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Abstract

A new high precision measurement of the diffractive deep inelastic scattering process

ep → eXY is presented, where Y is a proton or a low mass excitation and X represents

the dissociation products of the photon coupled to the electron. The results are obtained

from a dedicated data sample of 2.68 pb−1, taken by the H1 experiment at HERA, with

unbiased triggers. The measurement is presented in the form of a 3-dimensional reduced

cross-section σ
D(3)
r (β, Q2, x

IP
) which is integrated over the region MY < 1.6 GeV and

|t| < 1 GeV2. The kinematic range covered is 1.5 < Q2 < 45 GeV2 and 0.01 < y < 1.

Through the use of the Backward Silicon Tracker in the electron identification and vertex

determination, this analysis considerably extends the kinematic coverage at low Q2 and

low y compared with previous published and preliminary measurements by H1. The low

values of y attained result in unprecedented high statistics at high x
IP

(x
IP

� 0.03). Good

agreement is generally observed in the region of overlap with a previous H1 measurement.

In most of the phase space for Q2 > 3.5 GeV2, the data are well described by predictions

derived from a fit to higher Q2 data based on QCD hard scattering factorisation for

semi-inclusive processes and the DGLAP evolution equations. The measurement thus

confirms the dominance of a gluon distribution extending to large fractional momenta in

the diffractive exchange. The data presented in this thesis are expected to greatly help

to provide more accurate diffractive parton distribution functions and to identify areas

where the diffractive factorisation approach fails.
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A Note on Units

In this work, a system of natural units will be used, whereby � = c = 1.
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Introduction

The first Deep Inelastic Scattering (DIS) experiments were performed at SLAC [1,2] where

high energy electrons were collided with fixed nuclear targets. The reaction proceeded

via the exchange of a photon between the electron and the target proton or nucleus, and

a final state system of hadrons was produced. The measured cross-section exhibited only

a weak dependence on the squared four-momentum transfer carried by the photon. This

behaviour, known as scaling, was interpreted as being evidence for the scattering of the

electron from point-like particles or partons, later identified with the quarks and gluons

of the Standard Model, in the proton. The latest electron-proton scattering experiments

have been performed at the Hadron Electron Ring Accelerator (HERA) located at the

DESY laboratory in Hamburg. Many precise measurements at HERA have confirmed

the theory of Quantum Chromodynamics (QCD), the component of the Standard Model

describing the strong interaction, which has emerged since the first SLAC experiments.

The HERA data also provide the best constraints on the proton quark and gluon densities

over a wide range of momentum transfer fractions.

A class of abundant DIS events at HERA is characterised by a large rapidity gap adjacent

to the proton direction in which no hadrons emerge. These events have generated consid-

erable interest because they are not yet fully understood within the theory of the strong

interaction. They are described as being ‘diffractive’ and must involve a colour singlet

exchange, also known as a ‘pomeron’. In the most commonly used theoretical approach, a

partonic structure is ascribed to the diffractive exchange, and the the photon is viewed as

1



probing the structure of the pomeron rather than that of the proton. The measurement

of this thesis, performed with the H1 detector at HERA, helps to understand better the

partonic structure and the dynamics of the diffractive exchange in a crucial region of

phase space for new tests of our understanding within QCD.

Chapter 1 introduces the ingredients of the physics of deep inelastic scattering which are

needed for the discussion of diffractive DIS that follows in chapter 2. Chapter 3 contains

a brief description of the HERA accelerator, and a more detailed description of the H1 de-

tector, focusing on the sub-detectors used in the analysis presented here. Chapter 4 deals

with the event selection. Since diffractive DIS events form a subset of DIS events, the

inclusive DIS sample provides a valuable control sample, and so a lot of attention is paid

to the selection and the good understanding of this sample of events. The emphasis is put

on the discussion of the new method, using the H1 Backward Silicon Tracker, employed

for the measurement of the electron and the determination of the event vertex, and the

alignment of the various electron detectors. The selection of diffractive events, based on

the presence of a large rapidity gap in the event identified using the forward components of

the H1 detector, is then presented. The chapter concludes with the demonstration of the

good understanding of the diffractive sample. In chapter 5, the procedure used to mea-

sure the diffractive reduced cross-section is explained. The stability of the cross-section

measurement is also investigated by performing the measurement using another method

for the kinematic reconstruction and another Monte Carlo generator. The results of the

analysis are presented in chapter 6. The new data considerably expand the phase space

covered by inclusive diffraction measurements. The data are discussed and compared

with existing H1 results in the region where the data sets overlap. The prediction of a

next-to-leading order QCD fit to previous higher Q2 data, using the DGLAP formalism,

is also compared with the data.
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Chapter 1

Deep Inelastic Scattering

1.1 Introduction

Electron-proton interactions are mediated by electroweak gauge bosons γ, Z0 and W±.

Neutral current and charged current processes are distinguished by the presence in their

final state of an electron or a neutrino respectively. The former process proceeds via the

exchange of γ or Z0 vector bosons and the latter via the exchange of a W+ or W− bosons.

These processes are illustrated in figure 1.1 (a) where X represents the hadronic final

state. The 4-momentum squared carried by the exchanged boson is denoted by q2. It is

convenient to introduce the positive quantity:

Q2 ≡ −q2, (1.1)

which is the virtuality of the exchanged boson. When Q2 is much smaller than the square

of the masses of the Z0 and W± 1, the electromagnetic current contribution dominates

the DIS cross-section (see section 1.3).

1The mass of the Z0 is 91.1882± 0.007 GeV and the mass of W boson is 80.448 ± 0.031 GeV [3].
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In DIS, virtual photons couple to single charged partons inside the proton. Finer details

of the proton are probed with increasing virtualities. In the photoproduction regime, the

electron emits a quasi-real photon with Q2 much smaller than the proton mass 2 squared,

m2
p. In this region of phase space, the wavelength of the photon is too large to resolve the

internal structure of the proton.

p

e

e',νe

γ∗,Z0,W±

X

(a)

p

e

e'

γ∗

X
q

q'

(k)

(k')

(p)

(q)

}s {{W2

(b)

Figure 1.1: (a) Illustration of NC and CC deep-inelastic scattering processes and (b) the
kinematics of NC DIS.

1.2 HERA Kinematics

The kinematics of ep processes are described using a combination of the 4-vectors of the

proton, the electron, and the photon denoted by p, k and q respectively. They are shown

in figure 1.1 (b). The centre of mass energy squared of the ep system, s, is given by:

s = (p + k)2 � 4EpEe, (1.2)

where Ee and Ep are the electron and proton beam energies, respectively. For the beam

energies used in this analysis, s is approximately 320 GeV. The dimensionless Bjorken

2The mass of the proton is 0.938 GeV [3].
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scaling variable,

x =
Q2

2p.q
, (1.3)

is interpreted as the fraction of the proton momentum carried by the struck quark in

the infinite momentum frame of the proton. There is a second Bjorken scaling variable

defined by:

y =
p.q

p.k
, (1.4)

which is the fraction of the electron energy taken by the exchanged photon in the proton

rest frame. The square of the invariant mass of the hadronic final state X, which is

equivalent to the squared mass of the photon-proton system, is given by

W 2 = (q + p)2. (1.5)

In the limit where the masses of the incoming particles can be neglected, the kinematic

variables are related by:

Q2 = sxy (1.6)

and

W 2 = ys − Q2, (1.7)

such that only two of the five quantities defined in equations 1.1-1.5 are independent once

s is fixed.
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1.3 DIS Cross-Sections

The total neutral current DIS cross-section is expressed as the sum of the contributions

from virtual photon (γ∗) and Z0 exchanges and from their interference:

σNC = σ(γ∗) + σ(Z0) + σ(γ∗Z0). (1.8)

The relative Q2 dependences of the different terms entering equation 1.8 are given by the

ratios of their propagators:

σ(Z0)

σ(γ∗)
∼

(
Q2

Q2 + M2
Z0

)2

(1.9)

and

σ(γ∗Z0)

σ(γ∗)
∼

(
Q2

Q2 + M2
Z0

)
, (1.10)

where MZ0 is the mass of the Z0 boson. Neutral Current events are selected in the range

1.5 < Q2 < 45 GeV2 in this thesis, much smaller than M2
Z0 , such that the last two terms

in equation 1.8 can be neglected in the remainder of this chapter. The differential cross-

section in the two variables x and Q2 can be expressed in terms of structure functions

as:

d2σ(x, Q2)

dxdQ2
= κ

(
F2(x, Q2) − y2

Y+

FL(x, Q2)

)
(1.11)

with

κ =
2πα2

em

xQ4
Y+ and Y+ = 2(1 − y) + y2, (1.12)
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where αem is the electromagnetic coupling constant. F2(x, Q2) is the most well known

proton structure function and FL(x, Q2) is called the longitudinal structure function.

When electron-proton scattering is viewed as the interaction of a flux of virtual photons

with the proton, the structure functions can be expressed in terms of the transverse (σT )

and longitudinal (σL) photon cross-sections:

F2(x, Q2) =
Q2

4π2αem

[
σT (x, Q2) + σL(x, Q2)

]
(1.13)

and

FL(x, Q2) =
Q2

4π2αem
σL(x, Q2). (1.14)

Equations 1.13 and 1.14 show that F2 measures the total γ∗p cross-section, whereas FL

measures the contribution from longitudinally polarised photons. The positivity of σL

and σT together with equations 1.13 and 1.14 enforces the following inequality:

0 ≤ FL ≤ F2. (1.15)

The dependence on y in equations 1.11 and 1.12 and the hierarchy of equation 1.15 imply

that the F2 term is dominant in the low y region and the importance of FL increases with

y. Experimentally, it is not possible to separately measure the F2 and FL contributions to

the cross-section at fixed s. Instead, measurements of the reduced cross-section, defined

by:

σr(x, Q2) = F2(x, Q2) − y2

Y+
FL(x, Q2), (1.16)

can be performed. Extractions of F2 at HERA are typically performed for values of the

inelasticity y up to 0.6, where only small corrections are needed for the FL term.
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1.4 The Quark Parton Model

The Quark Parton Model [4,5] assumes that hadrons are made up of constituent particles,

called partons, that are identified with quarks (u,ū,d,...). It was introduced to explain the

unexpected observation of scale invariance, or Bjorken scaling, seen in inelastic electron-

proton scattering at SLAC [1,2]. The proton structure function, F2(x, Q2), showed little

dependence on Q2 in the range 1 < Q2 < 10 GeV2 at fixed x, providing evidence for point

like constituents of the proton. The proton structure function can then be expressed as

the weighted sum of the momentum distributions fi(x) of the constituent quarks i which

define the probability of finding a parton i carrying a fraction x of the proton momemtum:

F2(x, Q2) → F2(x) =
∑

i

e2
i xfi(x). (1.17)

The summation is carried out over all species i of quarks with charge ei. If quarks and

anti-quarks were the only constituents of the proton, their momentum sum should be

equal to unity, such that:

∑
i

∫
xfi(x)dx = 1. (1.18)

However, a value of ∼ 0.5 instead of 1 was obtained in the fixed target experiments [6].

This puzzle finds an explanation in terms of the presence of non-charged constituents

(gluons) within the framework of Quantum Chromodynamics (QCD) which is outlined

in the next section. QCD also accounts for the scaling violations observed in the precise

HERA measurements covering five orders of magnitude in Q2 and extending from x =

2× 10−5 up to x = 0.65. These measurements are presented in figure 1.2. It can be seen

that F2 falls slightly with Q2 at high x, whereas it rises with Q2 at low x. The scaling

behaviour of F2 is also seen in the plot for intermediate values of x ∼ 0.1.
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Figure 1.2: Measurements of the proton structure function F2 as a function of Q2 in bins
of x compared to a QCD fit using the DGLAP evolution scheme. F2 is multiplied by 2i

for cosmetic purposes.
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1.5 Quantum Chromodynamics

Quantum ChromoDynamics (QCD) (see for example [7]) is a non-Abelian gauge field

theory that describes the strong interaction. It possesses three colour charges (red, green

or blue) that belong to the fundamental representation of the SU(3) gauge group and that

are carried by quarks. The strong interaction is mediated by eight massless bosons, called

gluons. The number of gluons corresponds to the dimension of the adjoint representation

of SU(3) to which the interaction carriers belong. Due to the non-commutative structure

of the gauge group, gluons also carry a bi-colour charge and can thus couple to each

other. Feynman rules, which are used to form matrix elements, can be derived from the

QCD Lagrangian, as in other field theories 3. The cross-section for a given process can

then be calculated once the ultraviolet divergences, which typically arise when one of the

momenta in the loop integrals goes to infinity, have been removed using an appropriate

regularisation scheme. The regularisation process introduces a dependence of the strong

coupling constant αs on the renormalisation scale μ. In the lowest order of perturbation

theory, αs is given by:

αs(μ
2) =

4π

β1 ln(μ2/Λ2
QCD)

(1.19)

with

β1 = 11 − 2

3
nf , (1.20)

where nf is the number of active quark flavours whose mass is less than the scale μ. The

QCD parameter ΛQCD sets the scale for the running coupling. Measurements of the strong

coupling αs are presented, by convention, at the fixed reference scale μR = MZ0 . The αs

world average value is 0.1200 ± 0.0028(exp) ± 0.002(scale) [3]. It follows from equation

3The QCD Lagrangian and the Feynman rules for the covariant and physical gauges can be notably
found for example in [7]. Their mathematical expressions are not needed in the present discussion.
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1.19 and the positivity of β1 that the QCD coupling αs is small at small distances that

correspond to large momentum transfers μ, and a perturbative calculation in terms of αs

of the cross-section can be performed. This behaviour is known as asymptotic freedom

and is heavily used in the interpretation of DIS data, where the relevant scale μ2 = Q2.

At low momentum transfer μ, or large distances, non-pertubative methods need to be

used in calculations since the coupling constant gets large, which explains why quarks are

confined within hadrons. This is know as infrared slavery.

1.6 QCD Hard Scattering Factorisation

In processes involving at least one hadron in the initial state, observables cannot be

fully calculated pertubatively because of infrared slavery. Hard scattering factorisation

theorems, that allow us to disentangle the pertubatively calculable (hard) aspects from

the non-perturbatively calculable (soft) aspects of an interaction, have been proved for

numerous processes. In DIS, the mathematical expression of the factorisation theorem

is [8]:

F
(V h)
2 (x, Q2) =

∑
i

∫ 1

x

dξ CV i
2

(
x/ξ, Q2/μ2, αs(μ

2)
)

fi/h(ξ, μ
2) (1.21)

where the sum over partons i includes quarks, anti-quarks and gluons. The separation

between high and low momentum physics is done at an arbitrary factorisation scale μ,

only constrained by μ2 � Λ2
QCD. fi/h(ξ, μ

2) is the parton distribution function (pdf) of

parton i which is specific to the hadron h and depends on the factorisation scale. The

pdfs are universal in the sense that they do not depend on the type of hard scattering

under consideration and on the electroweak vector boson, V 4. C
(V i)
2 (x/ξ, Q2/μ2, αs(μ

2))

4However, pdfs differ depending on the scheme used to separate the short distance from the long
distance dynamics beyond the lowest order in perturbation theory. The DIS and the MS are the most
commonly used, but their discussion goes beyond the handwaving discussion presented here (see for
example [7]).
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is the corresponding infra-red safe coefficient that is independent of the external hadron.

This coefficient varies with the exchanged boson and the parton type i.

The factorisation theorem is valid up to corrections that are power suppressed in Q2, or

equivalently it is at leading twist theorem.

QCD factorisation implies that cross-sections can be predicted for various processes once

the universal parton distribution functions have been determined using the result of a

given experiment. Through F2 measurements, the HERA data provide the strongest

constraints on the proton pdfs.

