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Abstract

The production of neutral strange mesons K0
s and strange baryons Λ is studied with the

H1 experiment at the electron-proton collider HERA. The measurements are performed using
deep-inelastic scattering events in the phase space defined by the negative four-momentum
transfer squared of the photon 2 < Q2 < 100 GeV2, the inelasticity 0.1 < y < 0.6, the
transverse momentum of the strange hadrons 0.5 < pT < 3.5 GeV and the pseudorapidity
−1.3 < η < 1.3. The K0

s and Λ production cross-sections are found to be:

σvis(ep→ e′K0
s X) = 21.18± 0.09(stat.)+1.19

−1.23(syst.) nb,

σvis(ep→ e′[Λ + Λ]X) = 7.88± 0.10(stat.)+0.45
−0.47(syst.) nb.

The Λ − Λ asymmetry is measured and found to be consistent with zero. Predictions by
leading order calculations are compared to the data. In general the predictions are able
to describe the overall features of the measurements, however they fail in specific details.
Constraints on the hadronisation parameters within the Lund model of string fragmentation
are derived.

Furthermore, a search for narrow baryonic resonances decaying into Ξ−π− or Ξ−π+ and
their antiparticles is carried out in the deep-inelastic scattering regime at HERA. No signal is
observed for a new baryonic state in the mass range 1.6−2.3GeV in either the double charged
or neutral decay channels. The known baryon Ξ(1530)0 is observed through its decay mode
into Ξ−π+. Upper limits are derived on the ratio of the production rates of new baryonic
states, such as the hypothetical pentaquark states Ξ−−

5q or Ξ0
5q, to the Ξ(1530)0 baryon state.

A search for new particles decaying into K0
s Λ is performed. A possible resonant structure

of 48 ± 12 events at a mass of 1.71 GeV is observed. The width of this resonance is found to
be compatible with the detector resolution of about 5 MeV. A possible interpretation of the
observed structure as the pentaquark state N0

s is discussed.



Zusammenfassung

Mit dem H1-Experiment am Elektron-Proton-Beschleuniger HERA wird eine neue Mes-
sung der neutralen, seltsamen K0

s Mesonen und Λ Baryonen durchgeführt. Für die Messung
werden tief-inelastische ep Ereignisse verwendet. Der Phasenraum der Messung ist durch den
Betrag des Viererimpulsübertrages, Q2, die Inelastizität, y, sowie des transversalen Impulses,
pT , der seltsamen Hadronen und deren Pseudorapidität, η, festgelegt: 2 < Q2 < 100 GeV2,
0.1 < y < 0.6, 0.5 < pT < 3.5 GeV und −1.3 < η < 1.3. Die Produktionswirkungsquer-
schnitte der K0

s und Λ Hadronen bestimmen sich zu:

σvis(ep→ e′K0
s X) = 21.18± 0.09(stat.)+1.19

−1.23(syst.) nb,

σvis(ep→ e′[Λ + Λ]X) = 7.88± 0.10(stat.)+0.45
−0.47(syst.) nb.

Des Weiteren wird die Asymmetrie der Λ Produktion gemessen. Es wurde keine Asymmetrie
festgestellt. Die Vorhersagen von Berechnungen in führender Ordnung werden mit den
Daten verglichen. Im Allgemeinen beschreiben die Vorhersagen die Daten gut, obwohl die
spezifischen Details der Messung nicht immer wiedergegeben werden. Aus den Messungen
werden einige der freien Parameter des Lund String-Fragmentationsmodelles bestimmt.

In einer zweiten Analyse wird eine Suche nach neuen baryonischen Resonanzen im Zer-
fallskanal Ξ−π− und Ξ−π+ sowie deren Antiteilchen durchgeführt. Dazu werden wiederum
Daten der tief-inelastischen ep Streuung verwendet. Im Massenbereich von 1.6 bis 2.3 GeV
wurden keine neuen baryonischen Zustände gefunden; weder im geladenen noch im neutralen
Zerfallskanal. Das etablierte Ξ(1530)0 Baryon wird im Zerfallskanal Ξ−π+ nachgewiesen.
Aus den gemessenen Verteilungen werden obere Grenzen für die Produktionsraten von neuen
baryonischen Zuständen, wie zum Beispiel der hypothetischen Pentaquarks Ξ−−

5q oder Ξ0
5q,

relativ zu derjenigen des Ξ(1530)0 Baryons extrahiert.

Ausserdem wird eine Suche nach neuen Teilchen, die in ein K0
s Meson und ein Λ Baryon

zerfallen, präsentiert. Es wird eine mögliche Resonanz von 48 ± 12 Ereignissen bei einer
Masse von 1.71 GeV beobachtet. Die Breite dieser Resonanz ist mit der Detektorauflösung
von ungefähr 5 MeV verträglich. Eine Interpretation der Beobachtung als Pentaquark N0

s

wird diskutiert.
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Chapter 1

Introduction

The standard model of particle physics (SM) is a very successful theory in describing the
structure of matter and its interactions. The main building blocks of the SM are elementary
fermions, the quarks and the leptons, as well as the interaction between these particles, the
electromagnetic, the weak and the strong interaction. The gravitational force is not explored
within the SM. The forces are described by quantum field theories where the interaction of
particles is explained by the exchange of gauge bosons. In case of the electromagnetic force the
exchanged particle is a photon described by quantum electrodynamics (QED), while for the
weak interaction the exchanged bosons are the W± and the Z0. The strong force is mediated
by so-called gluons which are described within the quantum chromodynamics (QCD). In the
following an overview of the developments leading to the SM is discussed.

The long way to our present understanding of matter and its interactions started as early
as 1897 when J. Thomson discovered the electron [1]. A next step forward was achieved by
E. Rutherford who has discovered the atomic nucleus in 1911 by his famous experiments
with α particles [2] 1. In the early thirties of the last century three further particles have
been observed: The neutron by Chadwick [3], the positron by Anderson [4] and the muon by
J. C. Street and E. C. Stevenson [5]. The muon was discovered with a cloud chamber in the
cosmic rays in 1937. Following the idea of QED, H. Yukawa had suggested two years earlier
that the strong interaction is mediated by a massive particle [6] with a mass around 100 MeV.
The newly discovered muon was a hot candidate for this particle because its mass was found
to be close to that predicted by Yukawa. However, soon after the observation of muons it was
clear that this particle is not participating in the strong interaction at all and the idea came
up that the muon is a decay product of the mediating particle. It took another 10 years until
a promising candidate was found. The pion was discovered in 1947 by C. Powell, C. Lattes,
H. Muirhead and G. Occhialini in cosmic rays [7]. Soon after its discovery Powell’s group
announced the first observation of pions decaying into muons [8, 9]: The particle picture was
beginning to take shape.

In the year 1947 another major discovery was achieved: the first observation of a Kaon
decay by G. D. Rochester and C. C. Butler [10]. They have observed two special events in
cosmic ray interactions using a cloud chamber. One turned out to be a decay of a neutral

1Prior to Rutherford’s experiments the existence of atomic nuclei has been observed by E. Goldstein, but
the experiments were misinterpreted.
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particle into two charged ones and one of a charged particle into a charged and a neutral
one. The mass of these particles was estimated to be roughly half of the proton mass.
Further studies of these new particles have been carried out in the following years at the
California Institute of Technology. A surprisingly long lifetime of these particles in the order
of 10−10 s has been measured. Beside the Kaon another long living particle was discovered,
the Lambda baryon. The long lifetime lead to the introduction of a new quantum number,
the strangeness, by M. Gell-Mann and A. Pais [11]. The strangeness is found to be conserved
in strong interactions but violated in weak interactions.

A huge progress in particle physics was achieved in 1953 with the commissioning of a
new cyclotron for particle acceleration at the Brookhaven National Laboratory (BNL). This
was the beginning of collider based particle physics experiments that lead to a wide variety
of particle discoveries. This ”particle zoo” was disentangled by Gell-Mann and Zweig in
1964 by introducing constituents (quarks) that make up the particles [12, 13] (Quark Parton
Model, QPM). At that time all observed particles could be interpreted as bound states of an
quark and an antiquark, qq̄ (mesons), or of three quarks, qqq (baryons). For the quarks three
different ”types” have been needed, labeled up-, down- and strange quarks. The building
blocks of the SM were completed by the discovery of the other three quarks (charm, bottom
and top), the tau lepton with its corresponding neutrino and the gauge bosons W±, Z0 and
the gluon 2.

In parallel to the exploration of the particle zoo, dedicated collider experiments at the
Stanford Linear Accelerator Center (SLAC) in the fifties of the last century have started
to explore the structure of the proton. In these experiments electrons were scattered elas-
tically from atomic nuclei. The measured cross-section has differed from the expectation
for the scattering at a point like target and R. Hofstadter concluded that the proton is
not a point-like particle but has a spatial expansion [14]. In the late sixties the first deep-
inelastic scattering (DIS) experiments have been performed at SLAC. The electron energies
became large enough to resolve the proton. From these experiments it was concluded from
J. I. Friedman, H. W. Kendall and R. E. Taylor that the nucleon has a substructure of point-
like constituents [15]. This discovery was awarded with the physics Nobel prize of the year
1990. Further experiments have shown that these point-like constituents have spin 1

2 and
correspond to the quarks introduced by Gell-Mann and Zweig.

Beside this nearly complete picture of particles and their interactions provided by the SM,
exotic states with other quark configurations as qq̄ and qqq have been predicted since the early
days of QCD. Such states could be hybrid baryons containing quarks and gluons (G) (qqqG)
and multi-quark baryons like dibaryons (qqqqqq) or pentaquarks (qqqqq̄). Dibaryon states
have been proposed as early as 1977 [16]. An extensive search for such exotic states has been
performed over the last decades. It took more than 30 years until the first promising candidate
for such an exotic state had been observed. In 2003 the LEPS Collaboration [17] at SPring-8
announced a 4.6σ discovery of a new resonance, Θ+, which was predicted by Diakonov et
al. in 1997 [18] (originally denoted Z+) in the reaction γ 12C → C ′K−Θ+ → C ′K−(K+n),
with a mass of 1.54 ± 0.01 GeV and a width of less than 25 MeV. The Θ+, having baryon
number +1 and strangeness +1, cannot be a qqq state. Its minimal quark content is uudds̄.
The observation of a pentaquark candidate is one of the most exciting events in particle
spectroscopy of the past decades. The discovery of a manifestly exotic baryon is providing

2Actually, one piece is still missing: the higgs boson.
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an opportunity to refine the understanding of quark dynamics at low energy where it is not
perturbative.

Nowadays, the ep collider HERA (Hadron-Elektron-Ring-Anlage) provides the unique
possibility to study the structure of the proton at high energies. From the data collected by
the two multi-purpose experiments H1 and ZEUS the structure of the proton is measured in
a wide kinematic range. Another major achievement of HERA is the measurement of the
running coupling constant of the strong interaction, αs, at high precision, see figure 1.1. This
coupling constant increases for large distances, resulting in a breakdown of the perturbative
treatment of QCD at a certain (low) energy scale. The confinement of quarks into hadrons
cannot be calculated from first principles and therefore phenomenological models are needed.
An important contribution to the understanding of the QCD is provided by comparing the
measured hadronic final state particles with the predictions obtained by these models.

Figure 1.1: The strong coupling constant as measured at HERA.

Within the present work the production of the strange mesons K0
s and the strange baryons

Λ in DIS events is measured. In contrast to the heavy quarks (charm and bottom) the
strange quark production cannot be treated perturbatively due to its relatively light mass.
Furthermore, the strange quarks are predominantly produced in the hadronisation process
allowing to test the phenomenological models. With this measurement a contribution to the
parameterisation of the QCD is provided. Beside this ”bread and butter” measurement a
search for potential pentaquark states is performed.
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The thesis is structured as follows: The theoretical basics which are important for the
presented measurements are introduced in chapter 2. This includes a general introduction
to ep scattering as well as a summary of theoretical and experimental achievements related
to strange hadrons and pentaquarks and an overview of the Monte Carlo generators used
within this work. The main features of the HERA collider and the H1 experiment are given
in chapter 3. After outlining the data selection and introducing some relevant technical
issues, the measurement of the strange hadrons K0

s and Λ is presented in chapters 5 and 6.
A comparison of the data with model predictions obtained from leading order Monte Carlo
simulations is also provided in chapter 6. Furthermore, implications of the measured results
on some of the model parameters are discussed. The measurement of the strange hadrons is
about to be published [19].
The second part is dedicated to the search for narrow baryonic resonances in the Ξ π decay
channel. This analysis led directly to a publication [20].
In the last part a search for pentaquarks in the K0

s Λ decay channel is performed which
was inspired by the results of the STAR Collaboration [21] and already examined within the
author’s diploma thesis [22].



Chapter 2

Theory

The theoretical basics of relevance to the measurements presented in the following chapters
are introduced. In the first part, the scattering of electrons 1 on protons at HERA is described.
In the second part, the properties of strange hadrons is recapitulated while in the last part a
short introduction to Pentaquarks is presented.

2.1 Deep-Inelastic ep Scattering at HERA

At HERA electrons are brought to collision with protons at a center-of-mass energy of
319 GeV. This process can be described in leading order by the exchange of a virtual gauge
boson, as illustrated in figure 2.1. Two basic classes of events are distinguished: The neutral

e(k)

p(P)

q(xP)

q

e(k’)

0 (q)

Q

W

e(k)

p(P)

q(xP)

q’

Q

W

W+ / − (q)

Figure 2.1: The Feynman diagram for leading order ep scattering in the neutral current (left)
and in the charged current (right). The variables are described in the text.

current (NC) where the exchanged gauge boson is neutral (γ∗ or Z0) and the charged current
(CC) where the boson carries electrical charge (W±). In the first case the incoming electron
is preserved: e p→ e′ X (X denotes the hadronic final state, including the proton remnant),
while in CC events the electron transforms into a neutrino: e p→ νe X. The exchange of the
massive gauge bosons (Z0 and W±) is highly suppressed with respect to the virtual photon
exchange at the energies relevant to this analysis (see section 2.1.2). Hence, the focus is
turned on NC events.

1If not stated otherwise, the term “electron” is used generically to refer to both electrons and positrons.
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2.1.1 Kinematics at HERA

The scattering process at HERA can be described by four Lorentz-invariant quantities which
are expressed in terms of the four-vector of the incoming electron k, the outgoing electron
k′, the incoming proton P and the exchanged boson q [23]:

s = (P + k)2 (2.1)

Q2 = −(k− k′)2 = −q2 (2.2)

y =
P · q
P · k (2.3)

x =
Q2

2P · q . (2.4)

Here
√

s is the center-of-mass energy of the electron proton system. In the case of negligible
particle masses (me/p ≪ Ee/p), the center-of-mass energy can be written as:

√
s ≈

√
4EeEp. (2.5)

For the HERA beam energies Ee = 27.6GeV and Ep = 920 GeV (820 GeV before 1999) the
center-of-mass energy is 319 GeV (301 GeV). The negative photon four-momentum transfer
squared, Q2, is also known as the virtuality of the exchanged photon and is related to the
energy E′

e and the polar angle θe (see figure 3.3) of the scattered electron by:

Q2 = 4EeE
′
e cos2(

θe

2
). (2.6)

The resolution power ∆ b of the exchanged boson is given by:

∆ b ∼ ~ c√
Q2

=
0.197√

Q2
GeV fm. (2.7)

At HERA two regimes are distinguished: Photoproduction (Q2 ≈ 0 GeV2) where a quasi-
free photon is exchanged and Deep-Inelastic Scattering, DIS (Q2 & 1 GeV2) where a virtual
photon (or a Z0, W±) is exchanged. For the analysis presented here the focus is turned on
DIS events. In the proton rest frame, the inelasticity y gives the relative energy loss of the
scattered electron and can be expressed as:

y = 1− E′
e

Ee
sin2(

θe

2
). (2.8)

The Bjorken scaling variable x corresponds (in the Quark Parton Model) to the energy
fraction of the incoming proton that is carried by the struck quark and therefore going into
the hard interaction. By neglecting the electron and the proton masses these four quantities
are related by:

Q2 = xys. (2.9)

Another quantity being used to describe the scattering process is the invariant mass of
the hadronic final state, W , given by:

W 2 = (q + P )2 = ys−Q2 + m2
p, (2.10)

where mp denotes the proton mass.
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2.1.2 Structure Functions and Inclusive ep Cross-Section

The differential cross-section for inelastic electron proton scattering as shown in figure 2.1 is
given in its most general form by a contraction of the leptonic tensor, Le

µν , and the hadronic
tensor, Wµν (see for example [24] or [25]):

dσ ∼ Le
µν Wµν . (2.11)

The leptonic and hadronic tensors describe the current at the corresponding vertices. While
the leptonic part is calculable from the electroweak theory, the hadronic tensor is parameter-
izing the ignorance of the form of the current at the proton vertex. The most general form
of the hadronic tensor is given by [24]:

Wµν = −W1g
µν + pµpν W2

m2
− iǫµναβpαpβ

W3

2m2

+qµqν W4

m2
+ (pµpν + qµqν)

W5

m2
+ i(pµpν − qνqµ)

W6

2m2
, (2.12)

where gµν is the metric, pµ is the four vector of the incoming proton, m its mass and qµ

that one of the exchanged gauge boson. Equation 2.12 can be simplified since not all terms
can contribute to the cross-section. The asymmetric term proportional to W6 is absent for
unpolarised scattering. The term proportional to W3 is parity violating and can therefore
not contribute for the pure electromagnetic γ∗ exchange. Furthermore, current conservation
yields qµWµν = qνW

µν = 0. The only two remaining independent factors are W1 and W2.
Conventionally they are substituted by F1 = W1 and F2 = p · q W2

m2 , which are commonly
called structure functions. A physical interpretation of the structure function is given in
section 2.1.3. The resulting cross-section in terms of x,y and Q2 can be written as [24]:

d2σ

dxdy
=

4πα2s

Q4

[
xy2F1(x, y) + (1− y)F2(x, y)

]
. (2.13)

Introducing the longitudinal structure function FL = F2−2xF1 and defining Y+ = 1+(1−y)2

equation 2.13 can be rewritten to:

d2σ

dxdQ2
=

2πα2

xQ4

[
Y+F2(x, Q2)− y2FL(x, Q2)

]
. (2.14)

If Q2 becomes comparable in size with the mass of the Z0 boson squared 2 (mZ0 = 91.2 GeV),

an additional term proportional to ( Q2

Q2+m2

Z0

) contributes to the cross-section [23]. This ad-

ditional term is derived from the parity violating term (W3) in equation 2.12.

For the CC cross-section the propagator (2πα2

xQ4 ) is exchanged by
G2

F

4πx

[
M2

W

M2
W

+Q2

]2
, where

GF = 1.17 GeV−2 [26] denotes the Fermi constant and MW = 80.4 GeV [26] the mass of the
exchanged W± bosons (see for example [23]).

2Throughout this thesis natural units are used, i.e. c = ~ = 1.
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2.1.3 Interpretation of the Structure Functions in the Quark-Parton-Model

The most illustrative picture of the interacting proton is given by the so-called Quark-Parton-
Model (QPM). This model is based on the assumption that a fast moving hadron consists
of point-like constituents (partons, later called quarks and gluons) with negligible transverse
momentum (infinitesimal momentum frame). The momentum of the proton (p) is shared
by the constituents (qi), i.e. each parton carries a momentum fraction xi of the proton’s
momentum: qi = xi · p. Another important assumption is that the partons do not interact
for the duration of the scattering process. Thus, the cross-section can be calculated as an
incoherent sum over the interactions of the photon with the partons:

d2σQPM

dxdQ2
=
∑

i

(fi(x) · d
2σMott

dxdQ2
) =

2πα2

Q4
· [1 + (1− y)2] ·

∑

i

(q2
i · fi(x)), (2.15)

where d2σMott

dxdQ2 is the Mott-cross-section describing the elastic scattering of an electron on a

structure-less spin 1
2 particle [25], qi denotes the charge of the parton i and fi(x)dx gives the

probability that a parton i with momentum fraction x is found in the proton. The probability
density fi(x) is called parton density function (PDF). In the QPM picture the PDF depends
only on the momentum fraction x and not on Q2. This effect was predicted by Bjorken in
the late 1960’s and is therefore referred to as Bjorken scaling 3 [27].

Comparing equations 2.13 and 2.15 the following relations of the PDF to the structure
functions are found:

F1(x, Q2) = F1(x) =
1

2
·
∑

i

(q2
i · fi) (2.16)

F2(x, Q2) = F2(x) = x ·
∑

i

(q2
i · fi) (2.17)

Hence, the two structure function are related by:

F2 = 2xF1. (2.18)

This relation is known as the Callan-Gross relation [28].
In the first instance the Bjorken scaling and the Callan-Gross relation have been confirmed

experimentally by measurements at the SLAC facility for Q2 < 7.4 GeV2 [29, 30]. However,
later measurements at higher energies have shown that the Bjorken scaling is not fulfilled
exactly [31, 32]. This effect has later been studied in great detail at HERA (see for exam-
ple [33]). The violation of the Bjorken scaling is not caused by a substructure of the partons
(see section 2.1.4). The breakdown of the universal scaling cannot be understood within the
QPM but needs a refined theory of the strong interaction, the Quantum ChromoDynamics
(QCD). The deficits of the QPM and the main features of QCD are outlined in section 2.1.4.

2.1.4 Quantum Chromodynamics

Within the QPM it is expected that the sum over all partons fulfill:

∑

i

∫ 1

0
x · fi(x)dx = 1. (2.19)

3Note that these statements are only valid in the Bjorken limits, Q2
→ ∞, p · q → ∞ with fixed value of x.



2.1 Deep-Inelastic ep Scattering at HERA 19

This relation is know as the momentum sum rule. The measured value for this quantity was
found to be around 0.5. This lead to the suggestion that there must be a kind of a ’glue’
holding the proton together. This glue would carry the missing momentum. Nowadays this
glue is identified as the gluons, the carriers of the strong force.

The other major problem with the QPM was the assumption of quasi-free partons in the
proton. This is in clear contradiction with the experimental non-observation of free partons
in the final state. Hence, it was necessary to assume that the force between the partons is
strong enough to keep them in the hadrons.

Both these problems where solved by the development of a non-Abelian gauge theory
for the strong interaction, the quantum chromodynamics. Within this theory the strong
interaction is mediated by gluons. The quarks as well as the gluons have an additional degree
of freedom, the colour charge. There are three colours denoted as red, yellow and blue. The
quarks carry one single colour while the gluons are bi-coloured. This is in clear contrast to
the quantum electrodynamics (QED), the field theory describing the electromagnetic force,
where the mediating boson does not carry electrical charged. The self-interaction of the
gluons leads to a increasing coupling of the strong force for decreasing momentum transfer
Q2. After renormalisation using a scale µR (= Q2) the strong coupling constant can be
written as [24]:

αs(Q
2) =

1

b0 ∗ ln(Q2

Λ2 )

[
1− b1

b0

ln[ln(Q2

Λ2 )]

ln(Q2

Λ2 )
+ · · ·

]
, (2.20)

where b0 = (33−2nf )/12π, b1 = (153−19nf )/24π2 and nf being the number of active quark
flavours. The first term corresponds to leading order (LO) calculations while the second
one shows the result of a next-to-leading order (NLO) calculation. Λ, sometimes denoted
as ΛQCD, is a constant that has to be determined experimentally, Λ ≈ 200 MeV (see for
example [34]). According to equation 2.20 the strong coupling decreases towards zero for
Q2 →∞. This behavior is commonly known as asymptotic freedom and was first discovered
by Politzer, Gross and Wilczek [35, 36] who were awarded the 2004 Nobel Prize in Physics
for this discovery. The asymptotic freedom can be traced back to the fact that the gluons
carry a colour charge and explains why the naive QPM model is successful in describing
ep scattering processes at large Q2. On the other hand, for Q2 → Λ2 the strong coupling
diverges, indicating the break down of the perturbative approach. The increase of the strong
coupling at large scales is called confinement and implies that free quarks are not observable.

The scaling violation mentioned in section 2.1.3 can be explained within the QCD: The
larger the momentum of the exchanged photon the higher is its resolutions power. There-
fore, at high Q2 the photon resolves more and more constituents with smaller and smaller
momentum fraction x, as illustrated in figure 2.2. This leads to an increase of the structure
function for small x with increasing Q2, which is confirmed by the H1 measurements [37]
(among others), see figure 2.3.

In contrast to the QPM process shown in figure 2.1, the quark can radiate a gluon before
or after the interaction with the photon within the QCD. These processes are referred to as
QCD Compton processes. Furthermore a gluon can be emitted by the proton splitting into
an quark-antiquark pair. One of these quarks absorbs the photon. Such processes are called
boson-gluon fusion. Both processes are illustrated in figure 2.4.



20 Theory

Resolution at Q0
2

Q0
2

Resolution at Q2 > Q0
2

Q2 > Q0
2
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Figure 2.3: The proton structure function F2 as measured by H1, BCDMS and NMC. The
results are compared to the Standard model prediction determined from the H1 PDF 2000
fit. The figure is taken from [37].
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Figure 2.4: The Feynman diagrams for leading order ep scattering in neutral current inter-
actions according to QCD. The left graph shows the QCD Compton scattering and the right
one the boson-gluon fusion process.

2.1.5 Factorisation and Parton Evolution

Because of the break down of the perturbative approach at large scales the need arises to
separate the different processes contributing to the cross-section. The hard interaction in
deep-inelastic scattering (corresponding to the γq vertex in figure 2.1) provides a hard scale
and can therefore be treated perturbatively. Other contributions to the cross-section, like the
parton density functions, cannot be treated perturbatively. The factorisation theorem of the
QCD [24] separates these two different contributions:

σ(e p→ e′ X) =
∑

i

(∫
fi(x, µ2

F ) · σ̂(ŝ, µF , µR) dx

)
. (2.21)

The cross-section for DIS can be written as the convolution of a calculable hard scattering
cross-section σ̂ depending on the center-of-mass energy of the hard interaction ŝ as well as on
the factorisation and renormalisation scale µF and µR and a non-perturbative parton density
fi. A natural choice of the scales is µF = µR = Q2. The factorisation theorem has only been
proofed in the so-called ”Bjorken limit” by Collins and Soper [38]. The separation of the hard
and the non-perturbative part is not unambiguous but depends on the factorisation scheme.
The most commonly used schemes are the DIS and the MS scheme. The factorisation
scale µF , being a lower cut off scale, is introduced because perturbative calculations are
only reliable if a hard scale is present. The non-perturbative part is absorbed in the PDF’s
fi(x, µ2

F ). The PDF’s at the scale µF have to be measured experimentally. Two points for a
predictive theory are important: firstly, the PDF’s are universally valid and do not depend
on the process studied and secondly, once measured at the scale µF their values at any scale
can be calculated. The evolution of the PDF’s can be predicted using perturbative QCD. In
most cases the evolution is provided by the DGLAP (Dokshitzer, Gribov, Lipatov, Altarelli
and Parisi) [39, 40, 41, 42] evolution equation. For certain regions in the phase space this
equation is not adequate and other approaches like the BFKL (Balitsky, Fadin, Kuraev,
Lipatov) [43, 44, 45] or the CCFM (Catani, Ciafaloni, Fioranu, Marchesini) [46, 47, 48, 49]
evolution are used. The evolution of the PDF’s take different processes into account like the
gluon splitting or the gluon radiation. Such processes can occur several times resulting in a
gluon ladder as illustrated in figure 2.5. All parton evolutions mentioned above take the full
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gluon ladder into account, but they make different approximations. For a detailed description
see for example [24].

p(P)

q

q

g i−1

g1

g i

g i + 1

gn

e(k) e(k’)

Figure 2.5: The emission of gluons as used in the parton evolution models.

2.1.6 The Hadronisation Process

The cross-section for deep-inelastic ep scattering is so far only calculated for quasi-free quarks
and gluons in the final state. As pointed out in section 2.1.4 only hadrons and not free quarks
are observed. The transition of the free, coloured quarks into colour-neutral hadrons is called
hadronisation and is briefly discussed in the following.

The hadronisation process takes place at large distances and can therefore not be pre-
dicted using perturbative QCD. Instead, a phenomenological approach is needed. These
hadronisation models are expected to be universally valid, i.e. they should not depend on
the hard process. Therefore, the hadronisation parameters which have been studied in great
detail at e+ e− colliders should also be applicable to ep collisions. However, there are dif-
ferences complicating this comparison. In contrast to e+ e− collisions in ep scattering there
is always the proton remnant. This proton remnant builds together with the quarks and
gluons a colour-charged object entering the hadronisation process. Measuring the production
of strange hadrons provides an additional test of the hadronisation model.

The hadronisation model is implemented in the Monte Carlo generator. All generators
used within this work (see section 2.5) exploit the so-called Lund string model [50, 51, 52] as
implemented for example in JETSET [53, 54] 4. Within this model the colour field between

4Various other models exist, like the cluster model implemented in the HERWIG generator but are not
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two coloured objects is squeezed into a tube-like region (string) and is described by a potential
of the form:

V (r) = −4αs

3r
+ κ · r, (2.22)

where r is the distance between the two coloured objects and κ ≈ 1 GeV fm−1 describes the
energy density of the string. The second term rapidly increases for rising separation of the
two quarks. The string breaks up as soon as the energy in the colour field is large enough to
produce a qq̄ pair. This process is repeated until the energy is exhausted and bound states
are produced. The subsequent break up of the colour strings is illustrated in figure 2.6.
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Figure 2.6: Illustration of the Lund string hadronisation model. The string between the
initial qq̄ pair breaks up as they fly apart and new qq̄ pairs are produced from the vacuum.

For the conservation of the quantum numbers like charge or colour the quark and the
anti-quark have to be produced at the same point in the four-dimensional phase space. This
is (classically) forbidden and can only be achieved by a quantum mechanical tunnel-effect.
The tunnel-probability into the forbidden region drops exponentially with the mass of the
produced quarks. This leads to a suppression of heavy quarks like charm with respect to the
light quarks up and down in the order of 10−11. For the strange quarks which are not much
heavier than the up and down quarks this effect is less distinct and is in the order of 0.3. The
relative production probability of strange to up quarks in the hadronisation process within
the Lund model is called strangeness suppression factor (λs):

λs =
P (s)

P (u)
. (2.23)

Because of the not precisely known mass of the up and strange quarks this factor is taken
to be a free parameter of the Lund model. The default value used in the events generators,
λs = 0.3, is obtained from measurements at the e+ e− collider LEP (see sections 2.3).

So far only meson production is described. Baryons are obtained in a similar way: Instead
of a qq̄ a diquark pair can be produced from the vacuum. The production of a diquark pair
leads to a break up of the string as sketched in figure 2.7, which shows the production of a Λ
and a Σ baryon together with a π meson. Within the Lund string model, baryons are always
produced in pairs and two of the three quarks in each of the two baryons have to have the
same flavour. The probability of producing a light diquark pair, P (qq), relative to a light

considered within this work.
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Figure 2.7: Illustration of the baryon production within the Lund string model.

single quark pair, P (q), is a free parameter of the Lund model and is set within JETSET by
the parameter λqq:

λqq =
P (qq)

P (q)
. (2.24)

The default value is λqq = 0.1. Furthermore, the relative production of diquarks containing
a strange quark, P (qs), to those consisting only of light quarks (up and down) is set within
JETSET by the parameter λsq. This parameter is normalised to the strangeness suppression
factor and given by:

λsq =
P (us)

P (ud)
/
P (s)

P (u)
=

P (us)

P (ud)
/λs. (2.25)

The default value is λsq = 0.4. Beside the parameters mentioned here further parameters are
needed to control the hadronisation process, see for example [53].

Finally, all processes contributing to the ep cross-section are summarised in figure 2.8.

2.2 Properties and Production Mechanism of Strange Hadrons

The main part of the analysis presented within this thesis is dedicated to the measurement
of strange hadrons. The different production mechanisms of such hadrons are briefly sum-
marised in the following and the main properties of the particles relevant for this work are
outlined. An overview of existing measurements is presented in the last part.

2.2.1 Production of Strange Hadrons in Deep-Inelastic ep Scattering

Strange particles can be produced in various processes. A sketch of the different processes is
provided in figure 2.9 in the form of Feynman graphs.

Direct production Strange quarks can be produced directly in the hard scattering if a
strange sea quark from the proton enters the QPM or the QCD Compton process. Due
to the relatively small strange quark mass the emittance of a strange sea quark is not
much suppressed with respect to light (u and d) sea quark emittance. This is not the
case for the heavy quarks (c and b) where the probability that such a quark is emitted
from the proton sea is very small. Furthermore, strange quarks can be produced in
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ISR
FSR

p

e

ME
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H Hadrons

Figure 2.8: Overview of all processes contributing to the ep cross-section: The matrix element
(ME) describing the hard process, the initial and final state parton shower (PS), the initial
(ISR) and final (FSR) state QED radiation and the hadronisation process (H).

BGF processes if the gluon splits into a ss̄ quark pair. For the heavy quarks this is the
main production mechanism while for the lighter strange quarks the contribution from
BGF process to the direct production is small. The rate of the BGF process to the
direct production depends strongly on the Bjorken scaling variable x because the gluon
density rises strongly (more than the sea quark distribution) towards small values of
x. Therefore one may expect that for very small values of x the BGF process becomes
dominant also for the strange quark production. The strange quark produced in such
ways can then fragment into a strange hadron. According to Monte Carlo predictions,
in about 13 % 5 of the cases where a strange hadron is seen in the final state, a strange
quark is participating in the hard interaction.

Hadronisation The largest contribution to strange hadron production is provided by the
hadronisation process as described in section 2.1.6.

Decays Strange quarks are also produced by decays of the heavy quarks c and b. Another
source of strange hadrons are decays of heavy hyperons like Σ′s and Ξ′s. Decays of
hypothetical states like glueballs (bound state of gluons) [55, 56] or instantons [57] could
in principle also contribute to the production of strange hadrons since such states are
expected to decay flavour democratically and therefore enhance the relative fraction of
strange particles with respect to light ones.

The contributions of the different processes to the production of the strange hadrons K0
s

and Λ is provided in section 6.8.1 for different regions of the phase space.

5This number is obtained by the DJANGO generator using the CTEQ6L PDF set.
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Figure 2.9: Sketch of the different processes contributing to strangeness production. Shown
are the direct production in the QPM (top left), in the BGF process (top right) and from the
decay of a charm quarks (bottom left), as well as the strangeness production in hadronisation
(bottom right).

2.2.2 Properties of Strange Hadrons

Strange hadrons were first observed in 1947 in the cosmic rays. The unexpected long lifetime
of these particles was explained by introducing of a new quantum number, the strangeness S,
which shall be conserved in the strong interaction. This picture was refined within the quark
parton model, where strange hadrons contain at least one strange quark. Each strange quark
has S = −1 and each anti-strange quark S = +1. As the strangeness quantum number is
preserved in the strong and electromagnetic interaction, those particles can only be produced
in pairs. In the weak interaction the strangeness is not preserved.

2.2.2.1 The K0
s Meson

The lightest mesons containing strange quarks are called kaons. Their quark content is:

|K0〉 = ds̄ |K0〉 = d̄s

|K+〉 = us̄ |K−〉 = ūs (2.26)

The kaons are members of an isospin doublet as shown in table 2.1 and have played a cru-
cial role in the understanding of the P-Parity (mirror symmetry in space) and C-Parity
(particle-antiparticle conjugation) violation. From β-decay studies it was known that the
weak interaction violates P- and C-Parity, but respects the combination of these two opera-
tions (CP), see [58]. A special property of neutral kaons is that they can both decay weakly
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Table 2.1: Isospin doublets of the lightest strange mesons.

I3 = −1
2 I3 = +1

2

S = +1 K0 K+

S = −1 K− K
0

into two or three pions [11]:

K0 ←→
(

2π

3π

)
←→ K

0
. (2.27)

This leads to a mixing of the neutral kaon states. The short-distance mixing graphs are
illustrated as box diagrams in figure 2.10. Assuming that the weak interaction is respecting
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Figure 2.10: The box diagram for K0 −K
0

mixing

CP-Parity, the kaons have to be in a CP-eigenstate before they decay (weakly). These states

can be obtained by superimposing the K0 and K
0

mass-eigenstates:

|K0
1 〉 =

1√
2

(
|K0〉 − |K0〉

)
CP |K0

1 〉 = +1|K0
1 〉 (2.28)

|K0
2 〉 =

1√
2

(
|K0〉+ |K0〉

)
CP |K0

2 〉 = −1|K0
2 〉

For a CP respecting theory the decay of the neutral kaon has to be described by the decay of
a K0

1 into two pions (CP |π+π−〉 = +1|π−π+〉) and a K0
2 into three pions (CP |π+π−π0〉 =

−1|π−π+π0〉). Due to the very small phase space available for the K0
2 → π+π−π0 decay the

lifetime of the K0
2 should be much larger than that one of the K0

1 . Theses states are denoted
as K0

s (short) and K0
L (long). However, experiments have shown that the K0

2 decays also into
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two pions with a probability of 3 · 10−3 [59, 60]. Therefore either the mass-eigenstate K0
L is

not identical with the CP-eigenstate K0
2 or the matrix element for the decay of the K0

2 has
a part that allows a decay into two pions. However, the experimental behaviour of the K0

shows clearly that CP-Parity is violated by the weak interaction. The main properties of the
neutral kaons are summarised in table 2.2 and the decay into two charged pions is sketched
in figure 2.11.

Table 2.2: Main properties of the neutral kaons K0
s and K0

L. The values are taken from [26].

K0
s K0

L

Mass [MeV] 497.648 ± 0.022

Lifetime τ [10−10s] 0.8953 ± 0.0005 511.4 ± 2.1

decay length cτ [cm] 2.6842 ± 0.0015 1’533 ± 6.3

Decay [branching ratio] π+ π− [(69.20± 0.05) %] π+π−π0[(12.56± 0.05)%]

π0 π0 [(30.69± 0.05)%] π0π0π0 [(19.56± 0.14)%]

π+ π− π0 [(3.5± 1.0)·10−7] π±l∓νl [(67.55± 0.22) %]

u

d
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d

s

d
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Figure 2.11: The main decay of the neutral kaon into two charged pions.

2.2.2.2 The Strange Baryons

This section focuses on the three baryons with strangeness studied within this work: the Λ,
the Ξ− and the Ξ(1530)0 baryons. The lightest baryon with strangeness is the Λ baryon.
The Λ and the Ξ− baryons are members of the baryon-octet displayed in figure 2.12 with
JP = 1

2

+
, see for example [25]. For the JP = 1

2

+
case no baryon with three strange quarks

exists because in this case the spins of the quarks have to be in a parallel configuration for
symmetry reasons, resulting in JP = 3

2

+
state. The Ξ(1530)0 baryon is an orbitally excited

state of the ground state baryon Ξ0 and belongs to the JP = 3
2

+
multiplet. The main

properties of the baryons of interest are summarised in table 2.3. The Λ as well as the Ξ−

baryon are again long-living due to the weak decays, while the Ξ(1530)0 baryon is decaying
strongly into a Ξπ state with a branching ratio of nearly 100 %.
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Figure 2.13: The main decays of the strange baryons Λ and Ξ−.

Table 2.3: Main properties of the strange baryons Λ, Ξ− and Ξ(1530)0. The values are taken
from [26].

Λ Ξ− Ξ(1530)0

Constituent quarks uds dss uss

JP 1
2

+ 1
2

+ 3
2

+

Mass [MeV] 1115.683 ± 0.006 1321.31 ± 0.13 1531.80 ± 0.32

Lifetime τ [10−10s] 2.63 ± 0.02 1.639 ± 0.015 ∼ 0

Decay length cτ [cm] 7.89 ± 0.06 4.91 ± 0.04 ∼ 0

Decay [branching ratio] p π− [(63.9± 0.5)%] Λ π−[(99.89± 0.04) %] Ξπ[∼ 100 %]

n π0 [(35.8± 0.5)%]
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2.3 Existing Measurements of Strangeness Production

In this section an overview of existing measurements of strangeness production is given.
Emphasis is only given to the measurement relevant to the studies presented within this
work. For a detailed review on strangeness suppression see for example [61, 62]. The focus
is turned on the previous measurements at HERA and those at e+ e− colliders. Latter ones
are used to extract the free parameter of the Lund string fragmentation model introduced in
section 2.1.6.

