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Abstract

A search for scalar top quarks in R—parity violating supersymmetry is performed in e*p collisions
at HERA using the H1 detector. The data, taken at /s = 319GeV and /s = 301 GeV, corre-
spond to an integrated luminosity of 106 pb~!. The resonant production of scalar top quarks,
£, in positron quark fusion via an R—Parity violating Yukawa coupling X’ is considered with the
subsequent bosonic stop decay ¢ — bW. The R-parity violating decay of the sbottom quark
b — di, and leptonic and hadronic W decays are considered. No evidence for stop production
is found in the search for bosonic stop decays nor in a search for the direct R—parity violating
decay { — eq. Mass dependent limits on )\’ are obtained in the framework of the Minimal Su-
persymmetric Standard Model. Stop quarks with masses up to 275 GeV can be excluded at the
95% confidence level for a Yukawa coupling of electromagnetic strength.

Kurzzusammenfassung

In e*p Kollisionen bei HERA werden mit dem H1 Detektor skalare Top Quarks in R—paritatsverlet-
zender Supersymmetrie gesucht. Die Daten, die mit einer Schwerpunktsenergie von 301 GeV und
319 GeV aufgezeichnet wurden, korrespondieren zu einer integrierten Luminositat von 106 pb™?.
In der Positron Quark Fusion wird die resonante Produktion von skalaren Top Quarks tber die
R—paritatsverletzende Yukawa Kopplung A" mit dem anschlieBenden bosonischen Zerfall des Stop
Quarks untersucht, ¢ — bW *. Unter Beriicksichtigung des R—paritatsverletzenden Zerfalls des
Sbottom Quarks b — di. werden leptonische und hadronische W Boson Zerfille analysiert.
Weder im bosonischen Stop Zerfall noch im direkten R—parititsverletzenden Zerfall £ — eq ist
ein eindeutiger Hinweis auf eine Stop Produktion beobachtbar. Im Rahmen des minimal su-
persymmetrischen Standardmodells werden deshalb massenabhangige Ausschlussgrenzen auf \
bestimmt. Stop Quarks mit Massen bis 275 GeV konnen fiir eine Yukawa Kopplung elektromag-
netischer Starke mit 95% Confidence Level ausgeschlossen werden.
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1
Introduction

The Standard Model (SM) of particle physics describes the structure of matter and has been
confirmed in numerous experiments in the past decades. Within this theoretical framework,
three of the four fundamental forces are unified: the electromagnetic, the weak and the strong
interaction. Nevertheless, the Standard Model cannot explain among other things the nature
of gravity, the unification of forces and the hierarchy between the electroweak and the gravity
scale. Thus, the SM is assumed to be an effective low—energy theory of a superior and more
fundamental theory. One of the diverse extensions of the SM is the concept of supersymmetry
(SUSY) which comprises several models and scenarios. This symmetry fundamentally connects
fermions and bosons by assigning a new supersymmetric particle as a partner to each SM particle.
Such particles have not been discovered so far — likely because they might occur at the O(TeV)
scale — although they have been searched for for about twenty years.

One essential quantum number in supersymmetric models is the R—parity Rp which ensures
lepton number and baryon number conservation. The most general supersymmetric theory is Rp
violating. However, in most searches for SUSY particles performed at colliders it is assumed that
Rp is conserved. No significant deviation from the SM has been observed in these searches.
Therefore, lower limits on the SUSY particles masses have been derived. The most stringent
results from LEP and Tevatron allude that presumably no SUSY particle is lighter than the Z°
boson.

Supersymmetric models in which R—parity violation (2, ) is allowed are even more interesting
since lepton number violation has become attractive, supported by the observation of neutrino
mixing and masses [1,2,3]. Moreover, with R, it is possible to produce resonantly single SUSY
particles at colliders. Hence, deep inelastic collisions at HERA! are ideally suited to the search
for squarks, the scalar supersymmetric partners of quarks, which couple to an electron’?~quark

'Hadron—Elektron—-Ring—Anlage
2In the following, the term electron refers to both electrons and positrons, if not otherwise stated.
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pair. In most SUSY scenarios, the squarks of the third generation, stop (%) and sbottom (b), are
the lightest squarks.

In the present analysis, a search is presented for stop quarks which are produced resonantly,
etq — t. Under the assumption that the sbottom mass is smaller than the stop mass, M; < M;,
the bosonic decay ¢ — bW is investigated. The subsequent sbottom decay into SM particles,
b — 1.d, is also R—parity violating. This particular SUSY scenario is complementary to previous
R, SUSY searches in squark production by H1 [4,5] and the decay mode is experimentally
investigated for the first time. The analysis includes both leptonic and hadronic W decays. A
scenario is investigated, in which decays of the light squarks into neutralinos and charginos are
kinematically not possible. In order to cover all decay modes, the direct 2, decay ¢ — e*d is
also considered. At HERA, stop quarks with masses close to the kinematic limit of ~ 300 GeV,
which is in the order of the centre—of-mass energy, can be produced. Such high masses are
kinematically inaccessible at LEP and the bosonic stop decay modes considered are difficult to
observe at the Tevatron.

The study presented here is particularly interesting following the observation of events with
isolated electrons or muons and missing transverse momentum [6]. The dominant Standard Model
source for such events is the production of real W bosons. Some of these events have a hadronic
final state with large transverse momentum and are not typical of SM W production. These
striking events may indicate a production mechanism involving processes beyond the Standard
Model, such as the production of a scalar top quark and its decays as proposed in [7].

This analysis uses the data collected with the H1 detector in positron—proton scattering
in the years 1994-1997 at a centre—of-mass energy of /s = 301 GeV and in 1999 and 2000
at /s = 319GeV. The data samples correspond to integrated luminosities of 37.9pb~! and
67.9pb !, respectively.

This thesis is structured as described in the following:

In chapter 2, a short overview of the SM and its physics in electron—proton (ep) collisions is given.
The concept of SUSY s introduced and the phenomenology of resonant squark production in ep
scattering is described. The last section of this chapter discusses the analysis strategy.

The H1 detector at the HERA collider is briefly described in chapter 3.

Chapter 4 explains the basic data analysis, including data quality requirements, and the identifi-
cation criteria for electrons, muons, jets and missing transverse momentum.

These objects are needed for the analysis of the final states of the bosonic stop decay; its results
are presented in chapter 5.

An interpretation of the results is given in chapter 6. Furthermore, the limit derivation method
is introduced and the resulting exclusion limits are presented for the investigated SUSY scenario.

Chapter 7 gives a summary of the results. Finally, a short outlook is presented.



2
Theoretical Overview

In this introductory chapter, a short review of the Standard Model (for details see e.g. [8]) and its
extensions is given. After the discussion of SM processes in electron—proton scattering, the main
focus is on supersymmetry, which could give an elegant solution to the problems and deficiencies
of the SM.