1.7 The DGLAP Evolution Equations

The evolution equations are a consequence of factorisation. They allow us to compute the

parton distributions at any scale μ′ knowing the pdfs at a scale μ, provided that both μ

and μ′ are large enough such that αs(μ) and αs(μ
′) are small. At the leading order (O(αs))

and taking the scale μ2 equal to Q2, the most important contributions to the evolution

equations correspond to the DGLAP equations that were derived by Dokshitzer, Gribov,

Lipatov, Altarelli and Parisi [9–12]:

dqi(x, Q2)

d ln Q2
=

αs(Q
2)

2π

∫ 1

x

dz

z

[
qi(z, Q

2)P LO
qq

(
x

z

)
+ g(z, Q2)P LO

qg

(
x

z

)]
(1.22)

and

dg(x, Q2)

d ln Q2
=

αs(Q
2)

2π

∫ 1

x

dz

z

[ ∑
i=1,2f

qi(z, Q
2)P LO

gq

(
x

z

)
+ g(z, Q2)P LO

gg

(
x

z

)]
, (1.23)

where i runs over quarks and anti-quarks of all flavours. f is the number of quark flavours.

q and g denote the quark and gluon distributions. The Pij, called splitting functions,

give the probability for finding a parton i with momentum fraction x originating from
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parton j with momentum fraction z (> x). The different splitting functions corresponding

to the different couplings, q → qg, q → gq, g → qq̄ and g → gg, are illustrated in figure

1.3.

jjjj

iiii

gq qg gg
(x/z)P LOLOP (x/z)(x/z)P LO(x/z)

qq
LOP

Figure 1.3: Representation of the four LO splitting functions P LO
ij (x/z) that give the

probabilty for parton j with momentum fraction z to split to produce a parton i with
momentum fraction x.

The scaling violations can be physically interpreted within QCD. Non-valence (sea) quarks

and gluons are generated by the DGLAP mechanism. As Q2 increases, more partons, with

each having a lower fraction of the proton momentum x, can be resolved, which leads to

the observed logarithmic dependence on Q2

The DGLAP evolution equations are now known to the next-to-next-to-leading-order

(NNLO) following the recent calculation by Vogt, Moch and Vermaseren [13].

Using the evolution equation formalism at the next-to-leading order, the H1 parton dis-

tributions functions [14] are shown in figure 1.4 for Q2 = 10 GeV2. These results are

obtained using only NC and CC data from H1. The importance of the gluon distribution

relative to the others increases dramatically with decreasing x.

The DGLAP equations effectively sum up all the contributions to the cross-section propor-

tional to [αs(Q
2) ln(Q2/Q2

0)]
n for fixed Q2

0 which corresponds to the leading logarithm
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approximation (LLA) valid in the limit:

αs(Q
2) ln

(
1

x

)
� αs(Q

2) ln

(
Q2

Q2
0

)
< 1. (1.24)

The gluon-gluon splitting Pgg function behaves like ∼ αs/x, and thus it possesses a singu-

larity at very small x. In this regime, the DGLAP formalism mathematically breaks down

and the leading αs ln(1/x) terms must also be considered. The BFKL evolution equation

effectively sums αs ln(1/x) contributions. Experimentally, the DGLAP approach has been

very successful in describing the inclusive H1 data down to the smallest values of x. Some

final state observables measured at H1 [15–17] are better described when BFKL effects

are considered.
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Chapter 2

Diffractive Deep Inelastic Scattering

High energy diffraction, and more specifically diffractive DIS, constitutes a very extended

topic, and only the most relevant aspects of the theory necessary to follow the work of

this thesis are discussed in this chapter.

About 10% of the DIS events measured at HERA are characterised by a large region

devoid of activity or ‘rapidity gap’ 1 between the hadronic final state observed in the main

detector and the proton or its dissociation products forming a low mass hadronic state

which passes unobserved into the forward beampipe. This class of DIS events is called

‘diffractive’ since the collisions are elastic or quasi-elastic. The exchange of a colourless

object between the proton and the photon was introduced to explain the presence of

the rapidity gap. The existence of such an exchange with vacuum quantum numbers

(C = 1, P = 1), called the pomeron, had originally been postulated to describe the rise

with the centre of mass energy of the total and elastic cross-sections observed in hadron-

hadron collisions [18]. The discussion of diffractive DIS requires additional kinematic

variables to describe the three new degrees of freedom introduced by the presence of the

rapidity gap between the outgoing proton and the diffracted photon.

1Rapidity is defined by y = 1
2 ln E+pz

E−pz
. Small rapidity gaps that are exponentially suppressed occur

naturally in non-diffractive DIS.
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2.1 Diffractive Kinematics

p

q

q'

e

e'

colour
string

γ

Y

no colour flow

q

IP

(a)

2

β

(b)

Figure 2.1: (a) Schematic representation of diffractive DIS and (b) illustration of the
diffractive kinematic variables.

In what follows, X is used to label the hadronic state into which the photon dissociates,

and Y refers to the scattered proton or the proton remnant. A schematic representation

of diffractive DIS is shown in figure 2.1 (a). pX and pY designate their 4-vectors. The

4-momentum transfer squared across the proton vertex (see figure 2.1 (b)) is defined by:

t = (p − pY )2. (2.1)

Two further diffractive variables are introduced:

x
IP

=
q · (p − pY )

q · p ≈ Q2 + M2
X

Q2 + W 2
, (2.2)

and

β =
x

x
IP

=
−q2

2q · (p − pY )
≈ Q2

Q2 + M2
X

. (2.3)

The mass of the proton and the squared four momentum transfer t have been neglected in
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the approximation of equations 2.2 and 2.3 since m2
p � Q2, W 2 and |t| � Q2, M2

X for the

limits appropriate to this analysis. x
IP

is the fraction of the 4-momentum of the proton

transferred to the pomeron, and β is interpreted as the fraction of the 4-momentum of

the pomeron carried by the struck quark when a partonic structure is ascribed to the

colourless exchange. β is therefore the analogue of x in inclusive DIS. Thus, the five

independent kinematic variables typically used to describe diffractive scattering are Q2,

t, x
IP

, β and MY , the mass of the system Y .

2.2 The Diffractive Reduced Cross-section

The expression of the cross-section for diffractive DIS is based on the formalism used in the

discussion of inclusive DIS. The only difference resides in the additional dependence intro-

duced by the new degrees of freedom. The measurement performed later will be integrated

over MY and t leaving a three-fold differential cross-section. The diffractive differential

cross-section is then expressed in terms of the reduced cross-section, σ
D(3)
r (β, Q2, xIP ), as

follows:

(2.4)

d3σep→eXp

dβdQ2dxIP

=
4πα2

em

βQ4

(
1 − y +

y2

2

)
σD(3)

r (β, Q2, xIP ). (2.5)

The latter quantity can again be related to the structure functions by :

σD(3)
r (β, Q2, xIP ) = F

D(3)
2 (β, Q2, xIP ) − y2

1 + (1 − y)2
F

D(3)
L (β, Q2, xIP ). (2.6)
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2.3 QCD Hard Scattering Factorisation for Diffrac-

tive DIS

Collins [19] has proved a factorisation theorem for diffractive hard processes in DIS that

allows us to separate the short from the long distance dynamics in the same manner as

in DIS. The diffractive cross-section can be expressed at the leading twist in terms of

diffractive parton distribution functions, f(x, Q2, xIP ), convoluted with a hard-scattering

cross-section 2:

σD(3)
r ∼

∑
i

fD
i (xIP , x, Q2) ⊗ CV i

2 (x, Q2), (2.7)

where the sum runs over quark flavours. The CV i
2 are the same hard scattering coeffi-

cient functions that were introduced for inclusive DIS. fD
i are diffractive parton densities

which obey the DGLAP equations, and the DIS evolution formalism thus also applies to

diffraction. The theorem holds for any fixed value of x
IP

. This property is exploited in

the fits performed by H1 that will be discussed in the next section.

2.4 The Resolved Pomeron Model

Ingelman and Schlein [20] assigned a parton structure to the diffractive exchange. They

effectively factorised the diffractive pdfs into pomeron parton distributions functions,

f IP
i (β, Q2), and a pomeron flux factor, fIP/p(xIP ), which can be qualitatively interpreted

as the probability of the emission of a pomeron by the proton. Hence, the diffractive pdfs

2The cross-section has been integrated over t in the formula presented here.
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are mathematically expressed as:

fD
i (xIP , x, Q2) = fIP/p(xIP ) · f IP

i (β = x/x
IP
, Q2), (2.8)

and the factorisation equation 2.7 can be rewritten in terms of the pdfs of the pomeron

as:

σD(3)
r ∼ fIP/p(xIP )

∑
i

f IP
i (x, Q2) ⊗ Ci(x, Q2) (2.9)

∼ fIP (xIP )σIP
r (β, Q2), (2.10)

where σIP
r is the (x

IP
independent) eIP cross-section. The flux factor is assumed to be

independent of Q2, which expresses that the physics at the proton vertex is not related

to what happens at the photon vertex. This is known as ‘Regge factorisation’ which finds

strong experimental support at HERA. In figure 2.2, the measured reduced diffractive

cross-section at intermediate Q2 is divided by the flux factor and plotted as a function of

β for different values of x
IP

. The similarity of the normalised cross-section in the overlap

regions between different x
IP

values validates the Ingelman-Schlein assumption.

Regge theory has been very successful in describing soft hadronic interactions and elastic

scattering [21]. This motivates the Regge-based parametrisation of the pomeron flux

factor:

fIP (xIP ) =

∫ tmin

tcut

eBIP t

x
2αIP (t)−1
IP

dt, (2.11)

where tcut = −1.0 GeV2 is defined by the selection technique described in section 5.1 and

tmin is the minimum kinematically allowed value. The αIP (t) term is parametrised with

αIP (t) = αIP (0) + α′
IP t [21].
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Figure 2.2: Comparison of the diffractive reduced cross-section divided by the pomeron
flux for different values of x

IP
as a function of β in Q2 bins. The prediction of a NLO fit

is also shown. Only data points with y < 0.6 are presented to minimise the influence of
the longitudinal diffractive structure function.

2.5 H1 Diffractive Parton Distributions Functions

A deviation from the factorisation expression of equation 2.8 has been observed in the H1

diffractive reduced cross-section at high β that can be accommodated when the exchange

of sub-leading reggeon trajectories is allowed. This comes as no surprise as the exchange of

mesons in addition to the pomeron has also been needed to describe the energy dependence
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of total hadron-hadron cross-sections [18]. An extra term is therefore added to the cross-

section 2.10:

σD(3)
r (β, Q2, xIP ) = fIP (xIP )σIP

r (β, Q2) + fIR(xIP )σIR
r (β, Q2), (2.12)

where the reggeon flux factor is given by 2.11 with the IP label replaced by IR. The value

of αIP (0) (∼ 1.17) was determined in [22]. The possibility of interference between the

pomeron and reggeon term was considered in [23]. No conclusion could be drawn about

the role of the interference term without further precision measurements at high x
IP

.

The starting pdfs for the pomeron consist of a light quark (u,d,s) flavour singlet distribu-

tion and a gluon distribution that are parametrised at the scale of 3 GeV2. The charm

contribution, which arises from boson gluon fusion, is calculated in the fixed flavour mas-

sive scheme 3. The meson pdfs are evolved independently of the pomeron using a pion

parton distribution function. A NLO fit was performed to the H1 data with Q2 > 6.5

GeV2 and a cut on MX > 2 GeV was applied in order to remove the non-leading twist

component of the cross-section. The experimental systematic errors were propagated to

the fits for the first time. The gluon and singlet distributions (taken from [22]), normalised

such that the pomeron flux is equal to unity at x
IP

= 0.003 , are shown as a function of the

variable z for three different values of Q2 in figure 2.3. z is equal to β when the photon

interacts with a quark and is equal to the fractional momentum carried by the gluon, with

β < z, when the parton entering the hard scattering is a gluon. The plots illustrate that

the momentum of the diffractive exchange is mainly carried by gluons. The integrated

fraction of this momentum amounts to 75% and is constant with Q2 within errors. The

diffractive gluon distribution displays a strong rise with decreasing z that is also observed

in the inclusive distribution. The quark singlet distribution is approximately flat and

extends to the highest z in contrast with the quark distribution in inclusive DIS shown

3In this scheme, the charm quarks are always treated as heavy particles and never as partons, such
that they are always produced dynamically via γ∗g → cc̄.
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Figure 2.3: The Q2 evolution of the quark singlet (left) and gluon (right) diffractive parton
densities obtained with the NLO QCD fit described in the text are plotted as a function
of z. The inner band comprises the statistical and systematic experimental errors and the
outer band shows the total error with the theoretical uncertainties included. The result
of the LO fit is also shown.

in figure 1.4.
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2.6 Comparison between the Predictions of H1 Fits

and Data

Invoking Collins’ factorisation theorem, the diffractive parton densities can be used to

make predictions for the cross-sections of diffractive final state observables. In [24], the

diffractive production of D∗± is investigated. Charm production proceeds dominantly via
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Figure 2.4: Comparison between the measured diffractive D∗ meson production cross-
sections expressed as a function of Q2, y, pT,D∗ and ηT,D∗ and the theoretical predictions
based on NLO diffractive pdfs.
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the boson-gluon fusion mechanism (γ∗g → cc̄) and is therefore very sensitive to the gluon

distribution of the diffractive exchange. Differential cross-sections as a function of the

photon virtuality Q2, the elasticity y, the transverse momentum pT,D∗ and the rapidity

ηD∗ of the D∗ meson are all compared in figure 2.4 with a NLO calculation that uses the

H1 NLO diffractive partons densities. In all cases, there is good agreement between data

and theory within the experimental and theoretical uncertainties.

γ

(a)

γ

γ

(b)

Figure 2.5: Diagrams representing diffractive jet production in DIS (a) and in the ‘re-
solved’ photoproduction regime (b).

Dijets in diffractive DIS and photoproduction have also been measured at H1 [25]. The

DIS process is sketched in figure 2.5 (a). The same process exists in ‘direct’ photoproduc-

tion, when the proton interacts in a point-like manner. In the ‘resolved’ photoproduction

process represented in figure 2.5 (b), a parton originating from the fluctuation of the

photon into a hadronic state enters the hard scattering. The new kinematic variable z
IP

,

defined by:

z
IP

= β

(
1 +

ŝ

Q2

)
, (2.13)

is introduced to estimate the fraction z of the diffractive exchange momentum that enters

the hard process. ŝ denotes the invariant mass squared of the dijet system. The univer-
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sality of the diffractive pdfs is again confirmed in figure 2.6 where the DIS diffractive dijet

cross-section as a function of z
IP

(a) and as a function of log x
IP

(b) are well reproduced

by the NLO order calculations.
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Figure 2.6: Differential cross-sections, shown as a function of z
IP

(a) and log x
IP

(b), for
diffractive dijet production in DIS. The data, shown as points with (statistical and total)
error bars, is compared with a NLO prediction using NLO diffractive pdfs.

The fits fail to describe diffractive dijet production in the photoproduction regime, and the

fit prediction for the diffractive proton-proton interaction measured at the TEVATRON is

one order of magnitude too large [22]. This was perhaps expected as the QCD factorisation

theorem in diffraction does not apply for these measurements [19].
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2.7 The Saturation Model

In the proton rest frame, DIS can be described by the formation of a long-lived partonic

fluctuation of the photon long before the interaction with the proton takes place. The

photonic fluctuation is dominated by the qq̄ dipole that interacts with the proton. The

inclusive cross-section for transverse and longitudinal photons can be calculated for a

specified dipole cross-section σ̂T,L with:

σT,L(x, Q2) =

∫
d2rdz|ψT,L(Q2, r, z)|2σ̂(Q2, r, z), (2.14)

where ψT,L(Q2, r) is the light cone wavefunction for transverse and longitudinal photons.

z is the momentum fraction of the photon carried by the quark as depicted in figure 2.7

and r2 ∼ 1/Q2 is the transverse size of the dipole. Large size dipoles interact with the

proton similarly to soft hadron-hadron interactions whereas the large momentum transfer

associated with small dipoles can be dealt with perturbatively.

γ
σdipole

ψ(r,z,Q2)

Figure 2.7: Dipole picture of γ∗p scattering.

