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Chapter 1


Introduction.


This thesis is oriented to the study of heavy quark photoproduction and
multiple interactions, MI. For this reason we search for D∗ Mesons, in order
to tag the charm quark, and we restrict ourselves in the region: Q2 < 1 GeV 2.
For the theoretical calculations we use two Monte Carlo event generators:
Rapgap 3.1 [1] and Pythia 6.2 [2].


Heavy quark production provide a large hard scale and therefore a small
αs, which allows to test the perturbative QCD theory. On the other hand,
MI has been proven to be important in hadron-hadron collisions. In this
thesis, using MC event generators, we search for possible signals of MI in
heavy quark production in electron-proton, ep, collisions.


The thesis begins with a Theoretical Overview, with an introduction to
ep collisions physics and the heavy quark photoproduction. We also give
an introduction to the MI model included in Pythia. The next chapter
introduces the concept of jet and presents some methods for the Heavy Quark
Identification. After these two theoretical chapters there is a study of the
direct and photon resolved processes, as well as the parton showering with
Rapgap. Since this thesis is oriented to the study of MI, Pythia plays
a very important role because it includes a MI model also for ep collisions.
Therefore, the fourth chapter is oriented to study the different steps in the
event generation in Pythia. Chapter 7 is a D∗ Meson photoproduction
study, where we include a comparison between the data, taken from the PhD
Thesis of Gero Flucke [3]. Finally, chapter 8 is a search for possible signals on
MI. In hadron-hadron collisions it is clear that MI play a role. In ep collisions
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it is not so clear although MI could play a role in resolved photon events.
The aim of this chapter is to find signals where HERA measurements could
be sensitive to MI.


A general table with the most important general parameters for Rapgap


and Pythia can be found in appendix A.
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Chapter 2


Theoretical Overview


In this chapter we give an introduction to the physics of Heavy Quarks,
HQ, at HERA. We begin with a general introduction to eletron-proton, ep,
physics and then we describe in more detail photoproduction of HQ, the
parton evolution and parton showers, PS. After that we describe multiple
interaction, MI, processes.


2.1 ep Scattering.


In a high energy ep collider like HERA the aim is to study the basic interac-
tions in nature and the structure of the proton. The center-of-mass energy,√


s, is defined by:


s = (Pe + P )2 (2.1)


where Pe and P are the incoming electron and the proton 4-momentum
respectively. The role of the electron is to ”illuminate” the inner parts of the
proton. Such collisons are classified as elastic or inelastic. In elastic collisions
the proton survives the collision with the electron and does not break up.
Figure 2.1 shows the lowest-order ep elastic transition:
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Figure 2.1: Elastic ep collision.


where the squared 4-momentum transfer, q, is defined by:


q2 = (Pe − Pe′)
2 (2.2)


and Pe′ is the scattered electron 4-momentum.


In order to deal with a positive defined variable we define the virtuallity
Q2 = −q2. Only with elastic collisions we are not able to look at the structure
of the proton, so what we do is to increase Q2 to acquire a better spatial
resolution in the proton. Increasing Q2 the probability of the proton to
break up also increases and then we have a more complicated picture, see
figure 2.2.


These collisions, e + p → e + X, are called inelastic ep collisions and are
characterized by a hadronic invariant mass, W, defined as:


W 2 = (P + q)2 (2.3)


such that in inelastic ep collisions the condition: W 2 � M2 is fulfilled
with M being the proton mass. This condition actually defines inelastic
collisions and can be given both for small and large values of Q2.


It is useful to define the pseudo-rapidity, η, the fraction of the proton
momentum carried by a parton from the proton, x, and y, the fraction of the
electron energy carried by the photon (in the proton rest frame):


η = − ln


(


tan
θ


2


)


(2.4)
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Figure 2.2: Inelastic ep collision.


x =
Q2


2 P · q (2.5)


y =
P · q
P · Pe


(2.6)


Q2 = x · y · s (2.7)


W 2 = y x − Q2 =
Q2


x
(1 − x) (2.8)


where θ is the polar angle where the incoming proton beam direction
defines the positive z-axis. In equations(2.7) and (2.8) we neglected both the
electron and the proton rest masses.


The cross section for the e + p → e + X process can be calculated in
Quantum Electrodynamics, QED:


d2σ


dx dy
=


2 π α2
em


Q4
s
(


2 F1(x) x y2 + 2 F2(x) (1 − y)
)


(2.9)


where αem is the electromagnetic coupling constant, and F1 and F2 are
structure functions. These structure functions contain our lack of knowledge
on the proton structure, and cannot be calculated from first principles and
have to be determined experimentally. We restrict to QED processes for
Q2 < 1000 GeV 2 because, in this case, weak interactions are negligible due
to the large masses of Z0 and W± .
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In the Quark Parton Modell, QPM, the quarks in the proton are consid-
ered as free particles and the scattering process can be viewed as an elastic
eletron-quark scattering, see figure 2.3.


e’
e


sâ´°â´°
Weqi


xP
p


q2


Figure 2.3: Electron-proton collision in the QPM model. The quark is viewed
as free particle and the photon-quark collision is elastic.


In this model we have the momentum sum rule:


∑


i


∫ 1


0


x fi (x) dx = 1 (2.10)


where the sum runs over all the quarks in the proton, i, and fi (x) are
the parton densities. Then fi (x) dx represents the probability of finding a
quark i with a momentum fraction between (x, x + dx). Since quarks are 1


2


spin particles, the differential cross section of such a process, e + q → e + q,
is:


dσ̂


dy
= e2


qi


2 π α2


Q4
ŝ
(


1 + (1 + y)2
)


(2.11)


where eqi
is the scattered-quark charge and ŝ is the center-of-mass energy


of the quark-electron subprocess. If we sum over all the quarks and integrate
over x′:


d2σ


dx dy
=


∫ 1


0


∑


i


dσ̂


dy
x′ fi (x


′) δ(x − x′)dx′ =


2 π α2


Q4
s
(


1 + (1 + y)2
)


∑


i


e2
qi


x fi (x) (2.12)
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If now we compare equations 2.9 and 2.12 we find that the QPM predicts:


F2(x) =
∑


i


e2
qi


x fi (x) (2.13)


F2(x) = 2 x F1(x) (2.14)


These are the Gallan-Gross relations


Experimentally it was shown that the quarks in the proton only carry
50% of the total momentum of the proton. The eq(2.10) does not hold as we
postulated and the sum has to be extended to all the partons in the proton
since the remainig 50% is carried by gluons and means a violation of the
QPM as we formulated it. This is true particularly for very small x values,
since the gluon density functions dominate over the quarks and QPM does
not take into account processes like γ∗q → qg or γ∗g → qq̄. This is done by
Quantum Chromodynamics, QCD. In pertubative QCD, pQCD, this can be
calculated:


dσ


∣


∣


∣


∣


ep→eX


=
∑


i


∫


fi


(


x, µ2
f


)


dσ̂i


(


ŝ, αs(µ
2
r), µr, µf


)


dx (2.15)


If we have a parton density function, fi


(


x, µ2
f


)


, at a given scale, µf , then
QCD predicts the parton density function at another scale via DGLAP (see
section 2.3).


The QCD theory explains how the partons introduced in this chapter,
quarks and gluons which are coloured particles, interact by exchanging a
gluon, the quanta of the color field of the strong force. This theory is similar
with QED but with important differences. In QCD we have nine gluons,
bicolored states, carrying the strong force, whereas in QED we have only
the photon. In QCD two gluons can interact with each other since they
are coloured particles, whereas two photons do not interact because they do
not carry electric charge. This last feature is very important and has deep
consequences (the asymptotic freedom), rise of F2 at small x and saturation
effects.
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2.2 Photoproduction regime and Heavy Quark


production.


At HERA, the production of HQ is limited to charm and beauty flavours.
The masses are large, larger than 1 GeV , in contrast to the light quark
masses, about a few MeV . These provide a large hard scale to be used in
pQCD due to their large masses which makes αs small (αs < 1). This means
that working with HQ is a good opportunity to test details in pQCD. All this
features lead to a nice opportunity to study both the γq and gq couplings.


In photoproduction the photon is almost real and the virtuality, Q2, is
very small. This occurs if the scattering angle of the electron, θ, is small. This
case, approximated by Q2 < 1 GeV 2, dominate the total ep cross section, as
can be seen from eq(2.9).


In this case, the photon can fluctuate into a quark-antiquark pair and in-
teract with the proton. In figure 2.4 are shown the leading order αs diagrams
in HQ photoproduction. In figure 2.4b) and c) is represented the resolved
photon in two quarks, one of them interacting with the incoming gluon from
the proton, emiting another gluon or being scattered respectively. In a similar
way as in eq(2.15) the cross section for photoproduction is expressed:


d2σ


dxpdxγ


∣


∣


∣


∣


γp


=
∑


i,j


fi/p


(


xp, µ
2
f


)


fj/γ


(


xγ , ν
2
f


)


dσ̂ij


(


ŝ, αs(µ
2
r), µr, µf , νf


)


(2.16)


where xγ is the momentum fraction of the photon entering in the hard
interaction. Here, the cross section is assumed to factorise into cross sections
σ̂ij, which describe the interaction between the partons i from the proton and
the partons j from the resolved photon, and the parton density distributions.
We need therefore fj/γ and νf , and as before fi/p and µf , the parton densities
and the factorisation scales in the proton and in the photon, respectively. An
approximate measure using jets of xγ is given by1:


xγ =
EJet1


t e−ηJet1 + EJet2
t e−ηJet2


2yEe
(2.17)


1The derivation is done in appendix B.
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where the jet definition will be given in section 3.1, Jet1 and Jet2 are jets
from the hard scattering, and EJet


t is the transverse energy of the jet, which
is defined as:


EJet
t =


√


(P Jet
t )2 + m2


Jet =
√


E2
Jet − P Jet


z (2.18)


In direct processes, represented in figure 2.4a), the photon interacts as a
whole with the incoming gluon and therefore xγ is equal to 1. The parton j
is just the photon and we can take fj/γ as δ(xγ − 1) in eq(2.16) taking the
appropriate σ̂ij.


p


e’e ee
e’ e’


p p


a) b) c)


Figure 2.4: Leading order processes: direct a), resolved photon b) and heavy
quark excitation c).


Other contributions come from resolved processes, where a gluon from the
proton scatters a charm quark from the resolved photon, i.e. heavy quark
production, this is called charm excitation. This contribution is quite large
and cannot be neglected.


2.3 Parton evolution and Parton Shower.


In section 2.1 we introduced the parton density functions, fi


(


x, µ2
f


)


, which
cannot be calculated from first principles. However, in pQCD the evolution
of the parton density functions can be calculated from a scale µf to another
scale µ, µ 6= µf using the DGLAP evolution. In general, to be able to evolve
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the incoming partons from the proton to the hard scattering we have three
different approaches: DGLAP, BFKL and CCFM, which are briefly described
below.