The concept of R—parity violation is introduced and the phenomenology of supersymmetric
models with 1, in electron—proton scattering is discussed, since ep collisions are ideally suited
to look for these SUSY models. In particular, the resonant production of stop quarks and their
experimental signatures in ep collisions are described. Finally, the Monte Carlo (MC) simulation
of SM background processes and the SUSY signal is discussed and an outline of the analysis
strategy is given.

2.1 The Standard Model

The Standard Model, based on the gauge principle, describes the three fundamental interactions
of elementary particles: the electromagnetic, weak and strong interaction. SM particles are
represented in the symmetry group

SU(3)e x SU(2)1,, x U(1)y, (2.1)

where ' denotes the colour and Y denotes the weak hypercharge. The subscript 5, indicates
that the weak isospin current only couples to left—handed fermions. The exchange of gauge fields
of the corresponding local symmetry group mediate the forces of the SM.

The three parts which form the field content of the SM are described in the following.
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The fermion sector

Fermions — quarks and leptons (charged leptons and neutrinos) of three generations — are spin
1/2 particles which describe matter and are associated to the fundamental representation of the
gauge group of equation 2.1. The weak interaction is parity violating which leads to a left—
right asymmetry of the SM. Thus, the left-handed fermions have quantum numbers which differ
from those of the right—handed fermions. The representations of left—handed components of the
fermion fields are isodoublets while the right—handed fermions are singlets:

(), (2), (),

Quarks (2.2)
UR CR lr
. dR SR bR
(&), G, ()

Leptons © L NH g e (2.3)
€r KR TR

Neutrinos only have a left—handed representation since they are assumed to be massless.

The gauge boson sector

Gauge bosons are vector particles which mediate the interactions. The adjoint representation
of the SM gauge group contains eight massless gluons gi with ¢ = 1...8 which append to the
SU(3)c symmetry group, three massive intermediate weak bosons W, W) belonging to the
SU(2)1,, group and the boson B, associated to the U(1)y group. Here, the index p indicates
the four—vector. The exchange of these gauge bosons between the matter particles with coupling
constants ¢;, g» and g3 generates the forces of the SM. Since a mixing between the two neutral
fields WS and B, produces the mass eigenstates Z° and v, the gauge field content of the SM
can be assigned to the interactions:

e The electromagnetic interaction is mediated by the massless photon 7.
e The weak interaction is mediated by the the heavy bosons W= and Z°.

e The strong interaction is mediated by eight massless gluons gfL.

The Higgs sector

Higgs bosons are scalar particles which generate the masses of SM particles by spontaneous
symmetry breaking. The SU(2) Higgs doublet (four states) which is composed of two scalar
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Higgs fields with spin 0,

@(f;), (2.4)

is introduced to give masses to the intermediate weak gauge bosons by a spontaneous breaking
of the symmetry SU(2)r, , x U(1)y. Moreover, the Yukawa couplings between a SM fermion and
the scalar Higgs boson give masses to quarks and leptons. An additional term in the Lagrangian,

V(®) = p2®'® + A\(®T®), with A>0 and p* <0 (2.5)

causes a non—vanishing vacuum expectation value v = 246 GeV. Only one massive neutral Higgs
boson H° appears if a particular choice of the vacuum is made. This Higgs boson couples to the
weak gauge bosons and to fermions with coupling strength proportional to their masses. With
this choice of the vacuum, the photon remains massless. The longitudinal polarisation of the
vector bosons W* and Z° and the Higgs boson, occupy the four remaining scalar degrees of
freedom.
The Higgs boson with mass
My = 22\0°, (2.6)

which is a free parameter of the theory, is not yet discovered. A lower limit of My > 114.4 GeV
at the 95% confidence level results of a direct search [9], whereas an indirect search gives an
upper limit of My <204 GeV [10]. At tree—level and the on—shell scheme, the masses of the
heavy vector bosons are related by

Mg, .
Mz’

sin? Oy = 1 — (2.7)
with Oy being the Weinberg angle, a free parameter of the SM. This angle has experimentally
been determined to sin® Oy = 0.23113(15) [10] in the M S renormalisation scheme.

2.2 Standard Model processes in electron—proton
scattering

Kinematics

In electron—proton scattering at HERA, a high centre—of-mass energy is available. Deep inelastic
scattering (DIS) of the beam electron with a parton of the proton proceeds via the exchange
of a gauge boson. A photon or a Z" boson is exchanged in neutral current (NC) DIS, while
a W# is exchanged in charged current (CC) DIS processes. In the latter case, a neutrino v,
is contained in the final state. In figure 2.1, electron—proton scattering and its kinematics is
illustrated. Here, the quantity P denotes the four-momentum of the incoming proton and k and
k' are the four-momenta of the incoming and outgoing electron, respectively. The character X
indicates the recoiling system. The following Lorentz—invariant variables are commonly used:
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p

Figure 2.1: An illustration of deep inelastic electron—proton scattering.

e The negative of the four-momentum which is transfered to the proton by the exchanged
particle is

Q' = —¢* = (k= k), (2.8)

corresponding to the virtuality of the exchanged gauge boson.
e The electron—proton centre-of-mass energy squared,
s=(k+ P)?= 4E§E§. (2.9)

Here, EY is the energy of the incoming electron and ES is the energy of the incoming
proton.

e The two dimensionless variables
Q? q P.q
T = an = —
2P - g YT Pk

(2.10)

which vary in the range 0 < x < 1 and 0 < y < 1, respectively. The variable z is
the Bjorken scaling variable and y is the inelasticity of the scattering process. The latter
corresponds to the relative energy transfer to the proton in its rest frame.

In the Quark—Parton-Model (QPM) [11] it is assumed that the proton is made of point—like
constituents, the partons, which can be quarks and anti—quarks or gluons. Among these
partons, the hadron momentum is distributed and the interacting parton carries a fraction
x of the proton four-momentum.

Due to energy and momentum conservation, these four introduced kinematic variables are not
independent of each other. If the electron and proton masses are negligible, they are related via

Q* = szy. (2.11)
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Inclusive DIS cross sections

The cross section for the NC DIS reactions e*p — e* X can be written in terms of the variables

x and Q? as
Ponc(eFp)  2ma?
dzdQ?  zQ*

with  ¢ho = Yo By T Y. aFy —2Fy,

Pho (L + ANE™), (2.12)

where o is the fine structure constant. The AT4“" corrections are defined in [12]. They are
typically smaller than 1% [13]. The NC structure function term ¢=%, is expressed in terms of the
generalised structure functions £y, 2F3 and Fy. Theterms Y, = 1+ (1—1y)? contain the helicity
dependencies of the electroweak interaction. The structure function £, accounts for the dominant
contribution from pure v exchange, the contributions from pure Z exchange and the contributions
from 77 interference. The structure function zF3 only takes into account contributions from
pure Z exchange and 7 interference. Because the contributions from Z boson exchange are
only important at Q%2 M2, with M2 being the Z boson mass, they are negligible in the region
Q? << MZ. Here, F reduces to the electromagnetic structure function Fj.