2.3.1 Measurements at e+ e− Colliders

Strangeness production in e+ e− collisions has been studied in great detail. The free param-
eters of the Lund string model are studied by measuring the production of different strange
hadrons like K0

s , Λ, K∗±, Σ(1385)±, Ξ− and Ξ(1530)0.

Historically, the first measurement that is discussed was carried out at the Positron
Electron Tandem Ring Anlage (PETRA) at DESY by the JADE collaboration [63] who
studied the charge multiplicity and the K0

s production at a center-of-mass energy between
12 GeV and 35 GeV. The average value of the strangeness suppression factor was found to be
λs = 0.27±0.03±0.05. Within the statistical limitations of the measurement no dependence
of λs on the center-of-mass energy (12, 14, 22, 30 and 35 GeV) was found.

A following publication by the TASSO collaboration [64] using also the PETRA beams
has measured the production of K0

s and Λ at center-of-mass energies of 14, 22 and 34 GeV.
A strangeness suppression factor of λs = 0.35± 0.02± 0.05 was extracted.

The HRS (High Resolution Spectrometer) at the PEP e+ e− storage ring at the SLAC
facility has investigated the production of charged pions, charged and neutral Kaons as well as
Lambda baryons at a center-of-mass energy of 29 GeV [65]. A suppression factor of λs = 0.34±
0.03 was extracted. Furthermore, the relative production of diquarks containing a strange
quark to those consisting only of up and down quarks (see equation 2.25) was measured to
λsq = 0.87± 0.06.

A whole series of measurements dedicated to strangeness production have been per-
formed at the LEP (Large Electron Positron) collider at CERN (Conseil Européenne pour la
Recherche Nucléaire) by its four collaborations ALEPH, OPAL, DELPHI and L3 [66, 67, 68,
69, 70, 71, 72]. These experiments have used hadronic Z0 decays to study the strangeness pro-
duction in the hadronisation process and suggest a strangeness suppression factor of λs ≈ 0.3.
This value is used as the default value within the JETSET program. However, a more recent
measurement [73] came up with λs = 0.422± 0.049± 0.059.

All these measurements indicate that the data of different experiments cannot be described
by one single parameter-set of the Lund string model.

2.3.2 Measurements at ep Colliders

The next class of experiments that is briefly discussed are some older measurements of the
strangeness production at ep colliders.

The H1 collaboration has measured the production of K0
s and Λ in DIS (10 < Q2 <

70 GeV2) [74] as well as in photoproduction (Q2 ≈ 0) [75]. Both measurements have analysed
the data recorded in the year 1994 corresponding to an integrated luminosity of 1.32 pb−1,
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almost a factor of 40 less than the available statistics analysed within this work. The DIS
analysis did not show an excess of strange particles with respect to the model predictions and
an upper limit of 0.9 nb on the cross-section of instanton induced processes has been derived
at 95 % confidence level. The data were best described by a strangeness suppression factor of
λs = 0.2− 0.23. The results found in photoproduction are comparable with those from DIS.
Only at high pT a deficit of strange hadron production with respect to DIS events was found.
Predictions from Monte Carlo models for photoproduction (PYTHIA and JETSET) as well
as QCD calculations provide a reasonable description of the K0

s production rates while the
Λ production is underestimated in the models. A comparison to pp̄ experiments shows a
good agreement on the K0

s rate while the Λ rate is lower in photoproduction. A more recent
(unpublished) analysis of DIS events using 17.8 pb−1 and a wider range in Q2, 2 < Q2 <
100 GeV2, is available [76]. Like the other measurements a lower strangeness suppression
factor is favored. Best description of the data is achieved with λs = 0.23− 0.25.

Strangeness production was also studied in great detail by the ZEUS collaboration. In a
first measurement 0.55 pb−1 of DIS data (10 < Q2 < 640 GeV2) was analysed [77]. The data
could not be described by the models with the standard suppression factor of 0.3. The best
description was achieved with λs = 0.2. But also in this case the K0

s production is slightly
overestimated while the Λ production is underestimated. This implies the requirement of a
further tuning of the Lund parameters, specially the ratio of diquark pair production to qq̄
production, which was not done within this publication. In a more recent work 121 pb−1 of
ep scattering data was analysed [78]. Within this publication strangeness production in DIS
as well as in photoproduction was evaluated. The main conclusions are:

1. The DJANGO model (see section 2.5) described the overall features of the data
2. In the DIS regime λs = 0.3 is preferred to 0.22
3. No hint for a Λ-asymmetry is found
4. The ratio of Λ to K0

s production varies from 0.2 to 0.5 and DJANGO follows the shape
of the data on selected observables but fails in quantitative description up to 20 %

2.3.3 Other Measurements

Beside the e+e− and ep experiments strangeness production has been studied in muon, neu-
trino and heavy ion collisions [79, 80]. The muon nucleon scattering experiment at CERN,
where a 280 GeV muon beam collides with a liquid hydrogen target has investigated the
production of strange particles in DIS [81]. The observed rates of K+, K− and Λ could be
described by Monte Carlo models with a suppression factor of λs = 0.3± 0.01± 0.07.

The measurements of the strangeness suppression factors by the different experiments is
summarised in figure 2.14.

2.4 Introduction to Pentaquarks

Exotics with the quark content of the Θ+ (ududs) had been proposed since the early days of
quantum chromodynamics (QCD) using the MIT bag model [82]. The observation of the Θ+

[17] has revived theory activity on this topic. More recently the SU(3)-flavour antidecuplet
(10f )6 representation has emerged as an interesting feature of chiral soliton models of baryons.

610f denotes a multiplet of ten states (pentaquarks) in the flavour space represented by a antidecuplet
representation of SU(3)f , see figure 2.16.
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Figure 2.14: The strangeness suppression factor λs as extracted by the different experiments.

As early as 1987 Praszalowicz predicted that the Y=2 isospin member of the J=1
2 10f would

lie near 1540 MeV [83]. In 1997 Diakonov et al. not only predicted a Θ+ at about the same
mass but also estimated its width at less than 15 MeV [18], see also [84]. This width estimation
was the most important theoretical contribution to the discovery of the Θ+ pentaquark (see
below).

In the last years many theories appeared trying to interpret these exotic states. Among
them the Jaffe and Wilczek’s (JW) diquark model [85] and the Karliner and Lipkin’s (KL)
[86] diquark-triquark model are the most promising ones. In the following these models are
introduced and their predictions are outlined.

2.4.1 Jaffe Wilczek Diquark Model

Previous attempts have shown that a single cluster description of the (uudds) system fails
since the colour magnetic repulsion between flavour symmetric states prevents them from
binding. Therefore quarks with the same flavour have to be separated within the pentaquark.
Jaffe and Wilczek proposed that the PQ’s can be considered as a bound state of an antiquark
with two highly correlated spin zero diquarks where the quarks within one diquark have
different flavours. In figure 2.15 a schematic representation of the Θ+ pentaquark in the JW
model is shown. The four quarks are bound into two spin zero, colour anti-triplet (3c) and
flavour anti-triplet (3f ) diquarks, see figure 2.15. The diquarks obey Bose statistics, but may
experience a repulsive Pauli blocking interaction at short distances. Since the PQ is in a colour
singlet state the two diquarks have to combine to a colour triplet 3c in order to build a colour
singlet together with the antiquark. Because the triplet’s wave function is the antisymmetric
part of 3c × 3c, the diquark-diquark wave function must be antisymmetric with respect to
its other labels. Considering identical diquarks, like the two [ud] diquarks in the Θ+, only
space labels remain and the diquark-diquark wave function must be antisymmetric in space,
i.e. with negative parity. Combined with the antiquark the resulting q4q system has positive
parity. For unlike diquark pairs, like the [ud][sd] diquarks in the N0

s (see figure 2.16), the
wave function can also be symmetrised in flavour and therefore such states can have positive
parity too. The diquark pairs with different quark flavours can also be anti-symmetrised in
flavour resulting in a negative parity state. The following notation is used:

[q1q2][q3q4]+ =

√
1

2
([q1q2][q3q4] + [q3q4][q1q2]) (2.29)
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[q1q2][q3q4]− =

√
1

2
([q1q2][q3q4]− [q3q4][q1q2]). (2.30)

In contrast, the uncorrelated quark model, in which all quarks are in a ground state, predicts
negative parity for the pentaquark.

3 3 I = 0 s = 0c f

s

s = 1/2
3 6 I = 0 s = 0

du

l = 1

c f

u d

j = 1/2

Figure 2.15: Schematic representation of the Θ+ pentaquark in the Jaffe Wilczek model.

The flavour symmetric and therefore spatially antisymmetric diquark-diquark states form
a flavour anti-sextet 6f . These states are:

6f , JP = 1− : [ud][ud], [ud][us]+, [us][us], [us][ds]+, [ds][ds], [ds][ud]+, (2.31)

see equation 2.29. The flavour anti-symmetric and therefore spatially symmetric two diquark
states from a flavour triplet 3f . These states are:

3f , JP = 0+ : [ud][us]−, [us][ds]−, [ds][ud]−, (2.32)

see equation 2.30. These diquark pairs have positive parity and the resulting pentaquark
(q4q) when such a diquark pair is combined with an antiquark has negative parity.

2.4.1.1 Light Pentaquarks in the Jaffe Wilczek Diquark Model

The states mentioned above can be combined with either a u, d or a s quark. Using the
6f diquark pairs from equation 2.31 the result is a degenerated SU(3) flavour octet and
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antidecuplet (8f ⊕ 10f ), as shown in figure 2.16. As pointed out in section 2.4.1, these states
have positive parity. The spatially antisymmetric wave function of the diquark pairs would
likely correspond to an angular momentum of one. Therefore the angular momentum of the
pentaquark in the correlated diquark picture would be either 1

2 or 3
2 . Jaffe and Wilczek

assumed that the pentaquarks with JP = 3
2

+
are elevated to higher energies where they fall

apart quickly and do not produce prominent resonances. For pentaquarks containing strange
quarks the SU(3)-flavour symmetry is broken. It is known from baryon spectroscopy that the
[ud] diquark is more tightly bound than the [us] or the [ds] diquark, see [87]. By exchanging a
u or d quark by a s quark a contribution α from the binding energy difference rises, additional
to the mass difference of the quarks itself. This contribution can be related to the Σ - Λ mass
difference by:

α ≡ 3

4
(MΛ −MΣ) ≈ 60 MeV. (2.33)

Jaffe and Wilczek proposed a Hamiltonian including SU(3) violation given by:

Hs = M0 + (ns + ns) ·ms + ns · α, (2.34)

where ns and ns are the number of strange and antistrange quarks in the pentaquark, re-
spectively and ms is the contribution from the strange quark mass.

In the following the masses of some 8f ⊕ 10f members are calculated.

• Θ+(ududs): This state fixes M0 + ms ≈ 1540 MeV. The small width of the Θ+ may
be explained by a weak coupling to the K+ n state from which it differs in colour and
spin.

• N0(ududd): This is the lightest particle in the 8f ⊕ 10f representation. According
to equation 2.34 the mass of this state is M0. Jaffe and Wilczek proposed to iden-
tify this state with the so called Roper resonance N(1440)P11 (see [26]). This fixes
M0 ≈ 1440 MeV.

• N0
s
(udsds): This state has the same quantum numbers like the nucleon but with hidden

strangeness and is therefore heavier than the nucleon and should couple strongly to
strange particles. According to equation 2.34 the mass of this state is:

m(N0
s ) ≈M0 + 2ms + α ≈ 1700 MeV. (2.35)

There is a known candidate for this state, the N(1710)P11. If this assignment proves
to be correct, the N(1710) should couple stronger to N η, K Λ and K Ξ than currently
expected.

• Σ+
s
(ususs): In the Jaffe Wilczek picture this is the heaviest member of the 8f ⊕

10f representation, m(Σ+
s ) ≈ M0 + 3ms + 2α ≈ 1850 MeV. This state should couple

predominately to Σ η and ΞK.

• Ξ−−(dsdsu): The isospin 3
2 multiplet contains two Ξ’s with ordinary charge assign-

ments (0,-) and additionally it includes the two exotic states Ξ+,−−. The mass is
estimated to approximately 1760 MeV which is about 100 MeV below the mass of the
resonance observed by the NA49 collaboration in the Ξπ mass spectrum [88].
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Figure 2.16: Representation of the degenerated flavour octet and antidecuplet (8f ⊕ 10f ).
The axis are the hypercharge Y and the third component of the isospin vector I3. The N0

s

for example has Y = 1 and I3 = −1
2 .

Combining the 3f diquark pairs from equation 2.32 with either a u, d or a s quark, the
result is a nonet of pentaquarks with negative parity and flavour content 1f ⊕ 8f . But these
states have none exotic quantum numbers and are not considered further.

The correlated diquark picture differs in several ways from the prediction of the chiral
soliton model. The main differences are:

• In the chiral soliton model the Θ+ is the lightest pentaquark and therefore there is no
candidate for the Roper resonance.

• In the correlated diquark picture the Σs is the heaviest member of the 8f ⊕ 10f repre-
sentation, whereas the Ξ is the heaviest pentaquark in the chiral soliton model. The
mass hierarchy of these two models is shown in figure 2.17.

• The chiral soliton model predicts only a SU(3)-flavour antidecuplet (no octet).

2.4.1.2 Heavy Pentaquarks in the Jaffe Wilczek Diquark Model

The antiquark from a light pentaquark can be substituted by a heavy antiquark (c or b)
to form a heavy pentaquark. The heavy quarks are in a SU(3)-flavour singlet. They form
a SU(3)-flavour anti-sextet (6f ) with even parity when combined with the diquark pairs
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Figure 2.17: The mass hierarchy in the Jaffe Wilczek diquark model and in the chiral soliton
model.

(symmetric in flavour, antisymmetric in space) listed in equation 2.31. Combining a heavy
antiquark with the diquark pairs from equation 2.32 (antisymmetric in flavour, symmetric in
space) they from a SU(3)-flavour triplet (3f ) with odd parity, see [89, 90]. These states are
schematically shown in figure 2.18. The flavour wave function of the heavy pentaquarks are

+Σ 5c
0 ([ud][us] c)Σ −

5c ([ud][ds] c)+

Σ −
5c

Ξ −

5c +([ds][us] c)Ξ −5c([ds][us] c)−’Ξ− −

5c([ds][ds] c)+

Θ 0
c([ud][ud] c)+

([ud][us] c)−Σ ’0
5c([ud][ds] c)−

’

Ξ 0
5c([us][us] c)+

Figure 2.18: The flavour triplet (3f : Σ′ 0,−
5c and Ξ′ −

5c , open circles) and anti-sextet (6f :

Θ0
c , Σ

0,−
5c and Ξ0,−,−−

5c , solid circles) of charmed pentaquarks. The triplet consists of three
antisymmetric diquark pairs [q1q2][q3q4]−, while the diquark pairs [q1q2][q3q4]+ belong to the
flavour symmetric anti-sextet, see also [91]

listed in table 2.4 7.

7Stewart [92] uses another notation for the 3f -states: Σ′0,−
5c = T 0,−

s and Ξ′−

5c = T−
ss for the charmed PQ and

Σ′+,0
5b = R+,0

s and Ξ′0
5b = R0

ss for the beauty PQ.
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Table 2.4: The flavour wave functions of the heavy pentaquarks in the Jaffe Wilczek model,

where q = c or b and [q1q2][q3q4]± is defined in equation 2.29 and 2.30.

6f -states Flavor wave function 3f -states Flavor wave function

Θ0
c , Θ

+
b [ud][ud]q

Σ0
5c, Σ

+
5b [ud][us]+q Σ′0

5c, Σ
′+
5b [ud][us]−q

Σ−
5c, Σ

0
5b [ud][ds]+q Σ′−

5c , Σ
′0
5b [ud][ds]−q

Ξ0
5c, Ξ

+
5b [us][us]q

Ξ−
5c, Ξ

0
5b [us][ds]+q Ξ′−

5c , Ξ
′0
5b [us][ds]−q

Ξ−−
5c , Ξ−

5b [ds][ds]q

The Θ0
c differs from the Θ+ by the replacement of the antiquark s → c. The mass

difference arising from this exchange can be related to the Λ(1116) and Λc(2285) masses,
because the [ud] diquark in the Λ is coupled to colour 3c and spin zero and hence provides
an environment for the s quark nearly identical to the environment of the s in the Θ+. Jaffe
and Wilczek estimated the mass of the Θ0

c by:

m(Θ0
c) ≈ m(Θ+) + m(Λc)−m(Λ) ≈ 2710 MeV8, (2.36)

which is about 100 MeV below the threshold for the strong decay Θ0
c → p D−. The mass of

the Θ+
b is estimated likewise:

m(Θ+
b ) ≈ m(Θ+) + m(Λb)−m(Λ) ≈ 6050 MeV, (2.37)

which is about 165 MeV below the threshold for the strong decay Θ+
b → p B0. At first sight the

controversy about the mass of the Θ0
c should be settled down with the recent observation by

the H1 collaboration of a narrow resonance in the D∗− p and D∗+ p invariant mass spectrum
at 3099 MeV [94]. But as pointed out in [95] it is possible that the H1 state Θ0

c(3099) is an
excited state of an yet undiscovered ground state Θ0

c(2700) with opposite parity. Therefore
it is important to measure the parity of the Θ0

c(3099). If this state has negative parity this
may imply the existence of a charmed pentaquark with positive parity and a mass below
the D meson-nucleon threshold. On the other hand if the H1 state Θ0

c(3099) proves to be a
truly ground state this would have an important impact on the Jaffe and Wilczek model. In
that case the diquarks should not be treated as a point like particle and there are significant
attractive hyperfine interactions between the antiquark and the other four quarks of the
pentaquark [96]. However, it must be mentioned that the Θ0

c(3099) state could not been
confirmed by any other collaboration and even at H1 this state is not seen anymore using the
high statistic HERA II data, see section 2.4.3.

Assuming that the Θ0
c(3099) is not a ground state Cheng et al. [89] followed the argu-

mentation of Jaffe and Wilczek to estimate the masses of the other flavour anti-sextet (6f )
members. Their results are listed in table 2.5.

Stewart et al. [92] estimated the masses of the 3f members within the Jaffe and Wilczek
model. As mentioned above it is expected that these states have negative parity and that

8The chiral soliton model yields a mass of m(Θ0
c) ≈ 2704MeV [93] .
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Table 2.5: Mass estimation of the 6f states in the J-W model.

6f -states Mass in the J-W model

Θ0
c 2710 MeV

Σ0,−
5c 2860 MeV

Ξ0,−,−−
5c 3014 MeV

Θ+
b 6050 MeV

Σ+,0
5b 6199 MeV

Ξ+,0,−
5b 6351 MeV

they are in the 3f representation of SU(3)-flavour. Therefore there is no P-wave expected
between the two diquarks. The masses can be estimated as follows:

m(Ts) ≈ m(Θ0
c) + ∆s − UP , (2.38)

where ∆s is the mass difference arising when a u or d quark is exchanged by a s quark and
UP is the excitation energy associated with the P-wave. These terms can be estimated by
∆s ≈ m(Ξc)−m(Λc) ≈ 184 MeV or ∆s ≈ m(Λ)−m(p) ≈ 177 MeV and UP ≈ m(Λ′

c)−m(Λc) ≈
310 MeV, where Λ′

c denotes the excitation of the Λc with (ud) in a P-wave relative to c. The
mass of the Tss can be estimated by m(Tss) ≈ m(Ts) + ∆s. In a similar way the masses of
Rs and Rss have been estimated. The resulting masses are listed in table 2.6. These mass

Table 2.6: Mass estimation of the 3f states in the J-W model.

3f -states Mass in the J-W model

Σ′0,−
5c = T 0,−

s 2580 MeV

Ξ′−
5c = T−

ss 2770 MeV

Σ′+,0
5b = R+,0

s 5920 MeV

Ξ′0
5b = R0

ss 6100 MeV

estimations are well below threshold for the strong decays and therefore it is likely that the
3f states decay weakly. For the Ts pentaquarks that would be c → s d u. Possible decay
modes are [92]:

Σ′0
5c = T 0

s → Λ0 K0
s , p π−, p φ π−, Λ0 K+ π−, K0

s K− p,

Σ′−
5c = T−

s → Λ0 K0
s π−, p π− π−, p φ π− π−, Λ0 K+ π− π−, (2.39)

Ξ′−
5c = T−

ss → Λ0 π−, Ξ− K0
s , Λ0 K0

s K−, K− p π−.

In the last part of this thesis the invariant mass spectrum minv(K
0
s , Λ0) is studied where the

decay T 0
s → Λ0 K0

s could in principal be observed.

2.4.2 Karliner Lipkin Diquark-Triquark Model

As mentioned in section 2.4.1 quarks with the same flavour have to be separated within the
PQ. Therefore a single cluster model for the description of the pentaquarks is not adequate
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and Karliner and Lipkin (KL) [86] proposed that the system is divided into two colour non
singlet clusters which separates the quarks of identical flavour. The two clusters are a diquark
(for example a ud for the Θ+) and a triquark (for example a uds for the Θ+), see figure 2.19.
In the KL model these clusters are separated by a distance larger than the range of the
colour magnetic force and are kept together by the colour electric force, so that the colour
hyperfine interaction operates only within but not between the clusters. The diquark has
the same configuration as in the JW model, namely they are in a colour anti-triplet state
(3c) and in flavour anti-triplet state (3f ) and have isospin I = 0 and spin S = 0. The two
quarks q1 q2 in the triquark (q1 q2 Q) are in a colour sextet representation (6c) of SU(3)c and
in a flavour anti-triplet representation (3f ) of SU(3)f and have I = 0 and S = 1. The state
of these two quarks is symmetric in spin as well as in colour. The triquark is in a flavour
anti-sextet representation of SU(3)f and in a colour triplet representation of SU(3)c so that
the pentaquark builds a colour singlet state. The triquark has I = 0 and S = 1

2 . The KL
model predicts a flavour antidecuplet and a flavour octet, because 3f ⊗ 6f = 8f ⊕ 10f . This
is in agreement with the JW model. However, unlike the JW model Karliner and Lipkin
assume a P-wave between the diquark and the triquark 9.

Karliner and Lipkin used a SU(6) spin-colour algebra (introduced by Jaffe [98]) for the
description of the hyperfine interaction between two quarks i and j:

Vhyp = −V (~λi · ~λj)(~σi · ~σj), (2.40)

where ~λ and ~σ denote the generators of SU(3)c and the spin operators (Pauli matrices),
respectively and V is a constant greater than zero. This hyperfine interaction is attractive
for states that are symmetric in colour and spin where ~λi · ~λj and ~σi · ~σj have the same
sign and repulsive in antisymmetric states where they have opposite signs. Therefore the
quarks within one diquark must have different flavours: Pauli principle forces two identical
fermions at short distance to be in a state that is antisymmetric in spin and colour where the
interaction from equation 2.40 is repulsive, resulting in a hyperfine interaction that is always
repulsive between two quarks of the same flavour.

For the heavy pentaquarks the KL model predicts a flavour triplet and a flavour anti-
sextet, like the JW model. Due to the fact that KL assumes a P-wave between the two clusters
(diquark-triquark) this model predicts a positive parity (P = +1) for both, the flavour triplet
and anti-sextet states. This is in contrast to the JW model where P(3f ) = −1. Measuring the
parity of the flavour triplet heavy pentaquarks can thus discriminate between the JW model
and the KL model. But up to date no pentaquarks from the flavour triplet are observed.

2.4.2.1 Mass Estimation in the Karliner Lipkin Model

Estimating the mass of the Θ+ KL uses the SU(6) spin-colour algebra. It can be shown that
the hyperfine interaction for the diquark-triquark system is stronger by 1

6 · (m∆ − mN ) ≈
50 MeV than for the kaon-nucleon system, where m∆ = 1232 MeV is the mass of the ∆

9To get a picture of the KL model (for the Θ+) consider a K+ and a neutron which are far enough apart
so that they don’t ’feel’ each other. Then move a d quark from the neutron over to the kaon and recouple the
colour and spin of the ’K+’ to optimize the hyperfine interaction. Moving a quark from point r1 to r2 requires
an energy in the potential of the neutron of V(r2) - V(r1), where V is the confining potential (for example
Coulomb + linear). The energy is in the colour electric field that has been generated between r1 and r2. The
tradeoff between the hyperfine and the confining interaction reproduces the mass of the pentaquark, see [97].
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Figure 2.19: Schematic representation of the Θ+ pentaquark in the Karliner Lipkin model.

resonance and mN the mass of the nucleon. Therefore the diquark-triquark system is tighter
bound than the kaon-nucleon system. The diquark triquark system has a colour electric
interaction between the two clusters which is identical to the quark antiquark interaction
in mesons. Neglecting the finite size of the diquark and the triquark this system can be
compared with analogous mesons. KL considered the Ds meson whose reduced mass mred is
similar to that one of the diquark triquark system in the Θ+:

mred(cs) =
mc ·ms

mc + ms
= 410 MeV ≈ mred(di− tri) =

mdi ·mtri

mdi + mtri
= 458 MeV, (2.41)

where mu = 360 MeV, ms = 540 MeV, mc = 1710 MeV, mdi = 720 MeV and mtri = 1260 MeV
are taken. Furthermore it has been proposed that the Ds(2317) meson is a JP = 0+ excited
state of the ground state Ds(1969)[99]. This implies an excitation energy of 350 MeV con-
sisting of contributions from a P-wave (δP−wave) and from colour hyperfine splitting. KL
estimated the colour hyperfine splitting based on the mass difference of the D∗

s and Ds

mesons. They obtained:

δP−wave ≈ 350 MeV − (mD∗
s
−mDs) = 207 MeV. (2.42)
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This yields a Θ+ mass of:

m(Θ+) ≈ m(N) + m(K0
s )− 1

6
· (m∆ −mN ) + δP−wave = 1592 MeV, (2.43)

which is about 3 % above the observed mass.

The mass of the Θ0
c has also been estimated within the KL model. The main difference

to the estimation above is the mass of the antiquark c, which breaks the SU(3) symmetry.
KL estimated the mass of the Θ0

c without the P-wave excitation (m0(Θ0
c)) to [97]:

m0(Θ0
c) ≈ m(N) + m(D)− 1

12
(1 + ζc) · (m(∆)−m(N)) ≈ 2778 MeV, (2.44)

where ζc = mu

mc
= 0.21 describes the symmetry breaking. The mass including the P-wave

excitation is therefore:

m(Θ0
c) ≈ 2778 MeV + 207 MeV = 2985 MeV. (2.45)

The uncertainty of this mass is estimated to be approximately 50 MeV:

m(Θ0
c) = (2985± 50)MeV. (2.46)

This mass is clearly above the mass predicted by the JW model, but is more or less compatible
with the mass measured by the H1 collaboration.

2.4.3 Observations and Non-Observations of Pentaquarks

Soon after the possible discovery of the Θ+ many experiments have performed a search for
this and other pentaquark candidates which have been predicted by various models. In a
first instance some of those experiments have reported evidence for pentaquark candidates.
However, the following states have only been observed by one single experiment:

• The exotic pentaquark Ξ0,−− observed by the NA49 Collaboration [88] in the decay
mode Ξπ with a mass of 1862 ± 2 MeV and a width of less than 18 MeV. Its minimal
quark content is dsusd̄ and dsdsū.

• The heavy pentaquark Θ0
c observed by the H1 Collaboration [94] in the decay mode

D∗p with a mass of 3099 ± 8 MeV and a width of 12 ± 3 MeV. Its minimal quark
content is ududc̄.

• A candidate for the N0
s pentaquark with minimal quark content dudss̄ was found in the

year 2004 by the STAR Collaboration at RHIC [21] in the decay mode Λ0K0
s . They

observed a narrow peak at 1734 ± 5 MeV with a width consistent with the experimental
resolution of about 6 MeV.

However, in a second round where analyses with improved statistics were available, some
claims have been revised. At this point only three representative examples for the (non-)
discovery of PQ states are given. For a comprehensive overview see for example [100, 101,
102].
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The Θ0
c at H1: A candidate state for the Θ0

c was claimed in the HERA I data in the decay
channel D∗ p with a significance of 5.4 σ. The analysed data comprises a luminosity
of L = 75 pb−1 and yields 50.6 ± 11.2 reconstructed Θ0

c candidates. Soon after this
discovery FOCUS has performed a search for this new state in γBeO reactions [103].
Their sample of D∗ events is roughly 30 times larger than that used for the H1 analysis
and an upper limit of 0.075 % at 95 % confidence level (C.L.) on the production cross-
section of the Θ0

c to D∗ mesons has been extracted. This limit is more than 10 times
stronger than the Θ0

c to D∗ ratio found at H1, implying that the state observed by H1
is either a statistical fluctuation or the production mechanism of the Θ0

c is suppressing
its production in γp(n) reactions. There are two reasons why the later interpretation is
disfavouerd. Firstly, the ZEUS collaboration analysing also ep data with a luminosity of
L = 126 pb−1 has not found any evidence for the Θ0

c and an upper limit at 95 % C.L. on
the relative production to D∗ mesons of 0.32 % has been extracted [104] and secondly,
a preliminary anaysis of HERA II data with an integrated luminosity of L = 348 pb−1

by the H1 collaboration has not seen any evidence for the Θ0
c anymore, indicating an

upper limit at 95 % C.L. on the relative production to D∗ mesons of 0.1 % [105] which
is clearly contradicting the first measurement.

The Θ+ at CLAS: The CLAS Collaboration at the JLAP has preformed two experiments
dedicated to the Θ+ search. A first experiment has studyied the reaction γ p →
π+ K− K+ n using a tagged photon beam with an energy range of 3 to 5.47 GeV. A nar-
row resonance was found in the invariant mass distribution of the K+ n spectrum with
a width consistent with the detector resolution and a significance of 7.8±0.1 [106]. This
is the highest significance ever reported for pentaquark findings. Another experiment
was analysing the reaction γ d→ p K− K+ n with photon energies up to 3.8GeV [107].
Again a resonant structure in the K+ n spectrum was observed with a width consis-
tent with the detector resolution and a statistical significance of 5.3± 0.3. In a second
round these results have been revised by two high statistics experiments. One of those
has examined the reaction γ p → K0

s K+ n [108]. No structure was found in the K+ n
mass spectrum and an upper limit at 95 % C.L. of 0.8 nb was put on the total pro-
duction cross-section of a Θ+ which is in clear contradiction to other experiments,
see for example [101]. The second high statistic experiment was again analysing the
reaction γ d → p K− K+ n [109] and is therefore directly comparable with the first ex-
periment mentioned above. No resonant structure was observed in this analysis, clearly
contradicting the first observation in the same channel. It turned out that the first
experiment has understimated the background and that the significance was rather 3σ
and not 5.3 σ. Further explanations trying to justify the decrepancy of the different
CLAS experiments and outlining tests for future disoveries can be found in [110].

The Ξ−− and Ξ0 at NA49: The observation of candidates for the Ξ−− and the Ξ0 PQ
states by the NA49 collaboration has lead to an examination of the Ξπ spectra by vari-
ous experiments. Although some of these experiments are close to the NA49 kinematics
and have a similar sensitivity to the examined decay channel, none of them could con-
firm the results of the NA49 Collaboration [20, 111, 112, 113, 114, 115, 116, 117, 118],
including the H1 search discussed in part II of this work.
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These examples show the controversal situation about PQ discoveries. Beside these ’negative’
examples there are also experiments that could confirm their initial findings, like the DIANA
collaboration [119].

In conclusion it must be said that the initial evidence for PQ states has cleary lost much
of its original significance over the past years. Nevertheless, further studies are needed to
unambiguously clarify the issue of PQ observations. However, as pointed out in [100] the
unsparing effort of PQ searches is not futile: ”When the dust will have settled on the issue
of narrow pentaquark baryons, we will have learned a lot about the physics of hadrons, no
matter what the final outcome will be” (V. D. Burkert).

2.5 Monte Carlo Generators and QCD Models

In high energy physics (HEP), as in other fields of science, many problems cannot be solved
analytically. The work around is either to simplify the problem until it is solvable or to use a
stochastic description based on predictions obtained from first principle. In HEP the second
approach is used. The stochastic description is implemented in so-called Monte Carlo (MC)
event generators providing an approximative solution based on a simulation of the problem
using pseudo random numbers 10.

In HEP, the MC generators are used to simulate the outcome of interacting particles, e.g.
e± p→ X. Therefore, the goal is to obtain generated events that mimic the true data to the
highest possible level. The random character of the Monte Carlo method is used to generate
events according to their probability obtained by theoretical considerations. The physics
describing the transformation of the incident beam particles to the final state particles is
subdivided into different parts as illustrated in figure 2.8. The different processes are treated
sequentially. A comprehensive overview on MC generators that are used for the simulation
of ep interactions can be found in [120]. The generated events (all final state particles) are
passed through the full GEANT [121] based simulation of the H1 apparatus in order to
reproduce the detector response to the generated particles. The simulation of the physical
process together with the simulation of the detector response is needed to correct the data
for detector effects and to study resolution effects.

Within this work, two different leading order Monte Carlo generators are used:

• The DJANGO [122] program simulates deep-inelastic electron - proton scattering at
leading order. It generates the hard QCD 2 → 2 subprocesses (e.g. γ∗q → q, γ∗g →
qq̄ ), convoluted with the proton PDF, chosen herein to be CTEQ6L [123] or GRV94,
LO [124]. The factorization and renormalisation scales are set to µ2

f = µ2
r = Q2. Higher

order QCD effects producing further hard outgoing partons are described in DJANGO
using either the parton shower approach as implemented in LEPTO [125] (referred to
as MEPS) or by the so-called colour dipole model approach [126, 127] available within
ARIADNE [128] (referred to as CDM). In LEPTO the parton showers are ordered in the
transverse momenta (kT ) of emissions, according to the leading log(Q2) approximation
(see figure 2.5). In the ARIADNE program the partons are generated by colour dipoles,
spanned between the partons in the cascade. In the case of deep-inelastic ep scattering,
the initial colour dipole is provided by the scattered parton and the proton remnant.

10The advantage of using pseudo random numbers is the reproducibility of the generated event sample.
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The emitted gluons carry colour charge themselves and build new colour dipoles which
can again radiate gluons. This process is illustrated in figure 2.20. Since the dipoles
radiate independently, there is no kT ordering. In both instances, the hadronic final
state is modelled according to the LUND colour string fragmentation model [50, 51, 52]
(see section 2.1.6), as implemented e.g. in the JETSET [53, 54] program. If not stated
otherwise, the ALEPH-tuned JETSET parameters [72] (λs = 0.286, λqq = 0.108 and
λsq = 0.690) are used.

The DJANGO program can be coupled with the HERACLES program [129] to simulate
initial and final state QED radiations.

• The PYTHIA [130] program is the most common multipurpose simulation program.
It can simulate ee, eγ, ep and pp collisions. The simulation of ep events is analogical
to the DJANGO model in the LEPTO mode, i.e. it generates also the hard QCD
2→ 2 subprocesses, simulates initial and final state parton shower and incorporates to
JETSET for the simulation of the hadronisation process.

e(k)

p(P)

e(k’)

0 (q)

q(xP)

q

Figure 2.20: A sketch of the dipole radiation as implemented in the ARIADNE model.

2.5.1 Simulated Data Sets

For the analysis presented in the following chapters several Monte Carlo sets have been
produced:

• For the correction of the data for the cross-section measurement the DJANGO (version
h 1.4) generator has been used. Two sets were generated and fully simulated with
GEANT, one in the ARIADNE mode with a luminosity of 260 pb−1 and one in the
LEPTO mode with L = 194 pb−1 (H1-internal identification numbers 4142 and 4049,
respectively). Only events with a virtuality larger than 1.8GeV2 and an inelasticity
within 0.05 < y < 0.7 have been generated. In both cases only events have been
kept that contain at least one K0

s or Λ hadron in the central part of the detector
(−1.75 < η < 1.75) with a transverse momentum larger than 100 MeV. The proton
PDF set has been chosen to be GRV94, LO [124]. The JETSET parameter correspond
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to the ALEPH-tuning for ARIADNE 4.08 [72]. The main properties are summarised
in table 2.7. Both sets contain initial and final state photon radiations.

Table 2.7: The main properties of the two DJANGO Monte Carlo sets used for the cross-
section analysis.

Generated range Q2 > 1.8 GeV2

0.05 < y < 0.7

Preselection pT (K0
s , Λ) > 0.1 GeV

−1.75 < η(K0
s , Λ) < 1.75

PDF set GRV94, leading order

JETSET λs = 0.286

λqq = 0.108

λsq = 0.69

• For the search for new resonances the PYTHIA (version 6.2) generator is used. The
new particles are generated by changing the properties of known resonances. For the
simulation of the potential pentaquark states Ξ−−

5q and Ξ0
5q the ∆

−−
and the Ξ(1530)0

resonances have been used as described in section 9.5.
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Chapter 3

The H1 Experiment at HERA

The measurements presented within this work are carried out using data taken with the H1
detector at the ep collider HERA at DESY (Deutsches Elektronen Synchrotron) in Hamburg,
Germany. The DESY laboratory was founded in 1959 and is one of the five largest accelerator
centers of the world. Beside particle physics, which started in 1965 with the installation and
commissioning of the DESY accelerator, other fields of physics are investigated at DESY like
solid state physics, material science and molecular biology. In the late seventies of the last
century the installation of the electron-positron Double Ring Store (DORIS) has started
and was completed in 1974. The next milestone of the development was achieved in 1978
as the construction of the 2.3 km long Positron-Elektron Tandem Ring Anlage (PETRA)
was finished. At PETRA the physicists could observe for the first time the gluons directly.
The construction of the Hadron Elektron Ring Anlage (HERA) has started in 1984 and
was completed eight years later. The HERA accelerator has stopped operation mid 2007.
Nowadays, the DESY laboratory is involved in the LHC experiments and in the planing of a
future TeV linear accelerator.

3.1 The HERA Collider

The HERA facility [131] was so far the only storage ring in the world for electrons and
protons. The electrons (or positrons) and the protons were passed through several pre-
accelerators (linear accelerators and synchrotrons) before being injected at HERA, where
they were accelerated up to energies of 27.6 GeV and 920 GeV 1, respectively. The center-
of-mass energy of 319 GeV was one order of magnitude higher than available at fixed target
experiments, providing a deeper insight into the structure of the proton. A schematic overview
of the accelerator is displayed in figure 3.1. Due to the significant different masses of the
electrons and the protons, they were stored in two separated magnetic rings, placed in a
tunnel of 6.3 km length located up to 30 m under the ground level. For the diffraction of the
protons in the ring a magnetic field of 4.7 T, provided by super-conducting dipole magnets,
was needed. The magnetic field was the limiting factor for the maximal proton energy.
For electrons only a field of 0.165 T was needed, provided by conventional electromagnets.
The energy of electrons in circular accelerators is limited by synchrotron radiation which
amounted to 127 MeV per circulation at HERA. Along the tunnel, four different experiments

1Before 1998 the protons were accelerated up to 820 GeV.
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Figure 3.1: The HERA accelerator with the pre-accelerator PETRA. The four circles indicate
the different experiments H1, HERMES, ZEUS and HERA-B (clockwise).

were located: H1, ZEUS, HERMES and HERA-B. The first two were studying the high-energy
collisions of the electrons and protons while the other two were fixed target experiments using
either the electron or the proton beam.