The diffractive cross-section is then given via the optical theorem by:

σT,L(x, Q2) =

∫
d2rdz|ψT,L(Q2, r, z)|2σ̂2(Q2, r, z). (2.15)

It is important to contrast the collinear factorisation approach of diffractive parton den-
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sities with the phenomenological model discussed here. In the former scheme, two dif-

ferent sets of parton distributions functions were needed in order to describe inclusive

and diffractive processes. In contrast the same dipole cross-sections applies to elastic and

total cross-section in the latter approach. Among the different models that exist for the

dipole cross-section, only the saturation model will be discussed here as it forms the basis

of the SATRAP Monte Carlo simulation that is used later in the diffractive analysis. The

objective of the saturation model is to describe the transition from high to low Q2 at low

x. The idea of the model is to damp the strong rise of the cross-section as x decreases by

postulating a saturation of the dipole cross-section at low x, for example due to parton

recombinations that are not modeled by the linear evolution equations. The effective

dipole cross section is expressed as:

σ̂(x, r2) = σ0

[
1 − exp

(
− r2

R2
0(x)

)]
, (2.16)

where R2
0(x) is the saturation radius given by:

R0(x) =
1

Q0

(
x

x0

)λ
2

, (2.17)

with Q2
0 = 1 GeV2. Hence, there are just three free parameters to be determined from

fits to the inclusive data: x0, λ and σ0. From a recent publication [26], appropriate values

for these three parameters were found to be, for x < 0.01:

σ0 = 23 mb, λ = 0.29, x0 = 3 × 10−4. (2.18)

Once these parameters are specified, the diffractive cross-section can be calculated at

t = 0 GeV2 using equation 2.15. Thus, the only additional free parameter required is the

slope parameter, b. A reasonable description is obtained with b = 6 GeV−2 [27].
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Chapter 3

The H1 Experiment

At the end of the year 2000, the H1 detector was modified to take full advantage of the

HERA high luminosity upgrade. As the data analysed in this thesis were collected during

a dedicated run with minimum bias triggers in 1999, the pre-upgrade H1 detector is

described in this chapter after a brief introduction to the pre-upgrade HERA accelerator

often referred to as HERA I. The emphasis will be put on the detector components relevant

to this analysis. HERA delivers multi-bunch beams with a high collision frequency in order

to achieve the high luminosities necessary for high precision measurements and the study

of rare processes in electron-proton interactions. This necessitates a sophisticated four-

level trigger system. The trigger requirements on the trigger system in the 1999 minimum

bias data taking is discussed in the remainder of this chapter.

3.1 The HERA Accelerator

The Hadron Electron Ring Accelerator (HERA), situated at the Deutsches Elektronen

Synchroton (DESY) laboratory in Hamburg, is the first electron-proton collider in the

world and was commissioned during the year 1991. The HERA storage ring, represented
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in figure 3.1, has a circumference of 6336 m and consists of two independent accelerators,

one for protons and the other for electrons or positrons.

Hall North

H1

Hall East
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Hall South

ZEUS
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Figure 3.1: The left figure shows the HERA accelerator with the PETRA pre-accelerator
in the dotted box, an enlarged view of which is given on the right.

Electrons are initially accelerated to an energy of 14 GeV with a linear accelerator, the

e-LINAC, and two circular accelerators, DESY-II and PETRA. They are then injected

into HERA where they reach their final energy of 27.5 GeV. Protons, produced from a

source of H+ ions, are first accelerated to an energy of 40 GeV with the DESY III and

PETRA rings, and then brought to an energy of 920 GeV in HERA. During the transfer

of a proton bunch from PETRA to HERA, a small fraction of the proton current escapes

from the main bunch and forms satellite bunches separated in time by 4.8 ns from the

main bunch. In HERA, protons and electrons are stored up to 220 bunches of 1010 to

1011 particles each. The bunch crossing interval is 96 ns. Approximately 175 bunches are

collided, the others, called pilot bunches, are not brought into collision. Pilot bunches are

used to estimate backgrounds arising from beam-gas and beam-wall interactions.

The 27.5 GeV electrons and the 920 GeV proton beams1 are collided head on at north

and south interaction points where the H1 and ZEUS detectors are located, respectively.

Two other detectors, HERMES and HERA-B, situated at east and west interaction points,

1The energy of the proton beam was 820 GeV before 1998.
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use only one of the beams. The HERMES experiment collides longitudinally polarised

electrons with a polarised gas jet target of either H, D or 3He to investigate the spin

structure functions of nucleons. The HERA-B experiment was assigned to study CP

violation in the B Meson system produced in the collision of protons with either Carbon,

Aluminium, Titanium or Tungsten target wires. In the H1 and ZEUS experiments, the

structure of the constituents of the proton, neutral and charged current processes and

physics beyond the Standard Model are studied using the very high resolving power

provided by the high energies of the HERA beams.

3.2 Overview of the H1 detector

The large difference in energy between the electron and proton beams leads to a boost of

the scattered particles in the direction of the outgoing proton. This direction, also called

the forward direction, is used to define the z-axis of a right-handed Cartesian coordinate

system (x, y, z) centered about the nominal interaction point. The x-axis points towards

the centre of the HERA accelerator. The angle between a particle and the positive

direction of the z-axis defines the polar angle θ of a cylindrical coordinate sytem. Its

azimuthal angle is defined by the angle formed by a particle and the x-axis in the (x, y)

plane. In lepton-hadron and hadron-hadron collisions, the variable pseudo-rapidity is

frequently used instead of the polar angle for ultra-relativistic particles. It is defined by

η = − ln(tan θ
2
).

The layout of the H1 [28, 29] (see figure 3.2) detector only differs from other detectors in

collider experiments in that it is assymmetric and highly segmented in the proton direction

in order to provide a very good reconstruction of the boosted hadronic final state.

Each sub-detector of the H1 apparatus possesses a cylindrical symmetry about the beam-

pipe 1 . Two micro-vertex silicon detectors, the Central Silicon Tracker (CST) and the
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Figure 3.2: Isometric projection of the H1 detector.

Backward Silicon Tracker (BST) are located in the innermost layer very close to the

interaction point. They are surrounded by the Central Tracking Detector (CTD) 2 . The

Forward Tracking Detector (FTD) 3 and the Backward Drift (BDC) chamber lie on

either side of the Central Tracker. The Liquid Argon (LAr) calorimeter is located around

the trackers and is made up of an electromagnetic section 4 and an hadronic section 5 .

The LAr is in turn surrounded by a superconducting solenoid magnet 7 providing an
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axial field of 1.5 T. The instrumented iron return yoke of the magnet 10 is used to detect

muons and the residues of hadronic showers. The Forward Muon Detector 11 allows the

detection of further muons making small angles with the beam-pipe in the direction of

the outgoing protons. Two other calorimeters situated outside the trackers, the PLUG

13 and SpaCal 12 , respectively, cover the very forward and backward directions. The

Forward Proton Spectrometer (FPS), the Forward Tagger System (FTS) and the Forward

Neutron Calorimeter (FNC), not represented in figure 3.2, are used to detect protons or

proton fragments escaping the central detector along the beam-pipe. The FTS consists

of five scintillator arrays located 9, 16, 24, 53 and 92 meters away from the nominal

interaction point. The name ‘Proton Roman Tagger’ (PRT) is commonly used to designate

the scintillators positioned 24 meters away from the central detector. The FPS is made

of four movable stations called Roman pots situated at 63, 80, 81 and 90 metres in the

forward direction. Additional detectors used to detect electrons in photoproduction events

and to measure the luminosity are installed at the rear of the main detector. The main

ones are the Electon Taggers ET33 and ET44 at z = -33.4 and -43.2 m respectively, and

the Photon Detector (PD) at z = -103.1m.

3.3 The Tracking System

The goal of the tracking system (see figure 3.3) is to reconstruct precisely jets and isolated

tracks associated with charged particles. It is divided into three independent modules in

order to provide the optimal event reconstruction over a large solid angle: The Cen-

tral Tracking Detector (CTD) covers the angular range between 22o and 165o and is

complemented by Forward Tracker Detector (FTD) which is especially designed to track

and trigger on tracks boosted in the forward direction in the angular region between 6o

and 25o. The FTD is not used in the analysis presented in this thesis. The BDC and

BST constitute the backward tracking detectors which provide an excellent identification
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and measurement of the scattered electron in DIS events. They cover the angular range

153o < θ < 177.5o.
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Figure 3.3: The H1 tracking detectors.

3.3.1 The Central Tracking Detector

The main components of the CTD are the two concentric drift chambers CJC1 and CJC2

[30]. Their sense wires run parallel to the beam-pipe to give a measurement of r and ϕ

coordinates with a spatial resolution of 170 μm in the r−φ plane and a resolution on z of

22 mm from charge division by reading both ends of the wire. Each drift cell is inclined

by 30o to the radial direction so that ionization electrons drift almost perpendicular to

high momentum tracks. A better resolution in z of 260 μm is obtained with the Central

Inner Z-Chamber (CIZ) [31] and the Central Outer Z-Chamber (COZ) [32]. They both

have their sense wires oriented perpendicular to the beam-pipe. Fast tracking information

for triggering purposes is provided by two multi-wire proportional chambers with wires

parallel to the z-direction: the Central Inner Proportional Chamber (CIP) and the Central
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Outer Proportional Chamber (COP) [33]. This can be achieved with their high time

resolution and fast response.

3.3.2 The Backward Drift Chamber

The BDC [34] is positioned in front of the SpaCal calorimeter and covers a similar angular

range 153o < θ < 177.5o in for collision at the nominal vertex position. It is designed to

determine the polar angle of the scattered electron in DIS from precise track information.

It consists of four double-layers mounted along the z direction and divided into eight

azimuthal sectors. Each sector consists of 32 drift cells with sense wires strung perpendic-

ular to the beam axis. At small radii, the height of the cells is smaller than at large radii

because the background rate increases considerably in the region close to the beam-pipe.

The double layers are rotated by 11.23o with respect to one another for the estimation of

the azimuthal angle. In each double-layer, the cells of one layer are also radially shifted

by half a cell width with respect to the other layer to resolve the left-right ambiguity.

The BDC hits that are closest to an electron track prediction are combined to form

a track segment. The prediction is obtained from the positions of the vertex and the

electron energy cluster in the SpaCal. The average resolution for the polar angle is 0.57

mrad [35].

3.3.3 The Backward Silicon Tracker

The dead material (electronics and cables of the CTD) in front of the BDC affects the

resolution of the polar angle of the scattered electron. The BST [36] is positioned close

to the CST (see figure 3.3), and it consequently provides a better measurement of the

electron, but over a limited acceptance compared to the BDC. It also supplements the

vertex reconstruction at low and high y where the particles escape the CTD acceptance.
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The description that follows corresponds to the configuration of the years 1998-2000. The

BST (see figure 3.4) is divided into the BST1 and BST2 sub-detectors each consisting of

four wheels of Silicon detectors. The BST1, the farthest from the interaction point, is

separated from the BST2 by the read-out electronics of the latter. Each wheel is composed

of 16 modules of silicon detectors with r-strips (radial strips) arranged concentrically

around the beam-pipe. The modules possess a trapezoidal shape with inner and outer

radii r = 5.9 cm and r = 12.04 cm, respectively. Eight additional φ strip modules equip

each wheel. Further details on the electron identification procedure will be given in section

4.5.

Figure 3.4: Schematic view of the BST detector.
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3.4 Calorimetry in the H1 Detector

3.4.1 The Liquid Argon Calorimeter

The LAr calorimeter [29] provides a continuous and hermetic coverage for polar angles

from 4o up to 154o. The purpose of the LAr 2 is to measure final states hadrons at all

Q2 and scattered electrons in very high Q2 (>100 GeV2). The calorimeter is divided

into 8 wheels in z, each of which is further segmented into eight φ octants. The six

central wheels are split into an inner electromagnetic section (EMC) and an outer hadronic

section (HAC). The forward wheel comprises only an hadronic section whereas to the most

backward wheel has only an electromagnetic section. The EMC consists in a succession

of 2.4 mm thick lead absorbing plates and 2.35 mm thick layers of LAr. It has a total

thickness of 20 to 30 radiation lengths for electrons and 1 to 1.4 interaction length for

hadrons. The HAC is composed of 19 mm thick lead absorber plates with a double gap of

2.4 mm LAr providing an additional 5 interaction lengths for the absorption of hadrons.

The orientation of the absorber plates was chosen to maximise the path length of the

particles and is represented on figure 3.5. The energy resolution of the EMC and HAC

are σ(E)
E

∼ 0.11√
E(GeV )

⊕0.01 and σ(E)
E

∼ 0.50√
E(GeV )

⊕0.02 for charged pions in test beams [37].

3.4.2 The Spaghetti Calorimeter SpaCal

The SpaCal [38], as with the LAr, is also divided into electromagnetic and hadronic

sections. The Spacal is a very compact high resolution lead/scintillating fibre calorimeter

that provides a coverage of the region close to the beam-pipe in the θ-range from 153o to

177.5o, corresponding to Q2 values in the range 1 ≤ Q2 ≤ 120 GeV2. The electromagnetic

section comprises 1192 cells of dimension 40.5 x 40.5 mm2 with a depth of 250 mm

2Liquid argon was chosen for its stability and ease of calibration. The calorimeter’s fine granularity
yield high resolution and good eπ separation.
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Figure 3.5: Side view of the LAr calorimeter with its absorber plates.

corresponding to 28 interaction lengths and one hadronic interaction length. The cell

size is chosen to ensure a good electron-pion separation and a good position resolution.

The basic unit of the calorimeter, a two-cell module, is made of 52 lead plates, each

with 90 grooves hosting scintillating fibers with a diameter of 0.5 mm to provide a high

sampling frequency which leads to an electron energy resolution, determined in test beam

experiments, of σ(E)/E = (7.1±0.2)%√
E/GeV

⊕ (1.0 ± 0.1)% [39]. The vertical and horizontal

orientations of the 2-cell modules is depicted in figure 3.6 and is chosen to minimize the

channeling effect. The innermost module is called the insert module which allows the

identification of energy leakage from the calorimeter into the beam-pipe. The scintillation

light of each cell is converted into electric pulses using photomultiplier tubes with a time

resolution of about 1 ns, allowing strong suppression the non ep-background at the trigger

level.

The structure of the hadronic calorimeter section is similar to the electromagnetic one

with 136 cells of 12 x 12 x 25 cm3 providing one nuclear interaction length with fibres 1

mm in diameter.
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Figure 3.6: Cross-sectional representation of the SpaCal illustrating the orientation of its
2-cell modules and the insert.

3.4.3 The PLUG Calorimeter

The PLUG calorimeter [40] is designed to measure the energy flow in the forward region

beyond the acceptance region of the LAr calorimeter (see figure 3.2). It covers the angular

range 0.75o to 3.4o and has an angular resolution of 5 mrad. It is used here to distinguish

between diffractive and non-diffractive events. The PLUG consists of nine copper absorber

plates interleaved with eight sampling layers of Silicon. Its rather poor hadronic energy

resolution of σ(E)/E = 150%/
√

E/GeV is the result of its incomplete shower containment

and its coarse sampling.
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3.5 The Forward Detectors

3.5.1 The Forward Muon Detector

The FMD [41], whose angular coverage is 3o < θ < 17o corresponding to a pseudo-rapidity

range of 1.9 < η < 3.7, is situated beyond the return yoke of the solenoid magnet. It

comprises three double layers of drift chambers located on either side of a toroidal magnet

providing a magnetic field which varies from 1.75 T at the inner radius to 1.5 T at the

outer radius. Four doubles layers have their wires strung tangentially around the beam-

pipe to provide a measurement of the polar angle, and the other two have their wires

strung radially for a measurement of the azimuthal angle. Charged particles leave pairs

of hits in the double layers of drift cells which are linked with other pairs on the same side

of the toroid to form track segments. Full tracks are reconstructed using the segments

on both side of the toroid. The FMD is in fact a spectrometer to measure muons in

the momentum range 5 < p < 100 GeV. The lower bound is set by multiple Coulomb

scattering, and the upper one is set by the minimum detectable track curvature in the

magnetic field.

3.5.2 The Forward Tagger System

The Forward Tagger System consists of five planes of scintillator counters located at z =

9 m, 16 m, 24 m, 53 m and 92 m away from the nominal interaction point. Each layer,

with the exception of the Proton Remnant Tagger at z = 24 m, is formed by four counters

positioned as close as possible to the beam-pipe. The PRT comprises seven scintillators

and covers a range in pseudo-rapidity of 6 < η < 7.5. Each counter is made of two parallel

plastic scintillators, each positioned on either side of a stainless steel layer. A 1 mm thick

sheet of lead protects all the detectors against synchrotron radiation. The readout is

performed with photo-multipliers.
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Figure 3.7: The seven scintillators constituting the PRT.

3.6 Triggering and Data Acquisition

3.6.1 Triggering

A high electron-proton collision rate is required in order to gather reasonable statistics for

rare processes and high precision measurements. The entire detector cannot be read out

during the 96 ns interval between successive bunch crossings because the signal formation

in the slowest detector, namely the LAr calorimeter, takes 22 bunch crossings.