The contribution of the longitudinal structure function F is significant only at high y. The
function FL is of the order of the strong coupling a. In the QPM (where FL = 0), the structure
function F, can be expressed as a sum, and F} as a difference of the quark anti-quark densities
in the proton.

The cross section for the CC DIS reactions etp — vX can be expressed with the same
notation as

d20'(10(6ip) G%—v ( MI%V

N M, +Q?

2
drdQ? 2z ) 6dc(1+ A5, (2.13)

. 1
with  ¢5, = 5(Y+W2i FY_aWi — W5,

with G being the Fermi constant. The term Aéé”eak represents the CC weak radiative correc-

tions. The CC structure function term q%c is expressed in terms of the structure functions Wi,
W35 and W35, defined similar to the NC structure functions [14]. In the QPM (where W3 = 0),
W2jE and l‘ng may be interpreted as lepton—beam charge dependent sums and differences of
quark and anti—quark distributions. For example, for the charged current process e™p — X and
for an unpolarised lepton beam they are given by

(2.14)

where the sum extends over all active down—type and anti—up—type quark densities. The quark
flavour mixing is neglected. For the process e”"p — v X, the CC structure functions are given by
an interchange of the up— and down-type quark densities, respectively.
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Figure 2.2: The HERA measurements of the NC (circles) and CC (squares) cross sections as a function of (>
and the corresponding SM expectations (error bands).

The cross sections given in equations 2.12 and 2.13 are suppressed by the propagator terms
Pyow+(Q?) which have the typical form

QZ

Pgow=(Q%) ~ IR T
VARIES

(2.15)

Thus, interactions which comprise the exchange of the heavy gauge bosons Z° (NC) and W=
(CC) only contribute at high Q2. Below values of Q% = O(10* GeV?), which is about the vector
boson masses squared, the CC cross section (W* exchange) is largely suppressed with respect
to the NC cross section (Z° exchange). At high Q? values, the cross sections for the NC and CC
DIS processes are of the same order of magnitude. The measurements of these NC and CC cross
sections from HERA are shown in figure 2.2 as a function of Q2. The shaded bands indicate the
corresponding theoretical expectations.
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q f

Figure 2.3: An example for W* production: initial state W radiation.

W production

The most important SM background for the leptonic channels investigated in this analysis (see
chapter 5.1) is the production of real W+ bosons. In ep collisions, they are dominantly produced
by the process ep — eWW.X. The dominant Feynman diagram which corresponds to initial state
W radiation is shown in figure 2.3. When both the photon and the u—channel quark are close to
the mass shell, this process is the main contribution to the ep — eW X cross section [15].

2.3 Theories beyond the Standard Maodel

The Standard Model is an exceedingly successful theory. In diverse experiments, electroweak
predictions of the SM can be confirmed at high precision. Nevertheless, the SM cannot explain
the nature of gravity which gets important at the Planck scale

MPl — G_ =~ 1019 GeV, (216)

corresponding to a Planck length lp; ~ 1073°m. At these small distances or high scales, the
SM is no more capable of making any predictions. Thus, the SM cannot be accounted for as a
complete theory.

Altogether, the SM needs 18 parameters, including the fermion masses and the coupling
constants of the electromagnetic, the strong and the weak interaction, in order to make theoretical
predictions. Regarding this huge amount of free parameters and arbitrary choice of gauge groups,
the SM is rather an effective low—energy theory of a superior theory. Such a theory could be a
grand unified theory (GUT), in which the particles are represented in a SU(5), SO(10) or Fj
group containing the product SU(3)c x SU(2);, , x U(1)y (for reviews on GUT see [16]). Or
it might be a string theory which also comprises gravity.
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Figure 2.4: The Feynman diagram for the fermion one—loop correction to the Higgs mass.

The hierarchy problem

Another theoretical problem of the SM is caused by the Higgs field. Since corrections to the
bare masses of fundamental scalar fields have quadratic divergencies, a cut—off parameter A is
introduced. This parameter regulates the divergent one—loop correction to the Higgs mass shown
in figure 2.4. Its contribution to the Higgs mass is [17]

Arl?
SMZ, = 16;2 (—2A% 4+ 6m2 In(A/my) + ...), (2.17)

where M; denotes the fermion mass and A is the coupling of the fermion to the Higgs field.
The divergency is caused by the quadratic dependence of the Higgs mass on the cut—off scale A.
It can be absorbed by renormalising the theory and redefining the Higgs mass. The parameter
A is assumed to be the GUT scale or the Planck scale if the SM is considered as an effective
low—energy theory. This leads to the hierarchy problem [18,19]: the natural value of the Higgs
mass and its value around the electroweak scale differ by a factor of 10'*. Furthermore, the
hierarchy Mgy << Mp; or Mgy is not stable under the radiative conditions given above.

Requiring that the Higgs mass My is of the same order of magnitude as the electroweak
scale, the bare Higgs mass My, in the SM has to be adjusted:

M3 = My, + 0M7 . (2.18)

Here, the precision of the cancellation between Mpy;, and dMpy must be of the order 10712,
This requires a fine-tuning of the parameters contained in the Lagrangian. The problem is called
fine—tuning problem of the Standard Model.

2.4 Supersymmetry

The concept of supersymmetry [20,21] is an elegant way to solve the hierarchy and the fine—
tuning problem by introducing a superior symmetry. Assuming a scalar field S coupling to the
Higgs field, an additional contribution to the Higgs mass is given by [17]

As
1672

The corresponding loop is illustrated in figure 2.5. The A? contributions of equation 2.17 and

SM7 g ~ (A? = 2mZ In(A/mg) + ...). (2.19)
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Figure 2.5: The Feynman diagram for the boson one—loop correction to the Higgs mass.

equation 2.19 annihilate if to each of the SM quarks and leptons two complex scalars with
As = |As|? are assigned [17,22].

Assuming that a symmetry exists which relates fermions and bosons gives the conditions for
cancelling the contributions to scalar masses. These supersymmetric partners are generated by a
transformation (), which converts a fermionic state into a bosonic state and vice versa:

(Q)|fermion) = |boson)
_ (2.20)
Q|boson) = |fermion).

A theory is called supersymmetric, if it is invariant under this transformation.

SUSY is a broken symmetry and thus, the hierarchy problem can be solved if supersymmetric
particles with masses below ~ 1 TeV exist. In addition to the solution of the hierarchy problem
and the unification of coupling constants, there are other persuasive arguments for SUSY. For
example, SUSY can predict accurately the electroweak mixing parameter sin? 6y, at the per mill
level and the lightest supersymmetric particle (LSP) might be a candidate for cold dark matter,
being substantial in cosmology. Furthermore, SUSY gives an indication for including gravity.