The electrons and protons were grouped in so-called bunches, each containing 1010−1011

particles. In total approximately 180 bunches were circulated in each ring, resulting in
currents in the order of several tens of milliampere. The bunch crossing rate was 10.4 MHz,
corresponding to one collisions every 96 ns. In the first data taking period (HERA I) a specific
luminosity of L = 2.0 · 1031 cm−2s−1 was achieved, exceeding the design luminosity of L =
1.5 ·1031 cm−2s−1. The luminosity is given by: L = f ne np / A, where f is the bunch crossing
frequency, ne(p) the number of electrons (protons) per bunch and A the cross section of the
beams. Especially the last quantity cannot be measured with high accuracy and therefore
the luminosity was determined experimentally, see section 3.2.3. The HERA I data period
ended in autumn 2000. In the following break down, the focusing of the beams was improved,
resulting in a roughly four times higher specific luminosity. After the luminosity upgrade, the
HERA II data taking period started in 2002 and lasted until summer 2007. The luminosity
accumulated by the H1 experiment is displayed in figure 3.2 for the two data taking periods
of HERA I and II.

3.2 The H1 Experiment

The H1 detector was located in the North Hall and is illustrated in figure 3.3. The dimensions
of the detectors were 12 x 10 x 15 m3 and the total wight was approximately 2800 tonnes.
H1 has used a right handed Cartesian coordinate system with the origin at the nominal ep
interaction point. The proton beam direction defines the z axis of the laboratory frame,
the x axis points towards the center of the ring and the y axis points upwards, see figure
3.3. Alternatively spherical coordinates (r, φ, θ) are used. The polar angle θ is measured
with respect to the z axis and the azimuthal angle φ is measured with respect to the x



3.2 The H1 Experiment 49

Days of running

H
1 

In
te

gr
at

ed
 L

um
in

os
it

y 
/ p

b-1

Status:  1-July-2007

0 500 1000 1500
0

100

200

300

400
electrons
positrons
low E

HERA-1

HERA-2

Figure 3.2: The luminosity accumulated by the H1 experiment, splited for the two data
taking periods of HERA I and HERA II

axis. The pseudorapidity η is given by η = − ln tan θ
2 . Due to the different beam energies,

the center-of-gravity of the electron-proton system was boosted into the direction of the
incoming proton, which was accounted for by the asymmetric detector layout (more material
in the positive z direction). Another important feature of the H1 detector was its almost
full angular coverage. This is mainly important for events where the final state contains
neutrinos which cannot be detected. The main components of the detector were the tracking
system, the calorimeters and the muon chambers. A detailed description of the H1 detector
can be found in [132, 133]. In the following only those detector components important for the
present analysis are described. As most of the analysed data are taken during the HERA I
period, only the detector setup at this time is described.
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Figure 3.3: Schematic representation of the H1 detector and the coordinate system.
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3.2.1 The Tracking System

The most important part of the detector for this analysis was the tracking system of the
H1 detector. All analyses presented in the following chapters are based on charged particle
tracks. Three different detector techniques were used for the measurement of the tracks:
Drift chambers, multi-wire proportional chambers (MWPC) and silicon detectors.

A schematic overview of the tracking system is provided in figure 3.4. The whole tracking
system was contained in a magnetic field of 1.15 T produced by a super-conducting solenoid,
allowing to measure the momentum of the particle track by the determination of its curvature
in this field. The transverse momentum resolution is σ(pT )/pT ≃ 0.006 pT [GeV]⊕ 0.015 [134].
The tracking system was divided into two parts: the central track detector (CTD), covering
a range of 15 < θ < 165 ◦ and the forward track detector (FTD) covering the range 7 < θ <
25 ◦. In this work only tracks measured in the CTD are considered and therefore only this
part of the tracking system is described in the following. A detailed description of the FTD
can be found in [135].

Figure 3.4: The H1 tracking system.

3.2.1.1 The Central Track Detector

The CTD consisted of several concentric parts as illustrated in figure 3.5. The innermost
device was the central silicon tracker (CST), followed by the inner multi-wire proportional
chamber (CIP) and the inner z chamber (CIZ). The central jet chamber was divided into two
parts (CJC1 and CJC2). The outer z chamber (COZ) and the outer multi-wire proportional
chamber (COP) were embedded between the two jet chambers.

The main part for the measurement of the particle tracks were the CJC1 and CJC2
[136]. The anode wires of these drift chambers were sprung parallel to the z axis, allowing a
precise measurement of the r−φ components of the trajectory of the tracks. The information
of the z component of the track was obtained by sampling the currents at both ends of the
chambers. However, this provided only a rudimental determination of the z position of the
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Figure 3.5: The H1 central track detector.
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tracks. The CJC1 (CJC2) was divided into 30 (60) cells in φ, each cell containing 24 (32) sense
wires. The different cells were tilted in radial direction, ensuring that also high momentum
tracks, which have a low curvature, cross several cells. The chambers were filled with a
gas mixture of approximately 49 % argon and 49 % ethane. Furthermore, ∼ 1 % ethanol and
∼ 0.2 % nitrogen were added. The drift velocity in this gas mixture is 50 mmµs−1. With
this drift velocity, a spatial resolution of the track position in the r − φ plane of 170µm was
achieved.

The CJC provided also a measurement of the energy loss of the particle tracks per length,
dE/dx, which can be used for particle identification (see section 12.4.1).

A drawback of the drift chambers was the slow response time which complicates the usage
of the CJC information for trigger purpose at the first level of the trigger farm (see section
3.2.4).

The information on the z position of the tracks was refined by the complementary infor-
mation obtained by the z chambers CIZ and COZ [137]. The wires of these drift chambers
were strung in radial direction (perpendicular to the beam axis), allowing a precise measure-
ment of the z component of the trajectory of the tracks. The gas mixture was similar to that
one in the CJC’s. The CIZ had the form of a regular 16 sided polygon and was divided into
15 cells along the z direction. Each cell contained 4 sense wires. Information on the r − φ
component of the tracks was gained by the charge division technique. The COZ was built
very similar. It had the form of a regular 24 sided polygon and was divided into 23 cells.

The drift chambers explained so far have a good spatial resolution but a rather poor time
resolution. Therefore, the tracking system was equipped with an inner and outer proportional
chamber, the CIP and COP [138]. These chambers had an intrinsic time resolution of about
10 ns and provided information for a fast trigger decision to separate the subsequent bunch
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crossings. Furthermore, these chambers provided a fast measurement of the interaction vertex
which was also used for trigger purpose. The sense wires were strung parallel to the z axis.
Both chambers consisted of two layers. The CIP (COP) was partitioned into 8 (16) segments
along φ and in 60 (18) pads of a length of 36 mm (120 mm) along z. The two layers of the
CIP were rotated with respect to each other by π/8. The information from the CIP and COP
were not used for the final track reconstruction.

The innermost part of the tracking system was covered by the central silicon tracker
CST [139]. The CST consisted of two cylindrical layers with 12 and 20 sensor ladders, each
containing six sensors. This device provided a single hit resolution of 12µm in the r−φ plane
and 22µm in the z plane. Therefore, the information of the CST were used to improve the
parameters of the tracks determined from the hits in the CJC.

3.2.2 The Calorimeter

The H1 detector was equipped with four different calorimeters: the liquid argon calorimeter
(LAr) [140] which covered the forward and the central region (4 < θ < 154 ◦), the back-
ward calorimeter (SpaCal) [141] covering the backward region (153 < θ < 177.5 ◦), the Plug
calorimeter [142] which covered the gap between the LAr and the beam pipe (0.75 < θ <
3.4 ◦) and the Tail catcher [143] which was situated within the return yoke of the solenoid.
In this work only the SpaCal is used and described further.

3.2.2.1 The SpaCal

The SpaCal [141] was located in the backward region of the detector, see figure 3.6. Its
main purpose was the detection of the scattered electron in low Q2 DIS events (2 < Q2 <
120 GeV2). Like the LAr, it had an electromagnetic and a hadronic part. Both parts consisted
of scintillating fibers embedded in a lead matrix absorber. The light, which was produced in
the fibers, was guided to photon multipliers where the signal was read out. The active region
in both parts was 25 cm deep and the fibers had a diameter of 0.5 mm. The electromagnetic
part consisted of 1192 individual channels with a surface of 4.05 m x 4.05 m. The electro-
magnetic energy resolution is σE/E ≃ 7%/

√
E/GeV ⊕ 1% and was determined using a test

beam [144].
An additional drift chamber, the backward drift chamber (BDC) [145], was situated in

front of the SpaCal. Its main purpose was to provide accurate information on the scattered
electron in low Q2 DIS events. The chamber consisted of 8 layers which were divided into
octane. Each octane contained 32 drift cells with wires strung perpendicular to the beam
axis to provide a good measurement of the z coordinate.

3.2.3 The Luminosity System

The luminosity is determined by the relation of the cross-section, σ, and the number of
observed events, N , of a given physical process:

L =
N

σ
(3.1)

At H1 the luminosity was determined by the rate of the Bethe-Heitler process e p → e p γ
[146]. The cross-section for this process can be calculated with a high precision. The electrons
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Figure 3.6: The H1 backward calorimeter SpaCal.

and photons from this process were measured with two calorimeters which formed the H1
luminosity system [147], see figure 3.7. Both detectors used Cerenkov crystal calorimeters.
The electron tagger was located downstream in the tunnel at z = −33.4m and the photon
tagger at z = −102.8m. The luminosity for the HERA I data period was determined with an
accuracy of 1.5%.

Figure 3.7: The H1 luminosity system.

3.2.4 The H1 Trigger System

A dedicated trigger system was required at H1 to reduce the high collision rate of 10.4 MHz
to a rate of approximately 10 Hz which was the maximal rate with which the events could be
written to tape. On the one hand, the trigger systems needed to reduce background events
like beam-gas processes or synchrotron radiation as much as possible. Such background
events occurred at a rate of approximately 50 kHz. On the other hand, physical processes
like photoproduction events which occurred also at high rates (20-30 Hz) needed to be reduced
in order to ensure that rare processes are written to tape with a high efficiency.

Most of the detector components provided a trigger signal (beside the full information
used to build the event off-line). These signals were evaluated in a four-level trigger system
to decide whether the event was written to tape or not. The trigger system is illustrated in
figure 3.8. For this analysis only two trigger levels are of relevance, the L1 and L4 level.
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Figure 3.8: The H1 four level trigger system. The figure is taken from [76].

3.2.4.1 The Trigger Level L1

The first trigger level took a trigger decision with the bunch crossing rate of 10.4 MHz (dead-
time free). All data provided by the different detector components were stored in a pipeline
with a length of 25 bunch crossings. Therefore, the decision whether an event was kept or
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not had to be taken within 25 · 96 ns = 2.4µs. All relevant information of the event were
processes within this time and so-called trigger elements were set and passed to the central
trigger logic (CTL). At the CTL, subtriggers were built by logical connections of these trigger
elements. The event was triggered if at least one of the 128 subtrigger conditions was fulfilled.
Thereby the pipelines of the detector readout were stopped and the event that has triggered
was read out. During this time no further events were processed, resulting in a so-called dead
time. In order to keep this dead time below 10 %, the maximal L1 trigger rate should not
exceed 100 Hz. The individual subtriggers were prescaled in order to keep the overall trigger
rate below this limit. If a subtrigger had a prescale i, only every i-th event that was triggered
by the corresponding subtrigger was kept.

3.2.4.2 The Trigger Level L4

For a further reduction of the rate, the events that were triggered by the previous trigger levels
were passed to the fourth trigger level before being written to tape. On this trigger level the
events were processed asynchronously on a PC farm where a nearly full reconstruction of the
event was performed. Thereby selection criteria were applied to the reconstructed quantities,
assigning the events into certain physical classes. All events that were not classified by one
of the 16 L4 finders were written out only with a certain probability. The main strategy for
the weighting of unclassified events was that the higher the photon virtuality of the event,
the lower was the weight. This weight is in the following referred to as L4 weight.



Chapter 4

Experimental Aspects

This work consists of three related topics:

Analysis I: The measurement of the production cross-section of the strange hadrons K0
s

and Λ as well as their ratio.

Analysis II: The search for narrow resonances decaying into Ξπ.

Analysis III: The investigation of K0
s Λ combinations.

The analyses I and II are carried out in deep-inelastic ep scattering data, while analysis III
uses all recorded data.

The experimental aspects which are common for the three measurements are discussed
in the following. In the first part the selection of the data for the different analyses is
presented. The focus is put on the selection and triggering of DIS events. In the second part
the technical issues relevant to the analyses are presented. This comprises the selection of
well measured particle tracks, the vertex fitting routines used for the reconstruction of the
long-lived strange hadrons and the discussion of the Breit frame. In the last part the so-called
Armenteros-Thompson variables are introduced.

4.1 Data Selection and Event Kinematics

Here, the focus is put on the analyses I and II which are carried out in deep-inelastic ep
scattering. After the selection of the run periods, the chosen subtrigger which is common
for the two analyses is described. In a next step the reconstruction of the kinematic event
variables and the selection criteria to extract DIS events are described. A comparison of the
selected data with the predictions obtained from leading order Monte Carlo simulations is
provided at the end of this section.

4.1.1 Selection of the Data Periods

For the analysis presented within this work different data periods are used:

• For the analysis I (see part I) the e+p data from the years 1999 and 2000 are used. This
data set has an integrated luminosity of L = 49.9 pb−1.
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• For the analysis II (see part II) the full HERA I data set from the years 1996 to 2000
is used, corresponding to an integrated luminosity of L = 101 pb−1.

• For the analysis III (see part III) the full 1999/2000 data set is used with an integrated
luminosity of L = 78 pb−1.

The data recorded with the H1 detector are divided in so-called runs. Each run contains
data logged under almost the same condition of both, the detector and the beams. A prese-
lection of the data is applied by rejecting certain runs. Runs with a Luminosity of less than
100 nb−1 are rejected because this points to a technical problem during the run. The runs
are classified as ’good’, ’medium’ or ’poor’ (depending on the status of the subdetectors and
on the quality of the beams). Only runs declared as ’good’ or ’medium’ are used. The high
voltage supply of the tracking chambers was switched off for a part of the run in order to
protect the chambers from high currents. Individual events of a run are rejected if at least one
of the detector components relevant for the analysis is not working properly. The relevant
components for this analysis are the central tracking chambers (CJC1 and 2, CIP, COP),
the forward proportional chamber (FPC) 1, the calorimeters (LAr and SpaCal) as well as the
backward drift chamber (BDC) and the luminosity system. The luminosity is corrected for
the rejected events of a run and for satellite bunch interactions which are not considered in
the data analysis. The efficiency of these run selections is in the order of 80 %.

4.1.2 Selection of Deep-Inelastic Scattering Events

The DIS events are characterised by a scattered electron in the final state. For the considered
Q2 range such events are tagged by the verification of an energy deposition in the SpaCal.
Accordingly, the selected subtrigger demands a high, localised energy deposition in the SpaCal
together with a high transverse momentum track in the central region of the detector. The
measured properties of the scattered electron are used to reconstruct the kinematic variables
of the events, see section 2.1.1. Therefore, these variables depend on the energy calibration
of the electromagnetic part of the SpaCal. This calibration is verified by an independent
measurement of the kinematic variables which is provided by the double angle method.

4.1.2.1 Trigger Selection

Events in the presented analysis are selected by the subtrigger S61. This subtrigger has
no conditions on the second trigger level (L2) and therefore events triggered by S61 are
passed directly to the fourth trigger level L4. Only events that pass the fourth trigger level
are written to tape and considered further for the analysis. The fourth layer of the trigger
system saves always a part of the events that have not been classified by one of the L4 finders
with a corresponding weight. This weight is referred to as L4 weight. The L4 efficiency is
automatically included by applying this weight event-wise to the data distributions. For this
work no specific L4 finder is requested.

The subtrigger S61 requires a high transverse momentum track in the central part of the
detector, a significant z-vertex position and an energy deposition in the SpaCal. The logical
condition is:

S61 = DCRPh THig ∧ zV tx sig ∧ (SPCLe IET > 2 ∨ SPCLe IET Cen 3). (4.1)

1Some track based subtriggers use information from this system.
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In addition to these main trigger elements several veto conditions are applied in order to
reject non-ep background or interaction of satellite bunches. The different trigger elements
are described in the following.

The track trigger: The track trigger DCRφ uses the r − φ information of the hits found
in the central tracking chambers. These hit combinations are compared with different
pre-defined masks (O(10’000)) in order to find the tracks and a coarse estimation of
their momenta in the transverse plane. The trigger element ’DCRPh THig’ requires at
least one track with a high transverse momentum above a threshold of 800 MeV.

The z-vertex trigger: The z-vertex trigger uses the information from the CIP, the COP
and the forward tracker. With this information so-called rays (particle trajectories) are
reconstructed. The intersection of these rays with the z-axis is filled into a histogram
ranging from z = −43.9 cm to z = +43.9 cm. For tracks originating at a common vertex,
a peak at the z-position of the interaction vertex of the event is expected. The trigger
element ’zVtx sig’ asks for a significant peak in this distribution.

The SpaCal trigger: SpaCal trigger elements are fired if a significant energy deposition
in the SpaCal is detected. Several cells are combined and the energy depositions
within these cells are summed up to build a so-called trigger tower. The element ’SP-
CLe IET>2’ requires a trigger tower in the electromagnetic part with an energy larger
than 5.7GeV. The element ’SPCLe IET Cen 3’ is set in a analogue way considering
only the central region of the SpaCal.

The average prescale (see section 3.2.4) of the subtrigger S61 is 1.03 for the year 1999 and
1.19 for the year 2000. These prescales are already included in the luminosity quoted above.

Determination of the Trigger Efficiency The efficiency of the L1 trigger can be deter-
mined in two ways. Either the efficiency is determined by the simulation of the corresponding
trigger or it is extracted from the data. Within this work the second way is chosen to be
independent of the trigger simulation which depends for example on the Q2 spectrum of the
generated events. However, a comparison between the trigger efficiency extracted from data
and simulation shows a reasonable agreement. The observed deviations are in the order of
1 %. The trigger efficiency from the data is obtained by the monitor trigger technique using
a set of independent subtriggers. Unfortunately, there is no subtrigger which has gathered
enough statistics and which is completely independent of S61. Therefore, the trigger efficiency
of S61 has to be composed by the efficiency of its trigger elements. For the monitoring of the
SpaCal part, the subtriggers S71 which uses the LAr, the track and the z-vertex trigger or the
subtrigger S67 using only the LAr trigger are taken. The z-vertex element can be monitored
together with the track trigger by using the monitor triggers S04 or S00 which both rely only
on conditions on the SpaCal triggers. The efficiency of S61 is given by:

ǫ(S61) =
∏

TE

NMT∧TE

NMT
, (4.2)

where NMT∧TE denotes the number of events that are triggered by the monitor trigger and
the corresponding trigger element while NMT denotes the events that are triggered by the
monitor trigger without additional requirements. The trigger efficiency for the K0

s and Λ
particles is discussed in section 6.2.2.
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4.1.2.2 Reconstruction of the Kinematic Variables

At fixed center-of-mass energies
√

s the kinematics of deep-inelastic scattering events are
characterised by three Lorentz-invariant variables Q2, y, and x. These three quantities are
related by equation 2.9 and therefore only two of the variables have to be extracted from
measurable quantities (herein chosen to be Q2 and y). In the following, two different ways
for this extraction are presented.

The Electron Method For the chosen Q2 range the scattered electron is detected in the
SpaCal. This subdetector is able to measure the electron quantities (energy and polar angle)
with a high precision. Therefore, the electron method (see equations 2.6 and 2.8) is used for
the extraction of the kinematic variables of the DIS events. A drawback of this method is
its strong dependence on the energy calibration of the SpaCal. This calibration is examined
in section 4.1.4.1 and is found to be acceptable. A further drawback of the electron method
is the poor resolution of the inelasticity at low values of y (see for example [148]), which is
confirmed by the measurement of the resolution presented in section 6.3. This fact restricts
the analysis to the region y > 0.1 and implies the need of a coarse binning at low values
of y. As this method uses the energy of the incoming electron, the extracted quantities are
measured wrongly in cases where the electron emits a photon before the interaction with the
proton. However, this effect of initial and final state radiation is small and taken into account
properly in the simulated events and the data are therefore corrected accordingly.

The Double Angle Method This method uses the beam energies and the scattering angle
of the electron, as well as the angle of the hadronic final state and is therefore independent
of the energy of the scattered electron. From the information of the hadronic final state the
angle γ is calculated according to

cos(γ) =
p2

T,h − (Eh − pz,h)2

p2
T,h + (Eh − pz,h)2

, (4.3)

where Eh, pT,h and pz,h denote the total energy, the transverse momentum and the longitu-
dinal momentum of the hadronic final state, respectively. In the QPM processes, the angle
γ corresponds to the scattering angle of the struck quark. The kinematic variables are given
by:

Q2
DA = 4Ee ·

sin(γ) · (1 + cos(θe))

sin(γ) + sin(θe)− sin(γ + θe)
(4.4)

yDA =
Eh

2Ee
· (1 + cos(γ)) (4.5)

xDA =
Ee

Ep
· sin(γ) + sin(θe) + sin(γ + θe)

sin(γ) + sin(θe)− sin(γ + θe)
, (4.6)

where Ee and Ep denote the beam energies and θe the scattering angle of the electron. The
double angle method is completely independent of the energy measurement of the SpaCal
and therefore provides an alternative way of determining the energy of the scattered electron:

E′
e,DA = Ee ·

1− yDA

sin2(θe/2)
. (4.7)
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Beside the two method mentioned here, several other ways to determine the kinematic vari-
ables exist. A comprehensive overview is given for example in [149].

4.1.2.3 The Selection Criteria

The visible range defines the accessible phase space of the analysis and is chosen by selection
criteria on the kinematic variables measured by the electron method. The cross-section
measurement uses only events which fulfil the following conditions on the negative four-
momentum transfer (Q2) and the inelasticity (y):

2 < Q2 < 100 GeV2 (4.8)

0.1 < y < 0.6. (4.9)

These boundaries imply an selection criterion on the energy of the scattered election, E′
e &

11 GeV. Events with y < 0.1 are excluded due to the worse resolution of the electron method
in this region. For the second part of the analysis, the search for new resonances, the amount
of statistic is much more important than the resolution. Therefore, the selection on y is
extended to 0.05 < y < 0.7 for analysis II.

In addition to these kinematic selection criteria defining the phase space for the DIS
analysis, more technical criteria have to be introduced in order to reject non-DIS events. The
main sources for this background are photoproduction events and interactions of the proton
beam with rest-gas in the beam pipe 2 or with the beam pipe itself. In the photoproduction
case the electron emits a quasi real photon and escape the detector unperceived through the
beam pipe. It can occur that a particle from the hadronic final state enters the SpaCal and
is misidentified as the scattered electron. Such fake electron candidates have usually a lower
energy than real ones and are already rejected by demanding y < 0.6 (which corresponds to
E′

e & 11 GeV).

The event vertex The z-component of the event vertex (zvtx) is restricted to −35 < zvtx <
35 cm. This requirement rejects most of the non ep-background since such events do
usually not come from the nominal interaction region of ep events. Furthermore, satel-
lite bunch interactions are rejected by this criterion.

Cluster radius Electrons that pass through the SpaCal produce an electromagnetic shower.
These showers are usually spread over different cells. All cells belonging to the shower
of one particle are combined in so-called clusters. The shape of such clusters is different
for electromagnetic and for hadronic showers and provides therefore a possibility to
distinguish between electrons and hadrons. Therefore, the purity of the selected electron
sample can be improved by a selection criterion on the cluster radius, Rclus, which is
defined as

R2
clus =

1

E2
clus

∑

cells i

(E2
i · r2

i ), (4.10)

where Eclus is the total energy of the cluster, Ei the energy measured in cell i and
ri the radial distance of cell i the the hottest cell. The cluster radius is restricted to
Rclus < 3.5 cm.

2The vacuum in the proton ring is around 1.6 · 10−10 mbar.



62 Experimental Aspects

Energy balance The energy balance is given by

E − pz = (E′
e − p′z,e) +

∑

hfs

(Ei − pz,i), (4.11)

where E′
e and p′z,e denotes the energy and the longitudinal momentum of the scattered

electron, respectively. In the second term the difference of the energy and the longi-
tudinal momentum of all hadronic final state particles are summed up. For the initial
state the energy balance is given by E − pz = (Ee − pz,e) + (Ep − pz,p) and amounts to
55 GeV. For a perfect detector where all particles are registered the energy balance of
the final state would have exactly the same value. For true DIS events the discrepancy
from the nominal value is small even if some particles are leaving the detector through
the beam pipe, since for such particles the energy is of similar size as the longitudinal
momentum. Large deviations from this 55 GeV point to: a) missing particles in the
final state (i.e. the scattered electron in photoproduction events) or b) missing electron
in the initial state (i.e. beam-gas or beam-wall interactions) or c) unspotted technical
problems with the detector readout or d) wrongly measured energies of hadronic final
state particles. The requirement on the energy balance is 35 < E − pz < 70 GeV.

Central region in the SpaCal To provide a reliable energy measurement the electromag-
netic shower has to be completely contained within the sensitive volume of the SpaCal
which is ensured by a requirement on

Rθ = |(zvtx − zSpaCal) · tan(θe)|, (4.12)

where zSpaCal = −160 cm denotes the z position of the SpaCal and θe the polar angle of
the scattered electron. This expression bears the advantage that the beam tilt is taken
into account properly in contrast to a requirement on the cluster position itself. The
chosen selection criterion is Rθ > 9.1 cm and is adapted from [76].

From Monte Carlo studies it is known that the contamination of photoproduction back-
ground after these selection criteria is below 0.1 %, see [76]. All selection criteria introduced
in this section are summarised in table 4.1.

Table 4.1: The DIS selection criteria.

Type Variable Requirement

Kinematical Virtuality 2 < Q2 < 100 GeV2

Inelasticity 0.1(0.05) < y < 0.6(0.7)

Technical Event vertex 35 < zvtx < 35 cm

Cluster radius Rclus < 3.5 cm

Energy balance 35 < E − pz < 70 GeV

SpaCal position Rθ > 9.1 cm

4.1.3 Re-Weighting of the Simulated Distributions

In order to minimize the known insufficiencies in the description of the data by the simulation,
the Monte Carlo sets are re-weighted. This re-weighting comprises the structure functions
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F2(Q
2, x) and FL(Q2, x) as well as the distribution of the z-coordinate of the interaction point

zvtx. The total weight w(Q2, x, zvtz) is applied event-wise to the Monte Carlo distributions.
The fully simulated Monte Carlo sets of CDM and MEPS have been generated with the old

proton PDF set GRV94, LO. The PDF set is used to parameterise the structure functions
of the proton, F2 and FL (see equation 2.17), and hence the cross-section for DIS events.
The structure functions parameterised by the GRV94 PDF set have a different Q2 and x
dependency as those measured at H1. Furthermore, the longitudinal structure function FL

is neglected within the GRV94 PDF set. To reflect the present knowledge of the structure
functions, the Monte Carlo sets are re-weighted with the PDF set extracted from the H1
data (H1-2000 L0 PDF fit [37]) is applied. According to equation 2.14 the weight factor
wPDF (Q2, x) has been introduced:

wPDF (Q2, x) =
FH1

2 (Q2, x)− y2/Y+ · FH1
L (Q2, x)

FGRV 94
2 (Q2, x)

, (4.13)

where FH1
2(L) and FGRV 94

2 denote the structure functions from the H1-2000 and the GRV94

PDF set, respectively, and Y+ := 1 + (1− y)2.
The H1-2000 LO PDF fit has been optimised for a higher Q2 region (Q2 & 10 GeV2) than

used within this work. Hence, this PDF set is not optimal for the description of the low Q2

region. A parameterisation of the structure functions for the low Q2 region (Q2 . 10 GeV2)
has been extracted from the H1 data. This parameterisation is called fractal fit and is given
by [150]:

F frac
2 (Q2, x) = a · e ·

(
Q2

Q2 + e

)c−1

· x1−c

1 + d− b · log(x)
(4.14)

·x−b·log(1+Q2/e) · ((1 + Q2/e)1+d − 1)

F frac
L (Q2, x) = F frac

2 · r

1 + r
. (4.15)

The free parameters have been determined to: a = 0.689, b = 0.0550, c = 1.08, d = −1.19,
e = 0.109, r = 0.579. The fractal fit leads to an additional weight wfrac which is applied to
the Monte Carlo distributions for the low Q2 region:

wfrac(Q
2, x) =





F frac
2

(Q2,x)−y2/Y+·F frac
L

(Q2,x)

F H1
2

(Q2,x)−y2/Y+·F H1
L

(Q2,x)
for Q2 ≤ 10 GeV2

1 for Q2 > 10 GeV2
(4.16)

The structure function F2(Q
2, x) according to the fractal fit is compared with that one from

the H1-2000 LO PDF fit in figure 4.1. The largest deviations from the H1-2000 LO fit is at
low Q2 and low values of x.

A last re-weighting concerns the z position of the interaction vertex. The distribution of
the z-vertex position is not described correctly by the simulation. The weights are extracted
by fitting the deviation of the reconstructed position in data and simulation:

wzvtx(zvtx) = a + b · zvtx + c · z2
vtx + d · e−zvtx , (4.17)

where a = 0.9435, b = 4.562 ·10−3, c = 3.846 ·10−4 and d = 4.758 ·10−15. The weight function
is displayed in figure 4.2.
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Figure 4.1: The structure function F2 as extracted from the H1-2000 L0 PDF fit (solid
line) and from the fractal fit (dashed line) as function of x for three values of Q2 =
{2 GeV2, 5 GeV2, 10 GeV2}. The fall down of the fractal fit indicates the kinematic limit.
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Figure 4.2: The weight function for correction of the z position of the interaction vertex.

The re-weighting of the z position is independent of the PDF weights. Therefore, the
total weight w, applied event-wise to the simulated distributions, is given by:

w(Q2, x, zvtz) = wPDF (Q2, x) · wfrac(Q
2, x) · wzvtx(zvtx). (4.18)

4.1.4 Comparison of the Data Distributions with the Simulation

The distributions of the kinematic variables and of those used for the identification of the
scattered electron reconstructed in the simulation are compared with those measured in the
data to check the quality of the data description. For this comparison the CDM set is used
and the re-weighting introduced in section 4.1.3 is applied.

In figure 4.3 the normalised distribution of the kinematic variable Q2, y and x are shown.
The Monte Carlo simulation is in general able to describe the data points. Some deviations
are observed in the y distribution. These deviations are understood and related to the energy
calibration of the SpaCal which is imperfect, especially for the very low Q2 region. However,
this deviation has almost no effect on the cross-section measurement and is covered by the
systematic uncertainty of the measurement (see section 6.5). In the same figure the kinematic
properties of the scattered electrons are displayed. The polar angle θe peaks in the forward
region and the azimuthal angle φe is spread flatly over the range [−π, π], as expected. In
figure 4.4 the variables Rθ and Rclus (see equations 4.12 and 4.10) are illustrated. While Rθ is
well reproduced by the simulation, the description of the cluster radius is rather poor. Since
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a cluster radius below 3.5 cm is required, this deviation has no effect on the measurement.
Furthermore, the distributions of E − pz and the z component of the interaction vertex are
shown.
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Figure 4.3: The distribution of the kinematic variables of the event, a) virtuality Q2, b)
inelasticity y, c) Bjorken variable log(x) and of the kinematic properties of the scattered
electron, d) energy Ee, e) polar angle θe, f) azimuthal angle φe. All distributions are nor-
malised to one. The solid points indicate the data while the histogram represents the CDM
simulation.
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4.1.4.1 Energy Calibration of the SpaCal

The calibration of the SpaCal is beyond the scope of this work and is provided centrally from
special calibration groups within H1. Nevertheless, the calibration needs to be examined for
the kinematic range under investigation within this work in order to estimate the uncertainty
of the energy measurement of the SpaCal. The measurement of the electron energy with the
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Figure 4.4: The distribution of a) Rθ, b) Rclus, c) E − pz and d) zvtx. All distributions are
normalized to one. The solid points indicate the data while the histogram represents the
CDM simulation.

a)

c)

b)

d)

double angle method (equation 4.7) is used for the cross-check of the energy calibration of
the SpaCal. For the calibration additional selection criteria have to be applied in order to
provide a reliable measurement of the energy with the double angle method. In figure 4.5
the ratio of the energy measured in the SpaCal, E′

e,SpaCal, and that one extracted with the
double angle method, E′

e,DA, is shown as a function of the electron energy, of the cluster

radius RSpaCal
3 and of Q2. For this figure, the ratio of the two energies is fitted in each

bin with a Gaussian function and the mean values together with their errors are filled into
the histogram. If both reconstruction methods were valid for the examined range, this ratio
should be equal to one. Large deviations from one are observed for low electron energies which
does not point to a wrong calibration of the SpaCal but rather indicates the breakdown of
the double angle method. However, for the uncertainty of the energy measurement only the
difference between the data and the simulation 4 is decisive. This double ratio RMC/RData =
(E′

e,DA/E′
e,SpaCal)MC/(E′

e,DA/E′
e,SpaCal)Data is close to one (see figure 4.5), indicating that

the energy is well described by the simulation. The deviation of the double ratio from one
is less than 1 %, with exception of the lowest Q2 bin (2 < Q2 < 2.5 GeV2) where it is
2.5 %. These deviations are considered for the calculation of the systematic uncertainty of
the cross-sections due to the energy measurement.

3The cluster radius is defined by the radial distance of the hottest cell to the beam axis.
4For this comparison the CDM Monte Carlo set is used.
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4.2 Technical Issues

The more technical related topics relevant for the analysis presented within this work are
recapitulated. This comprises the selection of well measured tracks, the introduction of the
vertex fitting routines, the definition of the Breit frame and the discussion of the Armenteros-
Thompson variables.

4.2.1 Track Selection

All presented analyses are based on charged particle tracks measured in the central part of
the tracking detector, as discussed in section 3.2.1. The magnetic field parallel to the z axis
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bends the charged particle tracks in the r − φ plane. The flight path of these particles is
described by a helix trajectory (neglecting multiple scattering and energy loss). The bending
radius R is related to the magnetic field strength B by R ∝ pT

B and thus allows to measure
the transverse momentum pT of the particle. At H1 the tracks are characterised by the five
parameters of the helix trajectory:

x(s) = (dca −
1

κ
) · sin(φ0) +

1

κ
· sin(φ0 + κ · s) (4.19)

y(s) = −(dca −
1

κ
) · cos(φ0)−

1

κ
· cos(φ0 + κ · s) (4.20)

z(s) = z0 + s · cot(θ), (4.21)

where dca denotes the distance of closest approach to the origin of the H1 coordinate system 5,
κ the inverse bending radius, φ0 the azimuthal angle at the point of dca, z0 the z-position at
the point of dca and θ the polar angle, see figure 4.6.

Figure 4.6: The helix trajectory in the r − φ plane (a) and in the z − r plane (b). The
parameters (dca, R = 1

κ , φ0, z0, θ) are described in the text. This figure is taken from [151].

In a first step the trajectory is reconstructed using only the information provided by
the CJC 1 and 2. In a second step this trajectory is extrapolated into the CST region and
CST hits are assigned to this trajectory if they lie within ± 5 σ of the extrapolated track in
the r − φ plane, see figure 4.7. The association of CST hits to the CJC-track improves the
accuracy of all track parameters. In figure 4.8 the distribution of the significance Sx = x

δx
of the track parameters dca, κ and θ is shown. Tracks that are reconstructed in the CJC 1
only have a worse accuracy than those measured additionally in CJC 2, which explains the
structure in the Sκ distribution. Due to the long lifetime of the K0

s and Λ hadrons, it is
not necessary to apply any requirements on the number of linked CST hits because these
secondary vertices are well separated from the primary one. Therefore, tracks with different
resolution properties are combined for the reconstruction of the strange particles resulting
in different resolution of the signal as shown in figure 4.8. For the K0

s reconstructed with a
three-dimensional unconstraint fitting routine (see section 4.2.2) the ratio of the width of the
signal where the daughter particles have both at least one CST hit to those where at least one
daughter track has no CST hits is σCST

σnoCST
= 13.8 MeV

26.8 MeV ≈ 0.5. This value shows the enormous
gain in precision of the track parameters by the additional CST information. However, for
the cross-section measurement the resolution of the signal is secondary.

5In contrast, the d′
ca gives the distance of closest approach to the interaction vertex.
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Figure 4.7: Schematic representation of the CJC-CST linking. The dashed line shows the
reconstructed CJC track with parameterization T . The CST hits are denoted as h1, h2 and
h3 and T’ is the parameterization of the CJC-CST fitted track.
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Bottom: The mass spectrum of the selected K0
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all selected candidates while the blue (dashed) only those where both tracks have at least one
CST hit and the red (dashed-dotted) only those where at least one tracks has no CST hits.

The H1 reconstruction software provides two different kind of tracks which are referred
to as vertex fitted tracks and non-vertex fitted tracks. In the first case the reconstructed track
(from CJC or CJC+CST) is further constraint to the primary vertex improving the accuracy
of the track parameters. Since the K0

s and the Λ hadrons have lifetime in the order of a
few centimeters, the vertex fitted tracks cannot be used to reconstruct these particles. In
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this work the vertex fitted tracks are only used for the reconstruction of the Ξ0(1530) (see
section 8.3) and for the K± Λ combinations (see section 12.4.1).

4.2.1.1 The Selection Criteria

To ensure a good quality of the track, only those non-vertex fitted tracks fulfilling the following
selection criteria are considered for the reconstruction of the strange particles:

• Tracks with a transverse momentum of less than 0.12 GeV are excluded for two reasons:
a) the cross-section for multiple interaction with the detector material increases for
decreasing pT and b) tracks with a lower pT curl up within the CJC 1. Both effects lead
to a worse accuracy of the track parameters.

• To ensure an adequate measurement, the radial length of the track 6 is required to be
larger than 10 cm.

• The radial distance of the first CJC hit associated to the track has to be less than
35 cm. This requirement ensures that the track is measured within CJC 1 and thereby
rejects track fragments produced in the dead material between the CJC 1 and 2 (split
tracks).

• The significance of the distance of closest approach, Sdca = dca

δdca
has to be larger than

four. Since most of the measured tracks are originating from the interaction vertex, this
requirement rejects a significant part of the background in the strange particle spectra.

In figure 4.9 the distribution of the selection variables in data and in simulation are displayed.
For the simulation the CDM generator is used. The CJC1 subdetector has a radius of
24 cm, which causes the dip in the track length distribution. The track selection criteria are
summarised in table 4.2.

The vertex fitted tracks are selected by a set of standard selection criteria (the so-called
Lee-West selection):

• The transverse momentum of the tracks has to be larger than 0.12 GeV.

• The polar angle of the tracks is restricted to 20 < θ < 160 ◦.

• The track length has to exceed 10 cm. For the backward region (150 < θ < 160 ◦) the
requirement is relaxed to 5 cm.

• The radial distance of the first CJC hit associated to the track has to be less than
50 cm.

• The distance of closest approach of the track to the interaction vertex, dca′, has to be
less than 2 cm.

The transverse momentum distribution of the vertex fitted tracks is shown in figure 4.10 for
the data and for the simulated sample. The slope in the simulated case is slightly steeper
than in data. The track selection criteria are summarised in table 4.2.

6The radial length of a track is given by the radial distance of its innermost and outermost hit.
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of entries of the simulated sample has been scaled to those of the data.
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Figure 4.10: The distribution of the transverse momentum of the vertex fitted tracks. The
black points represent the data, the blue histogram the simulation. The number of entries of
the simulated sample has been scaled to those of the data.

4.2.2 Vertex Fitting Routines

The strange hadrons K0
s , Λ and Ξ− have all lifetimes (c τ) in the order of a few centimeters and

therefore decay at secondary vertices which are usually well separated from the interaction
point. For the reconstruction of these decay vertices, different vertex fitting routines have
been used. All fitting routines take two non-vertex fitted tracks as input and calculate the
best hypothesis for their common vertex, the secondary vertex. The programs used within
this work already exist [152], but some of them had to be modified and adapted to the new
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object-oriented software environment of H1. These newly imported routines are tested by
reconstructing photon conversion events.