Therefore, H1 uses a four level trigger system in order to select the data of interest and

to minimize the time during which the detector is inactive. The first two trigger levels,

L1 and L2, consist of online hardware, while the fourth level trigger, L4, is a software

running asynchronously with the earlier trigger levels 3.

At every bunch crossing, the L1 trigger system of each sub-detector sends eight or sixteen

3The third trigger level was not implemented during the HERA I running period.
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bits of information, called trigger elements, to the central trigger. The central trigger

makes 128 logical combinations of these trigger elements to form sub-triggers. In total, it

takes 24 bunch crossings before L1 provides a decision whether to keep or reject an event.

To avoid dead-time, the full detector information is stored in front-end pipelines whilst

the trigger information is being collected and processed. If at least one of the sub-triggers

is validated, an L1 keep signal is broadcast to the sub-systems, the pipelines are frozen,

rewound by 24 bunch crossings. The full detector read-out starts and dead-time begins.

The L1 and further information is passed over to L2 which refines the L1 decision after

20 μs. L2 is divided into two sections, a topological trigger (L2TT) and a neural network

(L2NN), each providing 16 trigger elements. These are combined with L1 sub-triggers

to form L2 sub-triggers. When an L2 keep signal is issued, deadtime continues until the

complete detector information is read out and transfered to the central event builder of

the fourth triggering level within 800 μs. The pipelines are then cleared and the dead

time stops. A series of physics algorithms are run asynchronously at L4 to further reject

remaining background events. About 1% of the rejected events are retained for monitoring

and calibration purposes. The L4 farm processes events at a rate of up to 45 Hz. After

data taking, the data are reprocessed using the full calibration of the various detectors

and the optimised tracking information.

The trigger rates for soft processes can be as large as a few kHz whereas the rates for

rare signatures can be much lower than 1 Hz. In order to maximise the efficiency of

the data taking, the L1 sub-triggers associated with abundant events are not validated

until their sub-trigger conditions has been satisfied a fixed number of times equal to their

sub-trigger pre-scale. The pre-scales are adjusted regularly as a function of the beam

conditions during a luminosity fill 4.

4A luminosity fill is the period of time extending from the moment HERA announces luminosity until
one or both beams are dumped.
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3.6.2 The Triggers of the 1999 minimum Bias Data Taking

The 99 minimum bias (99MB) data taking was fully devoted to the study of the region of

the kinematic phase space with Q2 < 12 GeV2. The electron and proton beams energies

were 27.5 GeV and 920 GeV, respectively.

There are three sub-triggers, namely s0, s3 and s9, designed for the identification of DIS

events with Q2 up to 150 GeV2 which are characterised by the presence of the scattered

electron in the SpaCal. Each of these sub-triggers contains an Inclusive Electron Trigger

element (IET). There are three IET triggers, each corresponding to a specific electron

energy threshold in the SpaCal (see table 3.1).

Trigger Element (Inner Region) Trigger Element (Outer Region) Energy Thresho ld
SPCLe IET cen1 SPCLe IET>0 2 GeV
SPCLe IET cen2 SPCLe IET>1 5 GeV
SPCLe IET cen3 SPCLe IET>2 10 GeV

Table 3.1: The definitions of IET trigger elements for the 99MB data taking.

The electron energy is obtained by summing all the contributions deposited in 4 x 4

neighbouring electromagnetic calorimeter cells during the time of flight window of the ep

interaction. To achieve the best efficiency, the sum is performed in overlapping windows

with each window translated by a cell with respect to the previous one. The IET triggers

are further divided into outer and inner region 5 triggers. The latter are known as IET Cen

triggers that are excluded from the definition of DIS sub-triggers under normal data

taking. However, they were included in the minimum bias runs to give the best access to

soft processes. The definitions of the s0, s3 and s9 sub-triggers are summarised in table

3.2, the timing and background trigger elements have been left out in the definition. s0

is the main sub-trigger of this analysis. It has a condition on the radial position of the

electron cluster in the SpaCal to ensure reasonable trigger rates. s9 possesses the lowest

energy threshold and is therefore used to access the highest y. It requires the existence

5The inner region is delimited by -16 < x <8 cm and -8 < y < 16 cm.
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of CJC tracks pointing towards the vertex region to limit the background. The lowest Q2

values are reached with s3, which has the highest threshold energy of 10 GeV to limit the

trigger rates.

Sub-trigger L1 L2
s0 SPCLe IET>1 or SPCLe IET cen2 RSpaCal > 10 cm
s3 SPCLe IET>2 or SPCLe IET cen3 no requirement
s9 (SPCLe IET>0 or SPCLe IET cen1) and ‘good tracks’ no requirement

Table 3.2: The L1 and L2 definitions for the s0, s3 and s9 sub-triggers for the 99MB data
taking.
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Chapter 4

Event Selection

This chapter starts with the description of the Monte Carlos models used in the analysis.

The global selection of events, that ensures the quality of the data used in the analysis,

follows. It concentrates next on the procedure adopted to reconstruct the track of the

scattered electron. It will be argued that using the BST and its associated electron finder

constitutes the best method to measure precisely the electron polar angle and to determine

the primary vertex position. The correct alignment of the electron detectors is particularly

relevant to the precise reconstruction of the DIS kinematics. Both the alignment and the

various kinematic reconstruction methods will be discussed. Before proceeding to the

diffractive selection, the reliability of the inclusive sample must be demonstrated. This

will be achieved with control distributions and with a comparison of the measurement of

the inclusive reduced cross-section with published H1 data. The rest of this chapter is

devoted to the diffractive event selection which is based on the rapidity gap method.

44



4.1 Monte Carlo Models

The physical processes under investigation are modelled with a combination of Monte

Carlo generators in order to describe all aspects of the data, including the background.

The events generated with the Monte Carlo programs are subjected to a full simulation

of the detector response. The reconstruction of the Monte Carlo events using the same

tools as for the data provides the modelling of experimental resolutions, efficiencies and

acceptances that is necessary to correct the data for experimental bias.

The DJANGO Monte Carlo generator [42] is used to describe the inclusive positron-

proton DIS interaction ep → eX. O(αem) QED radiative corrections are simulated using

an interface to the HERACLES program [43]. DJANGO is also interfaced to the LEPTO

Monte Carlo generator [44] which provides the simulation of QCD radiation through the

parton shower approach [45]. The fragmentation and hadronisation of quarks is simulated

in JETSET [46] using the Lund String Model. The background at low Q2, arising from

hadrons produced in photoproduction being misidentified as electrons, is described by

PHOJET [47], a Monte Carlo able to describe both elastic and inelastic processes in order

to fully model high energy photon-proton interactions. The COMPTON [48] Monte Carlo

program allows us to simulate events of the type ep → eγX that arise from QED-Compton

scattering and that can also enter the selected data sample.

The RAPGAP Monte Carlo generator [49] models diffractive DIS with an elastic proton.

It relies on a LO QCD fit similar to the NLO fit described in section 2.5. Data from the

publications [50] were used in the fit. The scattering off charm quarks in the diffractive

exchange is generated separately from the scattering off u, d and s quarks. Meson ex-

changes occurring typically at values of x
IP

> 0.01 are also described with RAPGAP. The

simulations of QED and QCD radiation are performed using the LEPTO and ARIADNE

[51] Monte Carlo generators, respectively. Inclusive diffraction can also be modelled ac-

cording to the Saturation Model prescription described in section 2.7 with the SATRAP
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Monte Carlo generator, which is based on RAPGAP.

The DIFFVM Monte Carlo generator [52] models the diffractive vector meson production

observable in the data at the highest values of β. The vector mesons ρ, ω, ϕ and J/ψ are

simulated in the framework of Regge phenomenology and the Vector Dominance Model

[53–55]. Both elastic and diffractive proton dissociation are implemented in DIFFVM.

This Monte Carlo is also used to account for the background arising when the proton

dissociates into a low mass hadronic final state with 1.6 < MY < 5 GeV, which is not

modelled by either the RAPGAP or DJANGO programs.

4.2 Data Quality Selection

Before starting the DIS event selection, a pre-selection of the data is necessary to en-

sure the stable detector and background conditions for the experiment according to the

following requirements:

• Trigger phases:

At the beginning of a fill, the beam currents and the rate of background events

are high. The SpaCal trigger pre-scales are consequently large, and the tracking

detectors are progressively switched on, becoming fully operational after typically

10 to 20 minutes. The data recorded during this first phase is rejected due to the

incomplete tracking and instability of the detector.

• Run quality:

A fill is divided into a series of luminosity runs. Runs consist of a collection of

events taken under very similar experimental conditions. They are classified as good,

medium or poor. Poor runs are discarded because essential detector components,

such as the luminosity system, the CJC or the LAr calorimeter, were not functioning

correctly.
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• Detector high voltages and readout:

Additionally, the read-out and high voltages of the sub-detectors used in this analysis

were required to be fully operational on an event by event basis. The relevant

systems are the central tracking devices, the luminosity system, the LAr and SpaCal

calorimeters, the BDC and the forward detectors (PRT, FMD). Further high voltage

and read-out demands are imposed on the BST. The latest runs of the 99MB data

taking were rejected due to problems with the BST.

The total integrated luminosity after this preliminary selection is 2.68 pb−1.

4.3 Subtrigger Selection

The s0, s3 and s9 (see section 3.6.2) sub-triggers were specifically designed to cover dif-

ferent regions of the DIS phase space avalaible in the 99MB data taking. Whenever a

sub-trigger fires on an event, a trigger weight, equal to the sub-trigger prescale, is assigned

to this event. When more than one sub-trigger validates an event, the event weight is

determined by the sub-trigger with the lowest prescale.

4.4 Electron Identification and Selection

The electron is identified by looking for the cluster with electromagnetic energy with the

highest transverse momentum in the SpaCal calorimeter. This method is valid over the

entire y and Q2 ranges considered in this analysis. Once an electron candidate is found,

further requirements are made which will be detailed later after the introduction of the

cluster properties. The position of the electron cluster in the SpaCal is defined as the
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weighted average over the positions of all calorimeter cells belonging to the cluster:

xclus =

∑N
i=1 xiwi∑N
i=1 wi

and yclus =

∑N
i=1 yiwi∑N
i=1 wi

, (4.1)

where xi and yi are the coordinates of the geometrical centres of each cell i, and N is the

total number of cells belonging to the cluster.Dead cells in the SpaCal and cells with high

voltage problems are discarded in order to provide a high quality sample. The weight wi

of the ith cell is given by:

wi = max(0, wcut + ln(Ei/Eclus)), (4.2)

where Ei is the energy deposited in one cell, and Eclus is the cluster energy. wcut is called

the logarithm cut-off parameter, and its value is 4.85 for data and 5.15 for Monte Carlo.

This logarithmic dependence of the weights is chosen because it closely matches the true

transverse profile of the electromagnetic shower.

The z-position of the cluster is estimated using the following parameterization:

zclus = 0.002Eclus + 0.853 ln(2479 Eclus). (4.3)

The estimator for the electron cluster radius, rclus, is defined as the quadratic sum of the

logarithmically weighted distances Ri between the centre of the cluster with coordinates

(xclus, yclus) and the geometrical centre of the cell i:

rclus =

√√√√ N∑
i=1

(Riwi)2. (4.4)

The radius of clusters whose origins are hadronic particles is larger than the shower

radius of electrons, and the cut rclus < 3.5 cm therefore discriminates against the photo-

production background. Misidentified hadrons are also eliminated by demanding that the
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scattered electron energy is larger than 5 GeV. The cut Eh < 0.5 on the energy deposited

in the hadronic part of the SpaCal within a cone behind the electromagnetic cluster also

gets rid of hadrons faking an electron signal.

The innermost region of the SpaCal corresponds to a region of very high background

rates, but is also populated by the events with the lowest values of Q2 which are of most

interest to this analysis. The cut, on the distance RSpaCal of the electron cluster from the

beam axis, 10 cm < RSpaCal =
√

x2
clus + y2

clus < 67 cm is the best compromise between

keeping the events of interest and background suppression. The upper and the lower

bounds also ensure that the electron track (see section 4.5) candidates within the BST

lie within the the SpaCal acceptance, namely 156o < θ′e < 176o. Furthermore, the cut on

the energy in the innermost ‘veto’ layer of the SpaCal Eveto < 1 GeV limits the energy

leakage into the beam-pipe. Finally, a good matching between the track reconstructed

in the BST with the SpaCal cluster reduces the contamination from neutral particle

background (e.g. π0 → γγ) with an energy deposition but with no associated track. The

difference between the cluster radial position and the track extrapolated into the SpaCal,

ΔRtrack−clus, is formed, and the cut ΔRtrack−clus < 2 cm is applied.

The electron cuts are summarised in table 4.1.

Cut Main Purpose
rclus < 3.5 GeV removal of background from hadronic showers
E > 5 GeV removal of the photoproduction
Eh < 0.5 GeV and other fake electron background
10 cm < RSpaCal < 67 cm SpaCal acceptance cut
Eveto < 1 GeV cut on energy leakage
ΔRtrack−clus < 2cm suppression of neutral particles

Table 4.1: Summary of the cuts on the electron.
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4.5 Reconstruction of the Electron Track

In previous F D
2 analyses [50, 56], the BDC was the sole detector used for the electron

track reconstruction. As explained in section 3.3.3, the BST presents some advantages

over the BDC, but over a restricted angular acceptance. As it is the first time the BST

is used in a diffractive analysis, the principles of the BST track finding algorithm will be

outlined in this section1. The electron track finding is divided into a pre-selection of hits,

or pattern recognition, and the track finding itself.

4.5.1 BST Pattern Recognition

The sagitta,

S = (ri − ri−1) + (ri+1 − ri−1)
(zi − zi−1)

(zi+1 − zi−1)
, (4.5)

is calculated from the hit coordinates ri and zi in three successive planes for all combi-

nations of hits. If the hits are consistent with a straight line, a very good approximation

of the electron track for the energy range considered in this analysis, the sagitta is com-

patible with zero. Non-null values of the sagitta indicate that the track is curved. Due

to the high resolution and the very good signal to noise ratio of the BST (with a peak

value at S/N∼ 13), a cut on a maximum value of the sagitta is sufficient for the pattern

recognition.

1The full description of the BST electron finder is described in the appendix of [57]. The finder of this
analysis only differs in the number of BST planes, eight instead of four, and the removal of the cut on
the angular acceptance [58].
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4.5.2 BST Electron Finder

Depending on whether a central vertex, reconstructed using the tracks in the CJC, exists

or not, two different methods are used for the track reconstruction of the scattered electron

in the BST.

• A central vertex exists:

In this case, hits inside a corridor linking the electron cluster in the SpaCal to the

central vertex are preselected. The diameter of the corridor is dictated by the radial

resolution of the energy cluster. If two or more hits are found, a straight line fit

is performed to determine the track parameters, and a refined selection of hits is

performed. In the second iteration, the fit result is used to predict the hit positions

instead of the line joining the cluster to the vertex. The width of the corridor is

also reduced to 300 μm. The track angle and the BST vertex are finally calculated

with a linear fit to the final hits.

• No central vertex exists:

An iterative procedure is used, namely a Kalman filter [59], to select hits. The

algorithm starts by connecting the centre of the cluster to the hits in the three

closest planes to the SpaCal with a straight line. Each line is used to predict the

radial position of the hits in the next plane. The closest hits in this plane to the

interpolated hits are selected. Once two hits are found, the procedure is repeated

using the two hits to find a third hit, etc. Among all the track candidates, the

track with the maximum number of hits is chosen, and the same fit as in the central

vertex case is performed to determine the track parameters.

The number of times a BST track is validated in data is compared with the Monte Carlo

prediction in figure 4.1 a) after the inclusive analysis cuts. The photoproduction and

QED Compton backgrounds were added to the Inclusive Monte Carlo. The electron polar
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Figure 4.1: Comparison between data (points) and Monte Carlo (histograms) of the BST
track validation flag, the polar angle and the vertex distribution and its error obtained with
the BST finder algorithm. The (small) photoproduction and QED-Compton background
contributions are also shown on the plots.

angle, the vertex position and the error on the vertex position obtained with the BST are

plotted in 4.1 b), c) and d), respectively. There is a very good agreement between data

and simulation.
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4.6 Vertex Selection

A precise knowledge of the interaction vertex is essential for the identification and kine-

matic reconstruction of DIS events and the calculation of the detector acceptance. Several

methods exist for the vertex determination. The most common approach uses the tracks

in the CJC to give the so-called central vertices. As seen in the previous section, the ori-

gin of the track of the scattered electron reconstructed by the BST offers an alternative

method for the vertex determination.

