2 p3)
2

(k1 p4) (p3 p4)
, (C.9)

A(nab)
1 =

(
k1 k2

k1 p2

)2
(k1 p2)

2 + (p2 p3)
2

(k1 p4) (p3 p4)

(
(p3 p4) (k1 p2)

(k1 p3) (p2 p4)
+

(k1 p4) (p2 p3)

(k1 p3) (p2 p4)
− 1

)
, (C.10)

A(ab)
2 =

(
k1 k2

k1 p2

)2
(p2 p3)

2 + (p2 p4)
2

(k1 p4) (k1 p3)
, (C.11)

A(nab)
2 =

(
k1 k2

k1 p2

)2
(p2 p3)

2 + (p2 p4)
2

(k1 p4) (k1 p3)

(
(k1 p4) (p2 p3)

(p3 p4) (k1 p2)
+

(k1 p3) (p2 p4)

(p3 p4) (k1 p2)
− 1

)
, (C.12)
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A3 =

(
k1 k2

k1 p2

)2
(p3 p4)(k1 p2)+(k1 p4)(p2 p3)+(p2 p4)(k1 p3)

(p2 p4)(k1 p4)(p3 p4)(k1 p2)(p2 p3)(k1 p3)

[
(p2 p4)

4+(k1 p2)
4+(p2 p3)

4
]

,

(C.13)
and C1 = g4(N2

c − 1)/(4N2
c ), C1 = C1CA/(2CF ), C2 = g4/(2Nc), C2 = C2CA/(2CF ),

C3 = g4N2
c /(N2

c − 1).
The results above contain the dependence on the transverse momentum k⊥ along the

parton lines that connect the hard scatter to the parton distributions. Nevertheless, they
are short-distance in the sense that they can be safely integrated down to k⊥ = 0. That is,
the high-energy projection is designed so that all infrared contributions are factored out in
the nonperturbative Green’s functions φ in Eq. (C.6). An explicit numerical illustration is
given in the next subsection.3

The role of Eqs. (C.9)-(C.13) is twofold. On one hand, they give the high-energy
limit of multi-parton matrix elements in the forward region, which may be of direct phe-
nomenological significance. On the other hand, because of the factorization theorem [104],
logarithmically enhanced corrections for large rapidity can be systematically obtained to
all orders in αs from those in the (unintegrated) distributions for parton splitting once
the hard scattering functions are known at finite k⊥. To this end the detailed form of the
fall-off at large |k⊥|2 is relevant.

In the next subsection we discuss the behavior at high transverse momentum numer-
ically. This behavior reflects properties of gluon emission at large angle encoded in the
high-energy amplitudes. These are relevant, along with large-angle effects in the Sudakov
region (see e.g. [114]), to achieve a full treatment of gluon coherence effects [115] capable
of describing jet final states across the whole rapidity phase space. A uniform treatment of
the high-energy and Sudakov regions is still an open issue [27] of interest for parton-shower
implementations.

C.4 Numerical results

We now partially integrate the amplitudes over final states. We work at the level of hard
scattering matrix elements, leaving the treatment of parton evolution by showering to a
separate study [116]. We concentrate on the region of hard emissions, where jets are well
separated. Regions near the boundary of the angular phase space are sensitive to infrared
radiation and can be addressed within a full parton-shower description of the process.

We consider the differential distribution in the transverse variable QT and azimuthal
angle ϕ. The variable QT describes the imbalance in transverse momentum between the
hardest jets, weighted by ν, according to Eq. (C.4). In Figs. C.4 and C.5 we show numerical
results versus transverse momentum and versus energy (qg channel).

The curves in Fig. C.4 measure the kT distribution of the jet system recoiling against
the leading di-jets. The result at kT /QT → 0 in these plots returns the lowest-order result,

3Although the hard-scattering functions constructed from the amplitudes in Eqs. (C.9)-(C.13) are not
coefficient functions in the conventional sense of the operator product expansion, they can be related to
such objects, for inclusive variables, along the lines e.g. of [109]. They could be interpreted in terms of
coefficient functions in the sense of the high-energy OPE of [113].
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Figure C.4: The kT /QT dependence of the factorizing qg hard cross subsection at high
energy: (left) C2

F term; (right) CF CA term (ξ1ξ2S/Q2
T = 102, αs = 0.2).

i.e., the leading-order process with two back-to-back jets,

dσ̂

dQ2
T dϕ

→ α2
sf

(0)(p2
T /s) , QT → pT = |pT3| = |pT4| , (C.14)

where s = (p3 + p4)
2, and f (0) is given by

f (0)(z) =
1

16
√

1 − 4z

[
C2

Fz(1 + z) + 2CF CA(1 − 3z + z2)
]

. (C.15)

The dependence on kT and ϕ plotted in Fig. C.4 is the result of higher-order gluon radiation,
treated according to the high-energy asymptotics. The different behaviors in ϕ for the C2

F

and CACF terms reflect the fact that the former comes from the insertion of gluons on
fermion-exchange amplitude while the latter comes from the insertion of gluons on vector-
exchange amplitude.