2DC The two-dimensional pointing constraint vertex fitting routine, 2DC, uses the infor-
mation of the tracks in the r − φ plane to find their common intersection point, the
secondary vertex. An additional constraint is implemented by requiring that the recon-
structed mother particle, which is defined by the sum of the four-momenta of the fitted
tracks, is pointing back to the interaction vertex. Therefore, this routine can only be
used to reconstruct particles originating at the interaction vertex and is therefore not
suited for the reconstruction of Λ baryons coming form a Ξ− decay (cτ(Ξ−) = 4.9 cm).
A detailed description of this routine is given in [151].

3DU The three-dimensional unconstraint vertex fitting routine, 3DU , uses the full three
dimensional information of the tracks. Hence, this fitting routine improves also the
polar angle resolution resulting in a better mass resolution of the reconstructed strange
hadron with respect to the 2DC fitting routine by approximately 20 %, see figure 4.11.
However, for the cross-section measurement of the K0

s and Λ this routine could not
be used because it relies on a good description of the z-resolution of the tracks by
the simulation. This resolution has never been tuned for the HERA I data and the
z-resolution for the simulated tracks is not reliable. The systematic uncertainties on
the cross-section due to the bad description of the z-resolution would roughly be 10 %.

The 3DU routine has been used to reconstruct the Λ baryons coming from the Ξ− →
Λ π− decay for the analysis presented in part II. In that analysis only relative efficiencies
are used where the effect of the non-described z-resolution cancels to a large part.

VVF The V V F fitting routine is based on the technique of the Kalman filter and is described
in [153]. The advantage of this routine is that it can handle neutral ”tracks”. In this
work the V V F routine is used to reconstruct the decay Ξ− → Λ π−.

All fitting routines provide as output value the χ2 of the fit which is related to the fit-
probability P (χ2, n) by:

P (χ2, n) =
1√

2nΓ(n
2 )

∫ ∞

χ
e−

t
2 · t 1

2
(n−1)dt, (4.22)

Table 4.2: The track selection criteria.

non-vertex fitted tracks vertex fitted tracks

Minimal transverse momentum 0.12 GeV 0.12 GeV

Minimal track length 10 cm 10 cm (for 20 < θ ≤ 150 ◦)

5 cm (for 150 < θ < 160 ◦)

Polar angle — 20 < θ < 160 ◦

Maximal radial distance of first hit 35 cm 50 cm

Minimal Significance of dca 4 —

Maximal d′ca — 2 cm
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Figure 4.11: The K0
s mass spectrum reconstructed with the 2DC and the 3DU fitting routine.

The black (solid) points show the reconstructed spectrum when the 2DC fitting routine is
used and the blue (open) points when the 3DU one is used. The distributions are normalised
to one.

where n denotes the number of degree of freedom (n = 1 for 2DC and 3DU fits with 2
tracks). The fit-probability is distributed flatly for well measured tracks that belong to the
same secondary vertex. A rising edge towards zero indicates combination of tracks that do
not belong to the same secondary vertex. The vertex fit-probability of the 2DC fitting routine
is shown exemplary in figure 4.12. The distribution behaves as expected. For the simulated
sample the rise towards zero is less distinct because for this sample a K0

s preselection is
applied and therefore the fraction of tracks coming from a true secondary vertex to those
not coming from a secondary vertex is higher than in data. The fit-probability for the VVF
routine is discussed in section 8.2.
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Figure 4.12: The vertex fit-probability of the 2DC fit. The distributions are normalised to
one. The black points represents the data and the blue histogram the simulation.

4.2.2.1 Photon Conversion Events

The 3DU fitting routine has been tested by reconstructing photon conversion events (γ →
e− e+). Such events take mainly place in dense matter. Therefore, photon conversions re-
flect the structure of the detector. In figure 4.13 the x- and y-position of the reconstructed
conversion vertex is displayed for the HERA I and HERA II detector configuration. Clearly
visible are the two layers of the CST (circular shape for HERA I, elliptical for HERA II).
The structures inside the first layer of the CST represent the beam pipe. The structure
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observed in the HERA I figure around an azimuthal angle of 45 ◦ is caused by a supply pipe
for the cooling system. For the HERA II data period, more restricting selection criteria are
applied 7. In addition to the selection applied for the HERA I case, a significance of the dca

of the tracks of larger than three and a significance of the decay length of larger than four
is required. These additional selection criteria mainly suppress combinatorial background
caused by poorly measured tracks originating from the interaction region. Therefore, in the
HERA II case the central region is sparsely populated.

 [cm]vtxx
-10 -5 0 5 10

 [
cm

]
vt

x
y

-10

-5

0

5

10

 [cm]vtxx
-10 -5 0 5 10

 [
cm

]
vt

x
y

-10

-5

0

5

10

Figure 4.13: The vertex distribution of reconstructed photon conversion events for HERA I
and HERA II. For the two data periods different selection criteria are applied (see text).

4.2.3 Breit Frame

The production of K0
s and Λ hadrons is studied in the laboratory and in the Breit frame.

Frames of references where the influence of the proton boost is eliminated are better suited
for the examination of the hadronic final state than the laboratory frame. Such frames are the
hadronic center-of-mass frame and the Breit frame [154]. In this analysis the production of

7This is necessary since the final alignment and calibration constants were not yet available.
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strange hadrons is transformed into the Breit frame, defined by ~pγ +2x ·~pp = 0, where ~pγ = ~q
is the momentum of the photon emitted by the electron and ~pp and x are the momentum of
the incoming proton and the Bjorken scaling variable, respectively. The scattering process
in the Breit frame is illustrated in figure 4.14. For QPM processes x · ~pp corresponds to the
momentum of the struck quark. The z axis in the Breit frame is defined to coincide with the
proton axis, the proton moving in the positive z direction.

No energy is transferred to the quark in the Breit frame and it behaves as if it had
bounced off a brick wall. The quark that participates in the scattering process has a four-
momentum of (for the QPM process) Pi = (Q

2 , 0, 0, Q
2 ) before and Pf = (Q

2 , 0, 0,−Q
2 ) after

the interaction with the photon. Particles from the proton remnant are almost collinear to
the incoming proton direction and therefore are populating the so-called target hemisphere
defined by pBreit

z > 0. On the other hand, in the QPM the struck quark populates only
the current hemisphere given by pBreit

z < 0. Higher order processes generate transverse mo-
mentum in the final state and may lead to particles from the hard subprocess propagating
into the target hemisphere [155, 156]. This hemisphere separation is also useful in the case
of baryon production, where the question of baryon number transfer arises. In the current
hemisphere the mechanism of particle production should in principle resemble that of col-
lisions without an incident proton i.e. e+e−. The analogy with e+e− collisions is extended
further by introducing the fragmentation variable xp = |~p|

Q/2 , where ~p is the momentum of the
particle in the Breit frame. In the current hemisphere the maximal available momentum is
equal to Q

2 and hence 0 < xcurrent
p < 1. This quantity corresponds to xp = p/pbeam in e+e−

collider experiments. Strange quarks produced directly in the hard interaction are expected
to predominantly populate the current hemisphere, which is less sensitive to non-perturbative
strangeness contributions, see section 2.2.1.

p
f

p i

q

proton remnant
z

targetcurrent

Figure 4.14: A schematic representation of the Breit frame. The variables pi and pf denote
the incoming and outgoing quark and q the exchanged gauge boson.

4.2.4 The Armenteros-Podolski-Thompson Variable

The kinematic of a two body decay, M → D1 D2, can be described by the variables prel
T and

α =
prel

L (D1)− prel
L (D2)

prel
L (D1) + prel

L (D2)
, (4.23)

where prel
T and prel

L denote the transverse and the longitudinal components of the daughter’s
momenta with respect to the flight direction of the mother particle [157, 158], see figure 4.15.
The conservation of the momentum implies prel

T (D1) = prel
T (D2). The two body decay is
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characterised by an ellipse in the α − prel
T plane. The shape of this ellipse depends only on

the mass of the daughter and mother particles. From four-vector conservation, the zeniths of
the ellipse are calculated to [22]:

prel,max
T =

√(
m(M)2 + m(D2)2 −m(D1)2

2m(M)

)2

−m(D2)2 (4.24)

α(prel,max
T ) =

√
prel,max

T (D1)2 + m(D1)2 −
√

prel,max
T (D2)2 + m(D2)2

√
prel,max

T (D1)2 + m(D1)2 +
√

prel,max
T (D2)2 + m(D2)2

, (4.25)

where m(M), m(D1,2) denote the mass of the mother and the daughter particles, respectively,

and prel,max
T (D1,2) the maximal relative transverse momentum of the daughter particles. The
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Figure 4.15: In the left part a schematic illustration of the two body decay M → D1 D2 is

shown. The right picture shows the expected ellipses in the α − prel
T plane for the decay of

the K0
s and Λ hadrons into charged particles.

values of the zeniths of the ellipses for the decays of interest within this work are given in
table 4.3. The predicted shape of the ellipses for these decays are shown in figure 4.15. Due
to a finite resolution the measured distributions are smeared out. However, the separation of
K0

s → π+ π− and Λ→ p π− remains, see figure 5.8.

Table 4.3: The values of the zeniths of the ellipses of the Armenteros-Podolski variables prel
T

and α for the decay of the K0
s and the Λ into charged particles.

Decay prel,max
T [GeV] α(prel,max

T )

K0
s → π+ π− 0.206 0

Λ→ p π− 0.104 0.69

Λ→ p π+ 0.104 −0.69
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Chapter 5

Reconstruction of Strange Particles

The identification of the strange hadrons K0
s and Λ is presented 1. The hadrons are recon-

structed by their decay into charged particles according to 2:

K0
s → π+ π− (5.1)

Λ → p π−. (5.2)

Both, the K0
s and Λ particles have decay length (c · τ) in the order of a few centimeters

leading to well separated secondary decay-vertices. In a first part the reconstruction of the
strange hadron candidates by identifying these vertices is discussed. In a next step, selection
criteria are introduced to suppress combinatorial background. In the last part the extraction
of the signal is presented.

5.1 Reconstruction of K0
s and Λ Particles

The strange hadrons are reconstructed in the kinematical visible phase space given by

0.5 < pT (V 0) < 3.5 GeV |η(V 0)| < 1.3, (5.3)

ensuring that the particles are well within the acceptance of the central tracking detector.
The pseudorapidity η is defined by η = −ln(tan( θ

2)), where θ is the polar angle. In a first step
common vertices of the daughter tracks are identified. By choosing only non-vertex fitted
tracks satisfying the track selection criteria introduced in section 4.2.1 it is ensured that
only well measured tracks in the central region of the detector are considered. All possible
combinations of oppositely charged tracks are fitted to their common vertex in the (x,y)-plane
using the 2DC fitting routine (see section 4.2.2). Thereby the direction of flight of the V 0

particle is constrained to the primary event vertex. If the fit converges, the invariant mass
M1,2 of the two tracks (denotes as 1 and 2) is calculated according to:

M1,2 =
√

(E1 + E2)2 − (~p1 + ~p2)2, (5.4)

1In the following these two particles are labeled V 0.
2Unless explicitly mentioned, the charge conjugate states are hereafter always implicitly included.
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where E1/2 is the energy of the particle track 1 and 2, respectively. For the calculation of the
energy a mass hypothesis m1/2 for the particles 1 and 2 is needed:

E1/2 =
√

m2
1/2 + ~p 2

1/2. (5.5)

For K0
s candidate reconstruction, both tracks are assumed to be pions, while for the Λ

reconstruction the track with the higher momentum is assigned the proton mass and the
other particle track is assumed to be the pion. The masses used within this work are m(π±)
= (139.570018 ± 0.00035)MeV and m(p) = (938.27203 ± 0.00008)MeV [26]. The mass
assignment in the Λ case is feasible if the momentum of the Λ is above a certain threshold
which is calculated to:

p(Λ) & 300 MeV. (5.6)

The detailed calculation of this threshold is provided in appendix B. For the strange hadrons
considered in this work, a minimal transverse momentum of 500 MeV is required and therefore
the condition given in equation 5.6 is always fulfilled.

5.1.1 Selection Criteria

The mass spectra of the K0
s and Λ candidates obtained in this way are dominated by combi-

natorial background and further selection criteria have to be applied in order to enhance the
signal to noise ratio. The combinatorial background is mostly induced by tracks originating
at the primary vertex. These combinations are suppressed by introducing a set of selection
criteria for the V 0 candidates:

Decay Length The radial decay length L is given by the distance in the r−φ plane between
the primary and the secondary vertex and provides a good quantity to reject combi-
nations compatible with the primary event vertex. For both, K0

s and Λ candidates,
it is demanded that L > 0.5 cm. Badly measured tracks originating from the primary
vertex can lead to a secondary vertex that is separated by more than 0.5 cm from the
primary one. Such combinations are rejected by a requirement on the significance SL

of the decay length which is given by SL = L
δL , where δL denotes the error of the decay

length: SL > 4. The distribution of the decay length and its significance is shown in
figure 5.1 for data and simulation. The distributions of the data events are reproduced
by the CDM simulation. The variation of the selection criteria imply that the small
discrepancies observed in the distributions are not affecting the measurement of the
cross-sections.

Fit Probability The probability P (χ2, n) of the vertex fit (see equation 4.22) is used to
reject combinations of tracks that do not belong to the same vertex. The requirement
is P (χ2, n) > 1 %. The fit probability is displayed in figure 4.12 for data and simulation.

Sign of d′ca The distance of closest approach d′ca of the tracks to the primary vertex is a
signed number. For negative charged tracks the sign of the d′ca is positive if the primary
vertex is included in the circle described by the track in the r − φ plane and negative
otherwise. For positive charged tracks the assignment of the sign is conversely, i.e. the
sign is negative if the primary vertex is included in the circle described by the track.
Tracks belonging to the same V 0 particle have opposite signs and therefore the product
of the dca’s is required to be negative: d′ca(track1) · d′ca(track2) < 0.
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This set of selection criteria is in the following referred to as ”V 0 selection criteria”.
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Figure 5.1: The distribution of the decay length and its significance as measured in data
(black dots) and in the simulated sample (blue histogram). The distributions are scaled to
one.

The mass spectra of the K0
s and Λ candidates after these selection criteria are displayed

in figure 5.2. The K0
s and Λ peaks are clearly visible around the nominal mass of 0.497 MeV

and 1.116 MeV, respectively. The small enhancement near the threshold is caused by photon
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Figure 5.2: The reconstructed mass spectra of the K0
s (left) and Λ (right) candidates after

the V 0 selection criteria.

conversion events, γ → e+ e−. There is no need for special selection criteria to reject these
conversion events because they are well separated in mass from the K0

s and Λ signal region.
However, studies performed in [76] have claimed that the photon conversion might have an
impact on the K0

s and Λ measurements. In figure 5.3 the mass spectrum of all V 0 candidates
is shown, where both particle tracks are assumed to be electrons. As can be seen from the
different decompositions in the simulated case, the first peak around a mass of 20 MeV is
caused by photons while the other two structures around 280 MeV and 400 MeV represent
the Λ and K0

s particles, respectively. As already mentioned, the photon conversion events
have almost no overlap with the V 0 distributions. The same behaviour is illustrated in
figure 5.4. The x-axis shows the mass of the selected V 0 candidates under the pion-pion
or pion-proton hypothesis while the y-axis represents the mass under the electron-electron
hypothesis. Clearly visible are three clusters: The photon conversion events which are located
near the threshold, the K0

s events around the nominal mass of 0.497 MeV (upper two figures)
and the Λ events around 1.116 MeV (lower two figures). The quasi-elliptical structures in all
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Figure 5.3: The mass spectrum of all selected V 0 candidates where for both particle tracks
the electron hypothesis is used. The left figure represents the data and the right one the
simulated sample. For the simulated sample the events are splited for the three different
contributions of the photon, the K0

s and the Λ decays.

figures are caused by Λ (K0
s ) events reconstructed under the wrong particle hypothesis. The

Figure 5.4: The two-dimensional representation of the selected V 0 candidates. Shown is
the electron-electron hypothesis versus the pion-pion hypothesis (top row) and versus the
pion-proton hypothesis (lower row).

figures 5.3 and 5.4 indicate that the reconstructed K0
s and Λ particles do partly overlap. The

separation of these two particles is discussed in the next section.
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5.1.2 Rejection of Λ (K0
s ) Contamination

In figure 5.5 the (π π) mass hypothesis is shown versus the (π p) hypothesis for all selected
V 0 candidates for data and for the simulated events. For the simulated case, the events are
partitioned for photon conversions, K0

s and Λ decays. Clearly visible are two bands around a
(π π) mass of 0.5 GeV and around a mass of 1.12 GeV from the decays K0

s → π π and Λ→ p π,
respectively. These two bands do partly overlap and consequently there the Λ mass spectrum
exhibits a contamination from K0

s decays and vice versa. This contamination is removed by
a selection criteria on the invariant π π (π p) mass for the selected Λ (K0

s ) candidates. The
selection criteria applied are:

|M(π π)−MK0
s
| > 10 MeV for Λ candidates, (5.7)

|M(p π)−MΛ| > 6 MeV for K0
s candidates, (5.8)

where MK0
s

and MΛ are the nominal K0
s and Λ mass, respectively. The effect of these addi-

Figure 5.5: The two-dimensional representation of the selected V 0 candidates. Shown is the
pion-pion hypothesis versus the pion-proton hypothesis for data (left) and for the simulated
sample (right). For the simulated case, the events are partitioned for photon conversions
(green), K0

s (blue)and Λ (red) decays.

tional requirements are displayed in figure 5.6, which shows on the left column the invariant
mass of the K0

s and Λ candidates after this rejection and on the right column the rejected
K0

s and Λ candidates. As expected a small fraction (. 2 %) of the K0
s (Λ) signal is rejected

by this selection. However, the rejected events have a bad signal to noise ratio justifying the
applied selection criteria.

Another possibility to reject the contamination of Λ (K0
s ) decays is provided by the

Armenteros-Thompson variables introduced in section 4.2.4. Within this analysis these vari-
ables are not used to reject any events but only to cross-check the selection given by equation
5.8. In figure 5.7 the relative transverse momentum of the negative charged daughter par-
ticle, prel

T , for all selected V 0 candidates is displayed versus the variable α (see equation
4.23) for data and for the simulated sample. For visibility only a randomly chosen subsam-

ple is used. Clearly visible are three semi-ellipses with the zeniths (α(prel,max
T ), prel,max

T ) =
{(0, 0.21 GeV), (± 0.7, 0.1 GeV)}, corresponding to the decays K0

s → π+ π−, Λ → p π− and
Λ→ p π+ (see table 4.3). The effect of the rejection of the Λ (K0

s ) particles given by equation
5.8 is illustrated in figure 5.8. The Λ rejection for the K0

s candidates results in cutting away
two small semi-ellipses, while the K0

s rejection for the Λ candidates overrules a significant
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Figure 5.6: The figure shows in the left column the mass spectra of the K0
s (top) and Λ

(bottom) candidates after the rejection given by equation 5.8 while the right column shows
the rejected part of the mass spectra. For all figures the V 0 selection criteria are applied.

Figure 5.7: The Armenteros-Thompson figure for all selected V 0 candidates in data (left)
and in the simulated sample (right). For the simulated sample the events are partitioned for
photon conversions (green), K0

s (blue) and Λ (red) decays. For explanation see text.

part of the large semi-ellipse (upper part of the figure). Especially for the Λ candidates a
part of the K0

s contamination remains. This contamination could be removed completely by
strengthen the mass requirement. However, a significant fraction of the Λ signal would be lost
and the cross-section measurement is not affected by the remaining contamination since this



5.1 Reconstruction of K0
s and Λ Particles 85

is taken into account also for the simulated sample. Nevertheless, the different resolution of
the signals in data and simulation imply a small systematic uncertainty on the cross-section
which is estimated to be . 2 % · 0.1 ≈ 0.2 % 3. This uncertainty is small compared to other
sources (see section 6.5) and is not considered further. The lower part of figure 5.8 shows the
same distribution but only for those candidates being in the K0

s and Λ signal region (± 2 σ),
respectively. For the Λ case the events are split into Λ (without charge conjugation) and Λ
candidates.

Figure 5.8: The Armenteros-Thompson figure for all selected V 0 candidates in data with
removal of the Λ (K0

s ) contamination (top) and for the K0
s (Λ) signal region (bottom). For

the Λ case the events are partitioned for the Λ→ p π− (blue) and Λ→ p π+ (red) decay.

For all following studies, the rejection of the Λ (K0
s ) contamination is applied.

3The factor of 0.1 gives the difference in the number of entries within ± 2 σ of a Gaussian function compared
to the entries within 0.75 · (± 2 σ). The factor of 0.75 rises because the width of the signal is underestimated
in the simulation by 25%
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5.2 Signal Extraction

The number of signal entries is obtained by fitting an overall function F to the invariant
mass spectra. This function is composed of a superposition of two Gaussian function G1,2

accounting for the signal and a function BK0
s ,Λ describing the background. The function B

has to be chosen separately for the K0
s and Λ since the background shape for these two cases

is different. Due to different resolution of the reconstructed K0
s (Λ) particles (see section

4.2.1 and 5.2.3), the signals cannot be described by a single Gaussian function. The chosen
parameterisation of the function F is given by:

F (M) = α ·G1(Stot, µ, σ1) + (1− α) ·G2(Stot, µ, σ2) + B(M), (5.9)

BK0
s
(M) = P1 + P2 ·M, (5.10)

BΛ(M) = P1 · (M −MΛ)P2 · e(1+P3·M+P4·M2). (5.11)

Here, M denotes the π π and the p π invariant mass, respectively and MΛ the nominal mass
of the Λ baryon. The normalisation (Stot), the central value (µ) and the widths (σ1,2) of the
Gaussian functions G1,2 as well as the parameters Pi are left free in the fit. The parameter
α (0 < α < 1) represents the relative normalisation of the two signal Gaussians. The mass
spectra together with the fit of the function F to these spectra is shown in figure 5.9 for the
K0

s candidates and in figure 5.10 for the Λ candidates. Note that the whole reconstruction
procedure is not optimised for best resolution but for stability of the signal which is essential
for the cross-section determination.
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Figure 5.9: The invariant mass spectrum of all selected K0
s candidates. The solid line shows

the result of a fit to the data using the function F as defined in equation 5.11 while the dashed
line indicates the background function only.

K0
s

case: All relevant parameters of the fit are summarised in table 5.1. The fit yields
a total of approximately 213’000 reconstructed K0

s mesons (χ2/n = 126/73) and a mass
consistent with the world average of (497.65 ± 0.02)MeV [26]. The measured widths (σ1,2)
of the Gaussian functions are around 6 MeV and 21 MeV, respectively and the signal is
distributed nearly uniformly between the two Gaussians. To quantify the resolution of the
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Figure 5.10: The invariant mass spectrum of all selected Λ candidates including charge

conjugation (top) and excluding charge conjugation (bottom left) as well as of all Λ candidates
(bottom right). The solid line shows the result of a fit to the data using the function F as
defined in equation 5.11 while the dashed line indicates the background function only.

signal, the mean width σ is introduced:

σ = α · σ1 + (1− α) · σ2. (5.12)

The fit to the K0
s mass spectrum reconstructed from the simulated sample (CDM) is shown in

figure 5.11 and also summarised in table 5.1. The resolution of the signal in the simulated case
is roughly 25 % better than in data. This effect is well known and can be traced back to an
overestimated track resolution in the simulation. Concerning the cross-section measurement,
the only place where the different widths of the signals in data and simulation could have
an influence is the rejection of the Λ(K0

s ) contamination. As shown in section 5.1.2 the
different width leads to an uncertainty below 0.2 %. Therefore the different resolution is not
investigated further.

Λ case: The properties of the fit are summarised in table 5.1. The fit yield a total of
approximately 42’000 reconstructed Λ and Λ baryons (χ2/n = 108/106). The signal comprises
22’000 Λ (charge conjugation excluded) and 20’000 Λ baryons. The difference in the number
of reconstructed Λ and Λ particles does not point to a Λ−Λ asymmetry (see figures 6.34, 6.35)
but to a different reconstruction efficiency which can be explained by the nearly five times
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higher absorption probability for anti-protons than for protons in the detector material for
the relevant kinematic range [26]. The reconstructed Λ mass is in excellent agreement with
the world average of (1’115.683 ± 0.006)MeV [26]. The fit to the individual Λ and Λ spectra
yields a mass that is consistent with the value of the combined fit. The measured widths
(σ1,2) of the Gaussian functions are 2 MeV and 6 MeV. The signal is again distributed nearly
uniformly between the two Gaussian functions. The fit to the Λ mass spectrum reconstructed
from the simulated sample (CDM) is shown in figure 5.11 and also summarised in table 5.1.
Again the simulation overestimates the resolution by ∼ 25 %.

5.2.1 L4 Weights

For the extraction of the signal presented in section 5.2 the L4 weights (see section 3.2.4)
have been applied event wise. The number of strange hadrons can also be extracted from
the unweighted mass spectra as illustrated in this section. The chosen strategy for the
cross-section measurement is to extract the number of signal entries from the unweighted
mass spectra and multiply these numbers by the mean L4 weight of the distributions. For
the K0

s case the L4 weight is independent of the mass of the candidates and the mean
value is therefore calculated for all hypothesis with 0.42 < M(π π) < 0.58GeV. For the
Λ case the L4 weight distribution has a weak dependency on the mass of the candidates
and therefore the mean value < L4 > is calculated for hypothesis in the signal region only
(1.109 < M(p π) < 1.123 GeV). The L4 weight distribution is displayed in figure 5.12. In
total, 90.5 % (92.1 %) of the reconstructed K0

s (Λ) candidates have passed the L4 farm (i.e.
weight equal to one). The mean L4 weight is:

< L4(K0
s ) >= 1.587± 0.005 and < L4(Λ) >= 1.503± 0.014. (5.13)

The fit to the unweighted mass spectra is displayed in figure 5.13. This fit yields a number of
134’115 ± 621 reconstructed K0

s mesons and of 28’365 ± 307 Λ baryons. The other properties
of the fit like the mean value and the width of the signals are compatible with those extracted

Table 5.1: The result of the fit to the K0
s and Λ mass spectra in data and simulation. Here,

N denotes the number of reconstructed signal entries, M the reconstructed mass, σ1,2 the
width of the signal, α the relative contribution of the two Gaussian functions and S/N the
signal to noise ratio within ± 2σ of the fitted mass.

K0
s Λ + Λ

Data CDM Data CDM

N [k] 212.834 ± 1.866 1’364.3 ± 1.5 41.988 ± 0.881 284.4 ± 0.7

M [MeV] 496.89 ± 0.07 498.259 ± 0.007 1’115.79 ± 0.05 1’115.930 ± 0.006

σ1 [MeV] 6.17 ± 0.13 4.91 ± 0.01 2.08 ± 0.11 1.800 ± 0.009

σ2 [MeV] 21.0 ± 0.4 19.00 ± 0.07 6.3 ± 0.4 5.46 ± 0.06

σ [MeV] 14.3 ± 0.3 10.44 ± 0.04 4.3 ± 0.3 3.21 ± 0.03

α [%] 45.5 ± 1.1 60.72 ± 0.11 48 ± 4 61.6 ± 0.4

S/N 6 16 2 6
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Figure 5.11: The invariant mass spectrum of all selected V 0 candidates reconstructed from

the simulated (CDM) sample. Top left: K0
s candidates, top right: Λ + Λ candidates, bottom

left: Λ candidates and bottom right: Λ candidates. The solid line shows the result of a fit to
the data using the function F as defined in equation 5.11 while the dashed line indicates the
background function only.

from the weighted distributions. The total number of strange hadrons corrected for the
efficiency of the level four filter farm is therefore:

N(K0
s ) = N(K0

s )noL4 · < L4(K0
s ) > = 212′840± 1′192 (5.14)

N(Λ) = N(Λ)noL4 · < L4(Λ) > = 42′633± 609, (5.15)

where N(K0
s )noL4 and N(Λ)noL4 denotes the number of reconstructed K0

s and Λ particles
without the L4 weights applied. These numbers are in good agreement with those extracted
from the weighted mass spectra. Therefore, the extraction of the signal can either be done
from the weighted or unweighted distributions. For the K0

s case the weighted distributions
are chosen while for the Λ case the unweighted distributions are used. The reason for this
procedure is that the differential spectra for the Λ candidates have sometimes only a small
statistic and in these cases the L4 weights distort the mass spectra and the fit overestimates
the signal 4. Since the statistical uncertainty on the number of strange hadrons depends only
on what is really measured, this quantity is always calculated from the unweighted mass
spectra.

According to the level four strategy (see section 3.2.4), the events in different phase space
regions have different weights. In figure 5.14 the mean L4 weight for the K0

s candidates

4In these cases there are bins in the background region where all entries have a weight equal to one. These
bins have a smaller uncertainty than the neighboring bins and pull the background curve towards lower values.
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Figure 5.12: The distribution of the L4 weight for the selected K0
s candidates (top right), Λ

candidates including (top right) and excluding (bottom left) charge conjugation as well as
for the Λ candidates (bottom right).
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Figure 5.13: The invariant mass spectrum of all selected K0
s (left) and Λ (right) candidates

without L4 weights. The solid line shows the result of a fit to the data using the function F
as defined in equation 5.11 while the dashed line indicates the background function only.

is shown as a function of Q2 and pT . The mean L4 weight drops from 2.24 at the lowest
Q2 values to 1.06 at highest ones and from 1.86 for low-pT to 1.11 for high-pT candidates.
Therefore, the level four filter farm behaves as expected and the L4 weights are taken into
account properly.
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Figure 5.14: The dependency of the L4 weights on Q2 and pT for the K0
s candidates.

5.2.2 Stability of the Signal Extraction

The stability of the signal extraction is proven particularly with regard to the cross-section
calculation. The cross-section has the proportionality (see section 6.1)

σ ∝ N rec
Data(V

0)

N rec
MC(V 0)

, (5.16)

where N rec
Data(V

0) and N rec
MC(V 0) denote the number of reconstructed V 0 particles in data and

simulation, respectively. Therefore, this ratio has to be stable under variation of the signal
extraction procedure. The effect on the cross-section is stated as relative change with respect
to the standard procedure as summarised in table 5.1:

∆ σvariation,i =
|σstandard − σvariation,i|

σstandard
, (5.17)

where σvariation,i is the cross-section under the variation i. The results are summarised in
table 5.2.

Weights: The variation of the signal due to fitting the unweighted mass spectra (see sec-
tion 5.2.1) is leading to a change of the cross-section compatible with the statistical
uncertainty of ∆σ(K0

s )(stat) = 0.56 % and ∆σ(Λ)(stat) = 1.43 %.

Background: The number of strange hadrons can also be extracted by counting all entries
of the mass histogram within a certain range and subtracting the background function
integrated over the same range. The range is chosen to be ± 6σ. This variation is
mainly sensitive to the description of the tails of the signal by the two Gaussian func-
tions. Again the change in the cross-sections are of the same order as the statistical
uncertainty.

Fit range: The mass range of the fit is extended for the K0
s candidates from 0.42 < M(π π) <

0.58 GeV to 0.38 < M(π π) < 0.62 GeV and for the Λ case reduced from 1.085 <
M(p π) < 1.2 GeV to 1.085 < M(p π) < 1.16GeV. The mass spectra for data together
with the fitted function for the changed mass ranges are shown in figure 5.15.



92 Reconstruction of Strange Particles

) [GeV]-π +πM(
0.4 0.45 0.5 0.55 0.6

E
n

tr
ie

s 
p

er
 2

M
eV

0

5000

10000

15000

) [GeV]+π p, -πM(p 
1.1 1.12 1.14 1.16

E
n

tr
ie

s 
p

er
 M

eV

2000

4000

6000

Figure 5.15: The points represent the K0
s and Λ mass spectra measured in data while the

solid line indicates the function fitted to the changed mass range. The dashed line indicate
the background function only.

Variation 4: For the Λ case the background function BΛ has been varied. The exponen-
tial function in equation 5.11 has been exchanged by a Polynomial of degree two.
This function is not able to fit the mass spectra up to high masses of the candi-
dates. Therefore, the change in the cross-section has been calculated for the mass
range 1.085 < M(p π) < 1.16 GeV

Table 5.2: The result of the variation of the signal extracting procedure. For explanation see
text.

Variation ∆ σ(K0
s ) [%] ∆ σ(Λ) [%]

Weights 2.8 · 10−3 1.5

Background 0.63 1.35

Fit range 2.42 2.90

Background function — 2.31

5.2.3 Resolution of the K0
s and Λ Signals

In figure 5.16 the dependency of the mean width of the K0
s and Λ signal on the transverse

momentum and on the pseudorapidity is displayed. The resolution decreases with increasing
transverse momentum of the particle. The explanation is due to kinematic effects: For V 0’s
with low momenta the daughter particles have also a low transverse momenta. Such particle
tracks have a larger curvature leading to a more accurate measurement of the transverse
momentum. For the Λ, the resolution decreases below a transverse momentum of 800 MeV
due to an increase of multiple scattering which dominates at low pT . The distribution of the
momentum of the daughter tracks is illustrated in figure 5.17 for the data and the simulated
events. The pions from Λ decays peak at lower values than pions from K0

s decays. Therefore,
the decreasing resolution at low pT cannot be observed for the K0

s case. This effect is
intensified by the fact that the cross-section for multiple interactions is larger for proton
tracks than for pion tracks. Furthermore the energy loss is larger for protons than for pions
(with the same pT ).
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The dependency of the resolution on the pseudorapidity is different for the K0
s and Λ

signal which can again be explained by the different decay kinematics. The resolution of the
K0

s signal drops in the central part of the detector, since in this region the track length is
shorter and therefore the tracks deposit less charge in the detector than tracks passing the
detector more diagonally. This effect is not visible for the Λ case because the spread of the
pion tracks from Λ decays is larger than in the K0

s case and therefore these tracks tend to
leak more often into the forward or backward region of the CJC for Λ’s with η ∼ 0 than for
K0

s ’s. Furthermore the accuracy of the resolution is worse for the Λ signal than for the K0
s

making it harder to see this effect.
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Figure 5.16: The dependency of the mass resolution of the K0
s (top) and Λ (bottom) signal

on the transverse momentum pT (left) and pseudorapidity η (right) for data.
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Chapter 6

Measurement of the K0
s and Λ

Production Cross-Sections

In this section the measurement of the cross-sections for K0
s and Λ production in DIS events

is presented. In a first part the procedure of extracting the cross-sections from the measured
K0

s and Λ signals is illustrated, including the correction for the detector effects, the trigger
efficiency of the signals and the correction to non-radiative level. After studying the different
systematic sources, the inclusive and differential K0

s and Λ production cross-sections and
their ratios R(Λ/K0

s ) are presented. For the differential cross-sections the variables Q2, x, y,
W , pT (V 0), η(V 0) as well as the transverse momentum pBreit

T and the momentum fraction
xBreit

p in the Breit frame are studied. The cross-sections are compared to leading-order Monte
Carlo predictions obtained from the CDM and MEPS generator and constraints on the Lund
parameter space are derived from the measured data.

6.1 Definition of the Cross-Section

The cross-section σvis is measured in the visible range defined by:

2 < Q2 < 100 GeV2 0.5 < pT (V 0) < 3.5 GeV

0.1 < y < 0.6 −1.3 < η(V 0) < 1.3 (6.1)

and is calculated for the sum N of the observed number of V 0 particles and their antiparticles
according to the formula

σvis(ep→ e′V 0X) =
N

L · ǫ ·BR · (1 + δQED)
, (6.2)

where L denotes the integrated luminosity, BR the branching ratios of the reconstructed
decay channels (taken from [26]), ǫ the total efficiency and δQED the correction to Born level.
The data are corrected for detector acceptance and efficiency effects using Monte Carlo event
samples generated with CDM. All generated events are passed through the full GEANT [121]
based simulation of the H1 apparatus and are reconstructed and analysed using the same
programs as for the data. The total efficiency ǫ is given by ǫ = ǫrec · ǫtrig, where ǫrec is
the reconstruction efficiency including the acceptance and ǫtrig is the trigger efficiency. The
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trigger efficiency is extracted from the data using the monitor trigger technique introduced
in section 4.1.2.1. The number of hadrons N is taken from fitting the mass distributions. For
the differential cross-sections the fit is performed in each of the kinematical bins for any of
the variables under investigation. The correction to Born level allows the comparison of the
measured cross-sections with non-radiative Monte Carlo predictions.

6.2 Data Correction

Not all K0
s mesons and Λ baryons that are produced in the visible range can be measured

in the final state. The measured data are therefore corrected for detector effects to obtain
the number of produced particles. The non-measurability of such particles have plenty of
reasons. For example, not all DIS events are entering in the analysis due to the selection
criteria introduced in section 4.1.2 and the finite acceptance of the SpaCal. Other reasons
are the finite geometrical expansion of the tracking detectors implying that not all tracks
are measured, the track reconstruction itself which is not 100 % efficient or the track quality
requirements. Furthermore the suppression of background events in the V 0 mass spectra
rejects alway a part of the signal. Another reason for the correction are migration effects
due to the finite resolution of the measured quantities. This might lead to the selection of
events that are actually not within the visible range or the rejection of events that are in the
visible range. Further inefficiencies are caused by the trigger selection (see section 6.2.2). The
radiative corrections δQED are calculated using the program HERACLES [129] (see section
6.2.3).