The phase space accessible with BST vertices is only constrained by the acceptance of this

detector. This is illustrated in the (x, Q2) kinematic plane shown in figure 4.2 where the

isolines θe = 162o and θe = 176o delimit the SpaCal/BST measurement region. Central

vertices are further constrained by the acceptance of the CJC to the phase space that

lies between the isolines γh = 22o and γh = 165o when the BST is used for the electron

measurement. If the vertex efficiency, studied in the next section, is taken into account,

central vertices become unreliable below y ∼ 0.04. BST vertices cover a much wider

area a phase space, down to y = 0.01 in this analysis, and will therefore be selected.

Furthermore, the error on the z coordinate of BST vertices is an order of magnitude

smaller than the error on central vertices.

The vertex distribution obeys a Gaussian distribution to a good approximation. Its mean

position, averaged over the 99MB data, is centered at z0 = 4 cm in the H1 coordinate

system and its width is approximately 10 cm. The z-position of the BST vertex, denoted

by zvtx,BST , is required to belong to the interval Δz defined by:

Δz ≡ (−26 < zvtx,BST < 34 cm) (4.6)

This suppresses substantially the beam-gas and beam-wall interactions whose tracks do

not point towards the vicinity of the primary vertex.
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Figure 4.2: Representation of the kinematic plane illustrating the phase space accessible
with central vertices, which is delimited by y > 0.04 and γh < 165o. The electron
measurement further restricts it to 162o < θe < 176o. The hatched regions show the
additional phase space that is covered when BST vertices are used.

4.7 BST Track Reconstruction and Vertex Efficien-

cies

The precise reproduction of the efficiencies in data by the Monte Carlo simulation for

the various sub-detectors is essential for the cross-section calculation (see section 5.1),

as any disagreement between them will contribute to the error on the cross-section. The

BST is the only new sub-detector used in the measurement of inclusive diffraction, and
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Figure 4.3: The BST efficiency expressed as a function of the azimuthal and polar angles
measured with the SpaCal.

its efficiencies are investigated in the remainder of this section.

The efficiency to find a track is defined as the ratio of the number of DIS events with a

clean high energy electron for which a BST track is found with a precisely reconstructed

vertex to the total number of DIS events with a clean electron:

εBST =
# events (∃vtxBST AND σzvtx,BST < 0.3 cm AND E ′

e > 20 GeV)

# DIS events with E ′
e > 20 GeV

, (4.7)

where σzvtx,BST denotes the error on the BST vertex position.

The efficiency as a function of the polar and azimuthal angles measured with the SpaCal

is shown in figure 4.3. A good agreement is observed between the data and the inclusive

DIS Monte Carlo, DJANGO, with an uncertainty of 1% over most of the phase space

covered by the measurement.

The BST track information is used to determine the event vertex which plays a crucial

role in the reconstruction of the event kinematics. The BST vertex efficiency is defined
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log log

Figure 4.4: The efficiencies to find a vertex with the central tracker a) and the BST b) as
a function of y calculated with the eΣ method. The data are compared with the sum of
the inclusive DIS, photoproduction and QED-C Monte Carlo simulations.

as the ratio of the number of events reconstructed precisely by the BST with a vertex in

the range Δz, defined in equation 4.6, to the total number of events in this range:

εvtx,BST =
# events (∃vtxBST AND σzvtx,BST < 0.3 cm AND in Δz)

# events in (Δz)
. (4.8)

The PHOJET Monte Carlo simulation is used to model the background entering the

sample at low electron energy. The vertex efficiency for both central and BST vertices is

plotted in figure 4.4 as a function of y reconstructed with the e-Σ method 2. The plot in

figure 4.4 a) illustrates the strong variation of the efficiency with y for central vertices.

The efficiency drops for y < 0.04 (log(y) < −1.4) when the hadronic final state starts

to escape the CJC acceptance. This limits the phase space to the region y > 0.04 as

discussed in section 4.6. When the BST electron track is used to define the vertex, the

efficiency remains high over the entire y range as can be seen in figure 4.4 b).

2This method is discussed in section 4.9.
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4.8 Global Event Properties

In an ideal and perfectly hermetic detector, the total E − pz of the electron and hadronic

final states is equal to 2Ee (= 55 GeV) for neutral current processes. In reality, this quan-

tity is smeared around its nominal value due to the finite detector resolution. In contrast,

both initial state photon radiation and photoproduction events can lead to a reconstructed

E − pz significantly lower than 2Ee. In the first case, a photon with energy Eγ, usually

emitted almost collinearly to the incident electron, escapes along the beam-pipe, and in

the second scenario the scattered electron is outside the SpaCal acceptance. Therefore,

the cut E −pz > 35 GeV is imposed to suppress photoproduction background and reduce

radiative effects. QED Compton events are removed using their typical signature which

consists of two electromagnetic clusters nearly back to back in the azimuthal plane with

no hadronic energy deposits in the very forward part of the LAr calorimeter.

4.9 Reconstruction of the DIS kinematics

The DIS variables can be fully reconstructed from two independent variables provided

that the beam energies are known. In the case of QED initial state radiation, a photon

generally escapes undetected along the beam-pipe. Consequently, the effective electron

beam energy is unknown, and more than two variables are necessary for the kinematic

reconstruction. Since both the electron and the hadronic final state can be measured with

the H1 detector, several methods are available. They are reviewed in this section. Their

region of applicability is also discussed.
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4.9.1 Electron Method

In the electron method, the kinematics are reconstructed solely from the electron infor-

mation as follows:

ye = 1 − E ′
e

Ee

sin2 θe

2
, (4.9)

Q2
e = 4EeE

′
e cos

θe

2
(4.10)

and

xe =
Q2

sye

, (4.11)

where Ee and E ′
e are the energy of the incident and scattered electron, respectively. θe

denotes the polar angle of the scattered electron. This method is very sensitive to initial

state radiation because it directly depends on Ee. The resolutions on ye and Q2
e are given

by:

δye

ye

=

(
1 − 1

ye

)
δEe

Ee

⊕ (
1

ye

− 1) cot(θe/2)δθe (4.12)

and

δQ2
e

Q2
e

=
δEe

Ee

⊕ tan(θe/2)δθe, (4.13)

where ⊕ is defined by x ⊕ y =
√

x2 + y2. The resolution on y decreases with decreasing

y. For y � 0.15, kinematic reconstruction methods using both electron and hadronic

quantities are more accurate. The precision on the reconstruction of Q2 relies on the

accurate measurement of the electron angle. This also illustrates the necessity of the BST

to achieve the best measurement of the inclusive cross-section.
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4.9.2 Hadron Method

Two hadronic quantities are usually defined. The transverse momentum of the hadrons,

ph
t , and Σ = Eh − ph

z . The latter is minimally affected by losses along the beam-pipe in

the forward direction. Such losses are always very large due to the proton remnant. The

kinematics are reconstructed from the following equations:

yh =
Σ

2Ee
, (4.14)

Q2
h =

p2
t,h

1 − yh
(4.15)

and

xh =
Q2

syh
. (4.16)

The resolution on Q2 is given by:

δQ2
h

Q2
h

=
2δpt,h

pt,h
⊕ yh

1 − yh

δyh

yh
(4.17)

Hence, the resolution on Q2 decreases for large values of y, and the hadron method is

best used for measurements at low and medium y. In addition, the hadronic final state

variables ph
t and Σ are intrinsically less well reconstructed than the electron quantities E ′

e

and θe. Methods combining both hadronic and leptonic information are therefore better

suited to the kinematics of neutral current processes over a wide range in y.

4.9.3 Sigma method

The Sigma method is based on three independent variables and is by construction in-

sensitive to initial state radiation. Losses along the beam-pipe are minimised for the
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reconstruction of y by replacing the electron energy in equation 4.14, with the total

E − pz of the event, since 2Ee = (E − pz) from energy conservation. The reconstruction

of Q2 uses the pt of the electron. It is hence independent of collinear QED initial state

radiation. The expressions for the reconstruction of y, Q2 and x are:

yΣ =
Σ

Σ + E(1 − cos θe)
, (4.18)

Q2
Σ =

E2 sin2 θe

1 − yΣ
(4.19)

and

xΣ =
Q2

syΣ
. (4.20)

At high y, the scattered electron angle is large, and the errors on Σ largely cancel out

between the numerator and the denominator in y improving the resolution with respect

to the hadron method.

4.9.4 eΣ Method

The eΣ method combines the best reconstruction of x attained with the Σ method and

the precision of the Electron approach for the reconstruction of Q2. It reconstructs the

variables using:

xeΣ = xΣ, (4.21)

Q2
eΣ = Q2

e (4.22)
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and

(4.23)

yeΣ =
Q2

eΣ

sxeΣ
. (4.24)

(4.25)

4.9.5 Double Angle Method

As it names suggests, the Double Angle Method uses the electron and hadronic angles.

It does not rely on any energy measurements, and it is thus very useful for calibration

purposes. The angle of the final state hadrons γ is given by:

cos γ =
p2

t,h − Σ2

p2
t,h + Σ2

, (4.26)

from which the following kinematic variables can be obtained:

yDA =
tan(γ/2)

tan(θe/2) + tan(γ/2)
(4.27)

and

Q2
DA = 4E2

e

cot(θe/2)

tan(θe/2) + tan(γ/2)
. (4.28)

x is again obtained with the relation Q2 = sxy. This method is particularly useful for the

low y and low Q2 region of phase space where the electron angle is large and the hadronic

angle small. This can be deduced from the expression of the Q2 resolution:

δQ2
DA =

y − 2

sin θe
δθe ⊕ −y

sin γ
δγ. (4.29)
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4.9.6 Electron-Double Angle Method

y can be reconstructed as a combination of ye and yDA to exploit the precision of the

electron method at high y and the precision of the Double Angle method at low y: The

expressions for Q2 given in equations 4.9 and 4.28, for the Electron and Double Angle

methods, respectively, can be both re-arranged to yield Q2 = 4E2
e (1 − y)/ tan2(θ/2).

yeDA = y2
e + yDA(1 − yDA), (4.30)

Q2
eDA =

4E2
e (1 − yeDA)

tan( θe

2
)2

(4.31)

and

xeDA =
Q2

eDA

syeDA
. (4.32)

This method possesses the best overall resolution for inclusive diffraction, where the con-

tainment of the hadronic final state in the LAr calorimeter gives an improved resolution

on the hadronic angle γh. This is the reconstruction method adopted for the diffractive

measurement.

The relative resolutions of the eDA method and eΣ method for the reconstruction of the

diffractive kinematics are compared in section 5.2.1 in terms of their bin purities when

using the binning of the diffractive measurement. High bin purities correspond to good

resolutions since it is then less likely to reconstruct events outside the bin in which they

were generated.
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4.10 Alignment of the Electron Detectors

The BST track-finding algorithm requires the accurate alignment 3 of the BST and the

SpaCal with respect to one another. As a cross-check of the alignment procedure and to

ensure the consistency of the different available methods to measure the electron polar

angle, the BDC is also precisely aligned with both the SpaCal and the BST.

The SpaCal is aligned with the Central Tracking Chambers which defines the H1 coordi-

nate system. The electron tracks obtained with the central tracker and the SpaCal are

used for this purpose. A clean lepton sample was used by selecting scattered electrons

with an energy Ee > 20 GeV and by requiring the electron clusters to have a radius

Rclus > 30 cm in the SpaCal. The alignment constants are then determined from a fit

to the difference in polar angles measured with the central tracker (θCT ) and with the

SpaCal (θe), Δθ = θCT − θe, using the following relation:

Δθ = P1 cos(ϕe) + P2 sin(ϕe) + P3. (4.33)

The values of the P1 and P2 parameters obtained from the fit give the shifts Δx and Δy

(see table 4.2) that have to be applied in the x and y directions, respectively. The third

parameter P3 provides the alignment constant Δz in the z direction. The alignment of

the BDC follows a similar procedure. The alignment constants for both the SpaCal and

the BDC are given in table 4.2.

The correctness of the alignment procedure of the SpaCal and the BDC with the CT is

3The reader is referred to [60] for a comprehensive discussion.

Δx [cm] Δy [cm] Δz [cm]
SpaCal -0.10 -0.42 -0.8
BDC -0.03 -0.2 0.8

Table 4.2: Alignment constants for the SpaCal and BDC.
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Figure 4.5: Check of the alignment of the SpaCal with the BDC using the difference in
their θ coordinates. The left-hand plots are before alignment and the right-hand plots
show the results of the alignment procedure. In plots c)-f), the average for each bin of
the scatter histogram is also shown.

cross-checked with their relative alignment in figure 4.5. The left-hand plots a), c) and

e) correspond to the non-aligned detectors. The right-hand plots b), d) and f) are after

alignment.

In figure 4.5 a) and b), the difference in polar angle measurements between the SpaCal

and the BDC is fitted with a Gaussian to exhibit the overall misalignment. It is 1.7 mrad
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Figure 4.6: The correct alignment of the BDC with the BST is demonstrated in the
two scatter plots where the difference in the BDC and BST polar angles are shown as a
function of ϕBDC in a) and as a function of the z-vertex postion measured with the BST
in b). The bin average of the profile histogram is also shown.

on average before alignment and around 0.4 mrad after alignment. The alignment in the

transverse plane is checked by plotting ΔθSpacal−BDC versus the azimuthal angle measured

with the SpaCal. The characteristic trend of a sine curve due to a misalignment in the

(x−y) plane can be observed in the scatter plot of figure 4.5 c) where the average in ϕ bins

of the scatter histogram is also represented. The profile histogram in 4.5 d) proves the

improved alignment after correction of the detector positions. The original misalignment

in z can be seen on figure 4.5 e) where the difference of polar angle is plotted this time

as a function of the position of the vertex measured with the central tracker. The good

alignment of the SpaCal and the BDC is corroborated in the plot 4.5 f).

The alignment of the BST is much more elaborate and an iterative procedure was followed.

It consists of a series of internal alignments of the 8 × 16 r-detectors and of external

alignments to the H1 coordinate system as defined by the CJC. The alignment constants

for the BST were provided by the Inclusive Physics Working Group and the reader is

referred [60] for a detailed discussion. The correct alignment is confirmed here with the

plots of figure 4.6 where the difference between the polar angle measurements of the BDC

and BST is shown as a function of the azimuthal angle measured with the SpaCal.
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4.11 The Inclusive Control Sample

The objective of this section is to demonstrate the good level of understanding of the

inclusive sample which is required to proceed to the diffractive analysis. Control distribu-

tions comparing data with Monte Carlo are first discussed. As explained in section 4.1,

the DJANGO Monte Carlo is used to model the inclusive process. It is combined with the

PHOJET and COMPTON Monte Carlos used for the description of the photoproduction

and the QED Compton backgrounds. The control plots are followed by the measurement

of the inclusive DIS reduced cross-section σinc
r which serves as an additional test of the

quality of the inclusive event selection. Furthermore, it demonstrates the validity of the

procedure followed for the σ
D(3)
r cross-section extraction which is explained in chapter 5.

4.11.1 Inclusive Control Distributions

The electron energy distribution is plotted in figure 4.7 a). The description is reasonable

in most bins. The discrepancy between data and Monte Carlo in the sharply falling

edge of the electron spectrum is covered in the inclusive and diffractive measurements by

assigning an uncertainty of 1.5% on the electron energy scale.

The electron calibration of the SpaCal with the kinematic peak method used in this

analysis was performed in [61]. Alternative electron calibrations could provide a better

description. However, as the error on the azimuthal angle of the the electron was dom-

inant in [56], this thesis is focussed on the improvement of the detector alignment. The

ratio EDA/Ee (figure 4.7 b)) constitutes another calibration check. The distribution peaks

near 1 as expected. The description of the data by the models is reasonable.

The pt balance, defined as the ratio of the total transverse momentum of the hadronic

system (ph
t ) to the transverse momentum of the electron (pe

t ) is an indicator of the consis-

tency of the electron and hadronic calibrations. The y balance serves the same purpose.
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Figure 4.7: Inclusive Control Distributions.