In this section we view a 2 → n process as a factorisation of a hard scat-
tering, where the hardest jets are usually created, and a parton evolution
from the proton to the hard scattering, i.e. a sequence of branchings, start-
ing from the proton and ending in the hard scattering, where the different
approximations differ:


DGLAP (Dokshitzer, Gribov, Lipatov, Altarelli, Parisi). [2, 4]


In this approximation the parton coming from the proton evolves ac-
cording to diagrams with leading contributions of log Q2. This means there
is a strong ordering in virtualities before entering in the hard scattering,
where we find the largest virtuality. This virtuality grows from a virtuality
q0 up to its highest value qn, such that in each branching i the condition:
qi−1 � qi � qi+1 is fulfilled. This virtuality ordering, q0 � q1 � ... � qn


leads to a strong ordering of the transverse momenta of the parton, kt, in
the evolution for small x: kt,0 � kt,1 � ... � kt,n, where kt = q2


1−x
. Since the


virtuality of the hard scattering is much larger than the highest virtuality
in the parton evolution, the virtuality of the parton entering in the hard
scattering can be neglected. This means that the parton can be treated as
collinear with the incoming proton and the partonic cross sections introduced
in eq(2.15) can be calculated on-mass-shell. Figure 2.5 represents the parton
evolution.


In each branching, i, the relevant kinematic variables are xi and qi. The
differential probability for a parton a to branch into two partons bc is given
by:


dPa =
αs


2 π
Pa→bc(x) dtdx (2.19)


where t is defined as:


t = ln
q2


Λ
→ dt = d ln(q2) =


dq2


q2
(2.20)


where Λ is the QCD scale ΛQCD. For each branching process, q → qg,
g → gg, g → qq̄ the theory provides the appropriate splitting kernel, Pa→bc,
see for example [2, 4].
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Figure 2.5: DGLAP parton evolution. The ladder exhibits a strong ordering
in the transverse momenta.


Without taking into account the previous evolution, the probability of a
parton to branch in a small interval of t, δt, is:


Γa→bc(t) δt =


∫ x+(t)


x−(t)


αabc


2 π
Pa→bc(x) dxδt (2.21)


Then the probability for no branching is: 1−
∑


bc Γa→bc(t) δt and therefore
if we evolve from a virtuality t0 to t, we have to take into account the diagrams
in figure 2.6 to find the no-branching probability:


Γa→a(t0, t) = e
−


R


t


t0
dt′


P


bc
Γa→bc(t


′)
(2.22)


In conclusion, the probability of branching at a virtuality t is:


dPa


dt
= e


−
R


t


t0
dt′


P


bc
Γa→bc(t


′)


(


∑


bc


Γa→bc(t)


)


(2.23)


This is: the probability of no-branching from the starting virtuality t0
to the virtuality, t (t0 can be the initial virtuality or the last branching
virtuality) multiplied by the probability of branching at the virtuality t. The
exponential factor is the so called Sudakov form factor.
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+ + +
....


Figure 2.6: Diagrams to be taken into account to calculate the no-branching
probability for a parton going from a virtuality t0 to another t.


Note that all this machinery does not take into account if the virtuality
ordering grows or decreases and therefore it can be used for the outgoing
partons of the hard interaction as well as for the incoming partons to allow
further parton showering. The parton evolution up to the hard scattering is
called initial state PS, whereas the further branchings after the hard scat-
tering are called final state PS. However, in MC programs the initial PS is
treated in a ”backward evolution” approach, where the parton densities are
also included in the evolution process.


Monte Carlo event generators using DGLAP evolution have as parameters
the maximum and minimum virtuality allowed in the parton shower and
ΛQCD. In chapter 6 we will see the effects of this parameter for heavy quark
production using the event generator Pythia 6.2 [2].


DGLAP provides a good description of most of the processes at HERA,
but this equation is expected to fail for low x processes where contributions
from log 1/x become as large as log 1/Q2. An example would be forward jet
production, where a better description of low x physics may be needed.


BFKL (Balitsky, Fadin, Kuraev, Lipatov). [5]


At large energies, i.e. small x (W 2 ∼ 1/x), effects of finite tranverse
momenta can be observed. In this approximation for asymptotically large
energies, or small x, only leading contributions of log 1/x are considered. We
have therefore a strong ordering in the fractional momenta x: x0 � x1 �
... � xn.


This approximation is valid in regions of small x where DGLAP is ex-
pected to fail. Since there is no virtuality ordering in this approximation kt
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can take any value and therefore the partonic cross sections in eq(2.15) have
to consider the finite transverse momentum and are calculated off mass shell.


CCFM (Catani, Ciafaloni, Fiorani, Marchesini). [6–8]


CCFM provides a bridge between the DGLAP and BFKL approximations
and is valid in both regions where DGLAP and BFKL can be applied. It is
then clear that the partonic cross sections in eq(2.15) have also to take the
finite transverse momenta into account. This is because the transverse mo-
menta of the incoming partons can have any kinematically allowed value and
therefore cannot be neglected. In CCFM, the parton emissions are strongly
ordered in angle of the emissions. In figure 2.7 the kinematics is shown and
the angular ordering condition is:


ξ0 < ξ1 < ... < ξn < Ξ (2.24)


This angular ordering in the phase space of the parton emissions dom-
inates the process according to the CCFM evolution equations. We define
the rescaled transverse momentum:


qi = xi−1


√


sξi =
pti


1 − zi


(2.25)


where pti is the transverse momentum of the emission i and xi = zixi−1.
Now the angular ordering can be re-written as:


qn > znqn, qn > zn−1qn−1, ... , q1 > q0 (2.26)


Note that if x is very small then qi can be any value in eq(2.26), i.e. pt


is not ordered, recovering the BFKL approximation, whereas if x is not very
small eq(2.26) sets qi ordering and therefore pti ordering, again the DGLAP
approximation.


2.4 Multiple Interactions, MI.


We present here briefly the theoretical model of the MI used in the MC
generator Pythia, see [9, 10]. This MC generator can simulate hadron-
hadron collisions as well as ep collisions. In hadron-hadron collisions, MI of
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Figure 2.7: CCFM parton evolution. The parton emission is ordered in angle
of the emissions: ξ0 < ξ1 < ... < ξn < Ξ.


the incoming partons of the hadrons can occur as an interaction of the hadron
remnants due to the large parton densities. In ep collisions it happens in a
similar way in the case of resolved photons. Figure 2.8 represents a multiple
interaction event. Here, processes are characterized by one hard partonic
scattering, with the highest virtuality of the process, and one or more other
partonic scatterings with a lower virtuality, see figure 2.9 (note that Pythia


uses DGLAP evolution). We show a list with the most important parameters
that control MI in Pythia in table 2.1.


One of the free parameters of this model is p⊥min, the relative transverse
momentum between the two outgoing partons. For p⊥min → 0 the integrated
interaction cross section, σint(p⊥ > p⊥min), is larger than the total inelastic
nondiffractive cross section, σnd, since the t-chanel gluon exchange dominates


the 2 → 2 QCD cross section and this diverges like
dp2


⊥


p4
⊥


. This can be explained


with the fact that if we have two interactions in one event this is counted
twice in σint and only once in σnd. This counting procedure in σint leads to
the identification:


〈n〉p⊥min
=


σint(p⊥min)


σnd
(2.27)
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Figure 2.8: Multiple interaction event. Partons from the photon and the
proton interact more than once.


where 〈n〉p⊥min
is the average number of interactions per event. Since


p⊥min cannot be calculated from the theory, this parameter is tuned to data.
At HERA this value is set to 1.90 GeV , see [2, 11–13]. There are two basic
ways to apply this cut. The first one is to apply a step function θ(p⊥−p⊥min)
where the cross section would be zero below p⊥min. A second one is to apply
the factor:


α2
s(p


2
⊥min + p2


⊥)


α2
s(p


2
⊥)


p4
⊥


(p2
⊥min + p2


⊥)2
(2.28)


These partons from the hadron, figure 2.9, enter in hard interactions in
decreasingly p⊥ scale, p⊥1, p⊥2, p⊥3 and p⊥4. Althought there is no physical
meaning in this ordering we do it for convinience, partly because the hardest
interation will be the most important one in experimental measurements.
Every hard interaction has associated its own parton evolution, initial state
PS, from a starting p⊥min. Here we have initial state PS and MI mixed up
since a branching in the first hard interaction at p


′


⊥1, p
′


⊥1 > p⊥2, reduces
the available phase space for the second hard interaction. The other way
around, the other possible process with p⊥2 > p


′


⊥1 would represent a phase
space reduction for the branching at p


′


⊥1. Therefore, it is useful to consider
the initial state PS and MI in parallel using an unique decreasing sequence
of p⊥ for both processes. In this sequence, MI and initial state PS start a
phase space competition that we will discus at the end of the section.
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Figure 2.9: Multiple interaction event. Partons from the photon and the
proton interact more than once.


The theory makes the hypothesis that the hard interactions take place
independently of each other, leading to a Poisson distribution: Pn = 〈n〉


n!
e−〈n〉.


This hypothesis is supported by the picture of the proton as a pancake, due
to Lorenz contraction.


The interactions are ordered in p⊥i:
√


s/2 > p⊥1 > p⊥2 > ... > p⊥n >
p⊥min, according to the probability distribution:


dP
dp⊥


=
1


σnd


dσ


dp⊥
exp


(


−
∫ p⊥i−1


p⊥i


1


σnd


dσ


dp
′


⊥


dp
′


⊥


)


(2.29)


where the exponential expression, similar to eq(2.23), is a factor and gives
the probability to have no MI between p⊥i and p⊥i−1.


We can also include in the model a dependence on the impact parameter b,
see figure 2.10. A small impact paremeter means central collision, whereas a
large one means a peripheral collision. At small values of b, central collisions,
the overlap of the proton and the resolved hadron-like structure of the photon
is very large, and therefore it gives also a larger MI probability. If we denote
the matter overlap with Ψ(b), we can generalize eq(2.29) as follows:
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Figure 2.10: Representation of a hadron with a double Gaussian distribution.
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This overlap function, Ψ, is parametrized in Pythia by a Gaussian dis-
tribution, which represents a hadronic core, or by a double Gaussian, where
one could imagine it as hard hadronic core surrounded by a pion cloud, see
figure 2.10.


Since no multiple parton densities are available, a simple ansatz is taken
into account for the different phase space available in MI:


- For an interaction i, with momentum fraction xi, we rescale the parton
distributions: f(x) → f(x/X)/X, where X is the remaining momentum
fraction after n interactions, X = 1 −


∑n
i=1 xi.


- The valence distribution of flavour f after n interactions, qfvn, is nor-
malized to the number of valence quarks with flavour f , Nfvn, scaling the
original distribution by Nqvn/Nfv0


- In the case that in the hard interaction a sea quark is picked up, qs, we
assume this comes from g → qs + qs̄, where qs̄ is the antisea quark of qs. If
the gluon has a momentum fraction y, the qs̄ carries a fraction x, x = y−xs.
The qs̄ distribution is given by:
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qs̄(x; xs) ∝
∫ 1


0


g(y)Pg→qsqs̄
(z)δ(xs − zy) dz (2.31)


where we neglected other interactions and other perturbative evolutions
of qs̄ and Pg→qsqs̄


is the DGLAP splitting kernel.