6.2.1 Acceptance and Reconstruction Efficiency

All inefficiencies beside those caused by the triggering of the data and the radiative corrections
are calculated in one single step using the simulated event samples. Thereby, the number of
reconstructed particles passing all selection criteria is compared to those really generated in
the visible range using the simulated event samples CDM and MEPS. The correction for all
detector effects is given by:

ǫrec =
NMC

rec

NMC
gen

, (6.3)

where NMC
rec(gen) is the number of reconstructed (generated) V 0 particles in the visible phase

space calculated using the reconstructed (generated) values for all variables. In the following
this efficiency is referred to as reconstruction efficiency. For the determination of NMC

rec

exactly the same selection criteria have been applied as for the analysis of the data events,
with exception that no trigger requirement is applied. The reconstruction efficiency for the
inclusive measurement are summarised in table 6.1 and amounts to 33.3 % and 19.5 % for the
K0

s and Λ reconstruction, respectively. The acceptance, defined as the fraction of events with
a K0

s (Λ) in the visible range where the daughter particles are in the central region of the
detector, amounts to roughly 80 % for the K0

s case and 70 % for the Λ case. This difference
can be explained by the different kinematics of the two decays. The acceptance correction
is by definition included in the numbers quoted for the reconstruction efficiencies. For the
determination of the differential cross-sections the reconstruction efficiency is calculated bin
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wise for each variable under investigation and is defined in a similar way to equation 6.3:

ǫrec,i(X) =
NMC

rec,i(X)

NMC
gen,i(X)

. (6.4)

Here, ǫrec,i(X) denotes the reconstruction efficiency for V 0 particles lying in the i-th bin
of the variable X. Accordingly, NMC

rec,i(X) and NMC
gen,i(X) gives the number of reconstructed

and generated V 0 particles in the i-th bin of the reconstructed (generated) variable. The
bin size of all variables is chosen in such a way that the number of reconstructed particles
is distributed equally among the bins and that the migration effects are small, see section
6.3. The bin sizes of the different variables are listed in appendix A. The distributions of
the reconstruction efficiency are displayed in figure 6.1 for the kinematic variables pT (V 0)
and η(V 0), in figure 6.2 for the event variables Q2, x, y and W and in figure 6.3 for the
variables pBreit

T and xBreit
p in the Breit frame. All figures show the reconstruction efficiencies

extracted from the CDM sample as black, solid lines as well as those from the MEPS sample
as blue, dashed lines. The difference in the efficiencies from these two models is small and is
taken into account in the determination of the systematic uncertainties of the cross-section
measurement, see section 6.5.
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Figure 6.1: The reconstruction efficiencies ǫrec for K0
s mesons (left column) and Λ baryons

(right column) as a function of the kinematic variables pT (V 0) and η(V 0). Shown are the
efficiencies extracted from the CDM sample (black, solid lines) and from the MEPS sample
(blue, dashed lines).
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Figure 6.2: The reconstruction efficiencies ǫrec for K0
s mesons (left column) and Λ baryons

(right column) as a function of the event variables Q2, x, y and W . Shown are the efficiencies
extracted from the CDM sample (black, solid lines) and from the MEPS sample (blue, dashed
lines).
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Figure 6.3: The reconstruction efficiencies ǫrec for K0
s mesons (left column) and Λ baryons

(right column) in the Breit frame as a function of the kinematic variables pBreit
T and xBreit

p

in the target and current hemisphere. Shown are the efficiencies extracted from the CDM
sample (black, solid lines) and from the MEPS sample (blue, dashed lines).
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6.2.2 Trigger Efficiency

The trigger efficiency is extracted from the data distributions according to the technique
introduced in section 4.1.2.1. The monitor triggers S04 and S71 are used for the determination
of ǫtrig while the monitor triggers S0 and S67 are used for cross-checks only. The trigger
efficiency for the inclusive sample amounts to 81.84 % and 83.66 % for the K0

s and the Λ
case, respectively. The higher efficiency for the triggering of the Λ baryons with respect
to the K0

s mesons can be traced back to a higher efficiency of the trigger elements DCRφ.
The probability that the proton from the Λ decay fires this element is larger than for the
pions from the K0

s decays because the proton takes the larger fraction of pT (V 0). The
distributions of the trigger efficiency of S61, as well as the contributions from the different
trigger elements, is displayed for all variables in the figure 6.4 to 6.6. The SpaCal trigger
element is nearly 100 % efficient for the selected events, while the DCRφ and the z-vertex
elements are roughly 90 % efficient. The dependency of the DCRφ efficiency on pT (V 0) shows
the anticipated behaviour: For high pT candidates it reaches nearly 100 % and the rise with
increasing pT (V 0) is steeper for Λ baryons than for K0

s mesons which can again be explained
by the different decay kinematics.
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Figure 6.4: The trigger efficiencies ǫtrig for K0
s mesons (left column) and Λ baryons (right

column) as a function of the kinematic variables pT (V 0) and η(V 0). Shown are the total
efficiencies for the two monitor sets (S04, S71), labeled ”S61” and (S0, S67), labeled ”S61-
Ref” and the contributions from the different trigger elements.
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Figure 6.5: The trigger efficiencies ǫtrig for K0
s mesons (left column) and Λ baryons (right

column) as a function of the event variables Q2, x, y and W . Shown are the total efficiencies
for the two monitor sets (S04, S71), labeled ”S61” and (S0, S67), labeled ”S61-Ref” and the
contributions from the different trigger elements.
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Figure 6.6: The trigger efficiencies ǫtrig for K0
s mesons (left column) and Λ baryons (right

column) in the Breit frame as a function of the kinematic variables pBreit
T and xBreit

p in the
target and current hemisphere. Shown are the total efficiencies for the two monitor sets (S04,
S71), labeled ”S61” and (S0, S67), labeled ”S61-Ref” and the contributions from the different
trigger elements.
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6.2.3 Correction to Born Level

For events with initial or final state radiation, the reconstructed energy and momentum of the
scattered electron are possibly shifted. This leads for example to events being reconstructed
in the wrong bin. The cross-sections are corrected for these effects by introducing the factor:

1 + δQED =
Ngen(V 0)rad

Ngen(V 0)non−rad
· L

non−rad

Lrad
, (6.5)

transforming the measured cross-sections to non-radiative level. Here, Ngen(V 0)rad(non−rad)

denotes the number of generated V 0 particles from a simulated sample where radiative correc-
tions are included (excluded) and Lrad(non−rad) the luminosity of the simulated samples. The
radiative correction factors are determined from the CDM and from the MEPS samples. For
the inclusive measurements the correction amounts to 6.6 % and 4.1 % for the K0

s and Λ case,
respectively (see also table 6.1). For the differential cross-sections this factor is calculated for
each bin. The correction factors δQED are displayed in figure 6.7 to 6.9 for all variables under
investigation. Shown are the predictions from the CDM and the MEPS samples.
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Figure 6.7: The radiative correction factors δQED for K0
s mesons (left column) and Λ baryons

(right column) as a function of the kinematic variables pT (V 0) and η(V 0).
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Figure 6.8: The radiative correction factors δQED for K0
s mesons (left column) and Λ baryons

(right column) as a function of the event variables Q2, x, y and W .
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Figure 6.9: The radiative correction factors δQED for K0
s mesons (left column) and Λ baryons

(right column) in the Breit frame as a function of the kinematic variables pBreit
T and xBreit

p

in the target and current hemisphere.
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Table 6.1: The correction factors used for the measurement of the inclusive K0
s and Λ cross-

sections. Quoted are the reconstruction efficiency (ǫrec) and the radiative corrections (δQED)
obtained from the CDM and the MEPS simulation and the trigger efficiency (ǫtrig) as ex-
tracted from the data.

K0
s Λ

CDM MEPS CDM MEPS

ǫrec [%] 33.3 33.1 19.5 19.1

δQED [%] 6.6 6.2 4.1 3.9

ǫtrig [%] 81.8 83.7

6.3 Migration Effects

For the measurement of the differential cross-sections the continuous spectra of a variable is
divided into discrete bins. Thereby events can be reconstructed in the wrong bin because of
the finite resolution of the detector or for example because of QED effects as described above.
This effect is called migration. The correction of the data which is done bin-wise (see section
6.2) corrects for such effects. Nevertheless, for a reliable measurement these migration effects
have to be kept small, which is ensured by choosing an appropriate bin size: the larger the bin
size, the smaller are the migration effects. On the other hand, the differential cross-sections
should be measured in as many bins as possible. The bin size of all variables is chosen to fit
these two conflicting requirements as well as possible.

The migration effects are kept small if the bin size is significantly larger than the resolution
of the corresponding variable. The resolution of a variable X is defined as the width of the
distribution of:

R =
Xrec −Xgen

Xgen
, (6.6)

where Xrec and Xgen denotes the reconstructed and the generated value of the variable
X, respectively and is obtained by a Gaussian fit to this distribution. The resolution of
all variables are shown in figure 6.10 and 6.11. In the present work the resolution is in
general better than 10 %. Worse resolutions are observed for the low y and therefore also for
the low W region which can be explained by the properties of the electron method for the
reconstruction of the events variables, see section 4.1.2.2. This effected is accounted for by a
larger bin size for the first y-bin. The resolution properties are very similar for the K0

s and Λ
particles with exception of the pT dependency which reflects the different decay kinematics:
at low transverse momenta, the resolution of the Λ baryons is worse because in this region
the pion tends to reach very low pT and therefore experience more multiple interactions than
the pions form the K0

s decays.

The migration effects are controlled by the distribution of the purity (P ) and the stability
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Figure 6.10: The resolution of the event variables Q2, x, y and W as well as of the kinematic
variables pT (V 0) and η(V 0). The black (solid) circles shows the resolution for the K0

s mesons
while the blue (open) circles represents the Λ baryons.

(S), given by:

P =
NMC

rec&&gen(i)

NMC
rec (i)

(6.7)

S =
NMC

rec&&gen(i)

NMC
gen (i)

, (6.8)

where NMC
rec&&gen(i) denotes the number of events that are generated and reconstructed in the

same bin i while NMC
rec(gen)(i) are the number of events that are reconstructed (generated) in

bin i but possibly generated (reconstructed) in another bin j 6= i. The migration into (out
of) the bin is therefore given by P (S). The corresponding distributions are presented in
figure 6.12 to 6.14. The purity and stability is extracted from the CDM sample. In general
they are well above 80 % confirming that migration effects for the chosen bin sizes are small.
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Figure 6.11: The resolution of the Breit frame variables pBreit
T and xBreit

p . The black (solid)
circles shows the resolution for the K0

s mesons while the blue (open) circles represents the Λ
baryons.
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6.4 Control Distributions

The distributions obtained from the simulated sample should describe the data as well as
possible. However, since the corrections are applied bin wise, a perfect agreement is not a
prerequisite for the extraction of the cross-sections.

The distributions of all variables used for the investigation of the K0
s and Λ production

are compared to the predictions obtained from the CDM and the MEPS Monte Carlo samples
(see section 2.5.1). In order to be independent of the background, the number of V 0 particles
is obtained by a fit with the function F defined in equation 5.11 to the mass spectra in each
bin. All distributions within this section show the uncorrected number of V 0 particles, i.e.
no correction of detector effects is applied. For all figures the total number of V 0 particles
is normalised to one in order to compare the shapes. Overlaid to the data points are the
distributions from the CDM and MEPS sample after the reweighting (see section 4.1.3).
For the CDM sample the spectra are also shown for the raw distributions (i.e. without the
re-weighting).

In figure 6.15 the distributions for the kinematic variables pT and η of the V 0 particles
is shown. The transverse momentum is predicted softer than measured in data by both
generators for the K0

s as well as for the Λ particles. The general features of the pseudorapidity
distribution are well reproduced for the K0

s mesons while the rise towards the forward region
in the Λ case is not described by the simulation. This could point to interesting, so far
not understood aspects of the Λ production. In general, the CDM generator describes the
kinematic variables of the V 0 particles better than the MEPS generator. As expected, the
re-weighting of the Monte Carlo sample in (Q2, x, zvtx) has no effect on these spectra.

In figure 6.16 the distributions for the event variables Q2, x, y and W are presented. After
re-weighting, both generators are able to describe the Q2 and x spectra. The discrepancies
in describing the data is below 10 % and is due to the energy calibration of the SpaCal. The
effect of the re-weighting is most distinct at low values of Q2 where it is as large as 50 %.
The y and W spectra are not well reproduced by the simulation which can again be traced
back to deficits in describing the energy spectrum of the scattered electron. It seems that the
re-weighting is even amplifying this effect. However, as shown in section 6.5 the cross-section
measurement is not affected by the poor description of the data in certain regions of the
phase space.

Finally, in figure 6.17 the distributions of the kinematic variables in the Breit frame are
displayed. The spectra are well reproduced by both simulations. Nevertheless, the transverse
momentum is again predicted too softly by both simulations and small deviations are espe-
cially observed in the xp distribution in the current hemisphere for the Λ production while
the K0

s production is described quite well.
Due to the bin-wise correction of the data, the deviations between the simulated and the

measured spectra in certain regions of the phase space have only a very small effect on the
cross-sections measurement, see section 6.5. This effect is accounted for in the systematic
uncertainties.



112 Measurement of the K0
s and Λ Production Cross-Sections

 [GeV]
T

p
1 2 3

]
-1

 [
G

eV
T

)/
d

p
s0

1/
N

 d
N

(K

0

0.5

1

1.5 H1 data
CDM
CDM (raw)
MEPS

 [GeV]
T

p
1 2 3

]
-1

 [
G

eV
T

)/
d

p
Λ

1/
N

 d
N

(

0

0.5

1

η
-1 0 1

η
)/

d
s0

1/
N

 d
N

(K

0

0.2

0.4

η
-1 0 1

η
)/

d
Λ

1/
N

 d
N

(

0

0.2

0.4

Figure 6.15: The reconstructed pT (upper row) and η (lower row) spectra of the K0
s mesons
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Figure 6.16: The reconstructed Q2, x, y and W spectra of the K0
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Figure 6.17: The reconstructed pBreit
T and xBreit

p spectra of the K0
s mesons (left column)

and Λ baryons (right column) in the Breit frame for data and simulation. Shown are the
predictions from the CDM sample before (blue, dashed-dotted lines) and after (red, dashed
lines) the re-weighting and from the MEPS sample with the re-weighting applied (green,
dotted lines).
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6.5 Systematic Uncertainties

The effect on the cross-section measurement of the different systematic sources is stated as
relative change in the cross-section by the corresponding variation Vi:

∆ σ(Vi) =
σ − σ(Vi)

σ
, (6.9)

where σ is the measured cross-section and σ(Vi) the cross-section with the variation of con-
dition Vi. If not stated otherwise, the systematic uncertainties are studied with the CDM
Monte Carlo simulation. A summary of all effects on the inclusive cross-sections is given
in table 6.2. For the differential cross-sections, the systematic uncertainties are taken into
account bin wise and are displayed exemplarily in figure 6.20 as a function of pT (V 0). The
corresponding figures for the other variables are given in appendix C.

The variation of all V 0 and track selection criteria within a reasonable range are studied.
The change in the cross-sections implied by these variations are found to be negligible with
respect to the statistical uncertainty and are not considered further.

6.5.1 Energy Measurement of the Scattered Electron

The energy scale in the SpaCal measurements is known to 1 %, except for the lowest Q2

bin (2 < Q2 < 2.5 GeV2) where the uncertainty on the energy measurement is 2.5 % (see
section 4.1.4.1). The change of the energy scale by + 1 % (− 1 %) changes the inclusive K0

s

cross-section by −3.5 % (+3.3 %) and the Λ cross-section by −3.1 % (+2.8 %). Therefore, the
ratio of the Λ to the K0

s production cross-section, R(Λ/K0
s ), is in first order insensitive to

this variation. This holds also for the differential cross-sections, see figure 6.20.

6.5.2 Measurement of the Polar Angle of the Scattered Electron

The systematic uncertainty in the measurement of the polar angle of the scattered electron
is 1 mrad. The resulting uncertainty on the inclusive K0

s cross-section is ± 1.4 % and on the
Λ cross-section ± 1.5 %. The uncertainty on R(Λ/K0

s ) is therefore negligible.

6.5.3 Branching Ratios

The branching ratios (see equation 6.2) are only known with a finite precision [26]:

BR(K0
s → π+ π−) = (0.6920± 0.0005)% (6.10)

BR(Λ→ p π) = (0.639± 0.005)% (6.11)

The resulting uncertainty on the K0
s and Λ cross-section is therefore 0.07 % and 0.78 %,

respectively. For the differential cross-sections these uncertainties are negligible with respect
to all other errors and are not considered.

6.5.4 Luminosity Measurement

The luminosity measured with the Bethle-Heitler process is known with a precision of 1.5 %
[147]. For the production ratio this uncertainty cancels entirely.
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6.5.5 Signal Extraction

The uncertainty in the signal extraction is discussed in section 5.2.2: For the inclusive cross-
section measurements this amounts to 0.6 % and 1.4 % for the K0

s and Λ case, respectively.
For the differential cross-sections this uncertainty is typically in the order of 2−3 % for the
K0

s reconstruction and 3−4 % for the Λ reconstruction. However, in certain bins where the
determination of the background is more complicated (like the low pT region), it may vary
up to 7 % and therefore become the main source of systematic uncertainties for those bins.
For the ratio R(Λ/K0

s ), these uncertainties are assumed to be independent.

6.5.6 Determination of the Correction Factors

The correction factors comprises the reconstruction efficiency, the trigger efficiency and the
correction for QED effects as described in section 6.2.

For the uncertainty due to the reconstruction efficiency and the QED correction, 50 %
of the difference of ǫrec · (1 + δQED) extracted from the CDM and the MEPS simulation is
taken 1. For the inclusive K0

s and Λ cross-section this amounts to ± 0.35 % and ± 1.16 %,
respectively. For the differential cross-sections this is typically below 2 %, see figure 6.20 and
appendix C. For the ratio R(Λ/K0

s ) these two uncertainties are considered to be independent
and therefore added in quadrature.

The uncertainty due to the trigger efficiency (which is determined from data) is taken
to be the difference in the efficiency predicted by the two different monitor trigger sets (see
section 6.2.2). For the determination of this uncertainty the difference of the two monitor
sets is not taken into account bin-wise but a fit of this deviation in the variables Q2, y, pT

and η with a Gaussian function is applied 2, see figure 6.18. This method ensures that the
(statistical) fluctuations in certain bins are not taken into account and that the statistical
uncertainties of the measurement are not considered twice. The uncertainty related to the
trigger efficiency is given by the mean value (µ) and the width (σ) of the fitted Gaussian
function: µ ± σ. For the K0

s case this amounts to −0.39 % +0.85 % and for the Λ case to
−1.39 % +1.04 %. For the ratio R(Λ/K0

s ) these two uncertainties are treated independently
and therefore added in quadrature 3.

The uncertainty due to charged particle track reconstruction is 2 % per track for the
kinematic range considered. This number is provided centrally (like the luminosity) and is
estimated by looking at tracks that curl up within the CJC. The total uncertainty on the
K0

s and Λ cross-section is therefore 4 % and is applied as a constant factor to the differential
cross-sections. For the ratio R(Λ/K0

s ) the uncertainty caused by the pion track appearing in
both decays is assumed to cancel. The systematic uncertainty on the ratio is therefore taken
to be 2.0 %.

6.5.7 Re-Weighting of the Simulated Distributions

The Monte Carlo distributions are re-weighted (see section 4.1.3) in order to achieve a better
description of the data. The full differences in the cross-sections when using the re-weighted
distributions instead of the bare ones are taken as systematic uncertainties. The re-weighting

1The uncertainty of the reconstruction of the single tracks is here not included and discussed separately.
2Here it is assumed that the trigger efficiencies in these variables are independent.
3This is a conservative approach since some effects of the trigger should cancel in the ratio.
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Figure 6.18: The uncertainty on the K0
s cross-section (left) and on the Λ cross-section (right)

due to different monitor trigger sets. Shown is the relative deviation in the cross-section by
exchanging the monitor trigger set for the variables Q2, y, pT and η. Overlaid on the data
points are the results of a Gaussian fit to the distributions.

affects only the shape of the distributions and not the normalisation and has therefore no
impact on the inclusive cross-sections but only a small one on the differential measurements,
typically below 1 %.

6.5.8 Application of the L4 Weights in the Λ Case

The number Λ signal entries is extracted from the mass spectra where the L4 weights are
not applied but multiplied by the mean L4 weight (see section 5.2.1). For the differential
distributions, the latter one is the mean values of the L4 weights of all Λ candidates in the
corresponding bin. Due to the trigger level four strategy the distribution of the L4 weights
should have a well defined shape 4. But as they are extracted from statistically limited data,
fluctuations can occur. In order to be independent of these fluctuations, the distribution of
the L4 weights is fitted with smooth functions which are subsequently used to correct the
data. The distribution of the L4 weights is shown in figure 6.19 together with the fitted
functions. The distributions in the current hemisphere which have only two bins are not
fitted.

This procedure implies an additional uncertainty on the Λ cross-sections which is taken
to be the full difference of the measured L4 weights and the values extracted from the fit.
They are typically below 2 %.

4They should for example be monotonically decreasing with Q2 and also with pT (Λ).
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the data points (full dots) and the result of the fit (solid lines).
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6.5.9 Summary of the Systematic Uncertainties

A summary of all systematic effects relevant for the inclusive cross-section measurement are
given in table 6.2. For the comparison of the differential cross-sections with theory predictions
the uncertainties are divided into two sets. One contains all uncertainties that depend on
any of the variables under investigation. This comprises the uncertainty due to the energy
and angle measurement of the electron, the signal extraction, the model dependency, the
re-weighting of the simulated distributions and the application of the L4 weights in the
Λ case. This set of uncertainties is referred to as ”correlated”. These uncertainties are
shown exemplarily in figure 6.20 as a function of the transverse momentum of the particles.
The uncertainties being common for all bins comprises the branching ratios, the trigger
efficiency, the luminosity measurement and the track reconstruction. They are referred to as
”uncorrelated” and shown as bands in the result section.

Table 6.2: The different systematic sources, their variation and their effect on the inclusive
cross-sections as well as on the ratio. All numbers are given in %.

Source Variation ∆σ(K0
s ) ∆σ(Λ) R(Λ/K0

s )

E′
e ±1% −3.5 + 3.3 −3.1 + 2.8 −

θe ±1 mrad ±1.4 ±1.5 −

signal extraction Nfit−Ncount

Nfit ±0.6 ±1.4 ±1.5

model 0.5 ∗ ǫCDM
rec −ǫMEPS

rec

ǫCDM
rec

±0.4 ±1.2 ±1.2

trigger efficiency
ǫMTset1
trig −ǫMTset2

trig

ǫMTset1
trig

−0.4 + 0.9 −1.4 + 1.0 −1.6 + 1.1

track reco 2.0 % per track ±4.0 ±4.0 ±2.0

luminosity ±1.5 ±1.5 −

branching ratio < ±0.1 ±0.8 ±0.8

Total systematic uncertainty −5.8 + 5.6 −6.0 + 5.8 −3.3 + 3.1
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Figure 6.20: The effect of the different systematic sources on the differential cross-sections in
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s (red, dotted lines). For further explanation see text.
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6.6 Results of the Inclusive Cross-Section Measurements

The inclusive K0
s and Λ production cross-sections σvis are measured in the experimentally

accessible kinematic region given by 2 < Q2 < 100 GeV2 and 0.1 < y < 0.6, for the ranges
0.5 < pT (V 0) < 3.5 GeV and |η(V 0)| < 1.3. The K0

s cross-section is found to be

σvis(ep→ e′K0
s X) = 21.18± 0.09(stat.)+1.19

−1.23(syst.) nb. (6.12)

The measurement is in good agreement with the expectation of σ = 21.77 nb 5 obtained from
leading order Monte Carlo simulation.

The production of the sum of Λ and Λ baryons is measured in the same kinematical region
and is found to be

σvis(ep→ e′[Λ + Λ]X) = 7.88± 0.10(stat.)+0.45
−0.47(syst.) nb, (6.13)

in agreement with the expectation of σ = 7.94 nb from the CDM generator.
The individual Λ and Λ production rates (here the charge conjugated states are explicitly

excluded) are measured to be

σvis(ep→ e′ΛX) = 3.96± 0.06(stat.)+0.23
−0.24(syst.) nb

σvis(ep→ e′ΛX) = 3.94± 0.07(stat.)+0.23
−0.24(syst.) nb (6.14)

and are therefore found to be consistent with each other within the statistical accuracy. The
measurement is also in agreement with the CDM predictions of σ = 3.97 nb for both of the
individual Λ and Λ cross-sections.

The ratio of the inclusive baryon to meson production is determined to

σvis(ep→ e′[Λ + Λ]X)

σvis(ep→ e′K0
s X)

= 0.372± 0.005(stat.)+0.011
−0.012(syst.), (6.15)

in agreement with the prediction of 0.365 of the CDM model.

All measured cross-sections values are summarised and compared to further theory pre-
dictions in table 6.3.

6.7 Constraints from the Inclusive Measurements on the LUND
Parameters

In this section the reduction of the Lund parameters λs, λqq and λsq (see equations 2.23, 2.24
and 2.25) by the measured data is illustrated. A complete determination of these parameters
is only possible with a global fit to more redundant input data (see for example [72]) and
is beyond the scope of this work. Nevertheless, the data presented within this work can be
used as a main ingredient for such a combined study.

The parameters that affect the K0
s and Λ production are the strangeness suppression

factor λs, the diquark suppression factor λqq and the strange diquark suppression factor λsq.

5If not stated otherwise, theory predictions are obtained by the CDM generator with the ALEPH-tuned
JETSET parameters and with the CTEQ6L PDF set.
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Table 6.3: Summary of the measured inclusive cross-sections together with theory predictions
for different values of the strangeness suppression factor λs. For all theory predictions the
CTEQ6L PDF set has been used.

Data CDM MEPS

λs −−− 0.22 0.286 0.3 0.22 0.286 0.3

σvis(K
0
s ) [nb] 21.18± 0.09+1.19

−1.23 19.00 21.77 22.31 21.05 23.91 25.74

σvis(Λ + Λ) [nb] 7.88± 0.10+0.45
−0.47 6.83 7.94 8.12 6.95 7.96 8.60

σvis(Λ+Λ)
σvis(K0

s )
0.372± 0.005+0.011

−0.012 0.359 0.365 0.364 0.330 0.333 0.334

Table 6.4: Summary of the measured inclusive cross-sections together with theory predictions
for different PDF sets (see text). For all theory predictions the ALEPH-tuned JETSET
parameters have been used (i.e. λs = 0.286).

Data CDM(λs = 0.286) MEPS(λs = 0.286)

PDFset −−− GRV CTEQ H1 GRV CTEQ H1

σvis(K
0
s ) [nb] 21.18± 0.09+1.19

−1.23 21.87 21.77 20.49 22.61 23.91 21.62

σvis(Λ + Λ) [nb] 7.88± 0.10+0.45
−0.47 7.76 7.94 7.53 7.43 7.96 7.29

σvis(Λ+Λ)
σvis(K0

s )
0.372± 0.005+0.011

−0.012 0.355 0.365 0.367 0.329 0.333 0.337

For this study 25 additional Monte Carlo sets have been generated with different values of
λqq and λsq

6:

λqq = {0.05, 0.08, 0.1, 0.12, 0.15}
λsq = {0.2, 0.5, 0.6, 0.7, 0.9}. (6.16)

For all these sets the CDM generator was used with the PDF set CTEQ6L. In addition,
several sets have been generated with CDM and MEPS using different values of λs. In both
cases the other parameters are set to the values obtained by the ALEPH collaboration [72].

The dependency of the predicted K0
s and Λ cross-section on the parameters mentioned

above is shown in figure 6.21 and confronted with the measurement. The main observations
are:

1. The predicted K0
s and Λ cross-sections depend linearly on λs and the slope is approxi-

mately the same for both cases.

2. For the K0
s production the MEPS generator favours a lower λs than the CDM generator.

6Every of the λqq values is combined with each of the λsq values in order to form a Monte Carlo set.
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3. The dependency of the predicted cross-sections on the PDF set is very similar for K0
s

mesons and Λ baryons.

4. The predicted K0
s cross-section falls linearly with λqq while the Λ cross-section rises

linearly with λqq.

5. The predicted K0
s cross-section is independent on the choice of λsq while the Λ cross-

section rises linearly in λsq.
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Figure 6.21: The dependency of the predicted K0
s (upper row) and Λ (lower row) cross-

sections on: the parameter λs for the two models CDM and MEPS with the PDF set CTEQ6L
and H1-2000LO (left column), the parameter λqq (for the CDM model, middle column) and
the parameter λsq (for the CDM model, right column). For all other parameters the ALEPH-
tune has been used. The vertical lines indicate the measured cross-section together with its
total uncertainty (dashed lines).

6.7.1 Constraints implied by the Ratio R(Λ/K0
s )

The points 1 and 3 in above list imply that the ratio of the Λ to the K0
s cross-section is

independent of the strangeness suppression factor λs and also of the PDF set. This is also
confirmed by the values presented in tables 6.3 and 6.4. Therefore this ratio provides data
that can be used to constrain the other two parameters λqq and λsq. The dependency of the
ratio (Λ/K0

s ) on the parameter λqq is enhanced with respect to λsq because of the opposed
slopes in the K0

s and Λ case. All studies presented in the following are carried out for the
CDM generator only. The ratio σvis(ep→ e′ΛX)/σvis(ep→ e′K0

s X) predicted by the CDM
generator is shown in figure 6.22 as a function of λsq for different values of λqq. The measured
value and its uncertainty is indicated by the vertical lines. For a given λqq value, the λsq value
and its uncertainty is determined by the intersection of the predicted curves with the data
band. The resulting relation between λsq and λqq is displayed in figure 6.23 and summarised
in table 6.5.

The point from the ALEPH-tune fits nicely into this distribution, indicating that the Lund
parameters tuned from e+ e− data are also applicable to e p data. The JETSET default value
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Figure 6.22: The ratio R(Λ/K0
s ) as a function of the parameter λsq for different values of λqq.

The measured ratio is indicated by the solid line and the total uncertainty by the dashed
lines.
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Figure 6.23: The points represent the (λqq, λsq) values extracted from a fit of the CDM model
to the data. Overlaid to the points is the result of fit with a Polynomial of degree two. The
value from the ALEPH-tune is indicated by a red star, the JETSET default value by a blue
triangle and the OPAL-tune by a green square.

Table 6.5: The (λqq, λsq) points extracted from a fit of the CDM model to the data.

λqq 0.05 0.08 0.1 0.12 0.15

λsq 3.09+0.15
−0.16 1.68+0.12

−0.13 0.97+0.10
−0.10 0.45+0.07

−0.08 0.00+0.06
−0.07

and the value extracted by the OPAL collaboration are not compatible with the H1 data. A
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polynomial fit to the (λqq − λsq) points yields:

λqq = 0.146− 0.053 · λsq + 0.07 · λ2
sq. (6.17)

These results are independent of the choice of the PDF set and also of the parameter λs.
However, they are only valid for the CDM generator. With the conservative expectation,
0 ≤ λsq ≤ 1 7, the parameter λqq can be constraint by this measurement to:

λqq ∈ [0.101, 0.146]. (6.18)

Earlier experiments (ALEPH, OPAL, L3 and HRS, see section 2.3) imply that a reasonable
range for the parameter λsq is: 0.4 ≤ λsq ≤ 0.93. Using this constraint, the λqq parameter
has to take values within:

λqq ∈ [0.103, 0.126] (6.19)

in order to be compatible with the H1 data.

6.7.2 Constraints implied by the K0
s Cross-Section

The measured K0
s cross-sections can be used to constrain the λs − λqq parameter space. As

the predicted cross-section for the K0
s production depends on the choice of the PDF set the

following study is only valid for one PDF set, herein taken to be CTEQ6L. The predicted K0
s

cross-section for different values of λs and λqq is shown in figure 6.24. To keep the amount
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Figure 6.24: The dependency of σvis(K
0
s ) on the parameter λs for different values of λqq. The

cross-section measured in data is indicated by the solid line and the total uncertainty by the
dashed lines.

of generated Monte Carlo data in a reasonable range, the assumption is made that the two
dependencies on λs and λqq are uncorrelated, i.e. that the slope in λs is the same for all λqq

values. This slope is determined form the points predicted for a given value of λqq = 0.108.
The extraction of the parameters λs and λqq is done in complete analogy the λsq − λqq case.
The results are displayed in figure 6.25 and summarised in table 6.6 8. Again, the point from

7This range is confirmed by all available measurements from other experiments.
8All points in this table have the same uncertainty due to the assumption of equal slopes.
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Figure 6.25: The points represent the (λs, λqq) values extracted from a fit of the CDM model
to the data. Overlaid to the points is the result of fit with a Polynomial of degree one. The
value from the ALEPH-tune is indicated by a red star, the JETSET default value by a blue
triangle and the OPAL-tune by a green square.

the ALEPH-tune fits nicely into this measurement while the JETSET default value as well
as the point from the OPAL-tune are not compatible with the measurement. A fit to the
(λs − λqq) points yields:

λqq = −0.265 + 1.377 · λs. (6.20)

With the result of equation 6.18, the parameter λs can be constrained to:

λs ∈ [0.266, 0.298]. (6.21)

With the more reasonable range for the diquark suppression factor given in equation 6.19,
the parameter λs can be constraint further by this single measurement to:

λs ∈ [0.267, 0.284]. (6.22)

Table 6.6: The (λs, λqq) points extracted from a fit of the CDM model to the data.

λqq 0.05 0.08 0.1 0.108 0.12 0.15

λs 0.229+0.029

−0.030 0.249+0.029

−0.030 0.264+0.029

−0.030 0.272+0.029

−0.030 0.280+0.029

−0.030 0.301+0.029

−0.030
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6.8 Differential Cross-Section Measurements

The differential distributions are investigated in the event variables Q2, x, y and W and in
the kinematic variables pT (V 0), η(V 0), pBreit

T (V 0) and xBreit
p (V 0) in the laboratory as well

as in the Breit frame. To facilitate the interpretation of the results, the contributions of
the different production processes to the strange particle production are investigated. The
results extracted from the H1 data are compared to the predictions of the CDM and the
MEPS models with two values of the strangeness suppression factor λs = {0.22, 0.3} and to
the values published by the ZEUS collaboration. Furthermore, the Λ asymmetry, measured
with the same variables, is presented. Finally the constraints provided by the differential
cross-section on the Lund parameter space are investigated.

6.8.1 Contribution from the Different Production Processes

The contributions of the different processes (see section 2.2.1) to the K0
s and Λ production

are investigated. For the separation of the different subprocesses, the flavour of the quark
participating in the hard interaction is studied (i.e. that one absorbing the photon emitted
by the electron). The relative fraction of the different quarks are listed in table 6.7 for events
where a K0

s or a Λ is produced in the visible range (see equation 6.1). The fractions are given
for the laboratory frame as well as for the target and current regions of the Breit frame.
All presented results are obtained by the CDM model with the ALEPH-tuned JETSET
parameters and the PDF set CTEQ6L.

If an up or a down quark participates in the hard interaction, the strange particle is
produced by the hadronisation process which is roughly the case for 60 % of all K0

s and
65 % of all Λ particles. In the current hemisphere of the Breit frame this fraction is reduced
significantly. The remaining fraction is related directly to the hard subprocess; either to an
strange quark participating in the hard interaction or to an charm quark with an subsequent
decay into a strange quark. The fraction of particles from a bottom quark is negligible.
According to the predictions, 38 % of all K0

s and 31 % of all Λ particles are produced in the

Table 6.7: The relative fraction of the different quarks participating in the hard interaction
where a K0

s (Λ) particle is produced in the visible range. Shown are the values for the
laboratory frame (’Lab’) and for the target and current regions of the Breit frame. The
results are obtained by the CDM model with the ALEPH-tunes JETSET parameters and the
CTEQ6L PDF set. All numbers are given in percentage.

Quark flavour K0
s Λ + Λ

Frame Lab Target Current Lab Target Current

up 48.5 49.7 36.3 54.9 55.4 43.5

down 13.0 13.2 11.7 13.8 13.9 11.2

strange 14.4 14.1 18.0 14.9 14.6 22.4

charm 23.8 22.9 33.2 16.3 16.0 22.4

bottom 0.3 0.2 0.8 0.1 0.1 0.5
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Figure 6.26: The relative fraction of the different quarks participating in the hard interaction
for the events where a K0

s (upper row) or a Λ (lower row) is produced in the visible range.
The fractions are shown as a function of Q2, pT and η.

hard interaction (i.e. s, c or b quarks). In the current region of the Breit frame this fraction
is enhanced to 52 % and 45 %, respectively.

These fractions significantly change in different regions of the phase space. The relative
fraction of the different quarks is presented as a function of Q2, pT and η in figure 6.26. The
fraction of strange particles produced in the hard interaction is clearly enhanced for the high
Q2 region where it reaches values above 50 %. Especially the charm fraction is enriched in this
region of the phase space. Furthermore, events with a K0

s in the visible range have a larger
charm fraction than those with a Λ particle. A similar effect can be observed for the high
pT region. In this region particularly the strange fraction is enhanced allowing to tag events
where a strange quarks participates in the hard interaction. Therefore, the measurement of
strange hadrons with large pT bears the potential of extracting the structure function Fs

9.
This is particularly interesting with regard to strange hadron physics at the LHC. In the
forward region the sensitivity to particles produced in the hard interaction is reduced. The
relative fractions are shown in figure 6.27 as a function of the transverse momentum pBreit

T

in the Breit frame. The influence of the hadronisation process is reduced in the current
hemisphere and the charm fraction is constantly high, otherwise the distributions behave
similarly as those in the laboratory frame. Furthermore, the composition of the different
processes behave in an similar way for all variables shown in figures 6.26 and 6.27.

6.8.2 Differential K0
s and Λ Cross-Sections

The measurement of the differential cross-sections is restricted to the same visible range as
for the inclusive case, see equation 6.1. The differential visible cross-sections are calculated

9The s quark fraction reaches values up to 50 % for pT (V 0) ∼ 10GeV.
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Figure 6.27: The relative fraction of the different quarks participating in the hard interaction
for the events where a K0

s (upper row) or a Λ (lower row) is produced in the visible range.
The fractions are shown as a function of the transverse momentum pBreit

T in the Breit frame.

in analogy to equation 6.2:

dσvis(ep→ e′V 0X)

dY
=

N(∆Y )

L · ǫ(∆Y ) ·BR · (1 + δQED(∆Y )) ·∆Y
, (6.23)

where ∆Y is the bin width of the investigated variable Y and N(∆Y ) is the number of
reconstructed V 0 particles in this bin. The efficiency for the V 0 reconstruction, ǫ(∆Y ), and
the correction to non-radiative level, δQED(∆Y ), are calculated for each bin, see section 6.2.
All cross-section values and their uncertainties are tabulated in appendix A.

6.8.2.1 Distribution of the Event Variables

The differential cross-sections of the K0
s and Λ production in the event variables Q2, x, y and

W are presented in figures 6.28 and 6.29. All following figures show in the upper part the
measured cross-sections together with the predictions of the CDM model with λs = 0.3. The
values shown in the distributions are bin averaged and no bin-center corrections are applied.
In the lower part the predictions of CDM and MEPS models with the two values of λs are
displayed as a ratio to the data distributions. For this ratio only the uncorrelated uncertainties
(see section 6.5.9) are included in the error bars, while the correlated uncertainties are shown
as a yellow band.

The cross-sections decrease rapidly with Q2 and x and smoothly with y and W as expected
from the DIS kinematics. The general features of the distributions are well reproduced by
the simulation. The shape of the distributions is slightly better described by the CDM model
compared to the MEPS model. The theory over data distributions show that CDM favours
a higher strangeness suppression factor around 0.3 for both, the K0

s and Λ production while
the MEPS model favours a λs around 0.22 for the description of the K0

s production and a
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value between 0.22 and 0.3 for the Λ description. These conclusions are in line with the
observations form the inclusive measurements, see table 6.3.

The predictions of the K0
s and Λ cross-sections as a function of Q2 for different PDF

sets are shown in figure 6.30. For these predictions the ALEPH-tune was used (i.e. λs =
0.286). A distinct dependency of the cross-sections on the PDF set is observed. The shape of
the Q2 spectrum is best described by the CTEQ6L set. The GRV set delivers a completely
different shape, while the H1-2000 PDF describes the data quite well for Q2 & 4 GeV2. This
behaviour is understood in terms of the input data used for the different sets. The choice of
the CTEQ6L set is therefore justified and the deficits in the description of the data by the
models are more likely related to a deficit in the models themselves and not in the PDF set.
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Figure 6.28: The differential production cross-sections for K0
s (left column) and Λ (right

column) in the laboratory frame as a function of the photon virtuality squared Q2 (upper
row), and the Bjorken variable x (lower row). The error bars show the statistical (inner) and
total (outer) errors. On the bottom of each figure, the ratios of “Theory/Data” are appended
for different LO Monte Carlo predictions (see text). In these “Theory/Data” ratios, only the
uncorrelated systematic uncertainties are included. The size of the correlated systematic
uncertainties is indicated by the yellow band.
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Figure 6.29: The differential production cross-sections for K0
s (left column) and Λ (right

column) in the laboratory frame as a function of y (upper row) and W (lower row). See also
caption of figure 6.28.
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Figure 6.30: The differential production cross-sections for K0
s (left) and Λ (right) in the

laboratory frame as a function of Q2 for three different PDF sets. See also caption of figure
6.28.
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6.8.2.2 Distribution of the Kinematic Variables

The differential distributions in the kinematic variables of the V 0 are presented and compared
to the CDM and MEPS model predictions for the two values of λs.