They are shown in figures 4.8 c) and d) and a good description by the Monte Carlo model

is observed. Good agreement between data and Monte Carlo can be observed for the

E − pz distribution in the plot 4.8 e). The hadronic angle is the final quantity repre-

sented in figure 4.8 f). It corresponds to the angle of the scattered quark in the naive

quark-parton model and is well described by the Monte Carlo.

The inclusive kinematic variables x, y and Q2 reconstructed with the eΣ method are

all displayed in figure 4.8. The simulation is in good agreement with the data overall.
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Figure 4.8: Inclusive kinematics control distributions.

However some small discrepancies can be observed at the edges of the available phase

space.

4.11.2 Measurement of the Inclusive Reduced Cross-Section

The measurement of the inclusive DIS reduced-cross section is compared with the H1

published data [62] as function of Q2 and x in figures 4.9 and 4.10, respectively. The
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Figure 4.9: Comparison between the measurement of the inclusive-reduced cross-section
performed in this work and the published 1997 data by H1. The cross-section is shown
at fixed x values as a function of Q2.
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Figure 4.10: Comparison between the measurement of the inclusive-reduced cross-section
performed in this work and the published 1997 data by H1. The cross-section is shown
at fixed Q2 values as a function of x.
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binning in the variables x and Q2 is similar to the one adopted in the H1 publication.

The eΣ method was employed for the kinematic reconstruction whereas the best resolution

was achieved in [62] with the Σ method for y < 0.17 and with the electron method at

larger y values. All other aspetcs (bin centre corrections, radiative corrections,...) of

the procedure used to obtain σinc
r are completely analogous to those described for the

diffractive measurement in chapter 5. The overall agreement with the H1 published data

is good.

4.12 Selection of Diffractive Events

In the H1 experiment, two complementary methods are available to select diffractive

events. The first method uses the FPS to detect the scattered proton and measure its

four-momentum which permits the measurement of the reduced diffractive cross-section

σ
D(4)
r (Q2, x

IP
, β, t) [63]. Unfortunately, this method suffers from relatively low statistics

due to the the limited geometric acceptance and low efficiency of the FPS. A high statis-

tics sample can be obtained using the rapidity gap method, which exploits the region of

inactivity in the detector between the elastic or dissociated proton and the diffractively

produced system X caused by the absence of any colour string connecting them. This

selection is independent of the diffractive model implemented in the Monte Carlo sim-

ulation for generating diffractive events. Since the outgoing proton is not detected, the

reconstruction of its four momentum is not possible, and hence the cross-section must

be integrated over the variables MY and t. The latter method is used in the analysis

presented here. The rapidity gap is imposed using the LAr and the Plug calorimeters,

the Forward Muon Detector and the Forward Tagging System.
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The LAr Selection

The most powerful selection criterion for diffractive events is based on a cut on the ηmax

variable, defined as the pseudo-rapidity of the most forward particle leaving an energy

deposit in the LAr calorimeter exceeding 400 MeV. This threshold is chosen in order to

reject noise whilst maintaining a high efficiency. Electronic noise exceeding 400 MeV can

still lead to a loss of diffractive events resulting in a decrease of the diffractive selection

efficiency. This effect is properly modelled in the Monte Carlo simulation of the detector.

The pseudo-rapidity of the most forward edge of the LAr calorimeter is around 3.4. The

cut ηmax < 3.3 constitutes the best compromise between the need to access the widest

x
IP

range and the rejection of non-diffractive DIS background. The contamination of the

sample is further reduced using the information provided by the Forward Muon Detector

(FMD) and the Forward Tagging System (FTS).

Forward Muon Detector Selection

Beyond its design objectives, the FMD also serves to detect or veto on particles at very

high pseudo-rapidities. For example, particles from the proton remnant with high pseudo-

rapidities may scatter off the beam-pipe and collimators resulting in secondary particles

which can be detected in the FMD. The three outer layers, beyond the toroid magnet,

suffer from high hit counts due to the background arising from synchrotron radiation,

and only the three inner layer on the main detector side of the toroid can be used. The

pairing algorithm used within each layer in the normal track reconstruction is adapted

to recognise tracks, in the three inner layers, originating from tracks associated with

secondary scattering in the beam-pipe which possess a steeper angle than primary tracks.

Diffractive events are selected with the FMD by demanding no more than two hit pairs

in its first two layers closest to the the interaction point and no more than two hit pairs
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in the third layer:

NFMD1 + NFMD2 ≤ 2 AND NFMD3 ≤ 2. (4.34)

This selection results in a fraction of diffractive events lost due to noise of 1.3%

The noise fraction was calculated using randomly triggered data. It is defined as the

ratio of events with activity in the FMD but none in the LAr calorimeter to all randomly

triggered events.

The Forward Tagging System Selection

The FTS permits the detection of activity from the proton remnant at the largest pseudo-

rapidities. In contrast to the FMD, the random noise present in these scintillators is

negligible, and diffractive events are selected by demanding no hit. However, the sixth

layer of the PRT presented some high noise level in the early fills of the 99MB data

taking, and it was therefore taken out of the selection. Due to the large discrepancies

between data and Monte Carlo, the two most forward FTS stations cannot be used, and

the selection is solely based on the PRT and the two FTS stations located nine and sixteen

meters away from the interaction point. Hence, the following cuts on the number of hits,

denoted by N , are applied:

5∑
i=1

NPRT,i + NPRT,7 = 0 AND NFTS1,2 = 0. (4.35)

The efficiency of the PRT, defined as the ratio of events which give a signal in the PRT

over all DIS events, is too high in Monte Carlo. This is attributed to the failure of the

simulation to describe the worsening of the response of the PRT with time as the high

rates in the forward region provoke the rapid aging of the scintillators.

73



Figure 4.11: Comparison between data and Monte Carlo of the number of PRT and FTS
planes with hits before and after the downgrading of the efficiency in the simulation.

The procedure adopted here for the correction of the Monte Carlo efficiency is based on

the work presented in [61,64]. It consists in applying an overall downgrading factor to the

efficiency of the stations in Monte Carlo. This choice, rather than to use individual factors

for each PRT station, is motivated by the strong correlation between all the stations. The

downgrading factor is obtained by forming the ratio of data to Monte Carlo for the global
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PRT efficiencies defined by:

εPRT =
# events

(∑5
i=1 NPRT,i + NPRT,7 > 0 AND anti

)
# DIS events AND anti

, (4.36)

where ‘anti’ stands for anti-diffractive cuts that are defined as follows:

anti = ηmax > 3.3 AND NFMD1 + NFMD2 > 2 AND NFMD2 > 2. (4.37)

The anti-diffractive cuts are designed to select a sample of non-diffractive events in which

activity in the acceptance region of the PRT and the FTS is to be expected from the

proton remnant. Re-calibration factors are also needed for the FTS1 and FTS2. They

are obtained using a similar method to that for the PRT and the resulting factors are

summarised in table 4.3.

Detector Re-calibration Factor
PRT 0.743 ± 0.002
FTS1 0.482 ± 0.002
FTS2 0.810 ± 0.004

Table 4.3: Probability with which activity is ignored in the Monte Carlo simulation for
the PRT and FTS stations evaluated as described in the text. The errors quoted are
statistical.

The improved description of the data by the simulation is illustrated in 4.11 where the

distribution in the number of PRT planes with hits in Monte Carlo before and after

downgrading is compared with data.

4.13 The Plug Calorimeter Selection

The Plug calorimeter helps to reject the background contributions at high x
IP

. Events with

energies above 5 GeV are rejected. The random noise present in the Plug is not included

in the detector simulation. A correction factor was calculated in a manner similar to the
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FMD. The total noise correction due to the FMD, PRT, FTS and Plug is ∼ 2% for the

99MB data.

4.14 Summary of the Diffractive Event Selection

The diffractive selection is summarised in table 4.4.

Diffractive cuts
ηmax < 3.3

NFMD1 + NFMD2 ≤ 2 AND NFMD3 ≤ 2∑5
i=1 NPRT,i + NPRT,7 = 0 AND NFTS1,2 = 0

EP lug < 5 GeV

Table 4.4: Summary of the diffractive cuts.

4.15 Diffractive Control Distributions and Kinemat-

ics

Diffraction is modelled with the RAPGAP Monte Carlo generator discussed in section

4.1. The u, d, s and charm quark contributions to the diffractive scattering are shown

and identified with the labels ‘RAPGAP uds’ and ‘RAPGAP c’ in the figures in this

section. The contribution of meson exchanges, labelled with ‘RAPGAP me’, are also

shown. The diffractive vector mesons entering the data sample are described with the

DIFFVM programs. The DJANGO Monte Carlo is used here to model the inclusive

non-diffractive background. The prescription of table 4.5 for the mixing of RAPGAP

MC Phase-Space Restriction
DJANGO x

IP
> 0.1 OR MY > 5 GeV

RAPGAP x
IP

< 0.1 AND MY < 1.6GeV

Table 4.5: Phase-space regions simulated with the DJANGO and RAPGAP Monte Carlos
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Figure 4.12: Control distributions, discussed in section 4.11.1 for the inclusive sample, are
shown in the plots for the diffractive sample. The mixing of the Monte Carlo generators
is explained in the text.

and DJANGO prevents their overlap in phase space. Unfortunately, the small admixture

of double dissociation events ep → eXY is not simulated in either the RAPGAP or

the DJANGO Monte Carlo program when the mass of the dissociated proton is in the

range 1.6 < MY < 5 GeV. To account for this, a correction factor is applied to the

cross-section whose discussion is postponed to section 5.2.4. The remaining background

from photoproduction and QED-Compton scattering is treated with the PHOJET and

COMPTON simulations, respectively.
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Figure 4.13: Inclusive kinematic variables reconstructed with the eDA metod after the
diffractive selection, comparing data and simulation.

The same checks that were performed for the inclusive control sample are now repro-

duced, after the diffractive event selection, in the plots presented in figure 4.12. The good

description of the E − pz, pT and y balance distributions (figure 4.12 c), d), e)) testify to

the quality of the calibration. The electron and hadronic angles are also well reproduced

by the simulation (figure 4.12 c), f)). The good description of Ee, shows further that

the Monte Carlo simulation reproduces the basic features of the diffractive sample. A

very good agreement between data and simulation has been achieved for the inclusive

78



Figure 4.14: The pseudo-rapidity ηmax of the most forward energy cluster in the LAr
calorimeter and the diffractive quantities MX , log x

IP
and log β reconstructed with the

eDA method after the diffractive selection.

kinematic variables x, Q2 and y in the diffractive data (see figure 4.13) . In particular,

the Monte Carlo very closely matches the data at low y. Accessing the low y region of

phase space implies that a better diffractive measurement at high x
IP

can be made as can

be seen from the following argument:

The x
IP

formula can be rewritten as:

x
IP

=
1

syβ
Q2 ≥ 1

sy
Q2, (4.38)

where the inequality holds because β < 1.

This inequality implies that as y decreases, higher x
IP

values can be accessed for

any given value of Q2.
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Figure 4.15: x
IP

comparison between data and the re-weighted RAPGAP simulation.
The data are contained within the systematic error band up to the highest value of
log x

IP
= −1.4 accessed in the measurement.

The RAPGAP Monte Carlo correctly describes the plateau in the pseudo-rapidity (ηmax)

shown in figure 4.14 a). The non-diffractive peak can be clearly seen at the high values of

ηmax. The mass of the hadronic final state MX , plotted in figure 4.14 c), is reconstructed

in a manner which benefits from the optimised reconstruction of y:

M2
X = (E2 − p2

x − p2
y − p2

z)h
yeDA

yh
, (4.39)

which was introduced for the first time in [23]4. The energy and the momentum of the

hadronic final state in equation 4.39 were obtained using an algorithm that combines

SpaCal and LAr calorimeter cluster information with CJC track information and which

avoids double counting. A scaling factor of 1.07 was also applied to the reconstructed M2
X

4The hadronic final state mass squared can be rewritten as M2
X = (E − pz)h(E + pz)h − p2

t where p2
t

is the transverse momentum squared of the hadrons. The (E − pz)h quantity is very sensitive to losses in
the backward direction. When M2

x is multiplied by yeDA/yh, the (E − pz)h terms in M2
X and in yh (see

equation 4.14) largely cancel yielding an improved resolution on the hadronic mass.
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variables to account for residual losses beyond the detector acceptance in the backward

direction. The well reconstructed Q2 and M2
X are utilised in the reconstruction of the

diffractive variables x
IP

and β 5 shown in figure 4.14 c) and d). The Monte Carlo fails

to fully describes the x
IP

distribution from the data. This is not unexpected since the

phase space of the present measurement extends beyond the phase space covered by the

data used in the fits upon which RAPGAP is based. The uncertainty in the Monte Carlo

modelling of the x
IP

distribution is estimated by re-weighting the u,d and s and charm

quark distributions in RAPGAP by (1/x±0.2
IP

). Figure 4.15 shows the re-weighted x
IP

distributions compared to the data which lies within the uncertainty band for the x
IP

range considered in this analysis, namely 0.00016 < x
IP

< 0.04 (−3.8 < log x
IP

< −1.4).

5The x
IP

and β variables were reconstructed using the formulae 2.2 and 2.3, respectively.
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Chapter 5

Measurement of the Diffractive

Reduced Cross-Section

The method used for the extraction of the diffractive reduced cross-section is first intro-

duced. It is followed by the specification of the purity and stability criteria imposed on the

binnings used in the measurement. The different corrections applied to the data are then

discussed. Finally, the measurement is performed with another kinematic reconstruction

method and another Monte Carlo generator in order to investigate the stability of the

measured reduced diffractive cross-section.

5.1 Extraction of the Diffractive Reduced Cross-Section

Two three-dimensional binning schemes are used in the measurement of the diffractive

reduced cross-section σr(β, Q2, x
IP

). In the first and main scheme, which is motivated by

the need to test the QCD factorisation theorem, the data are binned in the Q2, x and x
IP

variables. This choice is best suited for the investigation of the β and Q2 dependences

of the data at fixed values of x
IP

. Relatively few x
IP

bins, namely five, are employed
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to provide the high statistics necessary for a high precision measurement. The reduced

cross-section σr(β, Q2, x
IP

) can be extracted from

σD(3)
r (β, Q2, xIP ) =

xQ4

4πα2(1 − y + y2

2
)

d3σep→eXY

dQ2dxdxIP
, (5.1)

once the differential cross-section
d3σep→eXY

dQ2dxdxIP
has been determined at a point in Q2, x and

x
IP

.

The differential cross-section at the point (Q2
c , xc, xIPc) is experimentally obtained with:

d3σep→eXY

dQ2dxdx
IP

∣∣∣∣
(Q2

c ,xc,xIP c)

=
(Ndata − Nbckgrd)

ΔV L
BCC ∗ RC

A ∗ CY , (5.2)

where ΔV = ΔQ2ΔxΔx
IP

is the bin volume. NData is the number of events from the data

observed in the bin (ΔQ2, Δx, Δx
IP

) centred around the point where the cross-section is

evaluated. The number of background events, Nbckgrd, remaining in the data sample after

the diffractive selection is estimated with the PHOJET and COMPTON Monte Carlo

simulations for the photoproduction and QED-Compton contributions, respectively. The

integrated luminosity used in the measurement is denoted by L (see section 4.2). The

remaining terms are the smeared acceptance (A), the radiative corrections (RC), the

bin centre corrections (BCC) and the ‘smearing’ correction (CY ). They are defined and

discussed in the context of this analysis in the remainder of this chapter.

In the second binning scheme, the measurement is performed at fixed β and Q2 in a large

number of x
IP

(or equivalently x) bins. This permits the detailed investigation of the x
IP

dependence of the reduced cross-section, which is related to the differential cross-section

by:

σD(3)
r (β, Q2, xIP ) =

β2Q4

4πα2(1 − y + y2

2
)

d3σep→eXY

dQ2dxdβ
. (5.3)

The procedure followed to determine the cross-section
d3σep→eXY

dQ2dxdxIP
is the same as for the
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previous binning scheme after replacing the variable x
IP

by the x variable. The definition

of the cross-section is incomplete without the precise specification of the kinematic range

of the measurement. A study in [64] using the DIFFVM Monte Carlo for J/ψ production

evaluated the efficiency for detecting the dissociated proton as a function of its mass, MY .