In summary of the different possibilities for Pythia, we have a procedure
for the MI hard scatterings and the initial state PS, which are calculated
together since they have to ”compete” for the available phase space. In
addition, two different kinds of cuts for p⊥min can be chosen, an abrupt
one given by a step function and a continuous one given by the factor in
eq(2.28). The impact parameter dependence can be introduced and simple
or double Gaussian distributions can be selected to model the hadron content
distribution in the proton. All these options are controlled basically by the
parameters MSTP 82 and PARP 81-83, which are summarized in table 2.1.


2.5 Monte Carlo event generators.


In the previous sections we have given a theoretical overview. The theoretical
predictions are usually implemented in Monte Carlo event generators. The
event generation can be factorized in several processes: initial state parton
shower, hard scattering, final state parton shower and hadronization (see
figure 2.11).


In this thesis we use the DGLAP based Monte Carlo generators Rapgap


and Pythia. A Monte Carlo generator based in CCFM is Cascade [14].
In the following we describe briefly the event generation steps.


• Initial and Final State Parton Shower.


Higher order QCD radiation can be approximated by PS, i.e. quarks
and gluons radiated by the incoming and/or outcoming partons of the
hard scattering, are called initial state and final state PS. In section 2.3
we presented the DGLAP, BFKL and CCFM parton evolutions for
these in- and outcoming partons. Equation 2.23 steers this process for
generators using DGLAP where no multiple interactions are included,
whereas in the multiple interaction model the different incoming par-
tons in the different hard scatterings have a competition for the phase
space available, as explained at the end of section 2.4.
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Figure 2.11: Schematic picture of an electron-proton collision. The different
subprocesses: hard interaction, initial and final state radiation and hadroniza-
tion are shown.


• Hard Scattering.


The hard scattering is calculated using QCD Matrix Elements, ME.
The event generators used here calculate the ME only in Leading Order,
LO, in αs.


• Hadronization.


The hadronization is the process where the quarks and gluons, coloured
particles, go into observable particles, i.e. mesons and hadrons. This
is a non-perturvative process and cannot be calculated but modelled.
An important feature of the hadronization is that there is no heavy
quark production in the fragmentation process. Two models are the
independent and the Lund String fragmentation models and are de-
scribed in [2]. In the independent fragmentation the partons pick up
quarks from the qq̄ pairs from the vacuum when forming mesons. This
model does not take into account any color consideration. The Lund
String model considers the strong interaction force between partons
(these are coloured particles with a relative momentum) with a string-
like force. The kinetic energy from the coloured particles is transferred
to the string. This energy is used to create qq̄ pairs when the string
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has energy enough to break and produce them. The created pairs are
also bounded by a new string. When the energy in the strings is not
enough to create new mesons and hadrons the process stops.
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MSTP 82 Short description Abbreviation


1 same probability for all events MI-1
and abrupt p⊥min cut.


2 same probability for all events MI-2
and continuous p⊥min cut.


3 impact parameter and Gaussian matter MI-3
distribution with continuous p⊥min cut.


4 impact parameter and double Gaussian matter MI-4
distribution with continuous p⊥min cut.


Parameter: Short description
PARP


81 effective p⊥min for MI-1
82 regularization scale of the transverse momentum spectrum


for MSTP 822 ≥ 2, at the reference energy scale PARP 89
with the degree of energy rescaling given by PARP 90


83 In double Gaussian: fraction of the total hadronic matter
within a core of radius PARP 84


84 Core radius in double Gaussian matter distribution.
85 Probability that the MI produces two gluons with color


connections to the ’nearest neighbors’
89 Reference energy scale
90 Power of the energy-rescaling term of p⊥min


Table 2.1: Summary of the parameters relevant for MI in Pythia.


2For these options it is: p⊥min = (PARP82)
(


s


PARP89


)PARP90
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Chapter 3


Jets and Heavy Quark
Identification


In this chapter we study how the calculations at the parton level, i.e. the
outgoing quarks from the hard scattering including also multiple interactions,
and the gluons from the initial and final state parton shower, are related
to the hadron level. This relation is interesting since the hadrons are the
particles we can measure.


For this purpose we introduce the concept of jet and its properties. We
examine also two jet finder definitions: the Kt algorithm, a cluster-type
algorithm, and the CDF −CONE algorithm, a cone-type one. The results
of these jet finder will be compared in the next chapters.


Since the main purpose of this thesis is the study of the heavy quark
production, we are interested in the heavy quark identification, the charm
quark, at the hadron level with the help of the jets. We discuss three possible
heavy quark identification methods with the jets. In the next chapters these
methods will be used to calculate differential cross sections and to compare
their results.


3.1 Charm Jet Concept.


The outgoing partons from the hard scattering and the initial and final state
PS studied in chapter 2 are coloured particles. The colour charge confinement
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prevents the measurement of any parton before hadronization. This means
we can only measure the hadrons (figure 2.11).


A jet is defined as a collimated stream of particles and energy. After
initial state PS, hard scattering and final state PS, all partons hadronize.
The particles produced from high energetic partons are expected to follow
more or less the direction of the parton, thus producing a jet of particles.
There are different methods for the combination of particles into jets, i.e.
there is no unique definition for jets. In general, a jet algorithm should fulfil
the following properties:


- it has to be easy to implement: both in the experimental analysis and
in the theoretical calculations.


- it should provide and define finite cross sections at any order of pertur-
bation theory. It is therefore necessary that the definition is infrared safe,
i.e. insensitive to emission of low energy particles, and collinear safe, i.e.
insensitive when replacing two collinear particles by a single one with the
summed momentum.


- the sensitivity of the jet algorithm to the details of the hadronization
should be small.


The jet algorithms take the objects under study, called seeds, which can
be partons, hadrons, calorimeter cells, tracks, etc, and combine them with
a certain algorithm to construct the jets. This procedure together with the
stopping conditions define the jet algorithm.


3.1.1 Kt Algorithm.


There are two modes [15]: the inclusive and the exclusive one.


• Inclusive mode.


The algorithm works with the final state objects, i, and the beam,
B, and from them it defines the resolution variables: diB, between
the final state objects and the beam, and dij, between two final state
objects i and j. The definition of these resolution variables is left to
a particular algorithm but are defined such that, at small angles, they
are the squared relative transverse momentum of i with respect to the
beam, B, and to the object j respectively. The procedure is:
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- Calculate the resolution variables for the final state objects and the
beam.


- Find the smallest value among all the diB and dij, dmin. Now there
are two possibilities. First: if dmin is one of the dij values, then the
two final state objects i and j are combined into a single one. Second:
if dmin is one of the diB, then the object i is defined as a jet, i.e. not
considered as an object any more.


- The resolution variables are recalculated with the objects that are
left and the procedure starts again unless there are no more objects to
be taken into account.


The combination scheme of two objects i j is also left to a particular
algorithm. An example of resolution variables is:


diB = E2
i θ


2
iB ' k2


⊥iB for : θiB → 0 (3.1)


dij = min(E2
i , E2


j )θ
2
ij ' k2


⊥ij for : θij → 0 (3.2)


An example of combination scheme is to add the 4-vectors producing
”massive” jets:


pij = pi + pj (3.3)


• Exclusive mode.


In this mode we define also a stopping parameter dcut, which has di-
mensions of energy squared. The procedure is:


- Calculate the resolution variables as in the previous mode.


- Find dmin as in the previous mode. Now we have three possibilities.
First: if dmin > dcut then all the objets at this stage are defined as
jets. Second: if a dij is the smallest value then the objects i and j are
combined into a single one. Third: if a diB is the smallest value then
the object i is included in the beam Jet.


- The procedure is repeated until all the objects are defined as jets.


It is important here to stress that the definition of dcut separates the
hard final state from the soft beam remnants, since it stops the proce-
dure when all the objects fulfil the cut: dmin > dcut, which imposes a
hard scale for the process.
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In the following we only refer to the Kt algorithm in the inclusive mode.


An important feature of the Inclusive mode is that at the end of the
procedure all the particles end up in jets, whereas in the Exclusive mode
some of the particles are included in the beam Jet.


3.1.2 CDF-CONE Algorithm.


The basic idea is the hypothesis that a jet can be defined from those particles
in a cone around the direction of the parton. This cone is defined in the η−φ
space, where η is the pseudo-rapidity defined in eq 2.4, and φ is the azimuth
angle.


The algorithm [16] starts creating a list of particles with Et above a
threshold, E0, and these particles are used as seeds for the process:


- The transverse momenta of all the particles within a cone of radius R0


around each seed particle are added. This radius is defined as:


R =
√


∆η2 + ∆φ2 =


√


(ηi − η0)
2 + (φi − φ0)


2 (3.4)


where η0 and φ0 are the center of the cone coordinates, the seed, and ηi


and φi the particle coordinates, satisfying the condition: R < R0.


- Now, the centre of gravity of each cone is calculated. If the particles
within the cone of radius R0 around the centre of gravity are the same as
the particles in the cone centered in the seed, this is defined as a jet and the
seed is removed from the list of seeds. If not, the centre of gravity is taken
as a new seed and we iterate again.


The iteration stops when there are no seeds left.


Both the Kt and the CDF −CONE algorithms are not free of problems.
For example, the cone algorithm definition is not infrared safe in events with
final states with more than three partons. Information about it can be found
in [17–20]. The Kt algorithm, although infrared and collinear safe, has the
problem that the CPU time used increases very fast with the particle mul-
tiplicity, which can be a problem at colliders like the Large Hadron Collider
(LHC) at CERN, see [21].


32







3.2 Charm Jet Selection.


In this section we study three methods to identify the charm content of the
jets.


All the methods described below have in common the tagging of charm
via a D∗ particle, which arises from the charm fragmentation. In the MC
study presented here, the D∗, independently of the decay chanel, is required
to satisfy: Pt > 2 GeV , | η |< 1.5. If an event contains more than one D∗


the study is repeated for each of them independently.


Leading Particle Method.


In this method we use one of the jet algorithms to find the jets. Among
the decay particles of the D∗ the one with the largest transverse momentum
in the laboratory frame is taken as the Leading Particle, LPD. The jet which
contains the LPD is identified as the D∗ Jet.


Although at high Pt all the decay particles of the D∗ are supposed, in
principle, to be in the same jet, it was found that most of the D∗ decay
products end up in several jets. Therefore we defined a LPD in order to be
able to define the D∗Jet according to the idea of jet.


D∗ Meson as Stable Particle Method.


The D∗ decay particles are replaced by the D∗. This is done to include
the D∗ unconditionally in one of the jets when executing the jet algorithm,
and to exclude the possibility that the decay particles go into different jets.
The jet containing the D∗ is called the D∗Jet.


This method is based on the idea that the purpose of the jet algorithms
is to find the correlation between the partons, in this case the charmed quark
represented by the D∗ particle, and the hadron level. Experimentally this
can be also done with the reconstructed D∗.


Cone Method.


This method follows the same principle as the CDF −CONE algorithm
described in the previous section. In a similar fashion, a distance R is defined
in analogy to the cone radius, R of eq(3.4). The distance is now taken from
the D∗ particle to the jets. The jet with smallest distance, Rmin, to the D∗


particle is defined as the D∗Jet, when the condition Rmin < 1 is fulfilled.
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Chapter 4


Short introduction to the H1
Detector at HERA


This chapter introduces the H1 detector at the HERA (Hadron-Elektron-
Ring-Anlage) particle accelerator. Although this thesis does not contain any
data analysis, except for the data taken from the Thesis of Gero Flucke [3],
we need to take into account how we measure. Since we present an study on
multiple interaction in heavy quark production, which will be contrasted to
data, we need to understand the detector to apply the necessary cuts in the
study.