2.4.1 The Minimal Supersymmetric Standard Model

One of the supersymmetric extensions of the SM is the Minimal* Supersymmetric Standard Model
(MSSM). In figure 2.6, the running of the coupling constants is illustrated for the SM and the
MSSM as a function of the scale. In the MSSM the couplings unify at scales around 10 GeV.
The gradient in their evolution is caused by the fact that SUSY particles contribute only above
about 1 TeV. This is assumed to be the effective SUSY scale.

In the MSSM, each particle has to be arranged in a chiral or a gauge supermultiplet. A chiral
supermultiplet comprises a two—component Weyl fermion and a complex scalar field. A gauge
supermultiplet is a combination of a vector boson with spin 1 (two states) and a Weyl fermion
(two states). Before the spontaneous symmetry breaking, the vector boson is massless.

Quarks and leptons have different gauge transformations. Therefore, they have to be con-
tained in chiral supermultiplets [17]. To each of the left-handed and right—handed SM fermions,
a complex scalar SUSY partner must be assigned. These SUSY particles are called squarks (q)

if they are scalar quarks or sleptons (1) if they are scalar leptons. For example, the é;, i is the

I Minimal because at least two Higgs fields are required.
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Figure 2.6: The evolution of the inverse of the three coupling constants in the SM and in the MSSM.

scalar partner of the left-handed (right-handed) lepton ey, . It is important that the indices L
and R do not refer to the helicity of the squark or slepton since they are scalars. The indices
L and R only refer to the handedness of the corresponding SM partner (quark or lepton). All
SUSY particles are denoted by a tilde.

The scalar Higgs boson is a spin 0 particle. Thus it must be contained in a chiral supermultiplet
as well. In supersymmetric extensions of the Standard Model, the scalar Higgs fields are composed
of two complex SU(2) —doublets (H., H?) and (HY, H]) in order to avoid triangle gauge
anomalies. The chiral supermultiplet H,, with Y = 1/2 generates the masses of up—type quarks
(u,c,t), whereas the masses of down—type quarks (d,s,b) and of charged leptons (e, u, T) are
generated by the chiral supermultiplet H; with Y = —1/2. The vacuum expectation values v,
and v, of these Higgs doublets are non—zero and their ratio

fan § = (2.21)
Vg
is a free parameter of the model.

Breaking the electroweak symmetry, five of the eight degrees of freedom correspond to the
Higgs mass eigenstates which are linear combinations of H;, H?, H) and H;: A, (C'P-odd
neutral scalar), H* (positive charged scalar), H~ (its conjugate scalar), H° and h" (C'P-even
neutral scalars). The h° is associated to the neutral scalar SM Higgs boson. A superpartner with
spin 1/2 is denoted by appending "-ino" to the name of the corresponding SM particle. Thus,
the SUSY partners of Higgs bosons are called higgsinos. The residual three degrees of freedom
get occupied by the longitudinal modes of the vector bosons W= and Z°.
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SM particles spin SUSY partners | spin
quark qL.r % squark dr, 4r 0
lepton lo.r % slepton lNL, Z~R 0
Higgs bosons HY, H} | 0 || higgsinos HY, [} | 1

HYy, Hy | 0 HY Hy | 3
gluon g 1 gluino g %
W bosons w0 1 Winos W0 3
B boson B 1 bino B 3

Table 2.1: The particle content of the supermultiplets in the MSSM.

The vector bosons of the SM (W=, W° and B°) are contained in a gauge supermultiplet.
Their SUSY partners are the winos W* and W° and the bino (B°). All superpartners of SM
gauge bosons are called gauginos. The SUSY partner of the gluon (g) is the gluino g.

The particle content of all supermultiplets in the MSSM s listed in table 2.1.

The mass eigenstates of the MSSM originate from a mixing of the superpartners, which is
caused by electroweak symmetry breaking effects:

e The two neutral gauginos (TW°, B°) and the two neutral higgsinos (F12, %) mix to four
neutralinos, )2? with 7 = 1...4, the neutral mass eigenstates.

e The two charged gauginos (W=, W) and the two charged higgsinos ( ~j,Hd_) mix to
two charginos, Xii with 7 = 1,2, the mass eigenstates with charge +1.

By convention, the neutralinos are ordered in mass, as well as the charginos:

(2.22)
Mz < M.

In large parts of the SUSY parameter space the X! is the LSP.

Supersymmetry breaking

None of the SUSY particles has been observed yet. Therefore, SUSY must be a broken symmetry.
In the MSSM, supersymmetry breaking is introduced explicitly.
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The MSSM contains more than 140 parameters, but in the radical approach of minimal
supergravity (mSUGRA), the number of parameters is reduced to 5:

M, = My = M3 = my/, at the GUT scale,

(2.23)
mo, tan B, and Ay

where M is the bino (B°) mass parameter, M, is the wino (1W°) mass parameter and Mj is the
mass parameter of the gluino (§). The parameters m,,, and m, denote the common gaugino
mass and the common mass of all sfermions and Higgs bosons, respectively, at the GUT scale.
The parameter . corresponds to the Higgs boson mass parameter in the SM and A is the soft
SUSY breaking trilinear coupling between Higgs scalars and sfermions at the GUT scale.
Assuming that the coupling constants unify at the GUT scale (see figure 2.6), in these minimal
supergravity models the one—loop renormalisation group (RG) equations for the three gaugino
mass parameters in the MSSM lead to the relation [17]
My  M;y

M
o2 (2.24)
(@51 Qo a3

at any RG scale. In models which satisfy this relation (equation 2.24), M, is related to M via
5. o
Ml = gtan ewMg (225)

at the electroweak scale.
The gluino mass parameter Msj is related to the bino and wino mass parameters M; and M,
by [17]

s . 3 ag
My = 22 sin? 0y My = 222 cos? Oy M, (2.26)
fo! 5«

at any RG scale in models which follow from minimal supergravity or gauge mediated bound-
ary conditions. With the values oy, = 0.118, @ = 1/128 and sin® Oy, = 0.23, the relation
Ms: My : My =~ 7:2:1 can be predicted at the electroweak scale [17]. Hence, the gluino is
expected to be much heavier than the neutralinos and charginos.

In the present analysis, a different approach is used. Here, a Minimal Supersymmetric Stan-
dard Model is assumed in which all sfermion masses are free parameters, as well as the squark
mixings, the soft SUSY breaking trilinear couplings and the couplings between any two SUSY
particles and a standard model fermion or boson.

In the model which is investigated here, the slepton masses and the squark masses of the first
two generations are chosen to be 1 TeV. Furthermore, the relations between M, M, and M;
given in equations 2.25 and 2.26 at the electroweak scale are assumed to hold. Thus, only the
parameter M is arbitrary and chosen to be 1000 GeV at the electroweak scale. The masses and
the composition of neutralinos and charginos are given by the three SUSY parameters tan 3, p
and M only.
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The parameters investigated in this work are

M27tanﬂ7u

(2.27)
(9{, (95, At and Ab.