Requiring elastic protons with MY = mp result in a large systematic error due to the

failure of the forward detectors to reject proton dissociation events with low mass. As

in [64], the cross-section measurement is performed here in the range MY < 1.6 GeV. The

same study also concluded that it was not possible to detect elastic protons efficiently for

values of |t| larger than 1 GeV2. The cross-section is therefore also integrated over the

region |t| < 1 GeV2. CY in equation 5.2 is an additional correction factor that accounts

for migrations across the MY = 1.6 GeV and |t| = 1 GeV2 boundaries. Its determination

is explained in section 5.2.4.

5.2 Correction of the Data with the Monte Carlo

Simulations

5.2.1 Acceptance Correction

The acceptance correction accounts for the migrations between bins due to the finite

resolution of the reconstructed kinematics, the geometric acceptances and the inefficiencies

of the sub-detectors used in the selection. Its calculation requires a Monte Carlo simulation

of the physics under consideration that has undergone the same reconstruction procedure

as the data. This correction is applied on a bin by bin basis and is defined by:

A = Nrec/Ngen, (5.4)
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where Ngen is the number of (generated) Monte Carlo events that would be observed

in each measurement bin in an ideal detector, whereas Nrec is the number of Monte

Carlo (reconstructed) events that are reconstructed in that bin after passing through the

detector simulation and selection criteria. Ngen and Nrec are computed with the RAPGAP,

DJANGO and DIFFVM programs. The kinematic cuts of the selection (y, θe′ ,...) are also

imposed at the generator level, as the validity of the simulation beyond the phase space

of measurement is not guaranteed 1. The acceptance correction procedure relies on the

very good simulation of both the physics and the detector which was demonstrated in

section 4.15.

The description of the forward detector efficiencies were the only failure of the detector

simulation that needed to be remedied. The remaining differences between data and

Monte Carlo will be covered by systematics errors. The numbers Nrec and Ngen are not

independent, since the majority of events that are reconstructed in a given bin are also

generated in that bin. The number of generated events can be expressed as the sum of

three terms:

Ngen = Nstay + Nsmearout + Nlost, (5.5)

where Nstay is the number of events that are generated and reconstructed in the same

bin and Nsmearout is the number of events that are reconstructed outside the bin in which

they were generated. Nlost is the number of generated events that are not reconstructed

inside the range of the binning used in the analysis. Similarly, Nrec can be expressed as:

Nrec = Nstay + Nsmearin, (5.6)

where Nsmearin is the number of events that are generated outside the bin in which they

are reconstructed. The acceptance can be re-expressed using equations 5.5 and 5.6, whose

1The effect of these cuts is corrected for in the bin centre corrections (see section 5.2.2).
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Figure 5.1: Comparison of the bin purities calculated with the eDA and eΣ kinematic
reconstruction methods. The purities are plotted, for x

IP
= 0.001, as a function of Q2 in

bins of x.

different terms are independent, and the calculation of the error on the acceptance there-

fore no longer necessitates the knowledge of the covariance matrix.

The quality of the binning can be assessed with the bin purity and stability given by:

Purity =
Nstay

Nrec
and (5.7)

Stability =
Nstay

Ngen − Nlost
. (5.8)

It follows that the acceptance can also be expressed as the ratio of the stability to the

purity when the number of lost events, Nlost, is negligible. Thus, demanding both a high

stability and purity guarantees a high acceptance. The purities and stabilities calculated
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Figure 5.2: Comparison of the bin stabilities calculated with the eDA and eΣ kinematic
reconstruction methods. The purities, plotted for x

IP
= 0.001, are expressed as a function

of Q2 in bins of x.

with the eΣ and eDA kinematic reconstruction methods are shown in figures 5.1- 5.2, in

bins of x, as a function Q2 for x
IP

= 0.001. The eDA reconstruction method presents

equivalent or higher purities and stabilities than the eΣ method over most of the phase

space of the measurement. This is due to the superior resolution of the eDA method.

However, the eΣ method is sometimes superior at the edge of phase space. The purities

and the stabilities, with typical values of 40% in the (x,Q2,x
IP

) binning scheme, are

required to be larger than 20% 2. Since the limited Monte Carlo statistics gives rise

to fluctuation, points with a lower purity and stability were not rejected if they were

2The values of the purity and stability cuts are the same as in the previous H1 publication on inclusive
diffraction [50].
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surrounded by bins with a purity greater than 20%.

5.2.2 Bin Centre Corrections

The bin centre correction adjusts the raw measurement, which corresponds to an average

over the bin, to the value at the bin centre. From the conservation of the bin volume, the

formula giving the bin centre correction can be easily derived:

BCC =
d3σ

dQ2dxdx
IP

∣∣∣∣
(Q2

c ,xc,xIP c)

ΔV∫
V

d3σ
dQ2dxdx

IP
dQ2dxdx

IP

. (5.9)

The volume, V , of integration is delimited by the bin boundaries and the kinematic cuts

defining the edge of the phase space. Thus, the calculation is performed over the same

Figure 5.3: Bin centre corrections calculated with the QCD fit to the H1 data expressed
as a function of Q2 at x

IP
= 0.001.
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region of phase as for the acceptance The bin centre correction is evaluated with the

QCD fits that lie at the heart of the RAPGAP Monte Carlo generator. The bin centres

corrections are plotted in figure 5.3 as a function of Q2 for x
IP

= 0.001. It can be seen

that the bin centre corrections become large at the limits of the phase space.

5.2.3 Radiative Corrections

Comparisons of the measurement with theory require that the measured cross-section is

quoted at the Born level. The E−pz cut and the choice of the eDA reconstruction method

for the kinematics restricts the QED radiative effects to manageable levels. However, the

cross-section still needs to be corrected for the QED radiative processes discussed in

section 4.8.

Two high statistics samples, with and without radiation, were generated with the RAP-

GAP Monte Carlo. The HERACLES generator was interfaced to RAPGAP to model

the simulation of initial and final state radiation and QED virtual loop corrections. The

measurement was simulated for the case of an ideal detector using both samples and

the bin dependent factor for the radiative corrections, RC, is given by the ratios of the

cross-sections:

RC =
σBorn

σrad
, (5.10)

where σBorn and σrad denote the cross-sections without and with QED radiation switched

on. The radiative corrections are plotted as a function of Q2 for x
IP

= 0.01 in figure 5.4.

They are approximately equal to unity over most of phase space. Larger corrections can

be observed for the lowest values of Q2. This trend is more pronounced for the highest

values of x
IP

, and hence the lowest y.
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Figure 5.4: Radiative corrections calculated with the eDA method and the RAPGAP
Monte Carlo generator shown as a function of Q2 at x

IP
= 0.01.

5.2.4 CY Correction

The smearing of events across the MY = 1.6 GeV and |t| = 1 GeV2 boundaries is not

accounted for by the acceptance due to the absence of a simulation for the region of

phase space delimited by 1.6 < MY < 5 GeV. The DIFFVM Monte Carlo generator

(c.f. section 4.1) is used to remedy for this, since the simulation of both elastic proton
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scattering and low mass proton dissociations are implemented in this program. The overall

correction factor CY applied to the cross-section is obtained by first computing the net

fraction F of events that migrate across the two boundaries using DIFFVM:

F =
Npdis

smearout − Npdis
smearin

Npdiss
rec + Relas

pdisN
elas
gen

, (5.11)

where

Npdis
smearout =Npdis

smearout(MY < 1.6 GeV AND t < 1 GeV2 AND FAILED FWD. CUTS)

(5.12)

and

Npdis
smearin =Npdis

smearin(MY > 1.6 GeV OR t > 1 GeV2 AND PASSED FWD. CUTS).

(5.13)

Hence, Npdis
smearout and Npdiss

smearin are the numbers of proton dissociative events at the recon-

structed level that have smeared across the boundaries MY = 1.6 GeV and |t| = 1GeV2.

The two terms, Npdis
gen and N elas

gen , in the denominator are the number of generated in-

elastic events in the region MY < 1.6 GeV and |t| < 1GeV2 and the number of elastic

events with |t| < 1 GeV2, respectively. In [65], the diffractive J/ψ cross-sections with

and without proton dissociation were found to be of similar magnitude 3 and the ratio of

the cross-sections Relas
pdis was assumed to equal unity in equation 5.11, in conformance with

this result. The smearing correction is then given by:

CY = 1 − F. (5.14)

There are four contributions to the systematic error associated with CY :

3The analysis of diffractive dissociation in photoproduction in [66] resulted in a similar ration. This
was also confirmed in study of diffractive DIS in [61].
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• The ratio Relas
pdis between the non-elastic and elastic cross-sections was varied between

1:2 and 2:1 which gave rise to a systematic error of 0.6%.

• The generated M2
Y distribution in the proton dissociation Monte Carlo simulation

was varied by ( 1
M2

Y
)±0.3. This contributes 2.5% to the total systematic error.

• The slope parameter, b, in proton dissociation was varied by ±1 GeV−2 according

to the generated t-distribution ebt giving an error of 0.1%.

• The systematic uncertainties arising from the efficiencies of the PRT and FTS (c.f.

section 4.12) are estimated by first applying no re-calibration and then by decreasing

the values of the correction factors by 100%. The resulting errors are 6.5% for the

PRT and 1.6% for the FTS. The detection efficiency of the FMD was downgraded

by 4% yielding a contribution of 0.2% to the total systematic error. Finally, a

systematic error of 0.1% was obtained by varying the PLUG energy scale by 30%.

The correction factor with its statistical and an overall systematic errors is:

CY = 1.012 ± 0.004(stat.) ± 0.075(syst.). (5.15)

5.3 Systematic Errors

5.3.1 Detector Understanding:

Much effort was devoted to achieving the best understanding of the various detector

components used in the analysis. However, there remain uncertainties in the detector

calibrations and in the description of some detector efficiencies that lead to systematic

errors. These were calculated on a bin by bin basis, but only the average percentage error

is only quoted in what follows for the sake of clarity.
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• Hadronic Energy Scale:

A 4% uncertainty in the overall energy scale the LAr calorimeter led to an average

uncertainty in the final measurement of ∼ 2%. The absolute SpaCal hadronic energy

scale is known with a precision of 7% which resulted in a systematic error of ∼ 1.6%.

• Energy carried by tracks:

The fraction of energy carried by tracks in the hadronic final state algorithm de-

scribed in section 4.12 was varied by ±3%. This translated into a systematic error

of ∼ 1%.

• Electromagnetic Energy Scale and Electron Angle

An error of ∼ 2.8% arsises from the uncertainty of 1% in the energy scale of the

electromagnetic part of the SpaCal. An uncertainty of 0.75 mrad was attributed to

the possible misalignment of the SpaCal with respect to the BST. This led to an

average systematic error of 2.6% on the final measurement.

• Forward detectors:

The uncertainty in the PRT and FTS efficiencies is 25%, which propagates to an

error of 1.2% for the PRT and 0.3% for the FTS.

The efficiency of the forward muon detector was also deteriorated by 5% which gave

rise to an error of 0.4%. Finally, the Plug calorimeter energy scale was varied by

±30%. This contributed to an error of 0.6%.

5.3.2 Modelling Uncertainties

Imperfections in the Monte Carlo models used to correct the measurement for the detector

acceptance, bin migrations and background suppression also give rise to systematic errors.

• Kinematic distributions:

The shapes of the distributions in the diffractive kinematic variables were varied
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beyond the limits imposed by previous measurements and the present data. The

uncertainty in the x
IP

distribution was estimated by reweighting the distributions in

RAPGAP by (1/x
IP

)±0.2 at the generated level. The variation propagated to an error

of ∼ 2.1% on the final measurement. Similarly the reweight of the β distribution

by factors β±0.1 and (1 − β)±0.1 resulted in uncertainties of ∼ 1.4% and ∼ 0.4%,

respectively. Finally, the t distribution was reweighted by ±e±2t, which led to an

uncertainty of ∼ 1.8%.

• High x
IP

background:

To estimate the error arising from the contamination of the sample by events gen-

erated with DJANGO in the region x
IP

> 0.1 or MY > 5 GeV, the number of

DJANGO events was varied by ±100%. This yielded an a 2.3% systematic effect.

• Photoproduction background:

The uncertainty in the number of events entering the sample due to the photo-

production background was estimated by varying the PHOJET normalisation by

±100%. This resulted in an uncertainty in the reduced cross-section measurement

of ∼ 4%.

• QED Compton background:

The uncertainty on background from QED Compton events was evaluated by vary-

ing the number of contributing events by ±50% which provided a systematic error

of ∼ 2.5%.

• Vector meson simulation:

The normalisation of the DIFFVM simulation was varied by ±50%. An error of

∼ 1.1% was obtained.
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5.3.3 Uncorrelated Errors

The following uncertainties are applied in the form of a fixed percentage error which is

uncorrelated between bins.

• Trigger and BST efficiencies

The triggers used in this analysis were assumed to be 100% efficient and they were

attributed a 1% error [61]. The agreement between data and simulation in the

description of the BST efficiency was within 1% over most of the kinematic range

of the measurement leading to an error with the same magnitude.

• Bin-centre and radiative corrections:

The evaluation of the bin-centre and radiative corrections, described in sections 5.2.2

and 5.2.3 respectively, have a related systematic uncertainty of 3%.

5.3.4 Normalisation Uncertainties

The uncertainty in determining the luminosity leads to an overall normalisation error on all

data points of 2%. The error in determining the noise corrections required for the forward

detectors is 0.6%. The correction for migrations across the MY = 1.6 GeV and |t| = 1

GeV2 measurement boundaries (c.f. section 5.2.4) also contributes to the normalisation

uncertainty. This combined smearing error of 7.5% is the dominant systematic error in

the measurement of the diffractive reduced cross-section. The total normalisation error is

7.5%.
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5.4 Stability of the Measurement

5.4.1 Kinematic Reconstruction

After all corrections, the cross-section measurement should be independent of the kine-

matic reconstruction methods used when their range of applicability overlaps. The eDA

reconstruction method gives the best resolution for diffractive studies. To test the sensi-

tivity of the measurement to the choice of reconstruction method, it was also performed

with the eΣ method, which is applicable to the entire range of the measurement. The

normalised difference between the eDA and the eΣ method is defined by:

norm. diff. = (σD
r [eDA] − σD

r [eΣ])/
√

δσD
r [eDA]2 + δσD

r [eΣ]2, (5.16)

where δσD
r represents the total error. Most points should be much better |norm. diff.| � 1

and points that fall well outside this range are considered unstable. The normalised

difference is shown as a function of β for fixed x
IP

= 0.01 in figure 5.6, where the horizontal

dashed lines represent the limits imposed by the criteria adopted. The measurement is

stable throughout the phase space. The strongest deviations observed in the plot can

partly be accounted for by the poorer agreement between data and Monte Carlo in the

control distributions for the kinematic variables obtained with eΣ method relative to the

identical distributions using the eDA reconstruction (c.f. section 4.12).

5.4.2 Monte Carlo Generator

The extraction of the diffractive reduced cross-section with the SATRAP Monte Carlo

generator provides an additional stability check of the measurement. This generator was

originally used in [61] and in [56]. The SATRAP simulation failed to give a good de-

scription of the the y, β and x
IP

distributions that needed to be reweighted with high
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Figure 5.5: Control distributions for x, low y, x
IP

and β kinematic variables using the
SATRAP Monte Carlo generator.

order polynomials at the generator level in order to describe the data (see [61]). The

same reweight procedure was carried out including the new low y region and the mea-

surement re-performed using SATRAP for the acceptance corrections. The agreement

between the RAPGAP and SATRAP cross-sections is illustrated with the normalised

difference introduced previously in figure 5.6 for x
IP

= 0.01. Good agreement can be

observed throughout the phase space. Kinematic control plots comparing the data with

the reweighted SATRAP are shown in figure 5.5 for the x, y, x
IP

and β kinematic vari-

ables. RAPGAP gives a much better simulation. The validity of the saturation model is

questionable at high x
IP

for quasi-elastic processes.
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Figure 5.6: Normalised difference (see text) between the reduced cross-section measured
with the eDA and eΣ reconstruction methods plotted as a function of β in bins of Q2 at
x

IP
= 0.01. The difference between the cross-section measured with the RAPGAP and

SATRAP Monte Carlo generators is also represented.
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Chapter 6

Results and Discussion

In this chapter, the functional dependence on x
IP

of the low Q2 diffractive reduced cross-

section is studied using the measurement performed with the (Q2, x, β) binning scheme 1

to investigate the γ∗p centre of mass energy dependence of the diffractive exchange and

to test the hypothesis that the x
IP

dependence factorises from the β and Q2 dependences.