After a general presentation of HERA we give a short description of the
CDF (Central Tracking Detector), the calorimeters and the luminosity sys-
tem.


4.1 The Particle Accelerator HERA.


The particle accelerator HERA (name taken from one of the twelve olympians
of the greek mythology and Zeus wife) at the DESY (Deutsches Elektronen-
SYnchroton) laboratory is situated in Hamburg, Germany, and has a circun-
ference of 6.3 Km. Electrons (or positrons), with an energy of 27.6 GeV , and
protons with an energy of 920 GeV (820 GeV before 1998) are accelerated in
bunches and collided at four interaction points, two of them are the H1 and
ZEUS experiments (


√
s ≈ 320 GeV ). The particles are accelerated in DESY
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Figure 4.1: On the right side the DESY and PETRA facilities, and on the
left the HERA ring and the halls: H1, ZEUS, HERMES and HERA-B.


and PETRA rings and then injected into the HERA ring, with an energy of
12 GeV and 40 GeV for electrons and protons respectively, see figure 4.1.


4.2 The H1 Detector.


The H1 detectector consists on multiple subdetectors and components, which
due to the higher energy coming from the proton side is asymetrically con-
structed, i.e. most of the created particles go to the forward region (proton
direction) and therefore a better resolution is needed there. The H1 detector
is described in detail in [22,23]. The most important parts for this thesis are
the Central Tracking Detector (CTD), the calorimeters and the luminosity
system.


4.2.1 Central Tracking Detector.


The task of the tracking is to reconstruct and identify charged particles and
to measure their momenta. The central tracking detector covers the polar
region: 200 < θ < 1600.


From the beam pipe to the outer part of the detector, the CTD con-
sists on the Central Silicon Tracker (CST), the Central Inner Proportional
Chamber (CIP), the Central Inner z-drift Chamber (CIZ), the Central Jet
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Figure 4.2: Transverse section of the Central Tracking Detector.


Chamber 1 (CJC1), the Central Outer z-drift Chamber (COZ), the Central
Outer Proportional Chamber (COP) and the Central Jet Chamber 2 (CJC2).


With a magnetic field of about 1.5 T in the tracking detector, the charged
particles trajectories are bend and in this way the particle momenta can be
calculated. The main tracking detector, the CJC, are two coaxial cylinders
filled with gas, which is ionized by charged particles when crossing the detec-
tor. The electrons from the ionization drift to the wires in a strong electric
field, and one can measure the position of the charged particle.


4.2.2 Calorimeters.


The main task of the calorimeters is to measure the energy of charged and
neutral particles. The two main calorimeters are the Liquid Argon (LAr)
calorimeter and the spaghetti calorimeter (SpaCal).


The LAr is a stack of lead, for detection of the electromagnetic part of
the incident particles, and steel plates, to detect the incoming hadrons. Both
parts are surrounded by liquid argon. The electromagnetic component is in
the inner part, whereas the hadronic component is in the outer part of the
calorimeter. It covers the polar region: 40 < θ < 1540. When hadrons,
electrons and photons are absorved, particle showers are produced through
bremsstrahlung and pair production, so that the energy of the particles is
deposited in the calorimeter. When these showers enter in the liquid argon,
they ionize it and the deposited energy can be measured.
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The SpaCal has also an electromagnetic part and a hadronic part and
covers the polar region: 1530 < θ < 177.50, i.e. 1 < Q2 < 100 GeV 2, which
is out of our region of interest.


4.2.3 Luminosity System.


For the luminosity measurement we use the Bethe-Heitler process ep → epγ.
Since the cross section is very well known, the detection of this process allows
us to calculate the luminosity. The luminosity is monitored by two C̆erenkov
calorimeters, which detect this process. They are the electron tagger ET33, at
z=-33.4m, and the photon detector (PD), at z=-101.8m both elements in the
electron direction. The electron tagger is also used to tag photoproduction
and the photon detector is also used to detect hard photons from the initial
state QED radiation in deep inelastic scattering.
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Chapter 5


Photoproduction of D∗ using
Rapgap as event generator


The aim in this chapter is to understand processes which consist of one
jet containing a charm quark from the hard interaction. The direct and
resolved processes are studied, as well as the parton showering mechanism.
The charm is tagged by the D∗ particle and the D∗Jet. The other jet, which
we will denote simply as jet, does not contain the tagged charm but is also
reconstructed to further constrain the hard subprocess. If an event contains
more than one D∗ particle we consider it as if it were two different events, one
per each D∗ particle. Cross sections were calculated for D∗ photoproduction,
with Q2 < 0.01 GeV 2, in the kinematic region of 171 < W < 256 GeV and
0.29 < y < 0.65.


As a tool to get an easy access to the Monte Carlo, MC, event generator
information we use the hztool package [24]. First we use the Kt algorithm to
find jets and then we compare the results with the CDF−CONE algorithm,
applied in the laboratory frame. The D∗ particle is required to satisfy: Pt >
2 GeV and | η |< 1.5, which corresponds to the central H1 detector region.
These cuts will be very important when comparing our results with real data
because they ensure a proper D∗ detection and tracking. It was found that
mostly the D∗ decay products go into several jets. For such cases and in
order to define the D∗Jet, we search for the leading particle of the decay,
see section 3.2, by tracing back the decay products of the D∗ independently
of the decay chanel. This can be easily done with MC event generators, but
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W 171 < W < 256 GeV
y 0.29 < y < 0.65
Q2 Q2 < 0.01 GeV 2


ηD∗ | ηD∗ |< 1.5
P D∗


t P D∗


t > 2 GeV


ηJet −1.5 < ηJet < 2.7
P Jet


t P Jet
t > 3 GeV


Table 5.1: In this table the cuts for W, y and Q2 are defined as well as for
D∗ particles and jets (also the D∗Jet).


is also possible experimentally after the D∗ has been reconstructed. For the
other jet we apply the following cuts: Pt > 3 GeV and −1.5 < η < 2.7,
where we can go to a more ”forward” region because experimentally for jets
one can use also the information from the forward calorimeters, whereas for
the D∗Jet the tracking is needed. Table 5.1 contains a summary of the cuts.


We use Rapgap 3.1 [1] using different sets of parameters, see Table 5.2,
to investigate different subprocesses, such as electron-gluon interactions or
resolved photon processes (section 5.1) and contributions from different types
of parton showers, PS, (section 5.2).


We also study the Kt and CDF −CONE algorithms, described in chap-
ter 3, at the Monte Carlo event generator level (section 5.3).


5.1 Direct and Resolved Photon Cross Sec-


tions


In this section the angular distribution of D∗ and jet in direct and re-
solved photon processes is investigated. The jets are reconstructed with the
Kt algorithm.


In Figure 5.1a) the differential cross sections as a function of η of the jet
and the D∗ for resolved photon processes are presented. Here, the D∗ appears
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Parameter Resolved photon Direct process
IPRO 18 14
PTCU 2 5
NFQC 4 3
IHFL 4 3


No PS Initial Final Initial and Final
IFPS 0 1 2 3


Table 5.2: In this table are shown the parameters for resolved photon processes
and for direct ones as well as for no PS, initial, final, initial and final state
PS.


clearly more often in the negative region of η whereas the jet appears more in
the positive region. In Figure 5.1b) the differential cross sections dσ/ηJet and
dσ/ηD∗ are compared for direct processes. Here we see that D∗ appears more
often in the negative η region as compared to the jet. This is suggested from
the diagrams involved, see figure 2.4, where it becomes clear that in resolved
photon processes the jets are produced more often in the proton direction.


In Figure 5.1b), where direct processes are shown, both the jets and the
D∗ have the largest cross sections in the negative η region. This results in
∆η centered around zero. In Figure 5.1a), where resolved photon processes
are plotted, the distributions for the jets and the D∗ are different, resulting
in a ∆η at negative values.


In figure 5.2 we present the cross sections of the process e + D∗ → e′ +
D∗ +Jet+X as a function of ∆η, which is defined as the difference between
ηLPDJet and ηJet. The contributions, in the phase space defined in Table 5.1,
of the direct processes and resolved photon processes are shown separately.
The average value for ∆η in direct processes is ∆η ' −0.7, whereas for the
resolved photon events it is ∆η ' −1.1. The reason can be explained with
the different η distributions, for D∗ and jet in direct and resolved photon
events.
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Figure 5.1: Differential cross sections dσ/dηD∗ and dσ/dηJet for resolved pro-
cesses (a) and for direct γ+g → cc events (b). The more negative mean value
of dσ/d∆ηLPDJet−Jet in resolved events comes from the negative η region.
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Figure 5.2: Differential cross section dσ/d∆ηLPDJet−Jet. The resolved photon
events (solid line) are shifted to the left in comparison to the direct γ+g → cc
(dashed line).
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5.2 Cross Sections with different Parton Shower


settings.


With the MC generator Rapgap the different contributions of initial and/or
final PS can be studied separately. In Figure 5.3 and 5.4 the cross sections
dσ/d∆ηLPDJet−Jet, dσ/dP D∗


t and dσ/dηD∗ are shown for direct processes with
and without initial and final state PS.


In figure 5.3 dσ/d∆ηLPDJet−Jet is shown for cases without and with initial
and/or final PS. Here one can observe that the initial state PS contributes
to the negative ∆ηLPDJet−Jet region, whereas final state PS contributes to
positive region. It is interesting to observe that the cross section becomes
smaller if both initial and final state PS are included.


To understand this observation in more detail, we show in figure 5.4 the
differential cross sections as a function of Pt and η of the D∗ without any
cut. In the region 2 < P D∗


t < 12 GeV the larger cross section is for initial PS
whereas in the whole region, 0 < P D∗


t < 12 GeV , all the cross sections are,
by construction, equal within errors. The difference therefore comes from
the region 0 < P D∗


t < 2 GeV , see figure 5.5, where the larger cross sections
are, in decreasing order, for final PS, no PS, initial and final PS and initial
PS events. Therefore the cut in P D∗


t is responsible for the different cross
sections in figure 5.3 for different PS settings in dσ/d∆ηLPDJet−Jet, because,
in general, the initial state PS increases P D∗


t , whereas final state PS decreases
it.


5.3 Jet finder dependence.


In this section we use the CDF − CONE algorithm to perform the same
analysis as in the previous section. Since the definition of a jet is not unique,
the idea is to check the dependence of the previous results on the choice of
the jet algoritchm.