M, My,
In addition, the Yukawa coupling A5, which describes the coupling of a lepton and a quark of
the first generation to a squark of the third generation (see section 2.4.4) is analysed. The mass
parameters M; and Mj are the masses of the lighter stop and sbottom states, respectively. The
angle 6; is the stop mixing angle and 6; is the sbottom mixing angle (see section 2.4.3). The
parameters A; and A, are soft SUSY breaking trilinear couplings. The masses of the heavier
stop and sbottom states, M;, and MEQ, are determined by the relation between the stop and
sbottom mixing angles and masses and the SUSY parameters A;, A;,, tan 5 and p as explained

in section 2.4.3.

2.4.2 Sparticles decays

The common decay modes of supersymmetric particles in the MSSM with R, conservation (see
section 2.4.4) are briefly described in this section. All decay chains end up in final states containing
a LSP.

e Squarks decay into a quark and a gaugino,
~ ~ ~ <0 ~ It
i—qe Gy q—dx; (2.28)
The decay into a gluino has a strong coupling strength and will therefore dominate, if kine-

matically allowed. Otherwise, the direct decay to the LSP ¢ — ¢x! is always kinematically
favoured.

The handedness of the SM partner of the squark has a strong influence on the couplings of
a squark to charginos: the couplings of the SUSY partner of a right-handed quark ("right”
squark) Gr to charginos are suppressed, whereas the SUSY partner of a left—-handed quark
("left” squark) G, couples to both neutralinos and charginos. Since "right” squarks do not
couple to winos, the coupling also depends on the mixing parameters of neutralinos and
charginos.

Squarks can also decay into a lighter squark and a SM gauge boson or a Higgs boson, but
these decays are largely suppressed as soon as the decays in equation 2.28 are kinematically
allowed. Therefore, the light stop quarks could undergo a bosonic decay into a sbottom
and a W boson, { — EW as far as the sbottom is lighter than the stop and if the decays
into quarks and gauginos are kinematically suppressed [7]. This process is the subject of
the present analysis and is described in detail in section 2.5.2.

e Sleptons decay into leptons and neutralinos or charginos with electroweak strength,

[ — %Y [ — vyt 7 — vy D (2.29)

7
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due to the gaugino content of neutralinos and charginos [17].

e Neutralinos and charginos can decay into a fermion and a sfermion,

X, —Wwvpqi and X —15,vl 4, (2.30)
if kinematically allowed. In addition, neutralinos and charginos inherit the gaugino—higgsino—
Higgs and gaugino—gaugino—vector boson couplings of their components [17]. Thus, they
can decay into a lighter neutralino or chargino and an electroweak gauge boson or a scalar

Higgs,

XY — ZO%0, WEXT,ROXS [AORY, HOXY, HEX7)
(2.31)
o WEXS, 200 RO [AORT, HOXY, HEXG).
The final states in brackets are kinematically suppressed since the h° is assumed to be
the lightest Higgs boson. If the two—body decay modes are kinematically forbidden, the
neutralinos and charginos can undergo three—body decays into two fermions and a lighter

Wor i
N D I G F O CHP G U D SR C i i s (232)
via the off—shell gauge bosons, Higgs scalars and sfermions which appeared in equation 2.31.

e Gluinos decay via the strong coupling, § — ¢q. If this dominant two—body decay is kine-
matically forbidden, the gluino decays in three—body reactions into quarks and neutralinos
or charginos via off-shell squarks [17].

2.4.3 Masses and mixing in the third generation

In general, any scalars with the same charge and color quantum numbers can mix. Thus, there is
also a mixing between squarks?. Due to the large top Yukawa coupling, large mixings between ;.
and tp are conceivable and one of the stop mass eigenstates can be much lighter than the other
squarks. The bottom Yukawa coupling can also be quite large if tan 32 10 [23]. Therefore, also
the mixing between by, and by is considered.

Calculated from the Lagrangian of the MSSM, the mass matrices for the stop and sbottom
system in the (£..1z) or (bL.byr) basis, respectively, can be expressed as [24, 25,26, 27]

M2 a,M, M?  a,M,
M = L and M = t : (2.33)
aMy  M? apM, M?
tr br

2Sleptons can mix as well, but their mixing is not relevant to the present analysis and thus not described here.
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where M; denotes the top mass and M, is the bottom mass. The parameters a; and a, are given
by [24]

a; My = My(A; — prcot 3)

apMy = My(Ap — ptan 3), (2.34)

where the parameters A; and A; denote the soft SUSY breaking trilinear couplings of Higgs scalars
and sfermions. As can be seen from equation 2.34, the sbottom mixing can be as important as
the stop mixing leading to a large mass splitting also in the sbottom system, if tan [ is large.
The mass eigenvalues following from the mass matrices of equation 2.33 are:

1

Mg 5, = 5 (Mg, + M) 2\/ + (20, M,)? (2.35)
1

M2, = 5 (M2 M) % 5, /07 4 (20,M,)? (2.36)

with the convention M < Mj, and M; < Mj . The difference between these mass eigenstates
is large because the top and sbottom masses are large. For the first two generations, the mass
splitting is negligible because here the corresponding quark masses are small, i.e. the scalars are
quasi degenerate in mass.

The mixing angles 0; and 0; parameterise the mass eigenstates and the lightest stop and
sbottom mass eigenstates, ¢; and by, are obtained by diagonalising the stop and sbottom mass
matrices of equation 2.33:

i, = 1 cos@;+fRsin9;
ty = —it; sin&g—l—tNR cos 0;
(2.37)
by = by cos 0; + bp sin o;
by = —b; sin95+1~)Rcost95.
The mixing angles 07 and 6;, derived from equation 2.33, can now be expressed as
—aM M2 — M?)?
cos 0y = et sin 0; = 2( 2 5 ) 5 (2.38)
VO = M2)? 4 a2 M7 (M5, — Mg )* + ai M
—ap M, (M2 — M2 )?
cos b = el sin @y = 5 b 55 b VoL (2.39)
\/(MgL — M2)? + a2 M? (M, = M5 )? + a; M,

As can be seen from equations 2.38 and 2.39, the mixing angles are dependent on the masses
of the corresponding quarks. Squarks of the first two generations have a very small mixing angle
since the masses of the corresponding quarks are small (see above).
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Expressed in terms of the mass eigenstates, i.e. following from equations 2.34, 2.35 and
2.36 and using equations 2.38 and 2.39, the squark mixing parameters and masses of the third
generation and the SUSY parameters A;, A;, tan 3 and p are related by

2M; (A — peot B)

2 2
MZ — M2 = 20 and (2.40)
2M, (Ay — it
M2 — M7 = o (Ao = ptan ) (2.41)

sin 20;

All sfermion masses are free parameters in the model, as well as the squark mixings 6; and
0; and the soft SUSY breaking trilinear couplings A; and A;. Because of the large top mass M,
the stop is likely to be the lightest squark. Nevertheless, the sbottom could be lighter than the
stop, depending on the specific choice of the SUSY parameter space.