Fig. C.5 shows the energy dependence for fixed kT/QT . The constant asymptotic be-
havior at large s due to color-octet spin-1 exchange distinguishes the CF CA term from the
C2

F term. The dependence on the azimuthal angle in Figs. C.4 and C.5 is relevant, espe-
cially because forward jet measurements will rely on azimuthal plane correlations between
jets far apart in rapidity (Fig.C.2).

While Eq. (C.15) gives the collinear emission limit, we see from Fig. C.4 that multi-
gluon radiation at finite angles sets a dynamical cut-off at values of kT of order QT ,

kT <∼ µ = c QT . (C.16)

The physical meaning of this result is that the summation of the higher-order logarithmic
corrections for large y ∼ ln s/p2

T is precisely determined [104, 110] by convoluting the
unintegrated splitting functions over the kT -dependence in Fig. C.4, via the distributional
relation∫

d2kT

(
1

k2
T

)

+

σ̂(kT ) =

∫
d2kT

1

k2
T

[σ̂(kT ) − Θ(µ − kT ) σ̂(0T )] . (C.17)
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Figure C.5: The energy dependence of the qg hard cross subsection (kT /QT = 1).

So the results in Fig. C.4 illustrate quantitatively the significance of contributions with
kT ≃ QT in the large-y region. Non-negligible effects arise at high energy from the finite-
kT tail. These effects are not included in collinear-branching generators (and only partially
in fixed-order perturbative calculations), and become more and more important as the jets
are observed at large rapidity separations.

Observe that calculations based on the unintegrated formalism will in general depend
on two scales, µ and the rapidity, or angle, cut-off [27, 105, 117]. See e.g. the one-loop
calculation [108] for an explicit example. It will be of interest to investigate the effect of
Eq. (C.16) on the behavior in rapidity distributions [116].

Results for gluon-gluon channels are reported in Fig. C.6. Note the large effect of
the purely gluonic component. The behavior versus kT is qualitatively similar to that in
Fig. C.4. Calculations in progress [116], including parton showering, indicate that quark
and gluon channels give contributions of comparable size in the LHC forward kinemat-
ics. The inclusion of both is relevant for realistic studies of phenomenology [65, 94]. Since
the forward kinematics selects asymmetric parton momentum fractions, effects due to the
x → 1 endpoint behavior [108,118] at fixed transverse momentum may become phenomeno-
logically significant as well.

We conclude this subsection by recalling that dynamical effects of high parton densities
have been studied [95, 119] as potential contributions to forward jet events. We note that
if such effects show up at the LHC, the unintegrated formulation discussed above would
likely be the natural framework to implement this dynamics at parton-shower level.

C.5 Conclusions

Forward + central detectors at the LHC allow jet correlations to be measured across
rapidity intervals of several units, ∆y >∼ 4÷6. Such multi-jet states can be relevant to new
particle discovery processes as well as new aspects of standard model physics.

Existing sets of forward-jet data in ep collisions, much more limited than the poten-
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Figure C.6: The kT /QT dependence of the factorizing gg matrix elements: (a) gg → gg;
(b) gg → qq̄ CF term; (c) gg → qq̄ CA term (ξ1ξ2S/Q2

T = 102, αs = 0.2).

tial LHC yield, indicate that neither conventional parton-showering Monte Carlo gener-
ators nor next-to-leading-order QCD calculations are capable of describing forward jet
phenomenology. These observations motivate studies of improved methods to compute
QCD predictions in the multiple-scale kinematics implied by the forward region.

We have analyzed the high-energy factorization that serves to sum consistently to higher
orders in αs both the logarithmic corrections in the large rapidity interval and those in
the hard jet transverse energy. We have determined the gauge-invariant (though not on
shell) high-energy amplitudes, which are needed to evaluate the factorization formula for
forward jet hadroproduction.

Our results can be used along with k⊥-dependent kernels for parton branching. They
can serve to construct predictions for exclusive observables associated to forward jets,
including jet correlations, that take into account gluon coherence not only in the collinear
emission region but also in the large-angle emission region.
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