We saw that one of the parameters to be chosen is the radius, R. In
figure 5.6 cross sections using different radii are shown for direct events with
initial and final state PS. We also include the Kt algorithm cross sections for
comparison. Figure 5.6a) shows the differential cross section dσ/dP D∗


t and
figure 5.6b) dσ/dηD∗. In both cases the best agreement between the Kt and
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Figure 5.3: Cross sections dσ/d∆ηLPDJet−Jet for direct processes and different
PS settings, using the Kt algorithm. The differences in the cross sections
are explained by the cut P D∗


t (see figure 5.4 for explanation).
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Figure 5.4: Cross sections dσ/dP D∗


t and dσ/dηD∗ for direct processes and
different PS settings. The region 0 < P D∗


t < 2 GeV explains the differences
in the cross sections shown in figure 5.3.
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t < 2 GeV which explains the differences in the
cross sections shown in figure 5.3.
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Figure 5.6: Differential cross sections dσ/dP D∗


t and dσ/dηD∗ for direct events
with initial and final state PS. The best fit to the Kt algorithm corresponds
to the cone algorithm with radius R = 0.9.


the CDF − CONE algorithms is observed for R = 0.9. The agreement is
very good for P D∗


t > 3 GeV , whereas the other settings fit well only above
3.5 GeV . For the next comparisons in this section we will run therefore the
CDF −CONE algorithm with R = 0.9. The differences in the low Pt region
arise because the transverse momenta of the decay particles can be large and
the particles may not end up in one jet, see figure 5.7, whereas at large Pt


the decay particles of the D∗ are boosted towards the direction of the D∗


and the jet algorithms yield the same results.


In Figure 5.8 we show the cross section dσ/d∆ηLPDJet−Jet for resolved and
direct events. As in Figure 5.2, the mean value in resolved photon events is
shifted to smaller ∆η values. Figure 5.9, as in Figure 5.1, shows that this
shifted value of dσ/d∆ηLPDJet−Jet in resolved events comes from the negative
η region. A direct comparison between the cross sections dσ/d∆ηLPDJet−Jet


calculated with the Kt and CDF−CONE algorithms is shown in figure 5.10,
where we find differences smaller than 15% except in the forward region where
they can be about 25%.


In Figure 5.11 we present again the differential cross section dσ/d∆ηLPDJet−Jet
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Figure 5.7: For small P D∗


t (left) the D∗ transverse momenta of the decay
particles can become comparable to P D∗


t . Then, the direction of the Leading
Particle can be very different from the direction of the D∗ particle and get
different results. The cone is added to have a spatial reference in both cases.
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Figure 5.8: Cross sections dσ/d∆ηLPDJet−Jet for direct and resolved processes
where the CDF − CONEalgorithm was used. Althought there are some
small differences between the cross sections presented here and the ones in
figure 5.2, the conclusions are the same as before.


for the CDF −CONE algorithm, similar to Figure 5.3. Although there are
some differences in the cross sections, the relations between the different
PS settings remain and therefore also the conclusions of the previous sec-
tion. This can also be seen in Figure 5.12, where the ratios between the
CDF − CONE and Kt algorithm for the dσ/d∆ηLPDJet−Jet cross sections
are presented. The differences are below 15%.
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Figure 5.9: Differential cross sections dσ/dηD∗ and dσ/dηJet for direct and
resolved processes. The more negative mean value of dσ/d∆ηLPDJet−Jet in
resolved events comes from the negative η region.
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Figure 5.10: Ratios between CDF −CONE and Kt algorithm cross sections
dσ/d∆ηLPDJet−Jet for direct and resolved processes.
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Figure 5.11: Cross sections dσ/d∆ηLPDJet−Jet for direct processes and differ-
ent PS settings using the CDF − CONE algorithm. Again we find some
differences with Figure 5.3 but the conclusions remain the same.


Cross sections were calculated for different processes using the Kt algorithm
and it was shown that for resolved processes the mean value of dσ/d∆ηLPDJet−Jet


is shifted towards negative ∆η. It was also shown that including PS the D∗


cross section is larger for initial PS events than for initial and final PS in
the selected region P D∗


t > 2 GeV . This is reflected in the differential cross
sections as a function of ηLPDJet − ηJet as well as in the cross sections as a
function of P D∗


t .


Performing the analysis with the CDF −CONE algorithm we arrived at
the same conclusions. The difference in cross sections between the different
jet algorithms is of the order of 15% for R = 0.9.
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Figure 5.12: Ratios between CDF −CONE and Kt algorithm cross sections
dσ/d∆ηLPDJet−Jet for different PS settings.
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Chapter 6


Rapgap vs Pythia comparison


The Pythia 6.2 [2] Monte Carlo generator offers the possibility of simulat-
ing Multiple Interaction events, MI, implementing several options, as dis-
cussed in section 2.4. This makes Pythia a very attractive tool and for
this reason we want to have a comprehensive idea of the most important
parameters that control the different steps in the event generator Pythia,
i.e. initial and final state parton shower, PS, and hard scattering process.
We change the paremeters one by one and study the effects on distributions
of some kinematic variables: the photon virtuality, Q2, the pseudo-rapidity,
and transverse momentum Pt of the charm quarks. We will compare these
distributions with the ones provided by Rapgap 3.1 [1].


We focus mainly on the photoproduction regime, in this chapter defined
as: Q2 < 1 GeV 2. Since we are not going to study hadronization, we have
switched off any hadronization in the Monte Carlo event generators. We
show a table with the parameters used in this chapter in table 6.1.


6.1 Direct processes.


6.1.1 The role of Q2.


In figure 6.1 the differential cross section dσ/dQ2 for the process γ + g → cc
as predicted from the Rapgap and Pythia MC is shown. The charm quark
mass is set to mc = 1.5 GeV and


√
s = 318 GeV with Ee = 27.5 GeV and
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Figure 6.1: Differential cross section, dσ/dQ2. For Q2 < 10 GeV 2 we observe
a good agreement between Rapgap and Pythia, but for Q2 > 10 GeV 2 the
Pythia cross section is always larger than Rapgap.


Ep = 920 GeV , the electron and the proton energy beam. The maximum
Q2 value that will be produced in an event, Q2


max, is set to the maximum
kinematically allowed value and the minimum Q2 value, Q2


min, to zero. At
this stage we switched off all kind of PS in order to compare only the hard
processes, the parameters are shown in table 6.1. The effects of PS are
studied in the next section.


In figure 6.1, we see two different regions: 0 < Q2 < 10 GeV 2 and
10 < Q2 < 200 GeV 2. In the first region the agreement between Rapgap


and Pythia seems to be perfect but in the second region the Pythia cross
section is clearly above Rapgap.


Figure 6.2a) shows the first region in more detail in the range 0 < Q2 <
1 GeV 2. As before we see a quite good agreement between Rapgap and
Pythia with only some small fluctuations. In figure 6.2b) the ratio between
Rapgap and Pythia cross sections is shown. The deviations are less than
10% and within the errors consistent with one.


In figure 6.3 we show the differential cross section dσ/dP c
t with P c


t being
the transverse momentum of the charm quark in the laboratory frame. In
figure 6.3a) we observe that the shape of the cross section is different in
Pythia if we do not apply any cut on Q2. If we apply the cut Q2 < 1 GeV 2
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Figure 6.2: On the left side the differential cross section, dσ/dQ2 is shown
in the Q2 range: Q2 < 1 GeV 2 where we observe a good agreement between
Rapgap and Pythia. On the right side is shown the ratio between the
Rapgap and Pythia cross sections. The deviations are less than 10% and
within the errors


in Pythia, the shape of Pythia and Rapgap are similar. For Rapgap


the shape is always the same although, as expected, the cross section is
smaller when we cut for values where Q2 < 1 GeV 2. Figure 6.3b) shows the
rate between Rapgap and Pythia cross sections, where we applied the cut
Q2 < 1 GeV 2 for Pythia and Rapgap. We observe deviations about 20%
within errors.


In figure 6.4 the cross section dσ/dηc is shown. In this case we have
applied the cut Q2 < 1 GeV 2 and we find again a good agreement between
Rapgap and Pythia. The right side shows the ratio between Rapgap and
Pythia cross sections, where we also observe good agreement between both
MC generators, at the level of ∼20%.


Since we are interested in the photoproduction region, Q2 < 1 GeV 2, and
since the problematic region is situated in the region: Q2 > 10 GeV 2 we
find acceptable agreement between the MC generators. In the following we
restrict the Q2 range to Q2 < 1 GeV 2.


Thus we conclude that Rapgap and Pythia agree on parton level at a
20%.


53







ptc


d
σ/


d
p


tc
 (


n
b


 G
eV


-1
)


ptc


R
A


P
/P


Y
T


H


1


10


10 2


0 2 4 6 8
0


0.2
0.4
0.6
0.8


1
1.2
1.4
1.6
1.8


2


0 2 4 6 8


a) b)


Figure 6.3: On the left side is shown the differential cross section, dσ/dP c
t .


With the cuts Q2 < 1 GeV 2 we observe a good agreement between Rapgap


and Pythia. On the right side is shown the ratio between Rapgap and
Pythia cross sections where the cut Q2 < 1 GeV 2 is applied. The deviations
are about 20% and within the errors.
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Figure 6.4: On the left side the differential cross section, dσ/dηc is shown.
With the cut Q2 < 1 GeV 2 we observe a good agreement between Rapgap


and Pythia. On the right side the ratio between Rapgap and Pythia cross
sections is shown where the cut Q2 < 1 GeV 2 is applied. The deviations from
one are about 20%.
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6.1.2 Parton Shower.


In this section the different PS processes are studied in the region Q2 < 1 GeV 2.
The MC generators provide information about the charm quarks before
and after PS, but only the charm quarks after PS are investigated for the
Rapgap-Pythia comparisons, since they contain information about the PS
process.


In Figures 6.5- 6.7 are shown the ratios between the Rapgap and Pythia


predictions for dσ/dQ2, dσ/dηc and dσ/dP c
t cross sections respectively for fi-


nal, initial, initial and final, and no PS events. In all four cases the deviations
are below ∼20% within the errors.


In chapter 2 two factors of the PS approach were presented: the maximum
parton virtuality and the QCD scale, ΛQCD.


In Rapgap and Pythia there are some predefinied hard interaction PS
scale definitions, see table 6.1 and references [1] and [2]. In Rapgap q2


max is
defined as:


q2
max = Max(Q2 + 2PγPq1


, Q2 + 2PγPq2
) (6.1)


whereas in Pythia it is:


q2
max = p2


t + Q2 + K2
t + m2


c + m2
c̄ (6.2)


where Pγ is the four momentum of the photon, Pq1
the four momentum


of one of the quarks in the hard interaction, Q2 and K2
t are the virtualities


of the photon and the gluon respectively, and mc and mc̄ are the masses of
the charm quark. Since we cannot change these definitions we are interested
in the sensitivity of the event generator Pythia to changes of this scale. For
this we applied in Pythia scale factors on the hard interaction scale for initial
and final state PS. In figure 6.8a) the ratio Rapgap Pythia is shown where
the scale factors for both initial and final state PS were reduced in Pythia


from 4 to 1. The default settings are also shown for comparison the changes.
The differences are very small. If we look at the diagram involved, figure 2.4,
we see that what we are doing by changing the maximum virtuality: before
the hard scattering we are varying the Kt of the incoming gluon into the
hard scattering with the initial state PS and after the hard scattering we are
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Figure 6.5: dσ/dQ2 cross section ratios between Rapgap and Pythia are
presented for initial, final, initial and final and no PS processes. The devia-
tions are below 10% within the errors.
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Figure 6.6: dσ/dηc cross section ratios between Rapgap and Pythia are
presented for initial, final, initial and final and no PS processes. The devia-
tions are below 10% within the errors.
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Figure 6.7: dσ/dP c
t cross section ratios between Rapgap and Pythia are


presented for initial, final, initial and final and no PS processes. The devia-
tions are below 10% within the errors.
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modifying the transverse momentum of the hard scattering outgoing partons
with the final state PS. The reason for these small differences is that the
influence of the maximum virtuality in the hard scattering process is limited
in comparison with the hard scattering itself.