2.4.4 R-parity and R-parity violation

The interactions and masses of all particles are described by superpotentials in the notation which
is used for the description of supersymmetric models (for details see e.g. [28,29]). The form of
these superpotentials is given by gauge invariance. Single objects which contain all bosonic and
fermionic fields within the corresponding supermultiplets of table 2.1 as components, are called
superfields.

The most general supersymmetric theory which is gauge invariant with respect to the Standard
Model gauge group allows Yukawa couplings between two SM fermions and a squark or a slepton.
The corresponding part of the superpotential consists of terms in which either lepton number or
baryon number conservation is violated, can be expressed as [30, 31]

1

_ _ 1

W 5 Nij

P

U.D,Dy. (2.42)

Here, the subscripts i, j, k are generation indices. The L; denote the lepton SU(2)-doublet
superfields, E; the SU(2)-singlet charge—conjugated lepton superfields, Q; the quark SU(2)-
doublet superfields and D; and U; the SU(2)-singlet charge—conjugated down— and up-type
quark fields. The dimensionless Yukawa couplings ik, Aj;;, and A}, are free parameters of the
model. Figure 2.7 shows the diagrams corresponding to the terms described by equation 2.42.
For a review on R-parity violating supersymmetry see [32].

In the present analysis, the emphasis is placed on the second term of equation 2.42, A,’L.jk,LinDk,
since it describes a quark—lepton—squark vertex (figure 2.7 b)). This vertex is of particular interest
in electron—proton scattering at HERA because it allows for the resonant production of single
squarks (see section 2.5). In particular, the resonant production of single stop quarks is possible
which is the focus of this analysis.
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Figure 2.7: The diagrams corresponding to the terms described by equation 2.42. a) )\ijkLiLJ—Ek; b)

N LiQj Dy ¢) X3 Ui DDy, Process b) is of particular interest in electron—proton scattering.

The new couplings introduced in equation 2.42 induce violation of the R—parity, defined
as [33]
R, = (—1)3B+L+28 (2.43)

which is a multiplicative conserved quantum number. Here, B is the baryon number, L is the
lepton number and S is the spin of a particle. According to equation 2.43, ordinary SM particles
carry R, = +1, while SUSY particles have R, = —1. With the definition of this new quantum
number, the first two terms in equation 2.42 violate lepton number conservation, while the last
term violates baryon number conservation.

If R—parity is conserved all terms in equation 2.42 are zero. The main effects for the phe-
nomenology in R, conserving models are: the LSP is stable® and each SUSY particle — apart
from the LSP — decays to a final state which contains an odd number of LSPs. In addition, at
colliders sparticles are produced in pairs since the initial state consists only of SM particles.

At HERA, the dominant R, conserving MSSM process is the selectron—squark production via
a t—channel neutralino exchange, eq — éG. The subsequent decays ¢ — ex! and ¢ — ¢x! lead
to signatures with an electron with high transverse momentum, a jet and large missing energy.
Analyses at the HERA collaborations have set limits of (M;z + M;)/2 > 77 GeV [34, 35] which
cannot compete with new results from LEP or Tevatron any longer.

R—parity violation

In the MSSM, R, is assumed to be conserved, although R, conservation is not motivated at a fun-
damental level in supersymmetric theories. Thus, also R, violating SUSY models are accounted
for. If both Yukawa couplings A\’ and \” are non—zero, the proton—lifetime would be shorter than
experimentally observed. The usual assumption is that only one term in equation 2.42 has a
non—zero coupling constant. This leads to essential changes of the SUSY phenomenology with
the following consequences:

31f the only weakly interacting Y| is the LSP, the golden signature in collider experiments is missing energy.
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e The LSP can decay into SM particles. Hence, the R, neutralino decays Y — rgq and
XY — eqq are possible. Moreover, in £, models the signatures in collider experiments are
final states containing leptons and/or jets instead of the missing energy signature of R,
conserving models.

e At colliders, it is possible to resonantly produce single SUSY particles since two Standard
Model fermions can produce a squark or a slepton via a /£, coupling. In particular, at HERA
single squarks can be produced resonantly via the £, coupling )\;jk.

In this analysis, the approach of single SUSY particle production is studied, in particular the
single stop production, followed by /£, decays which also proceed via the term )\,’L-jkLinDk.

2.5 Phenomenology of R, SUSY in electron—
proton scattering

The electron—proton collider HERA is a unique facility to search for new particles which couple
to an electron and a quark. In /£, SUSY models where \’ is non-zero, a lepton—quark vertex (see
figure 2.7) allows for resonant squark production in electron—proton scattering [36]. The part of
the Lagrangian which corresponds to the term /\;jkLinDk of the superpotential (see equation
2.42) is given by expanding the superfields of this term in their components,

ﬁLinEk: = )\’Iijk _ézude?? - ezﬂjLCZIICZ - (éjl)quLd%*
(2.44)
+ i d dh v d dh 4 (B Cd d |+ e,

where the superscripts ¢ indicate the charge conjugate spinors and * the complex conjugate

ijx lead to the squark production

processes given in table 2.2. With an initial et beam, HERA is most sensitive to the couplings

of scalar fields. In e®p scattering, nine possible couplings A

/\’1]-1 (j = 1,2,3) since in the proton there are mainly quarks. Thus, in e*p collisions, mainly
@), type squarks (@, Cr, 1) are produced, whereas mainly down—type squarks are produced in
e p collisions. Here, with an initial e~ beam HERA is most sensitive to the couplings A},
(k = 1,2,3). The latter processes are not considered in this analysis since only the production
of stop quarks is of particular interest.

The invariant mass of the squark resonantly produced in electron—proton scattering can be
expressed as

m = /s, (2.45)

where /s is the centre—of-mass energy calculated as in equation 2.9 and z is the fraction of the
proton four-momentum as given in equation 2.10.
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A;jk etp ep

111 || et +d — ay, e*—i—ﬂ—w?R e +u—dp|e +d— ag
112 et+s—d, |et+u—35g||le+u—35g | e +5— g
113 et +b— up e++ﬂ—>gR e_~|»u—>l~)R e +b—ay
121 || et +d — 1 e+—i—6—>§R e +c—dp | e +d— ¢
122 ||et+s—¢, |et+e— 5 || e +c— 5 | e +5— ¢
123 || et +b— ¢, e++5—>ZR e 4+c—bp | e +b—¢p
131 || et+d—i, |et4l—dy || e+t —dp | e +d— i
132 || et ts—i; | ettt —3p|le +t—3p|e +5—1;
133 || et +b— 1, e++t_—>ZR e +t—bp | e +b—1,

Table 2.2: The squark production processes in e*p scattering.