The Laboratory Frame of Reference The production cross-sections are shown in figure
6.31 as a function of pT (V 0) and η(V 0). The cross-sections are steeply falling with pT and
flat in η for the K0

s production while for the Λ production a rise in the forward region is
observed. Both models predict softer pT spectra than measured in data for both, K0

s mesons
and Λ baryons. The CDM model describes the shape of the pT distribution better than the
MEPS model. The shape of the distribution is insensitive to the choice of the strangeness
suppression factor λs. The CDM model favours a higher λs values around 0.3 while the MEPS
model prefers a value around 0.22 for the description of the data. This is a general effect and
is observed for all spectra. The CDM model describes the η spectrum quite well for the K0

s

case with λs ≈ 0.3 while the rise in the Λ case is not described by the model. For the MEPS
case, the η spectrum of the K0

s is only well described for η . 0.5 and a lower suppression
factor of λs ≈ 0.22. For the forward region, where the influence of the hadronisation process
is enlarged, a higher suppression factor is needed. Therefore, the MEPS model is not able
to describe the whole η spectrum of the K0

s mesons with one single value of λs. For the Λ
case the MEPS predictions are quite similar to the CDM ones. The shape of the pT and η
distributions do not show any dependency on the choice of the PDF set.

The Breit Frame of Reference The production of strange hadrons is investigated in
the Breit frame of reference by examining the distribution of the transverse momentum,
pBreit

T , and the momentum fraction xp (see section 4.2.3). These variables are studied in
the target and current hemisphere separately. The strange particles produced directly in the
hard interaction are expected to predominately populate the current hemisphere (see section
6.8.1). However, the statistic in the current hemisphere is strongly limited: only ∼ 8 % (∼
4 %) of all K0

s (Λ) are reconstructed in this hemisphere. Therefore, in the current hemisphere
only two bins are used.

The cross-sections are shown in figure 6.32 differentially in pBreit
T for the target and current

hemispheres. In the target hemisphere, the predicted transverse momentum of both particles
is softer than in data. The CDM model provides a better description of the shape of the
transverse momentum distribution than the MEPS model. In the current hemisphere, where
the influence of the hadronisation process is reduced, the predictions of the two models are
very similar and both models provide a reasonable description of the K0

s meson and fail in
describing the Λ baryon. However, due to the limited statistics in the current hemisphere,
the drawing of concrete conclusions is ambiguous.

The cross-sections as a function of xp in the target and current hemispheres are displayed
in figure 6.33. In the target hemisphere the xp spectrum is predicted softer than measured
in data. Again the CDM model provides a slightly better description of the shape than the
MEPS model. In the current hemisphere the predictions of the two models are very similar
(as already observed for the pBreit

T distribution) and they provide a reasonable description of
the K0

s meson and fail in describing the Λ baryon.
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Figure 6.31: The differential production cross-sections for K0
s (left column) and Λ (right

column) in the laboratory frame as a function of the transverse momentum (upper row), and
the pseudorapidity (lower row). See also caption of figure 6.28.
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Figure 6.32: The differential production cross-sections for K0
s (left column) and Λ (right

column) as a function of the transverse momentum in the Breit frame in the target (upper
row) and in the current (lower row) hemisphere. See also caption of figure 6.28.
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Figure 6.33: The differential production cross-sections for K0
s (left column) and Λ (right

column) as a function of xp in the Breit frame in the target (upper row) and in the current
(lower row) hemisphere. See also caption of figure 6.28.
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6.8.2.3 Summary of the Observations on the Differential Cross-Sections

In general, both models provide a reasonable description of the data. The CDM generator
describes the data slightly better than the MEPS one, except for the current hemisphere where
the predictions of both models are very similar 10. The CDM model prefers a higher value
of the strangeness suppression factor λs around 0.3 while the MEPS model favours a value
around 0.22. In conclusion, the CDM model with the ALEPH-tuned JETSET parameters
provides a reasonable description of all data distributions.

6.8.3 The Λ− Λ Asymmetry

Different mechanisms could produce a Λ−Λ asymmetry in the central region of the detector.
On the one hand, the baryon number of the incoming proton could flow over the rapidity gap
between the incident proton and the measured final state [159]. On the other hand a non-
vanishing baryon asymmetry in the proton sea could exist [160] and lead to an observable
asymmetry in the final state. This asymmetry is predicted to be approximately 7 % for
x < 5 · 10−4. As pointed out in [160], the production of Λ relative to Λ at HERA energies
provides an interesting quantity to study the asymmetry.

The asymmetry in the production of Λ with respect to Λ is measured by the variable 11:

AΛ =
σvis(ep→ e′ΛX)− σvis(ep→ e′ΛX)

σvis(ep→ e′ΛX) + σvis(ep→ e′ΛX)
. (6.24)

A significant Λ − Λ asymmetry would indicate a substantial transfer of the baryon number
from the proton beam to the strange particles. The resulting distributions are shown in
figure 6.34 in the laboratory frame and in figure 6.35 in the Breit frame. All distributions
are observed to be compatible with zero within errors. Thus, no evidence of baryon number
transport is visible in the measured data, including the low x region.

10This behaviour in the current region is expected since the hard interaction, which is the dominant pro-
duction process in this hemisphere, is described similarly for both models but only the implementation of the
hadronisation is different.

11Here charge conjugation is explicitly excluded.
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Figure 6.34: The asymmetry AΛ of the differential production cross-sections in the laboratory
frame as a function of the transverse momentum pT , the pseudorapidity η, and of the event
variables Q2, x, y and W . The error bars show the statistical uncertainty.
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6.8.4 Ratio of the Differential K0
s and Λ Cross-Sections

Certain aspects of strangeness production can be studied by looking at the ratio of the
differential Λ and K0

s production cross-sections. A significant fraction of the systematic
uncertainties on the cross-sections cancels and also the theory uncertainties are reduced. The
ratio R(Λ/K0

s ) of the differential Λ and K0
s production cross-sections is given by:

R(Λ/K0
s ) =

dσvis(ep→ e′[Λ + Λ]X)

dσvis(ep→ e′K0
s X)

. (6.25)

This ratio exhibits only a significantly reduced dependency on the choice of the PDF set and
also on the value of the strangeness suppression factor λs as can be seen in figure 6.36. This
ratio provides therefore a sensitive quantity to study the diquark suppression factors λqq and
λsq, which is discussed in section 6.8.5.
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Figure 6.36: Predictions of the ratio R(Λ/K0
s ) for different PDF sets (left) and different λs

values (right). All predictions are obtained with the CDM generator.

The ratio R(Λ/K0
s ) is shown in figure 6.37 as a function of the event variables Q2, x, y

and W together with the predictions by the CDM and MEPS models for two values of λs

(0.22 and 0.3). At high values of Q2 and x the number of Λ baryons decreases with respect to
the K0

s mesons and increases with rising y. The CDM implementation provides a reasonably
good description of the data in all four variables, although systematic deviations are seen for
Q2 & 10 GeV. The MEPS predictions describe neither the shape nor the normalisation of the
distributions. The MEPS model predicts throughout lower values of the ratio R(Λ/K0

s ) than
measured in data.

The dependency of the ratio R on the kinematic variables pT and η in the laboratory
frame is displayed in figure 6.38. The number of produced Λ baryons relative to K0

s mesons
increases rapidly with pT as expected from the different kinematic properties of these two
particles (i.e. their mass). The ratio increases also for the forward region (η & 0.5) due to
the Λ production. In contrast to the individual cross-sections where both models predict a
softer spectrum than in data, the pT distribution of the ratio is reasonably well described by
both models due to cancellation of the insufficient description. The MEPS model describes
the distribution more accurately at low pT while the CDM model gives a better description of
the high pT region. The increase of the ratio in the forward direction cannot be reproduced
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Figure 6.37: The ratio R(Λ/K0
s ) of the differential production cross-sections as a function of

the event variables Q2, x, y and W . The error bars show the statistical (inner) and the total
(outer) errors. The lines show the predictions of the LO Monte Carlo programs. (See also
caption of figure 6.28).
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Figure 6.38: The ratio R(Λ/K0
s ) of the differential production cross-sections as a function of

the kinematic variables pT and η in the laboratory frame. The error bars show the statistical
(inner) and the total (outer) errors. The lines show the predictions of the LO Monte Carlo
programs. (See also caption of figure 6.28).

by any of the models. Nevertheless, the CDM model provides a better description of the η
distribution. The χ2, calculated as a sum over all bins, is a factor of two better for the CDM
model with respect to the MEPS model.

The pBreit
T and xBreit

p spectra in the Breit frame are shown in figure 6.39. In the tar-

get hemisphere the ratio increases for large pBreit
T and xBreit

p values, while in the current
hemisphere the ratio remains almost constant within the uncertainty. The main effects are
reasonably well described by both models. However, it should be noted that in the current
hemisphere of the Breit frame the predictions are less sensitive to the model implementation
(CDM or MEPS) and that the statistic is rather poor.

In conclusion , the CDM model provides a better description of ratio R(Λ/K0
s ) than the

MEPS model. Therefore, the mechanism implemented in the colour dipole radiation model
seems to better describe the baryon to meson ratio than those implemented in the parton
shower.

6.8.5 Extraction of the Diquark Suppression Factors

The differential distributions of the cross-section ratios are used to constrain the diquark
suppression factors λqq and λsq of the Lund string model. The main interest of this investiga-
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Figure 6.39: The ratio R(Λ/K0
s ) of the differential production cross-sections as a function

of the kinematic variables pBreit
T and xBreit

p in the Breit frame. The error bars show the
statistical (inner) and the total (outer) errors. The lines show the predictions of the LO
Monte Carlo programs. (See also caption of figure 6.28).
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tion is to study whether the results obtained from the inclusive measurement are confirmed
by the differential distributions. In the following a slightly different approach than the one
introduced in section 6.7.1 is used: For each variable and for each (λqq,λsq) Monte Carlo set
(see section 6.7) a χ2 value is calculated according to:

χ2(λqq, λsq) =
∑

i

(RData(i)−RMC(λqq,λsq)(i))
2

δ(RData(i))2
, (6.26)

where the sum loops over all bins i of the variable under investigation. Here, RData(i) denotes
measured the value of the ratio R(Λ/K0

s ) in bin i, RMC(λqq ,λsq)(i) as extracted from the
simulated sample with parameters (λqq, λsq) and δ(RData(i)) the total uncertainty of the
measurement. The χ2−distribution obtained from the differential distribution in Q2 is shown
as an example in figure 6.40. A distinguished valley of minima is observed. Therefore, only a
relation between the two parameters can be extracted (as already seen in section 6.7.1) which
is given by the valley of minimal χ2−values. In order to find a parameterisation of this valley,
the χ2−distribution is fitted with a two-dimensional function F (λqq,λsq) parameterised by:

F (λqq, λsq) = a(λsq) + b(λsq) · λqq + c(λsq) · λ2
qq, (6.27)

where a, b and c are Polynomial functions of degree two in the variable λsq. The function
fitted to the χ2−distribution obtained from the differential ratio in Q2 is also shown in figure
6.40. The relation between the two diquark suppression factor is extracted by a minimisation
of the fitted function F for given values of λsq.
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Figure 6.40: Left: The χ2−distribution (see equation 6.26) obtained from the differential
production cross-section ratio in Q2. Right: The result of the fit using the function F as
defined in equation 6.27. For explanation see text.

In order to show the compatibility of this method with the one used for the inclusive cross-
section measurement, the parameterisation of the valley of minimal χ2−values is extracted
with this method from the inclusive cross-section ratio. In this case the χ2 is defined analogue
to equation 6.26 (without the sum). The resulting relation between λqq and λsq extracted
with the method described in this section (”new method”) is shown in figure 6.41 together
with the parameterisation obtained in section 6.7.1 (”old method”). The two results are in
good agreement, implying that the two methods are compatible.
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Figure 6.41: The relation between the parameters λqq and λsq as extracted with the method
introduced in this section (”new method”). Overlaid is the result obtained in section 6.7.1
(”old method”).

In figure 6.42 the (λqq,λsq) values providing the best description of the differential cross-
section ratios in Q2, x, pT and η are shown. All spectra are described by nearly the same
(λqq,λsq) parameterisation. The ALEPH-tuned value provides a good description of all differ-
ential spectra, while the OPAL-tune and the JETSET default value are not able to describe
the data.
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Figure 6.42: The relation between the two diquark suppression factors λqq and λsq as ex-
tracted from the measured differential cross-section ratios in the variables Q2, x, pT and
η.

In conclusion, the studies made within this work indicate that the ALEPH-tune from
e+e− collisions pretty well describes the overall data features also in ep collisions. Therefore
it can be speculated that this tune is also able to describe pp collisions (LHC).

6.8.6 Comparison to the ZEUS Measurement

The ZEUS collaboration has recently measured the production cross-sections of the K0
s

mesons and Λ baryons in a phase space region different to that one used in this analysis.
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Especially the Q2 range is substantially reduced with respect to this work. The cross-sections
as a function of pT and η obtained in this work are compared to those published by the ZEUS
collaboration. The difference in the phase space selections are summarised in table 6.8. All
selection criteria beside the y range are adapted for the comparison. For y this is not possible
due to different detector acceptances and therefore an extrapolation of the results is needed.

Table 6.8: The phase space selection used in this work and in the ZEUS publication.

This work ZEUS range

Q2[GeV2] 2− 100 5− 25

y 0.1− 0.6 0.02− 0.95

pT [GeV] 0.5− 3.5 0.6− 2.5

η −1.3− 1.3 −1.2− 1.2

δQED yes no

In figure 6.43 the generated y spectrum of the V 0 particles is shown for the visible range
of the ZEUS analysis. This spectrum is obtained by the CDM generator with the H1-2000
PDF set and is used for the extrapolation of the cross-sections. The range that needs to be
extrapolated is quite large and includes the steeply falling edge of the spectrum at low values
of y. Thus, a significant (and unknown) contribution to the uncertainty of the extrapolated
cross-sections is expected. The extrapolation factor CF used for the correction of the mea-
sured cross-section is given by the number of K0

s (Λ) particles within 0.1 < y < 0.6 to those
with in 0.02 < y < 0.95:

CFK0
s (Λ) =

NK0
s (Λ)(0.1 < y < 0.6)

NK0
s (Λ)(0.02 < y < 0.95)

. (6.28)

Since the η (and also the pT ) distribution is correlated with the y distribution, the extrap-
olation factor is determined for each bin of interest and displayed in figure 6.44 for the K0

s

and Λ particles. In the forward region the cross-sections needs to be extrapolated by a factor
of almost two.

The extrapolated K0
s and Λ cross-sections and their ratio are shown in figure 6.45 as

a function of pT and η together with the values measured by the ZEUS collaboration. The
lower part of each figure shows the ratio of the two cross-sections. In general the cross-sections
as well as the ratio are in agreement at the 5 % level. Taking the large uncertainty of the
extrapolation into account, the two measurements are in good agreement with each other.

The comparison of the cross-section with the results of the ZEUS collaboration shows
that the two analyses delivers results that are compatible.
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Figure 6.43: The generated y spectrum for the visible range used by ZEUS. The spectrum is
obtained from the CDM simulation with the H1 2000 PDF set. The dashed lines indicated
the measured region.
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Figure 6.45: The extrapolation K0
s (left) and Λ (middel) cross-sections as well as their ratio
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by ZEUS. On the bottom of all figure, the ratios of the two analyses are appended.
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Part II

Search for Exotic Baryonic
Resonances Decaying into Ξ π





Chapter 7

Introduction

Various experiments have reported evidence for narrow signals that can be interpreted as a
candidate for the strange pentaquark state Θ+, see section 2.4. Such states are expected
to occur as a flavor antidecuplet within various theoretical models. Therefore, if the state
mentioned above is indeed a pentaquark, several other states are expected to exist. Among
them, two are expected to decay predominantly into a Ξ baryon and a π meson. In this part
of the thesis the search for such states using the H1 data is presented.

7.1 The Decay Channel

This analysis describes a search for the predicted pentaquark states 1 Ξ−−
5q and Ξ0

5q (see figure

2.16) in the decay channel Ξ− π±. The Ξ−(Ξ
+
) particles are identified by their decay into

Λ π−(Λ π+), see figure 7.1. The decay chain under investigation is:

X0 → Ξ− π+ → (Λ π−)π+ → ((p π−)π−)π+ ≡ p π−
1 π−

2 π+
3 (7.1)

X−− → Ξ− π− → (Λ π−)π− → ((p π−)π−)π− ≡ p π−
1 π−

2 π−
3 (7.2)

In the neutral decay channel (7.1) the standard (three quark) excited baryonic state Ξ(1530)0

is expected to occur.

7.2 Selection of the Data and the DIS Events

The analysis is performed using 101 pb−1 of deep inelastic ep scattering data taken in the
years 1996/97 and 1999/2000 (HERA I). The selection of the data events is performed in
the same way as discussed in section 4.1, including the selection of the DIS events which is
summarised in table 4.1. The only difference with respect to the selection presented in that
section is the different y requirement: 0.05 < y < 0.7. The y range is enlarged because for
the search of new resonances, the amount of statistic is more important than the resolution
which drops for low y values (electron method). For the same reason of enlarged statistics,
events are accepted if they are triggered by any of the subtriggers S0, S1, S2, S3 or S61 which
all demand a significant energy deposition in the SpaCal.

1This includes a search for any other narrow state decaying into Ξ−π±.
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Figure 7.1: The cascade decay of the X−−, see equation (7.2). Here, ”IP” denotes the
interaction point and α the angle between the lines connecting the IP with the Λ and with
the Ξ− decay vertex.



Chapter 8

Reconstruction of the Strange
Particles

The strange baryons Λ and Ξ− are reconstructed and subsequently combined with an ad-
ditional charged track to form the X0,−− candidates (see equation 7.1 and 7.2). The main
difference in the selection strategy compared to the measurement of the cross-sections is that
the selection criteria for the Λ baryons are opened for more statistics and that no pointing
constraint is applied in the vertex fit. The reconstruction of tertiary vertices, which is done
for the first time at H1, is cross-checked by measuring the lifetime of the selected Λ and Ξ−

baryons.

8.1 Reconstruction of the Λ Candidates

For the Λ reconstruction (see also section 5) all possible combinations of oppositely charged
tracks are fitted to a common vertex. For this analysis the vertex fit is performed in three
dimensions using the 3DU routine (see section 4.2.2). Hereby, no constraints on the flight
direction of the reconstructed Λ candidates are applied. This is essential since the Λ particles
from the Ξ− decay originate at a vertex that is well separated from the primary interaction
vertex (cτ0(Ξ

−) = 4.9 cm). For this reconstruction, only well measured, non-vertex fitted
tracks as defined in section 4.2.1 are considered. Again, for the reason of high statistics the
selection requirement on the significance of the dca is weakened to Sdca > 2. The Λ candidates
are retained if the following selection criteria apply:

• Fit probability P (χ2, n) > 1 %,

• pT (Λ) > 0.3GeV,

• Radial decay length (in the r − φ plane) larger than 0.75 cm.

The contamination from K0
s → π− π+ decays are rejected by a mass exclusion cut (see section

5.1.2): |M(π+, π−) −MK0
s
| > 10 MeV. The resulting mass spectra are shown in figure 8.1

for all combinations and for the p π− (p π+) combinations separately. Again, more Λ than Λ
particles are reconstructed due to the lower reconstruction efficiency for the Λ case (higher
absorption probability of anti-protons than of protons in the detector material, see also section
5.2). Here, the Λ candidates are an intermediate step in the reconstruction chain allowing



156 Reconstruction of the Strange Particles

to apply a weak selection (in contrast to the analysis presented in part I). The background
in the Λ mass spectrum is reduced by applying selection criteria on the Ξ− candidates 1 (see
section 8.2.3).
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Figure 8.1: The invariant mass spectrum used for the reconstruction of the Ξ− baryons of all
selected Λ candidates including charge conjugation (top) and excluding charge conjugation
(bottom left) as well as of all Λ candidates (bottom right). The solid lines indicate the result
of a fit to the data using the function F as defined in equation 5.11.

8.2 Reconstruction of the Ξ− Candidates

The Ξ− candidates are formed by fitting the Λ candidates taken within ± 8 MeV of the
nominal Λ mass (corresponding to roughly two sigma) with negatively charged tracks assumed
to be pions to a secondary vertex using the VVF routine (see section 4.2.2). The vertex fit
probability P (χ2, n) and the χ2 distributions are shown in figure 8.2. The fit probability is
distributed flat for P (χ2, n) & 0.1, indicating that the fit of the neutral particle candidates
with a charged track works appropriately.

The mass spectrum of all Ξ− candidates is displayed in Figure 8.3. The structure around
a mass of 1.28 GeV is caused by Ξ− candidates where the same track is used twice, as implied

1The goal of this analysis is not to extract a clean Λ signal but to maximize the number of reconstructed
Ξ− baryons.
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Figure 8.2: The vertex fit probability P (χ2, n) and the χ2 distributions for the fit of the Λ
candidates with charged tracks.
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Figure 8.3: The mass spectrum of all Λ π− combinations. A signal from the Ξ− baryon is
expected around a mass of 1.32 GeV.

by the two-dimensional distribution of ∆i,j(pT ) := pT (tracki)− pT (trackj) versus ∆i,j(φ) :=
φ(tracki)−φ(trackj) (see figure 8.4). A clear clustering around (∆i,j(pT ), ∆i,j(φ)) ≈ (0,0) for
like signed tracks contributing to the mass region around 1.28 GeV is observed, whereas for
unlike signed tracks or track combinations contributing to the signal region no clustering is
observed. These (wrong) Ξ− candidates are rejected by demanding the ∆i,j(pT ) and ∆i,j(φ)
of the like signed track in the Ξ− decay (i.e. track 1 and 2 in figure 7.1) to lie outside the
ellipse with the half-axes 0.025 GeV and 0.23 rad (0.025 GeV and 0.15 rad) centered around

0 GeV, 0.12 rad (0 GeV, -0.12 rad) for the Ξ− (Ξ
+
) candidates, as indicated in figure 8.4. In

figure 8.5 the influence of this elliptical rejection is shown. No signal is lost while the structure
around the mass of 1.28 GeV disappears. In the following this requirement against double
counting of tracks is applied.

Only Ξ− candidates fulfiling the following criteria are retained for the further analysis:

• Vertex fit probability: P (χ2, n) > 0.1 %,

• Distance of closest approach to the interaction point: |d′ca(Ξ−)| < 2.5 mm

• Angle α (see figure 7.1): α < 0.6 rad

These selection criteria are chosen to optimize the Ξ(1530)0 signal. All variables used for the
Ξ− selection are displayed in figure 8.6 together with the corresponding effect on the invariant
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Figure 8.4: The two-dimensional distribution of ∆i,j(pT ) and ∆i,j(φ). Top: for the Ξ−

candidates (charge conjugation excluded) and bottom: for the Ξ
+

candidates. The left
column shows the distribution for like signed tracks and the right one for unlike signed
tracks. In red the contribution from candidates with a mass M ∈ [1.275 GeV, 1.295 GeV] is
shown and in blue from those in the signal region M ∈ [1.312 GeV, 1.332 GeV]. The ellipses
indicate the exclusion region to prevent from double counting.
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Figure 8.5: The influence of the selection criteria against double counting of tracks on the
invariant mass spectrum. Left: the mass spectrum after the rejection and right: the rejected
candidates. The solid line in the left figure indicates the result of a fit using the background
function defined by equation 8.1 and a Gaussian for the Ξ− signal.

mass spectrum of the Ξ− candidates. The mass spectrum of all selected Ξ− candidates is
shown in figure 8.7. For these mass spectra only right charge combinations, i.e. Λπ− and
Λ̄ π+ are taken into account. The number of Ξ− baryons is obtained by fitting an overall
function F to the invariant mass spectrum. This function is composed by a Gaussian function
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Figure 8.6: Left row: the three variables used for the Ξ− selection, middle row: the influence
of the corresponding selection on the mass spectra and right row: the mass spectra of the
rejected candidates. The solid line shows the result of a fit using a superposition of a Gaussian
for the Ξ− signal and the background function defined by equation 8.1.

accounting for the signal and the background function B(M) parameterised by:

B(M) = P1 · (M −MΛ −Mπ)P2 · (1 + P3 · M + P4 · M2). (8.1)

Here, M denotes the invariant Λπ mass and MΛ (Mπ) the nominal Λ (π) mass. This fit yield

a total of 1874± 64 reconstructed Ξ− and Ξ
+

baryons (χ2/n = 62/34). The signal comprises

1018± 48 Ξ− (charge conjugation excluded) and 835± 44 Ξ
+

baryons. The ratio of Ξ− to

Ξ
+

is described correctly by the simulation (see section 8.2.1) within the uncertainty. The
reconstructed mass of (1’321.6± 0.2)MeV is in good agreement with the world average of

(1’321.31 ± 0.13)MeV [26]. The fit to the individual Ξ− and Ξ
+

mass spectra yields a mass
that is consistent with the value of the combined fit. The measured width of the Gaussian
function is found to be (4.3± 0.2) MeV. As expected, the wrong charge combinations Λπ+

and Λ̄ π− do not show any signal (see figure 8.8).
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Figure 8.7: The reconstructed mass spectra of the selected Ξ− candidates. Top left: Only
Λ π− combinations, top right: Only Λ̄ π+ combinations and bottom: Λπ− and Λ̄π+ combi-
nations. The solid line shows the result of a fit using a superposition of a Gaussian and the
background function defined by equation 8.1.
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Figure 8.8: The mass spectrum of the wrong charge combinations Λ π+ and Λ̄ π−. The solid
line shows the result of a fit using the background function defined by equation 8.1. The
arrow indicates the nominal Ξ− mass.
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8.2.1 Simulation of the Ξ− Baryons

In order to study resolution and efficiency effects a signal Monte Carlo for the Ξ− baryon is
generated. The simulation uses the PYTHIA generator (see section 2.5.1) in the subprocess
10 (f + f′ →f + f′). The reconstructed width of the Ξ− baryons is 3.7 MeV. Therefore, the
width observed in data is described by the simulation at the 10 % level. The reconstructed
mass of 1321.5 MeV is PDG compliant. The ratio of Ξ− to Ξ

+
is 1.08.

The simulated sample is used to estimate the efficiency of each single selection criteria
which is given by the number of reconstructed Ξ− baryons in DIS events before the corre-
sponding requirement is applied to the number afterwards 2. The results are listed in table
8.1 (”dc” denotes the cut against double counting). They are all well above 90 %.

Table 8.1: The efficiency of each single Ξ− selection criterion.

selection criteria efficiency [%]

dc 98.6
angle 97.6
dca 93.1
prob 98.1

A comparison of the pT and η spectrum of the Ξ− candidates between data and simulation
is shown in figure 8.9. In order to be independent of the background the mass spectra are
fitted in each bin. The simulated sample describes the data reasonably well. In the same
figure the width of the Ξ− signal as a function of pT and η is shown.

8.2.2 Lifetime of the Ξ− Baryons

The lifetime of the selected Ξ− candidates is estimated as a cross check that true Ξ− baryons
are selected. For the lifetime determination the Ξ− candidates shown in fig 8.7 are divided
into bins of c · τ and a fit to each of the resulting mass spectra is applied, see figure 8.10. The
lifetime is determined by the equation

l = γ · β · c · τ =
p

m · c · c · τ, (8.2)

where l denotes the 3-dimensional decay length and p = |~p| the momentum of the Ξ− can-
didates. The Ξ− candidates are supposed to be produced at the primary vertex. Therefore
the separation of the reconstructed Ξ− decay vertex and the interaction point is used for the
calculation of the decay length l.

The generated and reconstructed lifetime of the Ξ− particles as obtained by Monte Carlo
simulation (see section 8.2.1) is shown in figure 8.11. The lifetime extracted from the simu-
lated sample is in agreement with the world average, indicating that the extraction procedure
works appropriate. From these two spectra the efficiency as a function of c τ is extracted ac-
cording to

ǫ(c τ) =
N rec

allcuts(c τ)

Ngen
Q2,y

(c τ)
, (8.3)

2All other Ξ− selection criteria are not applied.
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Figure 8.9: Top: The pT and η spectra of the reconstructed Ξ− in simulation (red, open
circles) and in data (blue, full circles). Bottom: The width of the signal as a function of
pT (Ξ−) and η(Ξ−).

where N rec
allcuts denotes the number of reconstructed Ξ− applying all selection criteria intro-

duced in previous sections and Ngen
Q2,y

denotes the number of generated Ξ− particles in the

range 2 < Q2 < 100 GeV2 and 0.05 < y < 0.7. This efficiency factor is applied bin-wise to
the data. The reconstructed lifetime spectrum of the selected Ξ− baryons is shown in figure
8.12. The lifetime of the Ξ− baryons is extracted by an exponential fit to this spectrum
(χ2/n = 33.9/17) and amounts to:

c τ |data = (5.16 ± 0.35) cm (8.4)

c τ |PDG = (4.91 ± 0.05) cm. (8.5)

Therefore, the measured lifetime is well compatible with the world average. The agreement
of the measured lifetime with the PDG value strongly indicates that the selected particles
are indeed real Ξ− particles coming from the interaction point.

8.2.3 The Λ Candidates Contributing to the Ξ− Signal Region

To ensure that the Ξ− signal is formed by proper Λ baryons, the mass spectrum of the Λ
candidates contributing to the Ξ− signal is shown in figure 8.13. These Λ candidates are
reconstructed backwards from the Ξ− signal region and show a clean Λ signal justifying the
weak Λ selection introduced in section 8.1. The Armenteros-Thompson plot (see section 4.2.4)
for the Λ candidates contribution to the Ξ− signal region is shown in figure 8.13. For this
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Figure 8.10: The Ξ− mass spectra in bins of c · τ (column wise in 0.5 cm steps for c · τ = 0 cm
to 10 cm). The solid line shows the result of a fit using a superposition of a Gaussian and the
background function defined by equation 8.6.

figure Λ candidates are selected within ± 8 MeV of their nominal mass. The two semi-ellipses
representing the decays Λ → p π− and Λ → p π+ are clearly visible without background.
The zeniths are in good agreement with the expectation (α = ± 0.69 and prel

T = 0.104 GeV,
see table 4.3). No indication for any K0

s → π π contamination, which would appear as a
semi-ellipse centered at α = 0 with maximal prel

T = 0.206 GeV, is visible. Therefore, the K0
s

rejection works appropriately.



164 Reconstruction of the Strange Particles

 [cm]τc
0 1 2 3 4 5 6 7 8 9 10

E
n

tr
ie

s

5000

10000

15000

20000

25000

30000

35000

40000

45000

 [cm]τc
0 1 2 3 4 5 6 7 8 9 10

E
n

tr
ie

s

100

200

300

400

500

600

700

Figure 8.11: The lifetime of the Ξ− baryons obtained from the simulated sample (left: gen-
erated, right: reconstructed).

 [cm]τc
0 1 2 3 4 5 6 7 8 9 10

)τ
1/

N
 d

N
/d

(c

0.02

0.04

0.06

0.08

0.1

Figure 8.12: The efficiency corrected (bin-wise) number of reconstructed Ξ− baryons as a
function of c · τ . The solid line shows the result of the fit using an exponential function. The
errors are purely statistical and are obtained from the fit of the Ξ− mass spectra.

8.2.3.1 The Lifetime of the Λ Baryons from the Ξ− Decay

To ensure that real Λ baryons contribute to the signal of the Ξ− baryon and that the vertex
reconstruction of the Λ and Ξ− decay vertices works appropriate, the lifetime of the Λ candi-
dates from the Ξ− signal region is determined. Since these Λ’s are supposed to be produced
at the Ξ− decay vertex the lifetime calculation provides a test of the vertex separation, see
figure 7.1. The lifetime is determined in the same way as for the Ξ−, see section 8.2.2. For
the decay length the 3-dimensional separation of the Ξ− and the Λ vertex is used.

The efficiency corrected lifetime is shown in figure 8.14. A fit of an exponential function
to this spectrum (χ2/n = 17.3/15) yields a lifetime of c · τ (Λ) = (7.6 ± 0.9) cm, in agreement
with the world average of 7.9 cm. Nevertheless, not all Λ baryons are really related to a
Ξ− decay as can be seen by the number of backwards reconstructed Λ baryons. In total,
approximately 2’200 Λ baryons contribute to the Ξ− signal region while only approximately
1’800 Ξ− particles are reconstructed. However, the agreement of the measured lifetime with
the world average provides a clear indication that the selected particles are indeed real Λ
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baryons and that the separation of the Λ and Ξ− decay vertex is understood.
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Figure 8.14: The efficiency corrected (bin wise) number of reconstructed Λ baryons from
the Ξ− signal region as a function of c · τ . The solid line shows the result of a fit using an
exponential function. The errors are purely statistical and are obtained from the fit of the Λ
mass spectra.
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8.3 The Ξ− π± Combinations

The X0,−− → Ξ− π± candidates are obtained by combining the Ξ− candidates within
± 15 MeV of the nominal mass with an additional track assumed to be a pion. For this
additional track only well measured vertex fitted tracks (see section 4.2.1.1) are considered.
Furthermore, the significance of the dca of this track has to be smaller than four. Only Ξ− π±

candidates with a transverse momentum larger than 1 GeV are retained for the further analy-
sis. The mass spectra of all selected Ξ− π± candidates are shown in figure 8.15. The left figure
shows the neutral combinations, i.e. Ξ− π+ (including Ξ

+
π−) whereas the right one shows

the charged combinations Ξ− π− (including Ξ
+

π+). In the neutral combinations the signal
of the well known Ξ(1530)0 baryon [26] is clearly visible as a peak at a mass of 1.53 GeV.
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Figure 8.15: Left: The mass spectrum of the reconstructed Ξπ candidates for neutral com-

binations, i.e. Ξ− π+ and Ξ
+

π−, right: for the charged combinations, i.e. Ξ− π− and Ξ
+

π+.
The solid line shows the result of a fit using a superposition of a Gaussian (for neutral
combinations only) and the background function defined by equation 8.6.

A fit to the neutral mass spectrum with a superposition of a Gaussian for the signal of
the Ξ(1530)0 baryon and the background function B(M) parameterised by:

B(M) = P1 · (M −mΞ− −mπ)P2 · (1 + P3 · M + P4 · M2), (8.6)

where M is the Ξπ invariant mass, mΞ− and mπ are the nominal Ξ− and π masses, respec-
tively, and Pi are free parameters. This fit yields a total of 158 ± 25 reconstructed Ξ(1530)0

baryons. The reconstructed mass of (1532 ± 2) MeV is in perfect agreement with the world
average of (1531.8 ± 0.3)MeV. The measured width of (9.2 ± 1.5)MeV is consistent with
the detector resolution and is correctly described by the simulation (see section 9.5). The fit
has a χ2/n = 112/110.

The four possible charge combinations of Ξ π (−+,+− ,−− ,++) are shown separately in
figure 8.16. A clear signal representing the Ξ(1530)0 baryon can be observed in both neutral

combinations (Ξ− π+ and Ξ
+

π−) and no signal is seen in the charged combinations.
The neutral and charged combinations are shown in figure 8.17 for different Q2 ranges 3:

• 2 < Q2 < 5 GeV2

3This splitting is provided to be sensitive to the existence of a resonance in the different regions of the
phase space.
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Figure 8.16: The mass spectra of the reconstructed Ξπ candidates. Top: neutral combina-

tions (left: Ξ− π+ (charge conjugated states are excluded), right: Ξ
+

π−. Bottom: charged

combinations (left: Ξ− π− only, right: Ξ
+

π+ only). The solid line shows the result of a
fit using a superposition of a Gaussian (for neutral combinations only) and the background
function defined by equation 8.6.

• 5 < Q2 < 20 GeV2

• 20 < Q2 < 100 GeV2

The signal of the Ξ(1530)0 baryon becomes marginal for Q2 > 20 GeV2.
Beside the Ξ(1530)0 no significant signal is observed in any of the four possible charge

combinations and in any of the Q2 bins. Therefore the signal reported by the NA49 Collab-
oration cannot be confirmed with the H1 data.
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Figure 8.17: The mass spectra of the reconstructed Ξπ candidates in Q2 bins: 2 < Q2 <
5 GeV2 (top row), 5 < Q2 < 20 GeV2 (middle row) and 20 < Q2 < 100 GeV2 (bottom row).
The solid line shows the result of a fit using a superposition of a Gaussian and the background
function defined by equation 8.6.



Chapter 9

Extraction of the Upper Limit

Because none of the Ξ π mass spectra show any prominent structure beside the established
Ξ(1530)0 resonance, upper limits are set on the production of new states decaying to Ξ−π± in
the mass range 1.6− 2.3GeV for the kinematic region 0.05 < y < 0.7 and 2 < Q2 < 100 GeV2.
The procedure of the limit calculation is discussed in section 9.1. After explaining the method,
the different components of the limit calculation are extracted and the systematic sources are
elaborated (section 9.2 to 9.6). The results of the limit calculation are presented in section
9.7. The chapter ends with a comparison of the results to the ZEUS measurement and a
study of the HERA II data.

9.1 Calculation of the Upper Limit

For the limit calculation, the resonance search is performed relative to the number of observed
Ξ(1530)0 → Ξ− π+ decays using the ratio R given by:

R(M) =
N res(M, q)

N(Ξ(1530)0)
· ǫ(1530, 0)

ǫ(M, q)
, (9.1)

where N(Ξ(1530)0) represents the number of observed Ξ(1530)0 → Ξ− π+ and Ξ(1530)0 →
Ξ

+
π− decays. N res(M, q) describes the estimated number of resonance decays depending

on the mass M and the charge q of the final state, which is derived from the difference
between the observed spectrum and the expected background contribution. The mass M of
the Ξπ combinations varies from 1.6 to 2.3 GeV. The background distribution is taken to be
the fitted function given by equation 8.6. For the calculation of N res, the mass distribution
of the signal is assumed to be a Gaussian function with a mean M and a mass-dependent
width σ(M) corresponding to the experimental mass resolution. This width σ(M) varies
from 6.8 to 22.8 MeV in the mass range considered here, as obtained from the Monte Carlo
simulation, see section 9.5. The term ǫ(M, q) describes the reconstruction efficiency of the
Ξπ final state as determined by Monte Carlo simulation, and it depends on the Ξπ invariant
mass M and on the charge q of the final state. Correspondingly, ǫ(1530, 0) represents the
reconstruction efficiency for the neutral Ξ(1530)0 baryon. The ratio of efficiencies in equation
9.1 compensates for the small difference in the reconstruction efficiencies of the Ξ(1530)0

baryon and of a hypothetical baryon state. This factor is discussed in section 9.5.
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The ratio R(M) is presumed to be sensitive to the existence of new states, because of
the clean signal observed for the established Ξ(1530)0. The ratio also has the advantage that
the systematic effects of the acceptances and the reconstruction efficiencies mostly cancel,
making it insensitive to detector effects and thus providing a robust method for the limit
determination.

An upper limit at the 95% confidence level (C.L.) on R(M), denoted as Ru.l.(M), is ob-
tained from the observed spectra using a modified frequentest approach based on likelihood
ratios [161]. Each bin of the mass spectrum is treated as a statistically independent counting
search providing a uniform representation of the data and is assumed to consist of si signal
entries and bi background entries. The confidence level is computed as the ratio of CLs+b,
being the probability assuming the presence of both, signal and background at their hypothe-
sised levels to CLb, which is the probability obtained by assuming the presence of background
only. The number of signal entries si is varied to achieve the 95 % C.L. These probabilities
are calculated using probability distribution functions (PDFun). The PDFun for the signal is
assumed to be a Gaussian with a (fixed) mean M and a width corresponding to the experi-
mental mass resolution at that mass M according to the Monte Carlo simulations (see section
9.5.2). This mass M is varied from 1.6 to 2.3 GeV in 8 MeV steps and defines the range where
the limit is calculated. The background distribution is modelled according to equation (8.6),
see also section 9.4. The systematic uncertainties in the signal {si} and background {bi}
estimations is taken into account by a generalisation of the method of Cousins and Highland
[162]. When forming the list of the probabilities of a possible outcome for a certain bin, each
entry is affected by the systematic uncertainties on the signal and background estimations.
The estimation of the different systematic sources are discussed in section 9.6.