The default ΛQCD values for the hard interaction, initial and final state PS
are set in Pythia according to the parton distribution function parametriza-
tion. We can change them by setting the parameter MSTP 3 from 2 to 1
(this gives the user the control over the ΛQCD values) and then changing
them to the desired values, see table 6.1. Since we use the proton parton
distribution function CTEQ 5L, we have been using ΛQCD = 0.192 GeV .
In figure 6.8 b) are plotted the ratios between Rapgap and Pythia using
the value ΛQCD = 0.250 GeV in initial and final state PS together with the
default as a function of P c


t . The changes in ΛQCD in the PS has only little
influence on the Pt of the charm quarks from the hard scattering.


In figure 6.8 c) we changed both the maximum virtuality, as in figure 6.8
a), and the ΛQCD, as in figure 6.8 b) in the ratio Rapgap with Pythia


and compared it with the default settings. Again we do not see significant
changes.


In Figure 6.9 a) the ratio Rapgap with Pythia is shown with the com-
bined changes of maximum virtuality and ΛQCD as a function of ηc, and
figures 6.9 b) and 6.9 c) represent the changes in the maximum virtuality
and ΛQCD respectively. Again the differences are small.
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Figure 6.8: dσ/dP c
t cross section ratios between Rapgap and Pythia are


shown where the ΛQCD and the factor scales in initial and final state PS
are changed. The deviations from the default settings are below 10% within
errors.
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Figure 6.9: dσ/dηc cross section ratios between Rapgap and Pythia are
shown where the ΛQCD and the factor scales in initial and final state PS are
changed. The deviations from the previous settings are below 10% within
errors.
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Pythia Rapgap Short description


Q2
max CKIN 67 QMAX lower Q2 generation value


Q2
min CKIN 68 QMIN upper Q2 generation value


Hadronization MSTP 111 NFRA Hadronization master switch


PS MSTP 61 IFPS Inital state PS master switch
MSTP 71 IFPS Final state PS master switch


MSTP 32 IQ2S Definition of the hard scattering scale
Hard scale PARP 67 Hard scattering scale factor in initial PS


PARP 71 Hard scattering scale factor in final PS


MSTP 3 ΛQCD from user or proton pdf
ΛQCD PARP 61 initial PS ΛQCD value


PARP 71 final PS ΛQCD value


Table 6.1: The table shows some of the parameters that control the event
generation in Pythia.
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Chapter 7


D∗ Meson photoproduction.


In this chapter we present an analysis based on the D∗ meson, inclusive
and D∗ jet production associated with a jet in photoproduction, i.e. Q2 <
0.01 GeV 2. The kinematic cut 0.29 < y < 0.65 is applied, according to the
acceptance of the electron tagger. In the analysis we used Pythia 6.2 [2] as
Monte Carlo event generator. All the D∗ particles in an event are treated
independent of each other and of the decay mode. A D∗ particle is identified
in the visible region of: Pt > 2 GeV and | η |< 1.5, as in chapter 5 (see
table 7.1).


In the first section we compare predictions to the measurement of [3]. The
data were recorded with the H1 detector in 1999 and 2000 with an electron
energy beam of 27.6 GeV and a proton energy beam of 920 GeV . The sources
of the different errors are described in [3] and we present only the total errors.


We compare the results of the different charm jet selections: D∗ Meson
as Stable Particle (DSP) and the Leading Particle (LPD) methods.


7.1 D∗ Meson Photoproduction.


In this section we present cross sections for inclusive D∗ meson photopro-
duction and for D∗ meson photoproduction associated with a jet, and we
compare them with the data.
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Q2 Q2 < 0.01 GeV 2


y 0.29 < y < 0.65


ηD∗ | ηD∗ |< 1.5
P D∗


t P D∗


t > 2 GeV


ηJet | ηJet |< 1.5
P Jet


t P Jet
t > 3 GeV


Table 7.1: In this table the cuts for y and Q2 are defined as well as for D∗


particles and jets (applied also for the D∗Jet).


7.1.1 Inclusive D∗ Photoproduction.


In the inclusive mode we identify the D∗ particle in the visible region, i.e.
independently of other possible event configurations. In figure 7.1 the differ-
ential cross section dσ/dP D∗


t is shown, where we stress that D∗ means the D∗


particle and not the D∗Jet. The contributions for direct, charm excitation
and resolved photon events are added. In the region 2 GeV < P D∗


t < 3 GeV
the predicted cross section is clearly larger than data, whereas in the large
P D∗


t range the cross section describes the measurements.


In figure 7.2 the differential cross section dσ/dηD∗ is presented. The pre-
dictions in the backward region, η < 0, is larger than data. An hypothesis
that could explain the overestimation in the small P D∗


t and backward regions
is that the charm quarks are treated as massless quarks in the charm exci-
tation contribution. At low transverse momentum the effect of the charm
mass can be large enough to become important in the calculations compared
to the data.


7.1.2 D∗ Meson Production Associated with a Jet.


In this case, in addition to the D∗, we require 2 jets, 1D∗Jet + 1Jet. One
of the jets is the D∗ Jet, where we use the D∗ Meson as Stable Particle and
the Kt algorithm, as described in chapter 3. This is done in order to be able
to compare these calculations to the data of [3]. The jets, also the D∗Jet,
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Figure 7.1: Differential cross section dσ/dP D∗


t . The contributions from di-
rect, charm excitation and resolved photon events are added and compared to
the data.
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Figure 7.2: Differential cross section dσ/dηD∗. The contributions for direct,
charm excitation and resolved photon events are shown and compared to the
data.
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Figure 7.3: Differential cross sections dσ/dP D∗


t and dσ/dηD∗ for 1D∗Jet +
1Jet configuration events. The contributions from direct, charm excitation
and resolved photon events are added and compared to data.


are required to fulfil the cuts: Pt > 3 GeV and | η |< 1.5. If we find more
than one jet we take into account only the jet with highest Pt. The cuts are
summarized in table 7.1.


In figure 7.3 the differential cross sections of D∗ meson dσ/dP D∗


t and
dσ/dηD∗ are presented. The P D∗


t and ηD∗ distributions are more or less well
described within the experimental errors.


Figure 7.4 shows the differential cross sections dσ/dP Jet
t and dσ/dηJet. In


this case the predictions fit better the data, especially the differential cross
section as a funtion of P Jet


t . The ηJet distribution fits the data within errors in
the forward region, η > 0, but in the backward region the predictions tends
to overshoot the measurements, although they are still compatible within
errors.


7.2 D∗ Meson as Stable Particle vs Leading


Particle Methods.


In this section we study the differences in the analysis from the charm jet
selection methods: D∗ Meson as Stable Particle and Leading Particle.
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Figure 7.4: Differential cross sections dσ/dP Jet
t and dσ/dηJet for 1D∗Jet +


1Jet configuration events. The contributions from direct, charm excitation
and resolved photon events are added and compared to data.


In figure 7.5 the differential cross sections dσ/dP D∗


t and dσ/dηD∗ are
shown for both methods in 1D∗Jet + 1Jet events. In figure 7.5 a) we see
that the larger differences are in the smaller tranverse momentum region,
2 GeV < P D∗


t < 3.5 GeV . This can be understood since for small P D∗


t ,
the D∗ transverse momenta of the decay particles can become comparable
to P D∗


t . If this happens and the direction of the Leading Particle is different
from the direction of the D∗ particle we get different results (see figure 5.7).


Figure 7.5 b) shows that the larger differences are in the backward region,
which corresponds again to the lower P D∗


t .


In figure 7.6 we present the differential cross sections dσ/dP Jet
t and dσ/dηJet.


Again both methods agree for large P Jet
t but we find discrepancies in the low


P Jet
t region. In the ηJet distribution we see only small discrepancies, about


10%.


It could be interesting to do the same analysis with data using the LPD
method and compare it to our predictions. It could be possible that the data
and the predictions, due to the different behaviour at low Pt (see figures 7.3
and 7.4) would agree better in comparison with the DSP method.
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Figure 7.5: Differential cross sections dσ/dP D∗


t and dσ/dηD∗ for 1D∗Jet +
1Jet configuration events. The contributions from direct, charm excitation
and resolved photon events are added. The charm jet selection methods: DSP
and LPD compared. The larger differences are due to slow D∗ particles.


Pt
Jet


dσ
/d


P
tJe


t  (
nb


 G
eV


-1
)


ηJet


dσ
/d


η Je
t (


nb
)


10
-2


10
-1


1


5 10 15
0


0.2


0.4


0.6


0.8


1


1.2


1.4


1.6


-1 0 1


Figure 7.6: Differential cross sections dσ/dP Jet
t and dσ/dηJet for 1D∗Jet +


1Jet configuration events. The contributions from direct, charm excitation
and resolved photon events are added. The charm jet selection methods: DSP
and LPD compared.
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In this chapter we introduced a D∗ Meson photoproduction study using
Pythia without MI. We saw that the predictions describe fairly well the
data. In the next chapter we will include Pythia with MI to see if the MI
model can improve the description of the cross sections.


We also compared the Kt and the CDF − CONE algorithms and saw
that at large Pt both algorithms converge. We have also studied a calibration
of the Kt and the CDF − CONE algorithms with the charm jet selections
methods: Leading Particle and D∗ Meson as Stable Particle, not shown in
the thesis. We found that the methods combined with any of the algorithms
converge at large Pt.
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Chapter 8


Multiple Interactions.


In the previous chapter we presented cross sections of events with a D∗ par-
ticle in the visible region and the 1D∗Jet + 1Jet configuration as a function
of P D∗


t , PtJet, ηD∗ and ηJet and we compared them to the data.


In the first section of this chapter we present also cross sections of events
with a D∗ in the visible region and the 1D∗Jet+1Jet configuration but now
including the MI model introduced in section 2.4. We compare them also to
the measurements of [3].


Next we search for clear signatures, sensitive to MI, in heavy photopro-
duction. The analysis is done only at Monte Carlo level, using Pythia, and
no data are presented.


As in the previous chapters, the charm production is tagged by a D∗


particle and the D∗Jet. The cuts for the D∗ particle, the D∗Jet and the jets
are in table 7.1. using the Kt algorithm.


8.1 D∗ Meson Photoproduction and Multiple


Interactions.


In this section we present a comparison of the different Multiple Interactions,
MI, options in Pythia. We use the heavy quark selection as presented in
section 7.1, i.e. basically the charm jet selection D∗ Meson as a Stable
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Particle, the Kt algorithm with the cuts in table 7.1. The different options
for MI are collected in table 2.1 (note the abbreviation column).


We also present a comparison of the MI model and the data. At the end,
we include the CDF tune for the double Gaussian MI option, MI-4, in the
comparison. This CDF tune is a set of parameters for MI obtained at the
Collider Detector at Fermilab and has been parametrized for pp collisions at
630 GeV and 1.8 TeV to describe the ”underlying event”. Both the default
mode values and the CDF tune are in table 8.1.