2.5.1 Resonant R, stop production

In this analysis, a search is performed for stop quarks which are produced resonantly in electron—
proton scattering,

etq 51 (2.46)

Here, X' indicates the &, process. At HERA, stop quarks with masses up to ~ 290 GeV can be
produced which is close to the kinematical limit given by the centre-of-mass energy. According
to equation 2.44, the resonant production of stop quarks and the 12, decay of stop and sbottom
quarks via a non—vanishing coupling \};, are described by the Lagrangian

ERP = —>\£316LELJR + )\/131V5,LZ;LJR + h.C., (247)

where the indices I and R denote the left and right states of the fermionic fields and their
corresponding scalar superpartners.

Since the I, stop interaction involves only the tz, component of the fields (see equations 2.38
and 2.39), the production cross sections of the stop quarks #; and #, scale as [7]

M?
o5, ~ )\'1231d(x = 5t1> cos*0; and (2.48)
2 MEN
o, ~ /\131d<x = T) sin” 6;, (2.49)

d(x) being the probability of finding a d quark in the proton with a momentum fraction z = Mfl S
where Mj, , denotes the stop masses. The lighter state does not necessarily have the largest pro-
duction cross section. However, in the SUSY parameter space investigated in this analysis, M,



22 Theoretical Overview

E ; T T T T T T T T T { T T T { T T T T f
e etp —>t |
© 10 - P E
1F E
10 E
X =01,\5=2300GeV
102, A =0.1,\s = 320 GeV _
S A =0.3,\s = 300 GeV ]
. A =0.3,\s = 320 GeV ]
i 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1 l 1 T

180 200 220 240 260 280
M. [GeV]

Figure 2.8: The stop production cross sections for Ni3; = 0.1 and N5, = 0.3 at /s =301 GeV and
Vs = 319 GeV as a function of the stop mass.

is large enough to ensure that the resonant production of #, can be neglected. Therefore, in
the following the notation ¢ will indicate the 7;. Figure 2.8 shows the stop production cross
sections as a function of the stop mass for the example values N5, = 0.1 and N5, = 0.3 at
the centre—of-mass energies /s = 301 GeV and /s = 319 GeV. The cross sections decrease
with the stop mass. At one specific centre—of-mass energy, the cross sections for \j5; = 0.1
and \j3; = 0.3 differ by a factor of 9 due to the ~ A, behaviour of the cross section (see
equations 2.48 and 2.49).

2.5.2 Stop decays

Stop quarks can decay via their usual gauge couplings into neutralinos, charginos or gluinos, as
described in section 2.4.2: ~
t—tg
t—tx° (2.50)
t— b)zljE
The decays into a top and a gluino or a neutralino are kinematically suppressed due to the high
top mass M,; ~ 174 GeV. Searches for fermionic squark decays via their usual gauge couplings
into neutralinos, charginos or gluinos are presented in [5]. In the present complementary analysis
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Figure 2.9: The lowest order s—channel diagram for R, stop production at HERA followed by a) the bosonic
decay of the stop and b) the I, decay of the stop.

W+

Figure 2.10: The neutrino t—channel exchange for R, stop production at HERA.

the SUSY parameter space is chosen such that these decays are kinematically forbidden. It is
moreover assumed that the sbottom quark b; (denoted by b) is lighter than the lightest stop,
M; < M, such that the only possible R, conserving decay mode is the bosonic stop decay

I — oW+ (2.51)

with W — ff' [7]. The corresponding diagram is shown in figure 2.9 a). The process
etd — bW+ may also arise from the neutrino t—channel exchange illustrated in figure 2.10.
Although the neutrino exchange is strongly suppressed with respect to the s—channel diagram, it
is in principle taken into account in the present analysis.

Under the assumption that squark gauge decays into fermions are kinematically suppressed,
the sbottom will subsequently undergo the £, decay

b2 ., (2.52)
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Channel Decay process Signature
F—>bw
2, d,
je}Z’L W—)@l/e jet+e+}ﬂ
— TV; — eVVV
JuPL W — v, jet+p+ Pu
— TVy — UVVv
JIiPL W —qq 3jets + Pu
ed [T ed jet + high Py e

Table 2.3: The analysed stop decay channels in I, SUSY. The IR, processes are indicated by the coupling \'.

In order to cover all £, decay modes in this particular scenario, in which decays of the light
squarks into neutralinos and charginos are kinematically not possible, the I, decay into SM
fermions,

i etd, (2.53)
is also considered. The corresponding diagram is shown in figure 2.9 b).

The four signatures considered in this analysis are given in table 2.3, with the corresponding
diagrams shown in figure 2.9. The analysis includes both leptonic and hadronic W decays and
several final states can be investigated depending on the W decay mode. Subsequent 7 decays
into leptons (7v, — evvr and Tv, — pvvv) have a branching ratio of approximately 17% and
are accounted for in the je/?, channel and ju /P, channel, respectively. The W decay into 7v,,
where 7 — hadrons + v is not considered. The decay mode ¢ — bW with b — v.dand W — ff
is experimentally investigated for the first time.

In figure 2.11, the stop decay widths I'( — W), I'(f — bur)/10.8% and I'(f — ed) at

Y51 = 0.1 are illustrated for different sbottom masses as a function of the stop mass. The width
I'(f — buv) is divided by 10.8% to account for the branching ratio of the process W — .
Figure 2.12 shows the ratios of the stop decay widths I'(f — bWW*) and I'(f — ed) for different
sbottom masses and /£, couplings \}3;, again as a function of the stop mass. Here, W* denotes a
virtual W boson. It is verified that the three-body decays via an off-shell W (M; < M;+80 GeV)
can be neglected compared with the /£, decay of the stop. Thus, in this analysis only the mass
region

ME > Mg =+ MW (2.54)

is investigated, where the stop can decay into a sbottom and a real W boson. Taking into account
the lower bound from LEP on the sbottom mass, M;z 90 GeV [37], the mass range investigated
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Figure 2.11: The stop decay widths for M; = 100 GeV (top left), M; = 150 GeV (top right) and M; = 200 GeV
(bottom left) as a function of the stop mass.
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Figure 2.12: The ratios of the bosonic and the R,, stop decay widths for M; = 100 GeV (top left), M; = 150 GeV
(top right), M; = 200 GeV (bottom left) and different I, couplings X5, as a function of the stop mass.
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Figure 2.13: Examples of the stop branching ratios as a function of the stop mass for M = 100 GeV at
Ma1 = 0.1 (left) and Nj5; = 0.3 (right), when the fermionic decay modes of the stop via their usual gauge
coupling are kinematically suppressed. The solid lines show the branching ratios for 6; = 0.6 rad and the dashed
lines for 0; = 1.2 rad. The dark lines indicate the branching ratios for the If,, stop decay, whereas the bright lines
are the bosonic stop decay branching ratios. The sum of the branching ratios is less than one, since hadronic T
decays following W — T, are not considered here.

in the present analysis is

180 GeV < M; < 290GeV and

(2.55)
100GeV < M; < 210GeV.