The (Q2, x, x
IP

) binning scheme is used to investigate the β and Q2 dependences of the

cross-section in order to test its QCD evolution and study its scaling violations.

The results are compared with a preliminary measurement in the medium Q2 range (6.5 <

Q2 < 120 GeV2) by H1 [50] based on data collected in the year 1997 with an integrated

luminosity of 10.6 pb−1. The experimental procedures followed for the extraction of

the cross-sections in these two analyses only differ in the detectors used for the electron

measurement: the BST has been employed in the present work whereas the BDC was

used in the medium Q2 analysis. However, the different data taking periods lead to very

different systematics, due for example to the different forward detector efficiencies. The

preliminary high Q2 H1 99-00 diffractive cross-section [67] extracted from the analysis of

all data collected in the years 1999 and 2000 are also shown in some plots for completeness.

1See section 5.1 for the motivation for this scheme.
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In the remainder of this chapter, the low, medium and high Q2 measurements are identified

with the H1 99, H1 97 and H1 99-00 labels, respectively. In the plots, the data points

are drawn with inner statistical and outer total errors obtained by adding the systematic

errors with the statistical errors in quadrature. The normalisation uncertainty of 7.5%,

mainly due to the forward detector selection (see section 5.3.4), is not represented.

The low Q2 results are also compared with the predictions derived from the NLO QCD

fit performed on the medium Q2 data. The H1 NLO fit is overlayed in all the plots: the

solid curves correspond to the phase space covered by the points included in the fit and

the dashed curves correspond to the fit predictions beyond this phase space. The widths

of the curves indicate the combined experimental and theoretical uncertainties.

In each section of this chapter, only example plots are shown for clarity. Plots of the

remaining data can be found in appendix A. In all the plots shown here and in the

appendix, the diffractive reduced cross-section 2 is multiplied by x
IP

for presentation

purposes in order to remove the approximate 1/x
IP

dependence.

6.1 The x
IP

dependence of σ
D(3)
r

The phase space extension achieved in this analysis is best illustrated by the measurement

performed in the (Q2, x, β) binning scheme such that the data are plotted as a function

of x
IP

in bins of fixed Q2 and β. The result from this analysis (H1 99), the preliminary

medium Q2 (H1 97) and high Q2 (H1 99-00) cross-sections are presented in figure 6.1.

The minimally biased triggers of the 99MB data taking open up the low Q2 region of phase

space which now extends down to Q2 = 1.5 GeV2. The combined measurements span

three orders in magnitude in Q2 ranging from Q2 = 1.5 GeV2 up to Q2 = 1600 GeV2. The

H1 99 cross-section is compared with the medium Q2 data in figures 6.1 and A.1 (in the

2The term ‘cross-section’ is used interchangeably to designate the cross-section or the cross-section
multiplied by x

IP
throughout this chapter.
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appendix A) in their region of overlap (6.5 < Q2 < 45 GeV2). The data sets are in good

agreement within the statistical and systematic uncertainties. In the large Q2 part of the

overlap region, the statistical errors of the H1 99 measurement are larger than those of H1

97 due to the lower luminosity, whereas at lower Q2 the statistical errors are smaller for H1

99 due to the unprescaled triggers (see section 3.6.2). The H1 99 measurement extends

to higher x
IP

, with typically two new measurement bins at low β, in the comparison plot.

This is a direct result of the improved vertex determination with the BST electron finder

that allowed the measurement to be extended to lower y. The new low β and high x
IP

region of the measurement provides a small overlap in phase space with the measurement

of the diffractive dijet production [68] performed by the CDF collaboration at Fermilab.

In most of the phase space, the cross-section is observed to be approximately constant,

or rises slowly with decreasing x
IP

at fixed β and Q2. This behaviour is typical of the

pomeron exchange observed in diffractive DIS and corresponds to a pomeron intercept

αIP (0) ∼ 1.17 [22], as used in the NLO QCD fit (see section 2.5). Although the NLO

fit describes the data well throughout most of the phase space, the points at low β and

high x
IP

lie significantly above the NLO fit predictions. This region of phase space is very

sensitive to sub-leading exchanges. The relatively poor agreement of the fit with the H1

99 data suggests that a more sophisticated treatment of these exchanges is needed. When

the H1 99 data gets included in the fits, the agreement is likely to improve.

6.2 The β dependence of σ
D(3)
r

It is interesting to study the β dependence of the cross-section to evaluate the extent

of the validity of the QCD factorisation approach in diffractive DIS and to investigate

the momentum distribution of the quarks in the diffractive exchange. The cross-section

is shown for fixed Q2 at an example x
IP

= 0.03 from the (Q2, x, x
IP

) binning scheme in

figure 6.2. Further results at x
IP

= 0.0003, 0.001, 0.003 and 0.01 are shown in figures

101



0
0.05

x IP
 σ

rD
(3

)

β=0.001 β=0.01 β=0.04 β=0.1 β=0.2 β=0.4 β=0.65 β=0.9
1.5

Q2

[GeV2]

0
0.05 2

0
0.05 2.5

0
0.05 3.5

0
0.05 5

0
0.05 6.5

0
0.05 8.5

0
0.05 12

0
0.05 15

0
0.05 20

0
0.05 25

0
0.05 35

0
0.05 45

0
0.05 60

0
0.05 90

0
0.05 120

0
0.05 200

0
0.05 400

0
0.05 800

0
0.05

10
-5

10
-3

10
-5

10
-3

10
-5

10
-3

10
-5

10
-3

10
-5

10
-3

10
-5

10
-3

10
-5

10
-3

10
-5

10
-3

xIP

1600

H1 99 (√s=319 GeV)
H1 99-00 (√s=319 GeV, prel.)
H1 97 (√s=301 GeV, prel.)

NLO QCD fit  (H1 prel.)
extrapol. fit

Figure 6.1: The diffractive reduced cross-section (H1 99) extracted from the 99MB data
is plotted with the H1 preliminary medium Q2 ( H1 97) and high Q2 (H1 99-00) data as
a function of x

IP
for fixed values of β and Q2. The prediction of the NLO QCD fit to the

medium Q2 data is also shown.
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A.2-A.5 of the appendix A. Good agreement can be observed between the H1 99 and H1

97 measurements in their overlap region, which gives confidence in the newly extracted

cross-section at low Q2. The advantage of using the BST is visible in all x
IP

bins and is

most noticeable at the highest value of x
IP

, namely x
IP

= 0.03 (see figure 6.2). In this

bin, the low Q2 measurement provides more data points than the H1 97 measurement for

Q2 up to 25 GeV2. The cross-section rises with decreasing β most strongly at high x
IP

,

where the contribution of meson exchanges becomes significant.

There is good agreement between the data and the NLO fit for Q2 > 6.5 GeV2. The

prediction of the backwards evolution in Q2 describes the data relatively well down to

Q2 = 3.5 GeV2 with the exception of the lowest x
IP

bin, where the data have a weaker

dependence on β than the fit, and where higher twist terms in the pertubative expansion

may become significant. At lower Q2, future parton densities extracted from a NLO

QCD fit including the new data could improve the agreement between the fit and the

data, or the disagreement could be a manifestation of the breakdown of the DGLAP

evolution formalism when the scale used in the calculations becomes too small or the

parton densities become too large. The shape of the cross-section is closely related to

that of the singlet parton densities expressed as a function of β (see figure 2.3).

6.3 The Q2 dependence of σ
D(3)
r

The Q2 dependence of the reduced cross-section provides some information on the scaling

violations in diffractive DIS, and is thus indirectly sensitive to the diffractive gluon density.

The cross-section is plotted for fixed β values at an example x
IP

= 0.003 in figure 6.3. It

is plotted at fixed β for the values x
IP

= 0.001, 0.01 and 0.03 in figures A.6- A.9 of the

appendix A. The data are characterised by positive scaling violation throughout most

of the phase space. They only show negative scaling violation in the region β � 0.66.

This behaviour can be contrasted with the onset of the negative scaling violations in the
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Figure 6.2: The diffractive reduced cross-section is shown as a function of β in bins of
fixed Q2 and fixed x

IP
= 0.03. The measurement of this thesis (H1 99) and the H1

preliminary measurements at medium Q2 (H1 97) and high Q2 (H1 99-00) are also shown.
The prediction of the NLO QCD fit to the 97 data is also represented in the plots.
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inclusive data which starts at much lower x (x = 0.1 − 0.2) in figure 1.2. The large

scaling deviations, in particular at low β, are attributed to the large gluon content of the

diffractive exchange. The low Q2 data will extend the range in Q2 for the future NLO

QCD fits, and hence will further constrain the diffractive gluon density.

6.4 Summary of the Results

The new measurement of the diffractive reduced cross-section at low Q2 has extended

the (low Q2) phase space studied at H1 from Q2 = 6.5 GeV2 down to Q2 = 1.5 GeV2.

Lower values of y (ymin = 0.01) have been reached than in previous analyses of inclusive

diffraction, therefore providing extensions to the phase space at high x
IP

. The data of this

thesis are in good agreement with the preliminary H1 97 measurement within statistical

and systematic errors in their overlap region (6.5 < Q2 < 45GeV2). The NLO QCD fit

to the H1 97 data also results in a good description of the H1 99 data down to Q2 ∼ 3.5

GeV2. At the lowest values Q2, the fit fails to describe the data. Future fits including

the new data could result in a better agreement, or the evolution equation framework

could break down when the scale becomes too small to ensure the convergence of the

pertubative calculations.

The data are consistent with a diffractive exchange characterised by a large gluon density

extending to large fractional momenta and will help to constrain better future parton

densities.

6.5 Future Prospects

It has been seen that the BST is a crucial detector in measuring the electron accurately at

low Q2. Due to problems associated with this detector, part of the 99MB data taking were
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Figure 6.3: The diffractive reduced cross-section is shown as a function of Q2 in bins
of fixed β (x) and fixed x

IP
= 0.003. The measurement of this thesis (H1 99) and the

measurements at medium Q2 (H1 97) and high Q2 (H1 99-00) are also shown. The
prediction of the NLO QCD fit to the 97 data is also drawn on the plots.

106



excluded from this analysis. This resulted in an integrated luminosity of 2.68 pb−1 instead

of the full available 3.37 pb−1. An extension of the analysis combining the information

from the BST and the BDC would therefore yield higher statistics and a small improve-

ment in the errors. A better description of the data by the simulation can be achieved,

and hence a more accurate diffractive cross-section, by fitting all the available data and

by using the new fits as a new input in the simulation. This would result in an improved

agreement between data and the Monte Carlo for the diffractive kinematics variables, in

particular at high x
IP

. The measurement could then be extended to higher values of x
IP

,

in particular at low β, which would allow one to compare the diffractive cross-section with

the CDF measurement [68] of diffractive diject production. A better understanding of the

forward detectors would help to reduce the largest contribution to the systematic error

on the measurement, which is 7.5% arising from the CY correction (see section 5.2.4). A

measurement of the proton-dissociation cross-section would help to test the hypothesis

that the ratio of the elastic to the proton dissociation cross-section, assumed in the CY

correction, is constant throughout the phase space in inclusive diffraction. These proton

dissociation questions could be tackled by the comparison of data from the rapidity gap

method with FPS data.
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Summary

A new measurement of the diffractive reduced cross-section has been presented at low

Q2 in the kinematic region bounded by 1.5 < Q2 < 45 GeV2. The H1 Backward Silicon

Tracker was used for the first time in a diffractive measurement to precisely measure the

electron and reconstruct the event vertex. As a result, lower values of y (ymin = 0.01) have

been reached than in previous analyses of inclusive diffraction. This analysis therefore

provides much improved kinematic coverage at high x
IP

where the contribution from ‘sub-

leading exchanges’ to the cross-section is largest.

The inclusive data were shown to be well understood, and in particular great care was

taken to align carefully the electron detectors. The good agreement between the data and

the simulation was demonstrated before proceeding to the extraction of the diffractive

reduced cross-section. All systematic effects were investigated. The acceptance correc-

tion was evaluated with two different Monte Carlo Simulations, namely RAPGAP and

SATRAP, to investigate the uncertainty introduced by the model used to describe the

previously unexplored regions of phase space. The cross-section was found be to stable

and relatively insensitive to the underlying correction simulation. The insensitivity of the

cross-section to the kinematic reconstruction method employed was also demonstrated.

The data are consistent with previous H1 results on inclusive diffraction and are in good

agreement with the predictions of an NLO QCD fit to the higher Q2 data down to photon

virtualities of around Q2 = 3.5 GeV2, which confirms the validity of the diffractive parton

densities and the DGLAP evolution approach. However, the NLO fit shows some large
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discrepancies at the edges of the phase space (low Q2, low x
IP

, high x
IP

). New QCD fits

including the new low Q2 points will provide more accurate diffractive parton distribution

functions or identify areas where the diffractive factorisation approach fails. The results

of the extended QCD fits including the new data and the publication of the 97, 99 and

99-00 data sets and fit results are thus eagerly awaited.
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Appendix A

Plots of the Reduced Diffractive

Cross-Section

This appendix contains all the plots of the diffractive reduced cross-section not shown in

chapter 6. The cross-section is plotted as function of x
IP

in figure A.1 in the region of

overlap of the H1 99 and H1 97 measurements. The β and Q2 functional dependences

of the cross-section are shown in figures A.2-A.5 and figures A.6- A.9, respectively for

various values of x
IP

. The H1 NLO QCD fit prediction is also shown in every plot.
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Figure A.1: Comparison of the diffractive reduced cross-section obtained in the analyses
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they overlap. The x
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Figure A.2: The diffractive reduced cross-section measured in this thesis (H1 99) is shown
as a function of β in bins of fixed Q2 and fixed x

IP
= 0.0003. The results of the H1

preliminary measurements at medium Q2 and high Q2 (H1 97 and H1 99-00) are also
shown. The result of the NLO QCD fit to the 97 data is plotted.
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Figure A.3: The diffractive reduced cross-section (H1 99) measured in this thesis is shown
as a function of β in bins of fixed Q2 and fixed x

IP
= 0.001. The results of the H1

preliminary measurements at medium Q2 and high Q2 (H1 97 and H1 99-00) are also
shown. The prediction of the NLO QCD fit to the 97 data is plotted.
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Figure A.4: The diffractive reduced cross-section measured in this thesis (H1 99) is shown
as a function of β in bins of fixed Q2 and fixed x

IP
= 0.003. The results of the H1

preliminary measurements at medium Q2 and high Q2 (H1 97 and H1 99-00) are also
shown. The prediction of the NLO QCD fit to the 97 data is plotted.
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Figure A.5: The diffractive reduced cross-section measured in this thesis (H1 99) is shown
as a function of β in bins of fixed Q2 and fixed x

IP
= 0.01. The result of the H1 preliminary

measurements at medium Q2 and high Q2 (H1 97 and H1 99-00) are also shown. The
prediction of the NLO QCD fit to the 97 data is plotted.
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Figure A.6: The diffractive reduced cross-section measured in this thesis (H1 99) is shown
as a function of Q2 in bins of fixed β and fixed x

IP
= 0.0003. The results of the H1

preliminary measurements at medium Q2 and high Q2 (H1 97 and H1 99-00) are also
shown. The prediction of the NLO QCD fit to the 97 data is plotted.
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Figure A.7: The diffractive reduced cross-section measured in this thesis (H1 99) is shown
as a function of Q2 in bins of fixed β and fixed x

IP
= 0.001. The results of the H1

preliminary measurements at medium Q2 and high Q2 (H1 97 and H1 99-00) are also
shown. The prediction of the NLO QCD fit to the 97 data is plotted.
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Figure A.8: The diffractive reduced cross-section measured in this thesis (H1 99) is shown
as a function of Q2 in bins of fixed β and fixed x

IP
= 0.01. The results of the H1 preliminary

measurements at medium Q2 and high Q2 (H1 97 and H1 99-00) are also shown. The
prediction of the NLO QCD fit to the 97 data is plotted.
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Figure A.9: The diffractive reduced cross-section measured in this thesis (H1 99) is shown
as a function of Q2 in bins of fixed β and fixed x

IP
= 0.03. The results of the H1 preliminary

measurements at medium Q2 and high Q2 (H1 97 and H1 99-00) are also shown. The
prediction of the NLO QCD fit to the 97 data is plotted.
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