The aim is to investigate possible signals and effects coming from MI
in the measurements already available. We also want to see if one can al-
ready conclude from a comparison with the data whether MI in heavy quark
production is relevant at HERA.


8.1.1 Inclusive D∗ photoproduction and Multiple In-


teractions.


Figure 8.1 shows the differential cross sections dσ/dP D∗


t and dσ/dηD∗ for D∗


photoproduction in the visible range, where the contributions from direct,
charm excitation and resolved photon events are added. We see that the two
options of the MI model with an impact parameter, MI-3 and MI-4, have
similar cross sections and are larger than the other. We see also that the
differences are roughly independent of P D∗


t . In MI-1 and MI-2, where all the
events have the same MI probability, the cross sections are similar and we
see no significant differences in using an abrupt p⊥min cut or a continuous
one. In MI-3 and MI-4, the options with an impact parameter, we also see
no large differences in the cross sections.


8.1.2 D∗ Meson Production Associated with a Jet and
Multiple Interactions.


In figure 8.2 the differential cross sections dσ/dP D∗


t and dσ/dηD∗ for 1D∗Jet+
1Jet configuration with the four MI options are shown. We also see similar
cross sections for MI-1 and MI-2, and for MI-3 and MI-4.


Figure 8.3 shows the differential cross sections dσ/dP Jet
t and dσ/dηJet.


Again we find the same grouping between options but here we see a different
shape of the η distributions.
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Figure 8.1: Differential cross sections dσ/dP D∗


t and dσ/dηD∗ in inclusive
D∗ photoproduction. The contributions from direct, charm excitation and
resolved photon events, including the MI, are added.
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Figure 8.2: Differential cross sections dσ/dP D∗


t and dσ/dηD∗ for 1D∗Jet +
1Jet configuration events. The contributions from direct, charm excitation
and resolved photon events, including the MI, are added.
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Figure 8.3: Differential cross sections dσ/dP Jet
t and dσ/dηJet for the


1D∗Jet+1Jet configuration. The contributions from direct, charm excitation
and resolved photon events, including the MI, are added.


8.1.3 Comparison to data.


Here we used MI-2 and MI-4 to compare to the data since the other options
give already identical results. The aim of this comparison is to check the
consistency of the model prediction with the data. It is clear from the begin-
ning that the measurements available here are not designed to be sensitive
to MI and therefore might show only small discriminative power.


Figure 8.4 shows the differential cross sections dσ/dP D∗


t and dσ/dηD∗ of
D∗ photoprodduction in the visible range. The charm excitation components
are also shown. In general, the MI models overestimate the cross sections,
also at large P D∗


t in contrast to the previous calculations in section 7.1. This
is especially true for MI-4, option with an impact parameter and a double
Gaussian matter distribution. The reason can be again the massless calcu-
lations for the excitation contribution in Pythia. However it is interesting
to note that the shapes of the P D∗


t and ηD∗ distributions are not affected by
MI.


Figure 8.5 shows the differential cross sections dσ/dP D∗


t and dσ/dηD∗, for
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Figure 8.4: Differential cross sections dσ/dP D∗


t and dσ/dηD∗ in inclusive
D∗ photoproduction. The contributions from direct, charm excitation and
resolved photon events, including the MI, are added and compared to data.


the 1D∗Jet+1Jet configuration. As well as in inclusive D∗ photoproduction,
here we see that the MI model overestimates the cross sections, especially
MI-4. This is again here roughly independent of P D∗


t .


In figure 8.6 the differential cross sections dσ/dP Jet
t and dσ/dηJet are


shown. The MI overestimate again dσ/dP Jet
t independently of P Jet


t and the
difference in the cross section dσ/dηJet is now very large for ηJet > −1. It
is interesting again to note that the shape of the ηJet distribution, although
very different between the two MI approaches, is still consistent with the
measurements. It would be also interesting to extend the measurements to
larger ηJet. There the differences are expected to be larger and we could see
if the shape decreases slowly, as proposed by MI-4, or strongly, as shown by
Pythia without MI or MI-2. We note that the component charm excitation
in MI-4 is responsible of this change of shape in the dσ/dηJet cross section.


In figure 8.7 the cross sections dσ/dP D∗


t and dσ/dηD∗ in inclusive D∗


photoproduction are shown. The CDF Tune is compared with the MI −
4 Default. The differences in P D∗


t are very small and are very difficult to
distinguish, whereas for ηD∗ larger differences arise in the regions | ηD∗ |> 0.5,
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Figure 8.5: Differential cross sections dσ/dP D∗


t and dσ/dηD∗ for the
1D∗Jet + 1Jet configuration. The contributions from direct, charm exci-
tation and resolved photon events, including the MI, are added and compared
to data.


Pt
Jet


dσ
/d


P
tJe


t  (
nb


 G
eV


-1
)


ηJet


dσ
/d


η Je
t (


nb
)


10
-2


10
-1


1


5 10 15
0


0.25


0.5


0.75


1


1.25


1.5


1.75


2


-1 0 1


Figure 8.6: Differential cross sections dσ/dP Jet
t and dσ/dηJet for the


1D∗Jet + 1Jet configuration. The contributions from direct, charm exci-
tation and resolved photon events, including the MI, are added and compared
to data. The legend is the same for both cross sections.
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Figure 8.7: Differential cross sections dσ/dP D∗


t and dσ/dηD∗ in inclusive
D∗ photoproduction. The contributions from direct, charm excitation and
resolved photon events, are added for MI-2 and the CDF Tune and compared
to data.


i.e. there are no changes in the very central region.


Figure 8.8 shows the cross sections dσ/dP D∗


t and dσ/dηD∗ for 1D∗Jet +
1Jet events. In this case we see slightly larger differences between the two
sets of parameters, but the shapes remain the same as before. In figure 8.9
the cross sections dσ/dP Jet


t and dσ/dηJet for 1D∗Jet+1Jet events are shown.
In this case we see a different behaviour in the η > 0 region: MI-4 Default
shows a decreasing cross section with η whereas with the MI-4 CDF-Tune
the cross section increases.


We have seen that the shapes provided by the MI model are compatible
with the measurements and that could even give a better description in some
cases. As Pythia is using Leading order matrix elements, the normalization
might change by changing scales in αs. After this section it is not evident
that in ep collisions MI play a role although in pp collisions they do, see [25].
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Figure 8.8: Differential cross sections dσ/dP D∗


t and dσ/dηD∗ for the
1D∗Jet + 1Jet configuration. The contributions from direct, charm exci-
tation and resolved photon events, are added for MI-4 Default and the CDF
Tune and compared to data. The legend is the same for both cross sections.
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Figure 8.9: Differential cross sections dσ/dP Jet
t and dσ/dηJet for the


1D∗Jet + 1Jet configuration. The contributions from direct, charm exci-
tation and resolved photon events, are added for MI-4 Default and the CDF
Tune and compared to data. The legend is the same for both cross sections.
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Parameter Default value CDF Tune 1


PARP


81 1.90 GeV not used
82 1.9 GeV 2.0 GeV
83 0.5 0.5
84 0.2 0.4
85 0.33 0.9
89 1,000.0 GeV 1,800.0 GeV
90 0.16 0.25


Table 8.1: Summary of the default parameters relevant for MI in Pythia


(see also table 2.1).


8.2 The Transverse Region and Multiplicity.


In the previous section we began exploring the features of the MI model
and its options. There we presented an analysis based on events with a
D∗ particle in the visible region and the 1D∗Jet + 1Jet configuration and
presented cross sections as a function of P D∗


t , PtJet, ηD∗ and ηJet and saw
that the predicted cross sections using MI are larger than the data but that
the shapes are different and could be compared to the data.


In this section we present two important concepts in the analysis to study
MI: the transverse region and multiplicity.


The tranverse region has been proven to be sensitive to MI in pp col-
lisions, see [25], and is shown in figure 8.10. The D∗Jet defines a reference
axis. We define three regions relative to this axis: toward, away and trans-
verse. These regions are defined as: toward in | φ |< 50, away in | φ |> 100
and the transverse in 50 <| φ |< 100.


Multiplicity is defined as the average number of particles measured per
event. In this analysis the particles are always measured in the region | η |<
1.5 and the transverse momentum of the particles in the laboratory frame
fulfil Pt > 0.5 GeV .


.


1The CDF Tune also includes: PARP 67 = 4.0, see table 6.1
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Figure 8.10: Toward, away and transverse regions defined in the η − φ space
taking the D∗Jet as reference.


8.3 Regions in 1D∗Jet + 1Jet events.


In this section we study the most immediate properties of the toward, away
and transverse regions in 1D∗Jet + 1Jet events, where we use only the LPD
Charm Jet Selection.


Figure 8.11 shows the multiplicity as a function of φ, as defined in fig-
ure 8.10, for direct, resolved and charm excitation components whithout
including MI. Here we can see very clear the three regions, from left to right:
toward, transverse and away.


In the toward region, by definition, we have the D∗Jet, whereas the second
jet is in the away region, due to momentum conservation since these jets are
created in the hard scattering. In the toward region we see a sharp peak,
with a width of about 40 degrees, whereas the peak in the away region is
lower but with a width of about 60 degrees. The widths are different because
the two jets, the D∗Jet and the Jet, are not exactly back-to-back. It may
be also important that these two jets contain different sort of hadrons.


The transverse region is characterized by a very low activity for all the
contributions, since the particles in this region come from the initial and final
state parton shower. In the transverse region the largest contribution comes
form the direct processes. In figure 5.1b) we see that in direct processes
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Figure 8.11: Multiplicity as a function of φ for the direct, resolved and charm
excitation components in 1D∗Jet + 1Jet events. The three regions: toward,
away and transverse are clearly visible. No MI model is included here.


both the D∗Jet as well the Jet are created in the negative η region. This
means that there is a lot of space for the parton showering. For the resolved
processes the D∗Jet is created in the negative η region, whereas the Jet is
created in the positive, which does not leave much space for parton showers
in the | η |< 1.5 region.


8.3.1 The Effect of Multiple Interactions.


Figure 8.12 shows the multiplicity as a function of φ using MI-1. The direct
contribution does not include any MI model but helps to show the change in
the multiplicity in the transverse region: the resolved and charm excitation
contributions have in this case a larger multiplicity. The regions toward and
away are not much affected by the MI. Figure 8.13 shows a diagram where the
D∗Jet and the Jet are created in the hard scattering and a second scattering
occurs which populates the transverse region with aditional particles.
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Figure 8.12: Multiplicity as a function of φ for the direct, resolved and charm
excitation components in 1D∗Jet + 1Jet events. The three regions: toward,
away and transverse are clearly visible. MI-1 are included.
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Figure 8.13: The figure shows a charm excitation process where a second
interaction occurs. The hard interaction is related with the multiplicity peaks
in the toward and away regions, whereas the second interaction is reponsible
of the enhancement in the transverse one.
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Figure 8.14: Multiplicity as a function of φ for the resolved and charm ex-
citation components and the direct one in 1D∗Jet + 1Jet events, including
and not including MI.