9.2 L4 Weights

The limit calculation works only properly if the input data events are not weighted 1. There-
fore, the limit calculation is carried out with the unweighted mass spectra. Since only the
ratio R(M) is determined, the L4 weights cancel each other, as long as they have the same
values for the charged and neutral combinations and do not depend on the Ξπ mass. As
shown in figure 9.1 and in table 9.1 the weights are the same, within errors, for the charged
and neutral combinations 2.

Table 9.1: The L4 weights for charged and neutral combinations for different Q2 ranges.

Ξ− π+ Ξ− π−

2 < Q2 < 100 GeV2 1.305 ± 0.024 1.272 ± 0.022

2 < Q2 < 5 GeV2 1.545 ± 0.060 1.470 ± 0.054

5 < Q2 < 20 GeV2 1.198 ± 0.015 1.192 ± 0.016

20 < Q2 < 100 GeV2 1.062 ± 0.013 1.054 ± 0.014

1Using weighted data events in the limit calculation is not correct, because weighted events are not Poisson
distributed.

2One event with weight 100 (not shown) is observed in the lowest Q2 bin for the neutral combination.
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Figure 9.1: The L4 weight distribution for the neutral combinations (upper row) and for the
charged combinations (lower row) for different Q2 ranges. The x-axis shows the weight and
the y-axis the number of hypotheses.

The L4 weights are shown in figure 9.2 as a function of the Ξπ mass. They are flatly
distributed within errors. The lines indicate a fit with a constant function to this distribution.
The results of these fits are compatible with the values quoted in table 9.1. Furthermore,
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Figure 9.2: The L4 weight distribution as a function of the Ξπ mass for the neutral com-
binations (upper column) and for the charged combinations (lower column) for different Q2

ranges.

in figure 9.3 the L4 weights normalised to the value obtained from the mass bin containing
the Ξ(1530)0 state is displayed. A fit with a Polynomial of degree one gives a slope that is
consistent with zero within the uncertainty 3, implying that the L4 weights can indeed be
dropped for the limit calculation.

3The value of the slopes are −0.13 ± 0.15 for the neutral and −0.17 ± 0.16 for the charged combinations.
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Figure 9.3: The relative L4 weight distribution as a function of the Ξπ mass for the neutral
combinations (left) and for the charged combinations (right). Shown are the average L4
weight per mass bin of 25 MeV, normalized to the L4 weight of the bin containing the Ξ(1530)0

9.3 Extraction of the Ξ(1530)0 Signal

The ratio of the neutral to the charged combinations is displayed in figure 9.4. This ratio
appears to be reasonably flat in the mass region above the Ξ(1530)0 state. Therefore, the
utilisation of both mass spectra for a simultaneous background determination is justified,
providing a more stable determination of the background contribution. For this simultaneous
fit the Ξ− π− mass spectra is artificially shifted by 1.2 GeV and a relative normalization factor
for the two mass spectra is introduced. According to equation 8.6 the fit function used is:

f(M) =





G(M) + B(M) (1.461 < M 6 2.4 GeV)

0 (2.4 < M 6 2.66 GeV)

P ·B(M − 1.2) (2.66 < M 6 3.6 GeV)

(9.2)

where G(M) denotes a Gaussian and B(M) the background function defined in equation 8.6.
The result of this fit is shown in figure 9.5. The normalization factor ’P’ is determined to
1.19 ± 0.02, comparable with the value observed in the ratio, see figure 9.4. The fit has a
χ2/n = 232/227. The number of reconstructed Ξ(1530)0 according to this fit is 163±24, with
a width of (9.4 ± 1.4)MeV. As expected these values are very similar to the ones obtained
by considering only the neutral combinations, see section 8.3. In the following the values
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Figure 9.4: The ratio of the Ξ− π+ to the Ξ− π− mass spectra. Overlayed is the result of a
fit with a constant function.
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Figure 9.5: The background determination using the simultaneous fit to both mass spectra as
described in equation 9.2. The doubly charged mass spectra is artificially shifted by 1.2 GeV.

obtained from the simultaneous fit are used.

9.3.1 Breit-Wigner Fit to the Mass Distributions

The Ξ(1530)0 has an intrinsic Breit-Wigner width of 9.2 MeV which is of the same order as the
detector resolution (see section 9.5). Therefore a fit to the mass spectra with a convolution
of a Breit-Wigner (for the intrinsic width) and a Gaussian (for the detector resolution) is
examined. For this fit the Gaussian G from equation 9.2 is exchanged by the convolution of
a Breit-Wigner BW and a Gaussian G̃:

G⇐⇒
∫

G̃(M ′) ·BW (M −M ′)dM ′, (9.3)

where the Breit-Wigner function is given by:

BW (M) =
N

2π
· ΓBW

(M − µBW )2 + (ΓBW /2)2
. (9.4)

Here N is a normalization constant, µBW is the mean value of the peak and ΓBW its width.
The integral in equation 9.3 is not analytically solvable and is evaluated as a ”Riemann-Sum”.
For the fit with the convolution function the width of the BW is fixed to the PDG value and
the normalization of the Gaussian G is set to one. The free parameters of the fit are therefore
P1 − P4 from the background function (equation 8.6) and the normalization N of the BW
as well as the mass of the Ξ(1530)0 and the width of the Gaussian G. These parameters
are determined to: M = (1532.3 ± 1.6) MeV, N = 182 ± 27 and σ = (6.6 ± 1.8) MeV. The
detector resolution (width of the Gaussian) obtained by this fit is in good agreement with
the value obtained by the Monte Carlo simulation which amount to 5.2MeV, see section
9.5. The result of the fit to the mass spectra with the convolution function is displayed in
figure 9.6. The difference between the convolution and the Gaussian fit comes mainly from
the tails of the signal peak. In the same figure the fit to the neutral combinations only
(as introduced in section 8.3) is shown. The background determination does not depend
on the function used for the Ξ(1503)0 signal and therefore the limit calculation not on the
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Figure 9.6: The comparison of the different fit functions. Shown are the results obtained from
the fit with the Gaussian function for the signal to the neutral mass spectrum only (green
dashed line) and to the combined mass spectra (red full line). Furthermore the results from
the fit with the convolution function for the signal to the combined mass spectra is displayed
(blue dotted line). The figure in the right shows a zoom to the Ξ(1503)0 signal region.

choice of this function. Only the normalisation changes slightly. In the following the values
obtained by the simultaneous fit with the Gaussian for the Ξ(1530)0 signal are used in the
limit calculation.

9.4 Stability of the Background and the Ξ(1530)0 Signal.

The background shape is a key ingredient for the limit calculation. It is preferably extracted
from the data distributions. In order to estimate the quality of the background extraction,
the fit to the mass spectra is carried out with different functions and fitting options. The
simultaneous fit with a Gaussian for the Ξ(1530)0 signal as described in section 9.3 is referred
to as ”standard fit”. The changes in the background shape are quantified by comparing the
number of background events within ±3σ of the considered mass between the standard fit
and the variations listed below:

∆NBG

NBG
(Mi) =

N standard
BG (Mi)−N test

BG (Mi)

N standard
BG (Mi)

· 100,

NBG(Mi) =

∫ Mi+3σi

Mi−3σi

fBG(m)dm (9.5)

Here Mi is the considered Ξπ mass and grows in 8 MeV-steps from 1.6 to 2.3 GeV and
σi = σ(Mi) is the resolution of the possible resonance at the mass Mi as obtained by the
Monte Carlo simulation.
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The following variations Vi to the standard fit are studied:

• V1: Use only one mass spectrum (neutral or doubly charged combinations) at the time.

• V2: Use the convolution of a Gaussian and a Breit-Wigner for the Ξ(1530)0 signal.

• V3: In the standard fit the data points within ±3σ around the considered mass are
excluded.

• V4: An additional Gaussian is added to the standard fit function with a mean value
corresponding to the considered mass and a fixed width corresponding to the detector
resolution at the given mass. This additional Gaussian accounts for a possible new
signal.

• V5: Use in the standard fit the integral of the fit function over the bin instead of the
value in the bin center.

• V6: Use an exponential function in the background parameterization instead of the
Polynomial of degree 2 (see equation 8.6).

The change in the number of background events according to these variations is displayed in
in figure 9.7 for the background in the neutral and doubly charged combinations separately.
The relative change in the number of background events is in general less than 2 %. This
number is taken into account in the systematic uncertainty used for the limit calculation, see
section 9.6.

The influence of the variation of the fit function on the number of reconstructed Ξ(1530)0

baryons is summarised in table 9.2. The variation number in this table correspond to the
numbers in the list above. Beside the results obtained by the Breit-Wigner fit, the number
of Ξ(1530)0 is well consistent within the statistical uncertainty with the value obtained by
the standard fit.

Table 9.2: The change in the number of reconstructed Ξ(1530)0 → Ξ− π+ decays for the six
variations investigated. The statistical uncertainty of all numbers is roughly 25.

Variation N(Ξ(1530)0)

V1 158

V2 182

V3 161 - 167

V4 163 - 167

V5 160

V6 156
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Figure 9.7: The relative change in the number of background events around ± 3σi of the
Ξπ mass Mi for the six variations V1 − V6 investigated, shown for neutral (top) and for the
charged (bottom) combinations. For explanation see text.
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9.5 Ξ− π± Combinations in Simulation

To estimate the resolution and the ratio of the efficiencies of the hypothetical pentaquark
state and the Ξ(1530)0 baryon, a Monte Carlo simulation based on the PYTHIA 6.2 generator
in the subprocess 10 (f + f′ →f + f′) is used. The hypothetical pentaquark state is simulated
for a variety of different masses, widths, types and charge settings to study the following
dependencies:

• Mass dependence: For the neutral combinations the Ξ(1530)0 state is used. This state
has an intrinsic Breit Wigner width of 9.2 MeV. The mass is set to 1.53, 1.6, 1.86 and
2.1 GeV, respectively, keeping the width of 9.2 MeV fixed.

• Charge dependence: For the charged combinations the ∆
−−

state is used. The resonance
is forced to decay into Ξ− π−. The intrinsic width of this state is set to zero and the
mass to 1.53, 1.6, 1.86 and 2.1 GeV, respectively. The use of the ∆

−−
resonance is

chosen for technical reasons only (PYTHIA always demands charge conservation).

• Dependence on the intrinsic width: A Ξ(1530)0 state with intrinsic width of zero was
simulated at a mass of 1.53 GeV in order to study the efficiency dependence on the
intrinsic width by comparison with the Ξ(1530)0 with a width of 9.2 MeV .

From these studies the efficiency is found to be independent of the intrinsic width of
the simulated particle, which is of particular interest since the width of the possible pen-
taquark candidates is not precisely known 4. Furthermore the production mechanism of the
pentaquark candidates is also not known. Therefore it is assumed that the pentaquark candi-
dates are produced with the same pT and η spectra as that one of the Ξ(1530)0. To simulate

this assumption, the spectra obtained from the ∆
−−

simulation are re-weighted, using a
two-dimensional (pT , η) grid.

9.5.1 Re-Weighting of the ∆
−−

Monte Carlo

The re-weighting is used to estimate the dependence of the efficiency on the pT and η dis-
tributions of the simulated events which is found to be negligible. The re-weighting of the
∆

−−
MC is shown for the mass of 1860 GeV only. Figure 9.8 shows the generated pT and η

spectrum of the ∆
−−

(1860) (red, open circles) and of the Ξ0(1860) (blue, full circles), both
normalized to one. The small differences observed in this figure is leveled out by applying a
pT and η dependent weight factor wi j to the ∆

−−
MC. The index i corresponds to the 11

non equidistant pT bins (1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.5, 4, 6 GeV) and the index
j to the 8 equidistant η bins (ranging from -2 to 2), leading to 88 pT /η bins. The weights are
defined by:

wi j =
NΞ0(pi

T , ηj)/N tot
Ξ0

N
∆

−−(pi
T , ηj)/N tot

∆
−−

(i = 1, 11 j = 1, 8), (9.6)

where N
Ξ0(∆

−−
)
(pi

T , ηj) denotes the number of generated Ξ0(∆
−−

) in the i-th pT and j-th

η bin and N tot

Ξ0(∆
−−

)
denotes the total number of generated Ξ0(∆

−−
). The k-th pT /η bin

4The width of the pentaquarks is expected to be small. For the Θ+, measurements and theory suggest σ .

1 MeV.
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Figure 9.9: Left: The weights in pT /η bins. The solid line represents the result of the fit
using the weight function W(< pT >, η), see equation 9.7. Right: The 2-dimensional weight
function W(pT , η).

corresponds to (i−1) · Nj + j, where Nj (=8) denotes the number of η bins. This numbering
scheme is used in figures 9.9 and 9.11. The distribution of the weights is described by a
function of the form:

W (pT , η) = P1 + P2 · η + (P3 + P4 · η) · pT + P5 · pP6

T , (9.7)

where Pi are free parameters. These parameters are determined by a fit to the data (88 pT /η
bins) with the weight function W(< pT >, η), where < pT > is the mean value of pT in a

given pT bin (χ2/n = 118/82), see figure 9.9. For the correction of the ∆
−−

MC the full
weight function W(pT , η) is used. This function is also displayed in figure 9.9.

To cross-check the re-weighting procedure, the pT and η distributions before and after the
re-weighting are compared in figure 9.10. The two figures on the top show the distributions
after the reweighting (green triangles). Overlaid on the same figure is the distribution of these

variables before the reweighting for the ∆
−−

(1860) (red, open circles) and for the Ξ0(1860)

(blue, full circles). The re-weighted distributions of the ∆
−−

(1860) are much closer to those
of the Ξ0(1860) than the original ones, indicating that the re-weighting works properly. This
is confirmed by the two figures on the bottom of figure 9.10 where the weights as a function of
pT , w(pT ) (integrated over η) and as a function of η w(η) (integrated over pT ) are displayed.
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Figure 9.10: Top: The generated pT and η spectrum of the ∆
−−

(1860) (red, open circles) and

the Ξ0(1860) (blue, full circles) as well as of the reweighted ∆
−−

(1860) (green, full triangles).
All distributions are normalised to one. Bottom: The weights in pT (left) and in η (right) for
the mass of 1860 GeV before (blue, full circles) and after (red, open circles) the re-weighting.

After the reweighting these weights are distributed flatly around one 5.
The weight function W(< pT >, η) is displayed in figure 9.11 for all four masses and show

only a weak dependence on the mass.
However, the change in the number of reconstructed particles (and therefore in the effi-

ciency) due to the reweighting is very small. It amounts to roughly 1 %.

9.5.2 Dependence of the Resolution on the Mass

For the estimation of the width of the possible pentaquark signal the simulation with the ∆
−−

(intrinsic width zero) is used. The reconstructed mass spectra are shown in figure 9.12 and
the resulting dependence of the width on the mass is shown in figure 9.13. To parameterize
this dependency a fit using a polynomial of degree one is performed. The resulting function
is:

σ(M) = −29.7 MeV + 0.0228 · M [MeV], (9.8)

where M is the mass of the hypothetical pentaquark state. This function enters the limit
calculation.

5For a perfect reweighting the ratio should be exactly one for all pT and η values.
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Figure 9.12: The reconstructed Ξ− π− mass in the simulation for the four generated masses.
For these figures the reweighting is applied.
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Figure 9.13: The mass dependent resolution of the possible pentaquark signal obtained from

the ∆
−−

Monte Carlo simulation. The error on the individual points is of the order of 2 %.

9.5.3 Determination of the Efficiency

The efficiency, which is used in equation 9.1, is determined in the kinematical visible range:

ǫ(M, q) =
N rec

allcuts(M, q)

Ngen
(pgen

T
>1 GeV,|ηgen|<2)

(M, q)
, (9.9)

where q denotes the total charge of the Ξπ final state and M its mass. Thus, the efficiency
is determined for the neutral and charged combinations separately. As mentioned in section
9.5.1 the number of reconstructed Ξ− π− is re-weighted in pT and η. The reconstructed mass
spectra for the neutral and charged combinations (before and after the re-weighting) are
shown in figure 9.14 for the generated mass of 1860 MeV.

As fit function a superposition of one or two Gaussian 6 with the background function
defined by equation 8.6 is used. Although the double Gaussian fit gives better results, the
single Gaussian fit is used for the efficiency determination in order to be compatible with
the limit calculation where a possible signal is described by a single Gaussian. Furthermore
the uncertainty on the efficiency is small compared to the most dominant source which is the
statistical uncertainty of the Ξ(1530)0 signal (see section 9.6). The overall uncertainty on the
number of reconstructed particles has 2 components: a) A statistical one which is just the
uncertainty obtained by the Gaussian fit and the difference of the number of reconstructed
particles from the Gaussian fit and b) the number obtained by counting all entries within
± 64 MeV around the nominal mass and subtracting the integrated (over the same range)
background function. The efficiencies for the charged (ǫ(M,−−)) and neutral (ǫ(M, 0))
combinations are shown in figure 9.15. The uncertainty of the efficiencies varies from 2.7
to 7.5 %. To parameterize the mass and charge dependencies of the efficiency a fit using a

6As a cross-check also a double Gaussian fit is applied. The result of this fit is also shown in figure 9.14,
right column.
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Figure 9.14: The reconstructed mass spectra for the generated mass of 1860 GeV in the
simulation for the neutral combinations (upper row), for the charged combinations before
(middle row) after (lower row) the re-weighting. The left column shows the results obtained
by a single Gaussian fit and the right one for a double Gauss fit. Sc denotes the number of
reconstructed particles by counting all entries within ± 64 MeV of the reconstructed mass
and subtracting the integrated (over the same range) background function and δS/S the
uncertainty on the signal. The systematic uncertainty takes the difference in the number of
reconstructed particles obtained by the counting method and the Gaussian fit into account.

polynomial of degree one is performed. The resulting functions shown in figure 9.15 are:

ǫ(Ξπ|M, 0) = 4.388 + 0.898 · M [GeV] (9.10)

ǫ(Ξπ|M,−−) = 5.005 + 0.696 · M [GeV], (9.11)

where M is the mass of the hypothetical pentaquark state. These functions are used for the
efficiency correction, see equation 9.1.
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Figure 9.15: The reconstruction efficiency ǫ(M, 0) for the neutral combinations (blue, full
circles) and ǫ(M,−−) for the charged combinations (red, open circles).

9.6 Systematic Uncertainties

The final results are represented as an upper limit Ru.l. on the ratio R introduced in equation
9.1. Since Ru.l. denotes the 95 % C.L. upper limit on the ratio R of the number of resonant
Ξπ combinations to the number of observed Ξ(1530)0 baryons, the systematic uncertainties
in the measurement enters only through the 95 % C.L. upper limit of observed resonant Ξπ
combinations (N res(M, q)) 7.

The systematic uncertainties for the Ru.l. calculation comprises the following contribu-
tions:

• Number of Ξ(1530)0: for the uncertainty on the overall number of Ξ(1530)0 baryons
the statistical uncertainty derived from the fit of 16% is used, see section 8.3.

• Reconstruction efficiency: The uncertainty of the reconstruction efficiency ǫ(M, q)
is smaller than 7.5 % for all masses considered in this analysis. Therefore a total system-
atic uncertainty of 7.5% for the ratio ǫ(1530,0)

ǫ(M,q) is taken. The two different efficiencies

ǫ(1530, 0) and ǫ(M, q) appearing in the ratio are of course strongly correlated and there-
fore adding the uncertainties of these two efficiencies would be too conservative. Due
to this correlation, even the 7.5 % is a conservative approach.

• Width of the possible signal: The uncertainty due to the width of the possible signal
has two components: a) the uncertainty determined in the simulation, which is below
2 % for the masses considered here and b) a possible difference of the width between
simulation and data. This difference is assumed to be the same as that of the Ξ(1530)0

baryon. The width of the Ξ(1530)0 baryon in simulation is (9.5 ± 0.2)MeV, whereas in
data it is (9.2 ± 1.4)MeV. The uncertainty on the width in data is already taken into
account in the uncertainty of the number of Ξ(1530)0. Thus, applying the uncertainty
in the reconstructed width of the Ξ(1530)0 in data as a systematic uncertainty for
the width of the possible signal is too conservative. Therefore, the relative difference

7Otherwise Ru.l. would not denote an 95 % C.L. limit anymore.
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between data and simulation from the Ξ(1530)0 studies is used as estimation of the
pentaquark width uncertainty. This is 9.5−9.2

9.2 ≃ 4 %. The resulting total uncertainty

of the width of the possible signal is
√

2 %2 + 4 %2 ≃ 5 %.

• Background uncertainty: The uncertainty on the background distribution is assessed
by performing the fit under different assumptions, see section 9.4. The differences are
found to be in general less than 2%.

• The uncertainties due to the inclusive DIS event selection and the trigger efficiency are
assumed to cancel in the ratio.

The limit calculation distinguishes between uncertainties applied on the possible signal and
uncertainties applied on the background. The first three points mentioned above contribute
to the uncertainty of the signal. The contributions on the signal are added in quadrature and
the resulting total systematic uncertainty of 18 % enters the limit calculation. The uncertainty
on the background of 2 % enters the limit calculation separately.

9.7 Results of the Limit Calculation

The final results are displayed in terms of upper limits Ru.l. on the ratio R defined by equa-
tion 9.1. All uncertainties summarized in section 9.6 are taken into account for the limit
calculation. The results are presented in figure 9.16 and 9.17, showing in the upper part the
Ξπ mass spectrum for the charged and neutral combinations, respectively (same spectra as
displayed in figure 8.15). In the lower part, the 95% C.L. upper limit Ru.l.(M) is given; it
varies from 0.12 to 0.45 in the mass range 1.6 - 2.3 GeV for the charged combinations and
from 0.1 to 0.5 for the neutral ones.

These limits are quoted for the kinematic region 2 < Q2 < 100 GeV2, 0.05 < y < 0.7,
pT (Ξπ) > 1 GeV and -1.5 < η(Ξπ) < 1.5. Furthermore, the limits are derived under the as-
sumption that the new resonant states are produced by a similar mechanism as the Ξ(1530)0,
that they decay into Ξ− π± with a 100 % branching ratio and that their intrinsic widths are
small (i.e. below detector resolution).

If the signal extraction of the Ξ(1530)0 is performed by a convolution of a Gaussian
and a Breit-Wigner function (see section 9.3.1, the limits would be 10 % lower. Since the
systematic uncertainty in the number of reconstructed Ξ(1530)0 baryons is left unchanged by
this variation (16 %), the calculation of the upper limit is not affected at all by the change of
the signal function, but only the normalisation changes.

9.7.1 Cross-Check of the Limit Calculation

Without a signal, the upper limit should follow the statistical fluctuations of the background.
Therefore, the comparison of these two quantities provide a cross-check of the limit calculation
The upper limit on R for the doubly charged and neutral combinations shifted by its mean
value is displayed in figure 9.18 as a dotted curve. In addition, the weighted deviation of

the data points from the background function given by
Nweighted

Signal
(Mi)

Nweighted
BG

(Mi)
− 1, where Mi grows in

8 MeV steps from 1.6 to 2.3 GeV is overlaid. Since the possible signal in the limit calculation
is assumed to be Gaussian, the deviation from the background at point Mi counts more than
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Figure 9.16: Top: the Ξ− π− mass spectrum as shown in figure 8.15 together with the fitted
background function (see equation 8.6). Bottom: the upper limit Ru.l.(M) on the ratio R at
95 % C.L. for the charged combinations.

that one in the neighboring bins. Therefore, the deviation shown in the figure 9.18 is weighted
with a Gaussian with a width corresponding to the resolution at the mass Mi:

Nweighted
Signal (Mi) =

∑

binsj

NSignal(Mj) ·Gσi,Mi
(Mj), (9.12)

where Gσi,Mi
denotes a Gaussian with a mean value of Mi and a width σi = σ(Mi) as used

in the limit calculation. The same weighting is also applied for the number of background
events, Nweighted

BG . The two curves in figure 9.18 are indeed strongly correlated, indicating
that the limit calculation is reliable.
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Figure 9.17: Top: the Ξ− π+ mass spectrum as shown in figure 8.15 together with the fitted
background function (see equation 8.6). Bottom: the upper limit Ru.l.(M) on the ratio R at
95 % C.L. for the neutral combinations.

9.7.2 Separate and Combined Limits of the four Charge Assignments

The limit calculation is carried out for all four possible charge combinations separately, which
is of interest for the case that only the Pentaquark but not its anti-particle (or vice versa) is
produced in ep collisions. The limits on Ξ− π+ and Ξ− π− resonant decays are normalized to
the number of reconstructed Ξ(1530)0 (charge conjugation excluded) states, while that ones

on Ξ
+

π− and Ξ
+

π+ are normalized to the number of Ξ(1530)0. For the signal extraction
the width of the Ξ(1530)0 and of the Ξ(1530)0 are fixed to the value obtained by the fit to
all mass spectra (see section 9.3). The result of this fit is shown in Figure 9.19. In total 74 ±
15 Ξ(1530)0 (charge conjugation excluded) baryons and 95 ± 16 Ξ(1530)0 anti-baryons are
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Figure 9.18: Cross-check of the upper limit for the charged (top) and neutral (bottom)
combinations. For explanation see text.

reconstructed.
The upper limits on R for the four possible charge combinations are presented in figure

9.20. The change in the systematic uncertainty due to the reduced number of reconstructed
Ξ(1530)0 (Ξ(1530)0) are taken into account in the limit calculation. As expected, the upper
limits on R takes higher values due to the reduced statistic compared to the combined limits.
In the Ξ− case they vary typically between 0.2 and 0.8 and in the Ξ

+
case between 0.15

and 0.6. The peak in the upper limit in the Ξ− π+ case is at a mass of 1.83 GeV and not at
1.86 GeV which is the mass of the pentaquark candidates observed by the NA49 Collaboration.
This enhancement is not visible in any of the other charge combinations and therefore most
likely due to a statistical fluctuation.

Finally figure 9.21 shows the mass spectrum and upper limit for the combination of all
possible charge assignments (Ξ− π−, Ξ− π+, Ξ

+
π+, Ξ

+
π−). In this case a simultaneous fit is

no longer possible. For the extraction of the signal and the background parameterisation, a
fit to this mass spectrum using a superposition of a Gaussian for the Ξ(1530)0 signal and the
background function defined by equation 8.6 is applied. For this fit the width of the Gaussian
is again fixed to 9.4 MeV. The fit yields a number of 159 ± 27 reconstructed Ξ(1530)0, which
is used for the normalization in the ratio R. The change in the systematic uncertainty is
taken into account in the limit calculation. The efficiency ǫ(M, q) appearing in equation 9.1
is taken to be the average of the efficiency for the neutral combinations and of the charged
ones: ǫ(M) = 1

2 · (ǫ(M, 0) + ǫ(M,−−)). The upper limit on R varies between 0.16 and 0.57.
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Figure 9.19: Background determination using the simultaneous fit to both mass spectra, as
described in equation 9.2. The doubly charged mass spectra is artificially shifted by 1.2 GeV.
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π+.
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Figure 9.20: The Ξ− π− mass spectrum (top left, charge conjugation excluded) together with
the fitted background function (see equation 8.6) and the upper limit on R at 95 % CL for

resonant Ξ− π− decays. The same is shown for the Ξ
+

π+ combinations (top right), for the

Ξ− π+ combinations (bottom left) and for the Ξ
+

π− combinations (bottom right).
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Figure 9.21: The upper part shows the mass spectrum of all possible charge combinations

(Ξ− π−, Ξ− π+, Ξ
+

π+, Ξ
+

π−). Overlaid on this spectrum is the result of a fit using a
Gaussian for the Ξ(1530)0 signal and the background function defined by equation 8.6. In
the lower part the upper limit on R at 95 % C.L. is displayed.
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Figure 9.22: The mass spectrum of all possible charge combinations (Ξ− π−, Ξ− π+, Ξ
+

π+,

Ξ
+

π−) as observed by the ZEUS Collaboration (a). The inlet displays the 95 % CL upper
limit on the ratio R. The same mass spectrum for Q2 > 20 GeV is shown in the right figure
(b).

9.8 Comparison with the ZEUS Measurement

The ZEUS Collaboration has also performed a search for resonant Ξπ decays [116]. As
already mentioned the ZEUS Collaboration has not seen any indication of a new signal, and
upper limits on the ratio R introduced in equation 9.1 have been derived. The main difference
with respect to this work is a different Q2 range, starting at Q2 = 1 GeV2. In the ZEUS
publication [116] only the upper limit on the combination of all possible charge assignments
is shown (corresponding to figure 9.21 in this work). The results of the ZEUS Collaboration
are displayed in figure 9.22. Their upper limits vary between 0.1 and 0.55 and are therefore
well compatible with those measured at H1.

The ZEUS collaboration reported a hint for a structure in events with Q2 > 20 GeV2 at
a mass around 1690 MeV representing the Ξ(1690)0 baryonic state (see figure 9.22 b). In this
analysis no hint for such a structure is observed (see figure 8.17).
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Chapter 10

Limits Derived from the HERA II
Data

The H1 experiment has collected, after the upgrade in 2001, roughly tree times the luminosity
than in the HERA I period. In this section the data recorded in the year 2006 are analysed
(corresponding to an integrated luminosity of 132 pb−1) and upper limits are extracted from
this data set. A full analysis of the HERA II data is beyond the scope of this work and the
following studies should therefore only be regarded as a first look at the new data.

The main difference to the analysis presented in the previous sections is the higher Q2

selection. Due to the new geometry of the beam pipe, Q2 is restricted to 5 < Q2 < 100 GeV2

for the HERA II data set, which is the only change with respect to the HERA I data analysis.

10.1 The Ξ− Mass Spectrum

The Ξ− mass spectrum shown in figure 10.1 is obtained by an analogue procedure as described
in section 8.2. A fit to this mass spectrum with a superposition of a Gaussian for the Ξ− signal
and a background function parameterized accordingly to equation 8.6 (with mΞ exchanged
by mΛ) yields a total number of 2528 ± 74 1 reconstructed Ξ− baryons at a mass of (1322.2
± 0.1)MeV and with a width of (4.1 ± 0.1)MeV. The width is within errors the same as
obtained for the HERA I data set. The reconstructed mass of the Ξ− baryon is slightly shifted
(by 0.6 MeV) to higher values. In the same figure the mass spectra of the Ξ− and Ξ

+
(charge

conjugation excluded) are shown. The ratio of the Ξ− baryons to the Ξ
+

anti-baryons is
within two sigma consistent with being one (1331±52

1200±51 = 1.11± 0.06).

10.2 The Ξ− π± Combinations

The combination of the Ξ− candidates with an additional track is done in the same way as
described in section 8.3. In figure 10.2 the mass spectra of the Ξ− π− and Ξ− π+ combinations
are shown. Overlaid on these mass spectra is the result of a simultaneous fit using the function
defined by equation 9.2. The fit yields a total of 296 ± 40 reconstructed Ξ(1530)0 baryons at

1Due to the unknown efficiency (first of all that one of the trigger) and the different Q2 range the number
of reconstructed Ξ− cannot be directly compared to the number extracted from the HERA I data set.
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Figure 10.1: Reconstructed Ξ mass spectra for the HERA II data set with cuts mentioned
section 8.2. a) only Λπ− combinations b) only Λ̄ π+ combinations c) Λ π− and Λ̄ π+ combi-
nations. The solid lines show the result of a fit using a superposition of a Gaussian and the
background function defined by equation 8.6.

a mass of (1532.5 ± 1.9)MeV and with a width of (14.1 ± 2.4) MeV. The reconstructed mass
is in agreement with the value obtained for the HERA I data set and is PDG compliant. The
width is observed to be larger with respect to the HERA I data, which is most likely due to
some deficits in the track reconstruction. Reprocessed data with an improved tracking are
supposed to be available soon. A preliminary conclusion is that the reconstruction of the
decay chain shown in figure 7.1 including tertiary vertices works appropriately also for the
HERA II data and that the growth of the number of reconstructed Ξ(1530)0 baryons is (at
first order) as expected.
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Figure 10.2: The reconstructed Ξ− π+ and the Ξ− π− mass spectra for the HERA II data
set. Overlaid on the spectrum is the result of a simultaneous fit to both mass spectra, as
described in equation 9.2. The doubly charged mass spectra is artificially shifted by 1.2 GeV.

10.3 Extraction of the Upper Limit

No hint for any new baryonic state in the HERA II data is observed and therefore upper
limits are derived in the same way as introduced in section 9. No new Monte Carlo sets are
simulated. The limits are derived under the assumption that the resolution of a hypothetical
new baryonic state is the same as in the HERA I case. Furthermore it is assumed that the
efficiency correction factor in equation 9.1 is unchanged. Only the systematic uncertainties
are changed for the extraction of the limit from the HERA II data (see section 9). The
uncertainty on the number of reconstructed Ξ(1530)0 baryons could be reduced to 13 %. On
the other hand the uncertainty on the width of the possible new state is increased to 10 %
due to the increase in the width of the Ξ(1530)0 baryon. New MC sets are needed in order to
have a better estimation of this number. The mass spectra and upper limits derived under
these assumptions are shown in figure 10.3 and 10.4. Due to the higher statistics the upper
limits could be improved with respect to that ones derived from the HERA I data set. They
vary between 0.08 and 0.3 for both, the doubly charged and neutral combinations. The

improvement is compatible with
√

N(Ξ(1530)0)HERA I

N(Ξ(1530)0)HERA II
which is naively expected.
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Figure 10.3: The Ξ− π− mass spectrum together with the fitted background function (upper
part) and the upper limit Ru.l.(M) on the ratio R at 95 % C.L. for the charged combinations
(lower part).
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Figure 10.4: The Ξ− π+ mass spectrum together with the fitted background function (upper
part) and the upper limit Ru.l.(M) on the ratio R at 95 % C.L. for the neutral combinations.
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Part III

Search for New Particles Decaying
into Λ K0

s





Chapter 11

Introduction

A search for narrow resonances decaying at the interaction point into the strange hadrons
K0

s and Λ is performed. The decay channel under investigation is:

X → K0
s Λ→ (π+ π−) (p π−), (11.1)

as illustrated in figure 11.1. This decay channel is particularly interesting with regard to

lambda

kaon

IP

V2

V1

proton

pion

pion

pion

Figure 11.1: The decay of the state X (see equation 11.1). Here, ”IP” denotes the interaction
point.

pentaquark searches: Various theories predict a state named N0
s (see figure 2.16) that decays

according to equation 11.1. The STAR Collaboration at RHIC [21] has observed a narrow
peak in Au-Au collisions at (1734 ± 5) MeV in the invariant mass spectrum M(K0

s , Λ) with
a width consistent with their experimental resolution of about 6 MeV. The question arises
whether this resonance is also observed in ep collisions at HERA.

The analysis is performed using 78 pb−1 of ep scattering data taken in the years 1999
and 2000 (HERA I). For this search the whole data sample is used (i.e. no DIS selection) in
order to maximize the statistics. Furthermore, no specific subtrigger is required.
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Chapter 12

Analysis of the Decay X → Λ K0
s

In a first part K0
s and Λ candidates are reconstructed and their combination is outlined. In

the second part an interpretation of the results is provided.

12.1 Reconstruction of the Strange Hadrons K0
s and Λ

For the reconstruction of the strange hadrons only well measured, non-vertex fitted tracks
are used, fulfilling the selection criteria introduced in section 4.2.1.1. Only events containing
at least four selected tracks, two of each charge, are considered in the following. The K0

s and
the Λ particles are identified by fitting two oppositely charged tracks to a common vertex
using the 3DU routine (see section 4.2.2). The K0

s and Λ candidates fulfilling the following
selection criteria are considered for the further analysis (see also section 5.1.1):

Fit probability: P (χ2, n) > 1 %,

Transverse momentum: pT (K0
s ) > 200 MeV, pT (Λ) > 800 MeV,

Two-dimensional decay length: L(K0
s ) > 0.4 cm, L(Λ) > 0.75 cm,

Uncertainty of L: δL(K0
s , Λ) < 0.5 cm,

Significance of L: SL(K0
s , Λ) > 4,

Pseudorapidity: |η(K0
s , Λ)| < 1.75,

Sign of d′
ca

: d′ca(track1) · d′ca(track2) < 0,

Pointing angle : |sin(α)| < 0.2 1.

Furthermore, the tracks used for the K0
s reconstruction are explicitly excluded for the Λ

identification. The contamination of Λ (K0
s ) decays in the K0

s (Λ) sample is discarded by a
selection criterion on the corresponding mass as discussed in section 5.1.2. The mass spectra
of all selected K0

s and Λ candidates are shown in figure 12.1. The reconstructed mass of both
signals, extracted by a fit to these spectra using the function F defined by equation 5.11,

1The pointing angle is defined as the angle between the line connecting the interaction point with the decay
vertex and the flight direction of the K0

s (Λ) candidate.
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is compatible with the world average. The mean width of the two Gaussian functions (see
equation 5.12) are measured to σ(K0

s ) = (10.6 ± 0.2)MeV and σ(Λ) = (3.8 ± 0.1)MeV. As
discussed in section 4.2.2, the resolution of the strange hadrons reconstructed with the 3DU
routine improves with respect to those reconstruction with the 2DC one (see table 5.1) by
approximately 20 %.
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Figure 12.1: The mass spectra of the reconstructed K0
s (left) and Λ (right) candidates fulfilling

the selection criteria. Overlaid on the data points is the result of a fit using the function F
defined by equation 5.11.

12.2 Combination of the Reconstructed Λ and K0
s Candidates

For the reconstruction of the decay X → K0
s Λ, the K0

s and Λ candidates are fitted to a
common vertex by means of the VVF routine (see section 4.2.2). Thereby the reconstructed
vertex is constraint to the ep interaction point of the event (see figure 11.1). The mass spectra
of all selected K0

s and Λ candidates which are accepted by this fit is displayed in figure 12.2.
The part of the mass spectra that is rejected by the fit is also shown in this figure. The
constraint that the reconstructed K0

s and Λ candidates are compatible with being produced
at the interaction point reduces the combinatorial background significantly since most of
these events do not satisfy this requirement.

In the following only K0
s (Λ) candidates are considered with an invariant ππ (p π) mass

within ±20 MeV (±9 MeV) of the nominal K0
s (Λ) mass, which is subsequently assigned

to the selected K0
s (Λ) candidates. The mass boundaries are indicated in figure 12.2 by the

dotted lines. All combinations fulfilling the following requirements are retained for the further
analysis:

Fit probability: P (χ2, n) > 1 % (see equation 4.22 for the definition of P )

Transverse momenutm: pT (X) > 1 GeV.

The invariant mass spectrum M(K0
s , Λ) of all selected combinations is shown in figure

12.3. For these combinations, the K0
s and Λ momenta obtained by the fit are used and the

nominal masses are assigned to the candidates. An enhancement around a mass of 1.7 GeV
is observed. The same mass spectrum is enlarged for M(K0

s , Λ) < 1.85 GeV in figure 12.4.
Overlaid on the data points is the result of a fit with a superposition of a Gaussian accounting
for a possible signal and a background term given by:

BG = P0 · (M −MK0
s
−MΛ)P1 , (12.1)
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Figure 12.2: The reconstructed mass spectra of the K0
s (left) and Λ (right) candidates ac-

cepted by the vertex fit (top) and of those rejected by this fit (bottom). Overlaid on the data
points is the result of a fit using the function F defined by equations 5.11. The dotted lines
indicate the mass range used for the further analysis.

) [GeV]Λ,
s
0M(K

2 2.5

E
n

tr
ie

s 
p

er
 7

M
eV

0

20

40

60
H1 Data

Figure 12.3: The mass spectrum M(K0
s ,Λ) extracted from the HERA I data of all selected

combinations.

where P0 and P1 are free parameters and MK0
s

and MΛ the nominal K0
s and Λ masses,

respectively. This fit (χ2/n = 37.7/29 2) yields a signal of 48 ± 12 events at a mass of
(1’710 ± 2) MeV. The width of the signal is found to be (4.8 ± 1.2)MeV, consistent with
the detector resolution obtained from a Monte Carlo simulation 3. Therefore, the observed

2A fit with the same background function but without the Gaussian function has χ2/n = 55.5/29
3For the simulation of the state X the ∆0 baryon is used. Its mass is set to 1.7 GeV and its intrinsic width

to zero, allowing to study the detector resolution for such a hypothetical state.
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Figure 12.4: The mass spectrum M(K0
s , Λ) of all selected combinations for a reduced mass

range. The solid line shows the result of a fit using the superposition of a Gaussian and the
background function defined by equation 12.1 while the dashed line indicates the background
only.

bump is consistent with the observation of the STAR collaboration. The signal to noise ratio
calculated within ±2 σ of the reconstructed mass is found to be 0.6.

12.3 Examination of the Signal Candidate

In the following the observed signal candidate is investigated further in order to establish its
authenticity.

12.3.1 Stability of the Signal Candidate

The following consistency checks are performed:

1. All properties of the signal (mass, width and entries) remain stable within the statistical
accuracy with respect to shifts in the binning and also for changes of the bin size (from
5 MeV to 10 MeV). In figure 12.5 the invariant mass spectrum is displayed for a binning
shifted by 3 MeV and for a reduced bin size of 5 MeV.

2. In order to test the charge conjugate state production of the signal candidate, the mass
spectrum is shown for K0

s Λ and K0
s Λ combinations separately in figure 12.6. The

signal is found to be, within the statistical accuracy, equally distributed between these
two cases (30 ± 9 for the K0

s Λ and 25 ± 9 for the Λ combinations). The reconstructed
mass and width of the two signals are compatible with each other and also with the
values obtained from the fit to the sum of the two spectra.

3. The combination of K0
s and Λ candidates built by the same tracks could produce a fake

signal in the invariant mass spectrum. For the signal observed in figure 12.4 this effect
is not seen from the Armenteros-Thompson figure (see section 4.2.4) of the K0

s and Λ
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Figure 12.5: The mass spectrum M(K0
s , Λ) for a binning shifted by 3 MeV (left) and for a

reduced bin size of 5 MeV (right). The solid lines show the result of a fit using the superpo-
sition of a Gaussian and the background function defined by equation 12.1 while the dashed
line indicates the background only.
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Figure 12.6: The invariant mass spectrum M(K0
s , Λ) (charge conjugation excluded, left) and

M(K0
s , Λ) (right). The solid lines show the result of a fit using the superposition of a Gaussian

and the background function defined by equation 12.1 while the dashed line indicates the
background only.

candidates contributing to the signal region (1.7 < M(K0
s , Λ) < 1.72 GeV), as shown

in figure 12.7. The structures representing the K0
s and Λ decays are well separated.

4. The application of the same track for the reconstruction of the strange hadrons can
be excluded by examining the difference in pT of the two positive (negative) charged
tracks (one used for the K0

s reconstruction and one for the Λ reconstruction) and

the difference in φ of the two tracks: ∆p
+(−)
T := pT (trk+(−)(K0

s )) − pT (trk+(−)(Λ)),

∆φ+(−) := φ(trk+(−)(K0
s )) − φ(trk+(−)(Λ)). These quantities are displayed for those

combinations contributing to the signal region in figure 12.8. No clustering is ob-
served, implying that the same track is not used twice. Nevertheless combinations with

∆p
+(−)
T < 0.05 GeV or ∆φ+(−) < 0.1 rad are excluded as a cross check. The resulting

mass spectrum of the K0
s Λ combinations is displayed in figure 12.9. As expected, only

a few signal candidates are lost.

5. The invariant mass spectrum reconstructed from the K0
s and Λ candidates in the side

band region (|M(π, π)| −MK0
s
| > 20 MeV, |M(p, π)| −MΛ| > 9 MeV) does not show

any significant structure, see figure 12.10.
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Figure 12.7: The Armenteros-Thompson figure for the K0
s (blue squares) and Λ (red squares)

candidates contribution to the signal region.
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Figure 12.9: The mass spectrum M(K0
s , Λ) with the additional requirement on ∆p

+(−)
T and

∆φ+(−) (see also figure 12.8).
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Figure 12.10: The mass spectrum M(K0
s , Λ) reconstructed from the side bands of the K0

s

and Λ signals.

6. The signal remains stable within the statistical accuracy for a tighter K0
s and Λ selection

(|M(π, π)| −MK0
s
| < 15 MeV, |M(p, π)| −MΛ| < 6 MeV). For this selection the signal

comprises 38 ± 12 entries, compatible with the expected loss of roughly 10 % when
selecting the K0

s and Λ candidates within 1.5σ of the nominal masses instead of 2σ.

7. The extracted signal is stable under variation of the background function. The following
variations are studied:

• Adding a Polynomial of degree one to the background function given by equation
12.1

• Exchanging the background function by a Polynomial of degree one.

The mass spectra together with the results of a fit with these functions are shown in
figure 12.11.
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Figure 12.11: The signal extraction with different parameterisations of the background func-
tion. Left: Superposition of the background function defined by equation 12.1 and a Polyno-
mial of degree one. Right: A Polynomial of degree one.

8. The signal remains stable with respect to variation of the selection criteria on pT (X)
(from 0.5 to 1.5 GeV) and P (χ2, n) (from 0 to 5 %).
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12.3.2 Kinematic Properties of the Signal Candidate

The distribution of the kinematic variables pT (X), η(X) and φ(X) is shown in figure 12.12
for events in the signal region (1.697 < M(K0

s , Λ) < 1.72 GeV) and for events in the back-
ground region (M(K0

s , Λ) < 1.68 GeV or M(K0
s , Λ) > 1.74 GeV). All kinematic quantities

are distributed similarly for the two regions, implying that the signal is not enhanced in a
certain region of the phase space.
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Figure 12.12: The pT (X) (left), η(X) (middle) and φ(X) (right) distribution of the events in
the signal region (black solid points) and in the background region (blue open points).

All these cross checks indicate that the observation lies within the data itself and is not
artificially produced by the analysis treatment.

12.4 Interpretation of the Results

Assuming that the observed signal is a real resonance, a possible interpretation is the pen-
taquark state N0

s which should predominantly decay into K0
s Λ. The mass of this state is

expected to be around 1.7 GeV and its width is predicted to be small (see section 2.4). An-
other promising candidate for the interpretation of the signal is the excited baryon state
Ξ0(1690). The mass of this state is (1690 ± 10) MeV and the width is less than 30 MeV [26].
Other known states that can decay into K0

s Λ are the Ξ0(1820) or the excited nucleon states
N(1650, 1675, 1700, 1710, 1720). They are disfavoured because of their mass or their large
width (O(100 MeV)). Therefore the most promising interpretation is that of the excited
baryon Ξ0(1690) or the pentaquark state N0

s . In the following attempts are made to dis-
tinguish between these two possible interpretations. A third possibility is that the signal
candidate is caused by a statistical fluctuation.

The N0
s interpretation: The charged partner of this pentaquark state, the N+

s (see figure
2.16), should also be visible with the same amount of statistics. This state is expected
to decay predominantly according to:

N+
s → K+ Λ, (12.2)

N
−
s → K− Λ (12.3)

and should produce a signal in the K+ Λ and K− Λ combinations at a mass of 1.7 GeV.

The Ξ0(1690) interpretation: The charged version of the excited baryon, the Ξ−(1690),
should also be observable in this data set. This state decays according to [26]:

Ξ−(1690) → K− Λ, (12.4)

Ξ
+
(1690) → K+ Λ (12.5)
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and is therefore expected to produce a signal in the K− Λ and K+ Λ combinations at
a mass of 1.7 GeV.

Statistical fluctuation: As the statistics of the signal candidate is small, it could also be
a fluctuation. The probability that a background of Nb = 82 events, calculated within
± 2 σ of the reconstructed mass, fluctuates to produce at least the number of events
in the signal (Ns = 48) is 6 · 10−7, assuming Poisson statistics. This probability
corresponds to 5.0 σ when expressed as an equivalent number of Gaussian standard
deviations. A more reliable approach is provided by subtracting the uncertainty in the
number of signal entries from Ns and adding it to Nb. The probability that a background
of Nb = 82+12 events fluctuates to produce at least Ns = 48-12 signal entries, expressed
as Gaussian standard deviations, is 3.7 σ. This interpretation is investigated further by
analysing the HERA II data, see section 12.5.

The two most promising interpretations should therefore be distinguishable by examining
the combination K± Λ. However, at least two problems arise by this comparison: Firstly, the
properties of the pentaquark states, if they exist, are not known and therefore predictions of
decay modes are to be taken with care. Furthermore the N+

s state has never been observed
up to the present date. Secondly, the combination of charged kaons with lambdas is different
to the combination of neutral kaons with lambdas. The charged kaons are not reconstructed
as resonances but only as single tracks which leads to a much larger background in these
mass spectra.

12.4.1 Λ K± Combinations

Regardless of the possible problems mentioned above, the combination of charged kaons with
lambdas is investigated. The Λ candidates are selected as described above (12.1). For the K±

candidates, vertex-fitted tracks fulfilling the selection criteria introduced in section 4.2.1.1 are
taken. As most of the selected particle tracks are π± mesons, further selection requirements
on these tracks are applied. The fraction of K± mesons is enriched by using the information
of the specific energy loss of the particles in the tracking chambers. The energy loss per
flight length of the particles, dE/dx, is described by the Bethe-Bloch equation [26]. For the
description of the energy loss in the H1 tracking chambers a semi-empirical approximation of
the Bethe-Bloch parameterisation is used, see [163]. In figure 12.13 the specific energy loss of
all selected vertex-fitted tracks is displayed as a function of their momentum p. Overlayed are
the parameterisations for pions, kaons, protons and deuterons. Clearly visible are the three
bands representing the pions, kaons and protons. For p > 0.7 GeV the pion and kaon bands
overlap and thus making a separation impossible. The parameterisation of the bands is used
to calculate the likelihood probability that a given track is a pion, a kaon or a proton, see for
example [76]. For this analysis only K± candidates are considered which have a probability,
LH(K±), to be compatible with the corresponding parameterisation of larger than 8 %. The
energy loss of the tracks fulfilling this requirement is also shown in figure 12.13. Only the
band compatible with the parameterisation of the kaon case remains. Furthermore, only K± Λ
combinations with a transverse momentum larger than 1 GeV are considered. The resulting
mass spectra of the different charge combinations K+ Λ, K− Λ, K+ Λ and K− Λ are shown
in figure 12.14. Overlayed is the result of a fit to these spectra using the parameterisation
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given by:
B(M) = P0 · (M −MK± −MΛ)P1 · (1 + P2 · M + P3 · M2), (12.6)

where MK± and MΛ denotes the nominal masses of the K± mesons and Λ baryons, respec-
tively. In the lower part of the figure 12.14 the deviation of the data points from the fitted
function are shown. No significant structure is observed in any of the four mass spectra.
Therefore, no hint for the Ξ−(1690) state nor for the N+

s state is seen in the data.
For a further suppression of the background induced by the π± mesons, the total momen-

tum of the K± candidates is restricted to p < 0.7 GeV. The corresponding mass spectra are
displayed in figure 12.15. The mass spectrum of the K+ Λ combinations shows two possible
enhancements at masses around 1.66 GeV and 1.73 GeV. These structures are not seen in any
of the other charged combinations, strongly disfavouring an interpretation as real resonances.
Furthermore, these structures are not stable under variation of the selection criteria and the
binning.

The investigation of the K± Λ mass spectra did not lead to a clarification of the nature
of the signal observed in figure 12.4.
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Figure 12.14: The reconstructed mass spectra for K+ Λ (top left), K− Λ (top right), K+ Λ

(bottom left) and K− Λ (bottom right) combinations (charge conjugation excluded). Over-
layed on the data points is the result of a fit using the function defined by equation 12.6.
The difference of the invariant mass and the fit function is appended on the bottom of each
figure.
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Figure 12.15: The reconstructed mass spectra for p(K±) < 0.7GeV for K+ Λ (top left), K− Λ

(top right), K+ Λ (bottom left) and K− Λ (bottom right) combinations (charge conjugation
excluded). Overlayed on the data points is the result of a fit using the function defined by
equation 12.6. The difference of the invariant mass and the fit function is appended on the
bottom of each figure.
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12.5 K0
s Λ Combinations in the HERA II Data

In order to investigate whether the signal candidate observed in the HERA I data is a statis-
tical fluctuation, the HERA II data recorded in the year 2005 and 2006 are analysed. This
data set corresponds to an integrated luminosity of 257 pb−1, providing roughly three times
the statistics analysed in the previous section. A full analysis of the HERA II data is beyond
the scope of this work and the following studies should therefore only be regarded as a first
look at the new data 4.

The reconstructed K0
s Λ mass spectrum is obtained by exactly the same analysis procedure

as in the HERA I case (see section 12.1 and 12.2) and is displayed in figure 12.16. The event
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Figure 12.16: The mass spectrum M(K0
s , Λ) extracted from the HERA II data. All selection

criteria introduced in sections 12.1 and 12.2 are applied. The solid line shows the result of
a fit using a superposition of a Gaussian and the background function defined by equation
12.1 while the dashed line indicates the background only.

yield is compatible with the increase of the statistics. A small enhancement is observed at
a mass of roughly 1730 MeV. A fit to this mass spectra with a superposition of a Gaussian
function and the background parameterisation defined by equation 12.1 is performed. This
fit (χ2/n = 47/29) yields a total of 69 ± 24 signal entries at a mass of (1736 ± 2)MeV. The
reconstructed width is (6.0 ± 2.2)MeV. Two problems arise when comparing the properties
of the potential signal extracted from HERA I and II data: Firstly, the reconstructed mass is
shifted by more than 20 MeV. This is significantly larger than the statistical uncertainty of
the measurements. However, systematic effects in the reconstruction of the particle tracks,
which has changed between HERA I and II, could in principle lead to a shift in this order of
magnitude, although this scenario is rather unlikely since the reconstructed mass of the K0

s

mesons and Λ baryons is, within 1 MeV, consistent with the world average. An analysis of
the data with the final calibration and alignment of the detectors is needed for clarification
of this point. Secondly, only 69 events are observed while the expected number of events for
the HERA II period is about 140. This difference is not covered by the statistical accuracy
of the measurement.

4At the time of this study, the final alignment and calibration constants were not yet available.
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The results reported here are obtained from uncorrected data. The compatibility of
the two signal candidates can only be tested by a rigorous analysis of the HERA II data.
Furthermore, the determination of the production cross-section for the signal candidates
observed in the HERA I and II data sets is needed to draw precise conclusions.



Chapter 13

Conclusion and Outlook

Spectroscopy of strange hadrons in ep collisions is studied in great detail. The measurement
of the production cross-section of K0

s and Λ particles is complemented by a search for new
resonances decaying into the strange particles Ξπ or K0

s Λ.

The cross-sections and ratios of the production of K0
s and Λ hadrons are measured dif-

ferentially in deep-inelastic ep scattering events as a function of the event variables and the
final state particle variables in the visible kinematic region defined by 2 < Q2 < 100 GeV2

and 0.1 < y < 0.6, 0.5 < pT (K0
s ,Λ) < 3.5 GeV and |η(K0

s ,Λ)| < 1.3.

In general, the overall features of the ep data are found to be reproduced by the simulation
when using the ALEPH-tuned JETSET parameters for the hadronisation process as extracted
from e+e− collisions. Therefore this tuning should also be applicable for the description of
pp collisions at the LHC. A more detailed study shows that the colour dipole model (CDM)
implementation favours a strangeness suppression factor, λs, around 0.3 while within the
matrix element and parton shower (MEPS) model a lower value around 0.2 is preferred. The
results are also found to be compatible with the ZEUS measurements. Furthermore, the
latest PDF set of CTEQ6L provides the most accurate description of the data.

However, the predictions fail to describe the details of the distributions in various regions
of the phase space, in particular in the low pT , low x and large positive η regions. A single λs

value is clearly insufficient to describe the details of the production in the different kinematical
quantities and regions. In the current region of the Breit frame the MEPS and CDM models
give very similar predictions, both describing the K0

s and Λ cross-sections satisfactorily.

The measurement of the asymmetry in the production of Λ with respect to Λ is found
to be consistent with zero within errors. Thus, no evidence of baryon number transport is
visible in the measured data.

The Λ to K0
s cross-section ratio is better described by the CDM implementation than by

the MEPS one. Therefore, the mechanism implemented in the colour dipole radiation model
seems to better describe the baryon to meson ratio than those implemented in the parton
shower. A tuning of the strangeness suppression factor λs and the diquark suppression factor
λqq to the measured data is performed for the CDM implementation. Under the conservative
assumption of a strange diquark suppression, λsq, between zero and one, the following ranges
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are extracted:

λs ∈ [0.266, 0.298],

λqq ∈ [0.101, 0.146].

The range quoted for λs is only valid for the PDF set CTEQ6L.

A search for new narrow baryonic resonances decaying into Ξ−π− and Ξ−π+ and their
charge conjugate states is performed with the H1 detector using a DIS data sample in the
kinematic region 2 < Q2 < 100 GeV2 and 0.05 < y < 0.7, corresponding to a total integrated
luminosity of 101 pb−1. The established Ξ(1530)0 baryon state is observed by identifying its
full decay chain. This includes the reconstruction of tertiary vertices which is successfully used
in the H1 framework for the first time. The reconstruction procedure is cross checked by the
measurement of the lifetime of the Ξ− baryons which is found to be c τ(Ξ−) = (5.16± 0.35) cm
and therefore in good agreement with the world average value. In total, 163 ± 24 Ξ(1530)0

baryons are reconstructed.
No signal of a new baryonic state is found in the mass range 1.6− 2.3GeV, for either the

combined or the four separate charge combinations (Ξ−π−, Ξ−π+, Ξ
+
π−, Ξ

+
π+). Therefore,

mass dependent upper limits at 95% C.L. are set on the production ratio of hypothetical
states, such as the pentaquark states Ξ−−

5q and Ξ0
5q, to the total number of observed Ξ(1530)0

baryons. For the neutral combinations these limits vary from 0.1 to 0.5 and for the charged
combinations from 0.12 to 0.45. The results reported here are found to be similar to the
limits published by the ZEUS Collaboration. With the HERA II data set these upper limits
could be improved by approximately 30 %.

The overall H1 data statistics in the Ξ− sample is comparable with the NA49 collab-
oration’s data and therefore the limits derived within this work do not confirm the NA49
observation of potential pentaquark states.

The K0
s Λ combinations are investigated using 78 pb−1 of ep scattering data from the

HERA I period. A resonant structure is observed at a mass of (1710 ± 2)MeV and with a
width of (4.8 ± 1.2) MeV, consistent with the detector resolution. This structure contains
48 ± 12 events and might be interpreted as the pentaquark state N0

s or the excited baryon
state Ξ0(1690). A study of the K± Λ combinations does not lead to a clarification of these
two interpretations. A structure is also observed in the HERA II data. However, only half of
the expected number of events are observed in the mass peak and its mean value is shifted by
26 MeV with respect to the observation in the HERA I data. A rigorous investigation of the
HERA II data using the latest calibration and alignment constants is needed for clarification
and a determination of the production cross-section for these signals is desirable. Neverthe-
less, it is shown that the combination of K0

s and Λ particles bears interesting features and is
worth being studied further.



Appendix A

Cross-Section Tables

The values of the cross-sections and their statistical and systematic uncertainties are listed
in tables A.1 to A.3 for the K0

s production, in tables A.4 to A.6 for the Λ production and in
tables A.7 to A.9 for the ratio R(Λ/K0

s ) for all variables investigated within this work.
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Table A.1: The differential K0
s cross-section values as a function of Q2, x, y and W in the

visible region defined by 2 < Q2 < 100 GeV2, 0.1 < y < 0.6, 0.5 < pT < 3.5 GeV and
−1.3 < η < 1.3. The bin ranges, the bin averaged cross section values, the statistical and the
positive and negative systematic uncertainties are listed.

ep → eK0

s X

Q2 dσ/dQ2 stat. syst. (+) syst. (−)

[GeV2] [nb/GeV2]

2 – 2.5 5.73 0.10 0.58 0.71

2.5 – 3 4.05 0.08 0.29 0.29

3 – 4 3.08 0.05 0.21 0.21

4 – 5 2.00 0.03 0.12 0.13

5 – 7 1.332 0.018 0.082 0.082

7 – 10 0.764 0.011 0.045 0.047

10 – 15 0.417 0.006 0.023 0.024

15 – 25 0.197 0.003 0.012 0.012

25 – 100 0.0340 0.0004 0.0020 0.0021

x dσ/dx stat. syst. (+) syst. (−)

[pb]

0.00004 – 0.0001 69.4 1.0 4.4 4.4

0.0001 – 0.0002 51.7 0.6 3.2 3.3

0.0002 – 0.0004 24.0 0.3 1.4 1.5

0.0004 – 0.001 7.07 0.07 0.43 0.43

0.001 – 0.01 0.315 0.004 0.019 0.019

y dσ/dy stat. syst. (+) syst. (−)

[nb]

0.1 – 0.15 86.5 1.0 5.0 5.4

0.15 – 0.22 65.0 0.7 3.9 4.1

0.22 – 0.3 48.2 0.5 2.9 3.0

0.3 – 0.4 35.8 0.4 2.1 2.1

0.4 – 0.5 25.7 0.4 1.3 1.4

0.5 – 0.6 22.5 0.4 1.1 1.2

W dσ/dW stat. syst. (+) syst. (−)

[GeV] [nb/GeV]

100 – 115 0.1837 0.0025 0.0107 0.0114

115 – 135 0.1853 0.0022 0.0109 0.0116

135 – 155 0.1694 0.0021 0.0105 0.0107

155 – 175 0.1524 0.0019 0.0088 0.0090

175 – 195 0.1365 0.0018 0.0079 0.0077

195 – 220 0.1099 0.0015 0.0057 0.0060

220 – 250 0.0986 0.0014 0.0052 0.0053
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Table A.2: The differential K0
s cross-section values as a function of pT and η. More details

are given in caption of table A.1.

ep → eK0

s X

pT dσ/dpT stat. syst. (+) syst. (−)

[GeV] [nb/GeV]

0.5 – 0.6 34.6 0.5 2.0 2.1

0.6 – 0.7 29.6 0.4 1.7 1.7

0.7 – 0.8 25.5 0.4 1.4 1.5

0.8 – 0.9 20.4 0.3 1.1 1.2

0.9 – 1.1 15.2 0.2 0.9 0.9

1.1 – 1.3 10.46 0.14 0.61 0.63

1.3 – 1.6 6.91 0.10 0.46 0.46

1.6 – 2.2 3.13 0.04 0.20 0.20

2.2 – 3.5 0.83 0.02 0.06 0.06

η dσ/dη stat. syst. (+) syst. (−)

[nb]

-1.3 – -1 8.08 0.12 0.41 0.42

-1 – -0.75 8.69 0.13 0.51 0.52

-0.75 – -0.5 8.64 0.12 0.44 0.46

-0.5 – -0.25 8.56 0.13 0.47 0.50

-0.25 – 0 8.79 0.16 0.56 0.59

0 – 0.25 8.65 0.14 0.58 0.60

0.25 – 0.5 7.58 0.13 0.52 0.52

0.5 – 0.75 7.99 0.13 0.55 0.56

0.75 – 1 7.98 0.15 0.54 0.54

1 – 1.3 8.06 0.13 0.54 0.54
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Table A.3: The differential K0
s cross-section values as a function of pBreit

T and xBreit
p in target

and current hemispheres of the Breit frame. More details are given in caption of table A.1.

ep → eK0

s X

pBreit
T target dσ/dpBreit

T stat. syst. (+) syst. (−)

[GeV] [nb/GeV]

0.5 – 1 21.20 0.19 1.20 1.23

1 – 1.25 10.05 0.16 0.57 0.57

1.25 – 1.5 6.12 0.13 0.35 0.37

1.5 – 2.5 2.04 0.04 0.12 0.12

2.5 – 4 0.230 0.008 0.011 0.011

pBreit
T current dσ/dpBreit

T stat. syst. (+) syst. (−)

[GeV] [nb/GeV]

0 – 0.6 2.00 0.05 0.14 0.16

0.6 – 3 0.277 0.009 0.031 0.036

xBreit
p target dσ/dxBreit

p stat. syst. (+) syst. (−)

[nb]

0 – 0.45 4.01 0.08 0.22 0.23

0.45 – 1 5.43 0.09 0.39 0.42

1 – 2 3.66 0.05 0.25 0.25

2 – 4 2.03 0.03 0.11 0.11

4 – 7 0.984 0.016 0.05 0.05

7 – 11 0.478 0.011 0.026 0.028

11 – 20 0.167 0.005 0.011 0.013

xBreit
p current dσ/dxBreit

p stat. syst. (+) syst. (−)

[nb]

0 – 0.3 3.27 0.08 0.18 0.20

0.3 – 1 1.20 0.04 0.14 0.17
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Table A.4: The differential Λ(Λ̄) cross-section values as a function of Q2, x, y and W . More
details are given in caption of table A.1.

ep → eΛX

Q2 dσ/dQ2 stat. syst. (+) syst. (−)

[GeV2] [nb/GeV2]

2 – 2.5 2.33 0.14 0.25 0.30

2.5 – 3 1.58 0.09 0.12 0.13

3 – 4 1.13 0.05 0.08 0.08

4 – 5 0.73 0.04 0.05 0.05

5 – 7 0.462 0.018 0.028 0.030

7 – 10 0.282 0.012 0.019 0.020

10 – 15 0.153 0.006 0.009 0.009

15 – 25 0.071 0.003 0.004 0.004

25 – 100 0.0120 0.0004 0.0006 0.0006

x dσ/dx stat. syst. (+) syst. (−)

[pb]

0.00004 – 0.0001 28.1 1.1 2.0 2.0

0.0001 – 0.0002 20.1 0.7 1.4 1.4

0.0002 – 0.0004 8.5 0.3 0.5 0.5

0.0004 – 0.001 2.57 0.08 0.15 0.15

0.001 – 0.01 0.104 0.003 0.006 0.006

y dσ/dy stat. syst. (+) syst. (−)

[nb]

0.1 – 0.15 27.9 1.1 1.6 1.8

0.15 – 0.22 24.7 0.8 1.6 1.6

0.22 – 0.3 17.4 0.6 1.3 1.3

0.3 – 0.4 14.2 0.5 0.9 1.0

0.4 – 0.5 10.9 0.5 0.7 0.7

0.5 – 0.6 9.1 0.4 0.5 0.5

W dσ/dW stat. syst. (+) syst. (−)

[GeV] [nb/GeV]

100 – 115 0.055 0.003 0.006 0.007

115 – 135 0.063 0.002 0.004 0.004

135 – 155 0.070 0.003 0.004 0.004

155 – 175 0.055 0.002 0.004 0.004

175 – 195 0.052 0.002 0.004 0.004

195 – 220 0.047 0.002 0.003 0.003

220 – 250 0.041 0.002 0.002 0.002
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Table A.5: The differential Λ(Λ̄) cross-section values as a function of pT and η. More details
are given in caption of table A.1.

ep → eΛX

pT dσ/dpT stat. syst. (+) syst. (−)

[GeV] [nb/GeV]

0.5 – 0.6 8.4 0.8 0.8 0.8

0.6 – 0.7 8.0 0.5 0.4 0.5

0.7 – 0.8 7.9 0.5 0.5 0.5

0.8 – 0.9 6.8 0.3 0.5 0.5

0.9 – 1.1 6.1 0.2 0.4 0.4

1.1 – 1.3 4.70 0.18 0.29 0.30

1.3 – 1.6 3.05 0.10 0.20 0.20

1.6 – 2.2 1.52 0.05 0.09 0.09

2.2 – 3.5 0.42 0.02 0.02 0.02

η dσ/dη stat. syst. (+) syst. (−)

[nb]

-1.3 – -1 2.67 0.14 0.15 0.15

-1 – -0.75 2.87 0.14 0.16 0.17

-0.75 – -0.5 3.03 0.15 0.17 0.17

-0.5 – -0.25 2.76 0.13 0.18 0.18

-0.25 – 0 2.74 0.15 0.19 0.20

0 – 0.25 2.92 0.15 0.21 0.22

0.25 – 0.5 2.95 0.14 0.21 0.22

0.5 – 0.75 3.36 0.17 0.23 0.23

0.75 – 1 3.43 0.15 0.25 0.25

1 – 1.3 3.88 0.16 0.28 0.31
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Table A.6: The differential Λ(Λ̄) cross-section values as a function of pBreit
T and xBreit

p in
target and current hemispheres of the Breit frame. More details are given in caption of
table A.1.

ep → eΛX

pBreit
T target dσ/dpBreit

T stat. syst. (+) syst. (−)

[GeV] [nb/GeV]

0.5 – 1 6.97 0.19 0.38 0.40

1 – 1.25 4.52 0.17 0.28 0.28

1.25 – 1.5 2.71 0.13 0.17 0.17

1.5 – 2.5 1.01 0.04 0.06 0.06

2.5 – 4 0.114 0.009 0.007 0.008

pBreit
T current dσ/dpBreit

T stat. syst. (+) syst. (−)

[GeV] [nb/GeV]

0 – 0.6 0.307 0.028 0.017 0.018

0.6 – 3 0.051 0.004 0.004 0.004

xBreit
p target dσ/dxBreit

p stat. syst. (+) syst. (−)

[nb]

0 – 0.45 0.94 0.05 0.05 0.06

0.45 – 1 1.51 0.07 0.11 0.12

1 – 2 1.09 0.05 0.08 0.09

2 – 4 0.75 0.03 0.05 0.05

4 – 7 0.45 0.02 0.03 0.03

7 – 11 0.220 0.011 0.015 0.016

11 – 20 0.102 0.006 0.008 0.008

xBreit
p current dσ/dxBreit

p stat. syst. (+) syst. (−)

[nb]

0 – 0.3 0.55 0.05 0.04 0.04

0.3 – 1 0.21 0.02 0.03 0.03
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Table A.7: The values of the ratio R(Λ/K0
s ) of the differential cross-sections for Λ(Λ̄) baryons

to K0
s mesons as a function of Q2, x, y and W . More details are given in caption of table A.1.

R(Λ/K0

s )

Q2 R(Λ/K0
s ) stat. syst. (+) syst. (−)

[GeV2]

2 – 2.5 0.406 0.025 0.018 0.019

2.5 – 3 0.390 0.020 0.030 0.030

3 – 4 0.368 0.019 0.020 0.020

4 – 5 0.366 0.020 0.018 0.019

5 – 7 0.347 0.014 0.014 0.014

7 – 10 0.369 0.016 0.018 0.019

10 – 15 0.367 0.015 0.013 0.014

15 – 25 0.360 0.016 0.017 0.017

25 – 100 0.353 0.012 0.017 0.018

x R(Λ/K0
s ) stat. syst. (+) syst. (−)

0.00004 – 0.0001 0.405 0.017 0.024 0.025

0.0001 – 0.0002 0.390 0.014 0.019 0.020

0.0002 – 0.0004 0.355 0.011 0.012 0.013

0.0004 – 0.001 0.364 0.012 0.013 0.014

0.001 – 0.01 0.329 0.011 0.016 0.017

y R(Λ/K0
s ) stat. syst. (+) syst. (−)

0.1 – 0.15 0.323 0.013 0.013 0.013

0.15 – 0.22 0.380 0.014 0.013 0.014

0.22 – 0.3 0.361 0.013 0.020 0.021

0.3 – 0.4 0.397 0.014 0.019 0.020

0.4 – 0.5 0.426 0.020 0.018 0.019

0.5 – 0.6 0.407 0.020 0.015 0.016

W R(Λ/K0
s ) stat. syst. (+) syst. (−)

[GeV]

100 – 115 0.301 0.015 0.013 0.013

115 – 135 0.339 0.014 0.014 0.015

135 – 155 0.409 0.017 0.012 0.014

155 – 175 0.359 0.015 0.014 0.015

175 – 195 0.378 0.016 0.021 0.021

195 – 220 0.424 0.018 0.023 0.024

220 – 250 0.411 0.019 0.013 0.014
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Table A.8: The values of the ratio R(Λ/K0
s ) of the differential cross-sections for Λ(Λ̄) baryons

to K0
s mesons as a function of pT and η. More details are given in caption of table A.1.

R(Λ/K0

s )

pT R(Λ/K0
s ) stat. syst. (+) syst. (−)

[GeV]

0.5 – 0.6 0.24 0.02 0.02 0.02

0.6 – 0.7 0.268 0.017 0.009 0.010

0.7 – 0.8 0.309 0.020 0.015 0.016

0.8 – 0.9 0.334 0.014 0.016 0.017

0.9 – 1.1 0.402 0.017 0.015 0.016

1.1 – 1.3 0.450 0.018 0.015 0.016

1.3 – 1.6 0.442 0.016 0.021 0.022

1.6 – 2.2 0.485 0.016 0.019 0.020

2.2 – 3.5 0.505 0.027 0.031 0.032

η R(Λ/K0
s ) stat. syst. (+) syst. (−)

-1.3 – -1 0.331 0.018 0.015 0.015

-1 – -0.75 0.330 0.017 0.018 0.018

-0.75 – -0.5 0.350 0.018 0.013 0.014

-0.5 – -0.25 0.323 0.016 0.015 0.016

-0.25 – 0 0.311 0.018 0.017 0.017

0 – 0.25 0.337 0.018 0.018 0.018

0.25 – 0.5 0.389 0.019 0.017 0.018

0.5 – 0.75 0.420 0.023 0.014 0.015

0.75 – 1 0.430 0.020 0.017 0.018

1 – 1.3 0.48 0.02 0.02 0.02
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Table A.9: The values of the ratio R(Λ/K0
s ) of the differential cross-sections for Λ(Λ̄) baryons

to K0
s mesons as a function of pBreit

T and xBreit
p in the target and current hemispheres of the

Breit frame. More detailes are given in caption of table A.1.

R(Λ/K0

s )

pBreit
T target R(Λ/K0

s ) stat. syst. (+) syst. (−)

[GeV]

0.5 – 1 0.329 0.009 0.008 0.009

1 – 1.25 0.449 0.019 0.015 0.016

1.25 – 1.5 0.443 0.023 0.017 0.018

1.5 – 2.5 0.493 0.019 0.020 0.021

2.5 – 4 0.495 0.043 0.026 0.027

pBreit
T current R(Λ/K0

s ) stat. syst. (+) syst. (−)

[GeV]

0 – 0.6 0.153 0.015 0.005 0.005

0.6 – 3 0.185 0.017 0.008 0.008

xBreit
p target R(Λ/K0

s ) stat. syst. (+) syst. (−)

0 – 0.45 0.235 0.014 0.008 0.008

0.45 – 1 0.277 0.013 0.010 0.011

1 – 2 0.297 0.014 0.013 0.013

2 – 4 0.370 0.016 0.014 0.015

4 – 7 0.460 0.022 0.017 0.018

7 – 11 0.46 0.03 0.02 0.03

11 – 20 0.61 0.04 0.03 0.04

xBreit
p current R(Λ/K0

s ) stat. syst. (+) syst. (−)

0 – 0.3 0.169 0.015 0.009 0.009

0.3 – 1 0.174 0.017 0.012 0.012
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Mass Assignment to the Daughter
Particles of the Λ

In the decay Λ → p π− the proton has always a higher momentum than the pion if the
momentum of the Λ is larger than approximately 300 MeV. In the following this threshold is
calculated.

The calculation starts with consideration in the rest-frame of the Λ. In this frame the
pion and the proton decay back-to-back and their momentum is balanced due to momentum
conservation: ~prest(p) = ~prest(π) =: ~prest. If the z-axis is chosen to coincidence with the pion
flight direction, four-vector conservation yields:

P ′µ
p + P ′µ

π =




√
m 2

p + p 2
rest

0

0

−prest




+




√
m 2

π + p 2
rest

0

0

prest




=




mΛ

0

0

0




= P ′µ
Λ. (B.1)

This equation determines the momentum p of the proton (pion) in the Λ rest-frame:

prest =

√
(m2

Λ −m2
p −m2

π)2 − 4 · m2
p · m2

π

4 · m2
Λ

= 100.58 MeV (B.2)

The maximal momentum of the pion is achieved if it is parallel to the flight direction of the
Λ. Therefore, the boost that gives the maximal pion momentum in the laboratory frame is:

Λµν =




γ 0 0 γβ

0 1 0 0

0 0 1 0

γβ 0 0 γ




(B.3)

The four-momentum of the proton and the pion in that laboratory frame that lead to the
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threshold condition are:

Pν,p = ΛµνP ′µ
p =




γ
√

m 2
p + p 2

rest − γβprest

0

0

γβ
√

m 2
p + p 2

rest − γprest




(B.4)

Pν,π = ΛµνP ′µ
π =




γ
√

m 2
π + p 2

rest + γβprest

0

0

γβ
√

m 2
π + p 2

rest + γprest




(B.5)

From these equations the condition that the proton must have a larger momentum than the
pion translates to:

γβ
√

m 2
p + p 2

rest − γprest > γβ
√

m 2
π + p 2

rest + γprest (B.6)

This leads directly to a condition on the velocity of the Λ in the laboratory frame:

β >
2 · prest

E rest
p − E rest

π

, (B.7)

where E rest
p and E rest

π are the energies of the proton and the pion in the Λ rest-frame,
respectively. Together with equation B.2 and β = p

E this finally implies:

p(Λ) & 300 MeV. (B.8)

This value is an absolute upper limit because the decay where the pion has the same flight
direction as the Λ is highly suppressed.



Appendix C

Systematic Uncertainties

In the following figures the effect of the different systematic sources on the cross-section
measurements is shown for all investigated variables. For explanation see section 6.5.
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Figure C.1: The effect of the systematic sources on the differential cross-sections in Q2 for
the K0

s mesons (solid, black lines) for the Λ baryons (blue, dashed lines) and for the ratio
R(Λ/K0

s ) (red, dotted lines).
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Figure C.2: The effect of the systematic sources on the differential cross-sections in x for
the K0

s mesons (solid, black lines) for the Λ baryons (blue, dashed lines) and for the ratio
R(Λ/K0

s ) (red, dotted lines).
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Figure C.3: The effect of the systematic sources on the differential cross-sections in y for
the K0

s mesons (solid, black lines) for the Λ baryons (blue, dashed lines) and for the ratio
R(Λ/K0

s ) (red, dotted lines).
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Figure C.4: The effect of the systematic sources on the differential cross-sections in W for
the K0

s mesons (solid, black lines) for the Λ baryons (blue, dashed lines) and for the ratio
R(Λ/K0

s ) (red, dotted lines).
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Figure C.5: The effect of the systematic sources on the differential cross-sections in pT for
the K0

s mesons (solid, black lines) for the Λ baryons (blue, dashed lines) and for the ratio
R(Λ/K0

s ) (red, dotted lines).
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Figure C.6: The effect of the systematic sources on the differential cross-sections in η for
the K0

s mesons (solid, black lines) for the Λ baryons (blue, dashed lines) and for the ratio
R(Λ/K0

s ) (red, dotted lines).
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Figure C.7: The effect of the systematic sources on the differential cross-sections in pBreit
T in

the target hemisphere for the K0
s mesons (solid, black lines) for the Λ baryons (blue, dashed

lines) and for the ratio R(Λ/K0
s ) (red, dotted lines).
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Figure C.8: The effect of the systematic sources on the differential cross-sections in pBreit
T in

the current hemisphere for the K0
s mesons (solid, black lines) for the Λ baryons (blue, dashed

lines) and for the ratio R(Λ/K0
s ) (red, dotted lines).
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Figure C.9: The effect of the systematic sources on the differential cross-sections in xBreit
p in

the target hemisphere for the K0
s mesons (solid, black lines) for the Λ baryons (blue, dashed

lines) and for the ratio R(Λ/K0
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Figure C.10: The effect of the systematic sources on the differential cross-sections in xBreit
p in

the current hemisphere for the K0
s mesons (solid, black lines) for the Λ baryons (blue, dashed

lines) and for the ratio R(Λ/K0
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