Since we are not able to measure experimentally the pure resolved and
the charm excitation contributions separatelly it is useful to show these two
contributions together. This is done in figure 8.14. The resolved components,
resolved and charm excitation together, are 40% larger with MI.


Figure 8.15 shows the average multiplicity in the transverse region as a
function of P D∗


t for resolved and charm excitation events, with and without
MI. The enhancement is again large, about 40%.


8.3.2 Multiple Interaction. A New Comparison.


In this subsection we compare the different options of MI in Pythia. We
use the MI default values and 1D∗Jet + 1Jet events for it. Since the cross
section for charm excitation is larger than 15 times the resolved cross section
for 1D∗Jet + 1Jet events, see table 8.2, we can neglect for simplicity the
resolved component.


Figure 8.16 shows the multiplicity as a function of φ for charm excitation
components. In this figure we show only three options: MI-1, all the events
with the same MI probability, MI-2, same as MI-1 but with a continuos cut
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Figure 8.15: Average multiplicity in the transverse region as a function of
P D∗


t for the resolved and charm excitation components, including and not
including MI.
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Figure 8.16: Multiplicity as a function of φ for charm excitation components
in 1D∗Jet events. The options MI-1, MI-2 and MI-3 (see table 2.1) are
shown.
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Figure 8.17: Multiplicity as a function of φ for charm excitation components
in 1D∗Jet events. The options MI-2 and MI-4 (see table 2.1) are compared.


in p⊥min, and MI-3, simple Gaussian matter distribution. We see that they
do not differ much.


In figure 8.17, the options MI-4 and MI-2, as reference from figure 8.16 are
compared. We see an enhancement on the borders of the toward-transverse
and transverse-away regions, although in the regions | φ |< 30 and | φ |> 130,
the most inner parts of the toward and away regions, remain without changes.
As well as in chapter 7, we see that MI-4 predictions differ from the other
options.


8.4 1D∗Jet events.


Figure 8.18 shows the multiplicity as a function of φ in D∗Jet events for
direct, resolved and charm excitation components. If we compare this figure
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Figure 8.18: Multiplicity as a function of φ for the direct, resolved and charm
excitation components in 1D∗Jet events. No MI model is included here.


with figure 8.11 in the toward and away regions, we see that the multiplicity
in 1D∗Jet + 1Jet events is larger than for 1D∗Jet events. This can be
understood since for 1D∗Jet + 1Jet events we have at least two jets, one in
the toward region and the other one in the away region, with high transverse
momenta whereas for 1D∗Jet we have many events with only one jet, the
D∗Jet, and therefore the shape of the peaks are not so sharp as in the
1D∗Jet + 1Jet case. In the transverse region we see no significant changes.


In Figure 8.19 we present the multiplicity as a function of φ for D∗Jet
events including MI, MI-1. As well as in the 1D∗Jet + 1Jet case the to-
ward and away regions are not sensitive to MI, whereas the transverse region
multiplicity is enhanced by a factor of 2 when including MI.


Figure 8.20 shows the comparison between multiplicities for the resolved
components, i.e. resolved photon and charm excitation events, with and
without MI. We see again the enhancement in the multiplicity, in this case
about 30%, lower than for 1D∗Jet + 1Jet events.
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Figure 8.19: Multiplicity as a function of φ for the direct, resolved and exci-
tation components in 1D∗Jet events. MI are included.
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Figure 8.20: Multiplicity as a function of φ for the resolved and charm ex-
citation components and the direct one in D∗Jet events, including and not
including MI.


8.5 Multiplicity as a function of xγ.


As we have seen, multiple interactions can take place in ep collisions when
the remnants of the proton and of the photon interact. For this reason, in the
study of MI at HERA the resolved photon and charm excitation processes
are very important. In the theoretical overview we introduced xγ in eq 2.17
which represents the momentum fraction of the photon entering in the hard
interaction. In this section we present a study of the multiplicity as a function
of xγ .


Figure 8.21 shows the multiplicity as a function of φ in bins of xγ for
1D∗Jet + 1Jet events. As in section 8.3.2 we only show the charm exci-
tation component. We compare Pythia MI-2 with Pythia without MI.
Although in the MI model the photon remnant is likely to interact with the
proton remnant independently of xγ , low values allow an enhancement of the
multiplicity in the transverse region.


The explanation is that for xγ values close to zero the photon remnant
has a large energy. When it interacts with an incoming parton from the
proton remnant, it has enough energy to be detected. If xγ is close to one
the photon remnant has not enough energy to be measured.
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Figure 8.21: Multiplicity as a function of φ in bins of xγ for charm excitation
in 1D∗Jet + 1Jet events. In this figure Pythia MI-2 and Pythia without
MI are compared.
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No Multiple Interactions included


Process Cross Section(pb) Cross Section(pb) Total
Resolved Charm Excitation


D∗ in visible range 0.288 3.794 4.082
1D∗Jet 0.178 2.709 2.887


1D∗Jet + 1Jet 0.053 0.939 0.992
1D∗Jet + 2Jet 0.002 0.058 0.060


Table 8.2: Cross Sections of some processes calculated with Pythia without
MI.


In this chapter we investigated MI in the D∗ meson photoproduction.
We compared the different options included in the MI model implemented
in Pythia and we saw that the cross sections calculated with the double
Gaussian matter distribution have interesting properties in the η distribution.


Finally, we saw that the transverse region can be very sensitive to MI,
and that all the MI models predict an enhancement of the multiplicity in
this region. The model where the hadron is represented as a warm core and
a pion cloud surrounding it predicts a cross section which is different from
the other models and this can be checked experimentally.


90







Chapter 9


Conclusions


The Monte Carlo event generators Pythia and Rapgap were compared.
We found that both generators agree reasonably well with each other in
photoproduction after initial and final state parton shower at the 20% level.


The Kt and CDF − CONE Jet algorithms and different Heavy Quark
identification methods were studied. The cross sections calculated with these
methods are similar at large transverse momentum, whereas small differences
at small transverse momentum are observed, about 5%.


We studied the D∗ Meson photoproduction, both in the inclusive D∗ pro-
duction and in D∗ photoproduction associated with a jet. The cross sections
predicted by Pythia agree fairly well with the measurements. However,
significant differences are seen in the small P D∗


t region. The reason for this
disagreement is not yet well understood. It could be related to the treatment
of the heavy quark masses in excitation processes.


Effects coming from possible MI were investigated and cross sections of
the D∗ Meson photoproduction were calculated including multiple interac-
tions. The predicted cross sections including MI increase, especially the one
including a double Gaussian matter distribution for the proton, in the for-
ward ηJet region.


Finally, we investigated new and more clear signals for multiple interac-
tions at hadron level. The multiplicity in the transverse region is very sen-
sitive to MI, showing an enhancement of about 40%. This provides a clear
signal, since the experimental errors in these measurements are expected to
be small.


91







92







Appendix A


Main Parameters in Rapgap


and Pythia


Common
Rapgap Parameters


Parameter Short description Value Remark


NFLA Number of active flavours 4
IQ2S Definition of the hard scattering scale 5 Q2 + P 2


⊥ + m2


INPR Proton structure function 1004046 CTEQ 5L


Rapgap Parameters


Parameter Short description Direct Resolved Remark
Value Value


IPRO Hard subprocess selection 14 18
PTCU P 2


tmin for IPRO process 5 2
NFQC Num. of flavours used in QCD 3 4
IHFL Flavour produced 3 4
INGA Photon structure function 2 3005004 GRS-G LO


Table A.1: Parameters used in Rapgap.
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Common
Pythia Parameters


Parameter Short description Value Remark


MSTP 32 Definition of the hard scattering scale 8
MSTP 51 Proton structure function 4046 CTEQ 5L
MSTP 200 Flavour produced 4


Parameter Short description Direct Res.photon Remark


MSTP 14 Structure of the incoming photon 0 1
MSTP 55 Photon structure function Not used 5003 GRV-G LO


Pythia Selected subprocesses: Direct


MSUB Short description


84 g + γ → q + q̄


Pythia Selected subprocesses: Resolved Photon


MSUB Short description


81 q + q̄ → Q + Q̄
82 g + g → Q + Q̄


Pythia Selected subprocesses: Charm Excitation


MSUB Short description


11 qi + q̄j → qi + q̄j


28 qi + g → qi + g


Table A.2: Parameters used in Pythia. This table is complemented with the
tables 2.1 and 8.1
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Appendix B


Derivation of xγ


In this section we present a derivation of the formula given in eq 2.17. We
use the light-cone variable definitions (see [26]). Figure B.1 shows a resolved
process with the relevant 4-momenta needed in the derivation


g


q p


p


p


1


2


3


qγ


p


p
e


p


Figure B.1: Resolved process with the relevant 4-momenta needed in the
derivation


If we neglect the masses of the proton and the electron, the 4-momenta
can be written as:


pp = (Ep,−Ep, ~0t) (B.1)


pe = (Ee, Ee, ~0t) (B.2)
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In light-cone variables this is:


pp = (0,
2Ep√


2
, ~0t) (B.3)


pe = (
2Ee√


2
, 0, ~0t) (B.4)


Here ~0t is a two dimensional vector. In general we use a vector ~qt as a
two dimensional vector in the plane perpendicular to the ep collision.


We can write the 4-momenta q, qγ and g using the light-cone variables as
follows:


~q = (y · P +
e , ȳ · P−


p , ~qt) (B.5)


qγ = (xγ · y · P+
e , x̄γ · ȳ · P−


p , ~qγt) (B.6)


g = (x̄g · P+
e , xg · P−


p , ~gt) (B.7)


In the high energy approximation x̄g will be neglected.


For the two outgoing partons from the hard scattering we write:


p2 = (E2,−P2z, ~P2t) (B.8)


p3 = (E3,−P3z, ~P3t) (B.9)


Four momentum conservation gives (see figure B.1):


qγ + g = p2 + p3 (B.10)


Multiplying eq B.10 with pp gives for the left side1:


pp · qγ + pp · g ' P−
p q+


γ =
2Ep√


2
xγ y


2Ee√
2


(B.11)


where we applied the high energy approximation and used light cone
variables. The right side :


pp · p2 + pp · p3 = EpE2 − (EpP2z) +


+EpE3 − (EpP3z) = Ep


2
∑


i=1


(Ei − Piz) (B.12)


1Remember that in light-cone variables a vector is written like: v = (v+, v−, ~vt) and
that the 4-product is defined as: v · w = v+w− + v−w+ − ~vt ~wt.
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Therefore, using B.11 and B.12:


2EpEe xγ y = Ep


2
∑


i=1


(Ei − Piz) (B.13)


Now, we work out the value of xγ :


xγ =


∑2
i=1 (Ei − Piz)


2Ee y
(B.14)


If m � P⊥ the pseudo-rapidity is approximately the rapidity, which is
defined as:


η ' y =
1


2
ln


E + Pz


E − Pz
(B.15)


From this equation:


e−η =


√


E − Pz


E + Pz
(B.16)


If we multiply equation B.16 by
√


E − Pz and use the Et definition given
in 2.18:


√


E2 − P 2
z e−η = E − Pz = Et e−η (B.17)


Using this last equation in B.14:


xγ =


∑2
i=1 Eti eηi


2Ee y
(B.18)


And this is the formula given in equation 2.17.
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