Moreover, it has been checked that the loop decay into a charm quark and a neutralino, when
kinematically allowed, is negligible compared with the /2, stop decay for the values of \|5; which
can currently be probed at HERA.

The branching ratio BR;_ 4y, for this decay mode depends only on the masses of the
squarks involved, the ?, coupling \};; and the mixing angle 6;. It is proportional to cos? 6;. This
branching ratio is shown in figure 2.13 for example values of \|;; as a function of the stop mass.
The sbottom mass is set to M; = 100 GeV in these examples. For Aj;; = 0.1, the branching
ratio BR; w5 1S large over a wide stop mass range, whereas for higher 2, couplings the
branching ratio BR;_,.; gets more and more important. However, at high stop masses the bosonic
stop decay is still the dominant process.
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2.6 Monte Carlo event generation and
simulation

In order to evaluate the SM expectation in all investigated selection channels, for each possible SM
background source a detailed Monte Carlo simulation of the H1 detector response is performed.
All processes are generated with an integrated luminosity much higher than that of the data (see
table 2.4) and are described in the following.

e To determine the contribution of neutral current deep inelastic scattering events ep — €7 X,
where j indicates a jet, the RAPGAP [38] event generator is used. It includes the Born,
QCD Compton and boson gluon fusion matrix elements. Higher order QCD radiative
corrections are modelled using leading logarithmic parton showers [39]. The QED radiative
effects arising from real photon emission and virtual electroweak corrections are simulated
using HERACLES [40]. The parton density functions (PDF) in the proton are taken from
the CTEQ5L [41] parameterisation.

e An important SM background for the bosonic stop decay channels is charged current deep
inelastic scattering, which is simulated using DJANGO [42]. QCD radiation is implemented
to first order via matrix elements, while higher orders are modelled by parton shower cas-
cades generated using the colour—dipole model, as implemented in ARIADNE [43, 44].
Again, HERACLES is used for simulating first order electroweak corrections, as explained
in the previous paragraph, and the CTEQ5L parameterisation is chosen to be the source
for the proton PDFs.

e For the simulation of the direct and resolved photoproduction of jets, ep — (e)jjX,
the PYTHIA 6.1 [45] program is used, which includes light and heavy quark flavours. It
contains the QCD Compton and boson gluon fusion matrix elements and radiative QED
corrections. By calculating leading logarithmic parton showers, higher order QCD effects
are considered. The photon PDFs are taken from [46], whereas the proton PDFs are taken
from the CTEQSL parameterisation.

e The most important SM background to the leptonic W decay channels is the production
of W bosons, ep — eWW X, calculated in leading order (LO) using EPVEC [15]. Next—to—
leading order (NLO) QCD corrections [47] are taken into account by reweighting the events
as a function of transverse momentum and rapidity of the 1V boson [48].

e The production of multi-lepton events, ep — /X, may also contribute to the SM back-
ground for the leptonic W decay channels when one lepton is undetected and some
fake missing transverse momentum is reconstructed. This process is generated with the
GRAPE [49] program. In GRAPE, the cross section is calculated with the exact matrix
elements at tree level.
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e QED Compton scattering processes ep — ey X are simulated with WABGEN [50], where
the Monte Carlo package BASES [51] numerically calculates the cross section. The deep
inelastic contribution of this processes is already included in RAPGAP.

In all models, processes with additional jets are taken into account by using leading logarithmic
parton showers as a representation of higher order QCD radiation [52]. The predictions of the
RAPGAP and PYTHIA models are scaled by a factor of 1.2 for cases where three jets are required,
i.e. in the jj7 /2, channel. This factor accounts for inadequacies in the parton shower model for
multi—jet production and is obtained by comparison with data [53]. All SM Monte Carlo sets
used in this analysis are listed in table 2.4.

For the SUSY signal simulation and the calculation of its cross section SUSYGEN [54, 55] is
used. It relies on the LO amplitudes for ed — bWV given in [7] and takes the stop width into
account. The parton densities are taken from the CTEQ5L parameterisation and evaluated at the
scale of the stop mass. In SUSYGEN, initial and final state parton showers are modelled using
the DGLAP [56] evolution equations. For the non—perturbative part of the hadronisation, string
fragmentation [57] is used.

All bosonic stop decay topologies are simulated for a wide range of stop and sbottom masses
in a grid with steps of typically 20 GeV. For the R, stop decay, only the stop mass is varied.
A total of 1000 events is simulated for each topology (and coupling). The events are passed
through a detailed simulation of the H1 detector. These simulations allow the determination of
signal detection efficiencies as a function of the stop (and sbottom) masses in the entire phase
space since the mass steps are sufficiently small for linear interpolations to be used. The variation
of the efficiencies with the coupling A}5;, when the stop mass and width are both large, is also
taken into account.

2.7 Analysis strategy

All four final state topologies listed in table 2.3 are investigated in order to exploit the sensitivity
of HERA for the resonant production of stop quarks and their bosonic decays. The event selection
of these final state channels is described in chapter 5. The selection is performed in order to
maximise the signal sensitivity; events which could arise from bosonic stop decays are selected,
whereas the SM background is suppressed. The error on the SM expectation is defined by
experimental and theoretical uncertainties (see section 4.8).

To avoid double counting of a hypothetical signal, for the limit derivation (chapter 6.4)
the selection of all topologies must be exclusive. Although the selection cuts are not explicitly
exclusive, it is ensured by these cuts that double counting occurs in less than 0.1% of the events
and is therefore negligible.

The spectra of the reconstructed or — in case of more than one neutrino in the final state —
the transverse stop mass of data and SM Monte Carlo are differentially compared. No significant
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Process(es) Model Phase space Subprocess | Lyic/ Ldata
Photoproduction || PYTHIA61 Pr > 10GeV 15
Py > 15GeV 15

Pp > 25GeV 150

Pp > 40 GeV 150

Pp > 75GeV 2200

Pr > 95 GeV 75000

Prompt Photon || PYTHIAG61 Pr > 76 GeV 75
Pr > 20 GeV 500

Pr > 40 GeV 20000

NC RAPGAP Q? > 4 GeV? 10
Q? > 100 GeV? 7

Q? > 400 GeV? 40

@Q? > 1000 GeV? 12

Q? > 2500 GeV? 27

Q? > 5000 GeV? 100

Q? > 10000 GeV? 540

Q? > 20000 GeV? 9600

cC DJANGOHI12 | Q2 > 100 GeV? 245
Q? > 10000 GeV? 13000

Lepton Pair GRAPE ee 450
Production L 750
T 1500

QED Compton WABGEN M, > 10 GeV 10
M, > 50 GeV 340

M, > 100 GeV 5000

W Production EPVEC 1500

Table 2.4: The Monte Carlo samples used in the presented analysis. All processes are simulated separately for
proton energies of 820 GeV and 920 GeV. For the ratio Lyic/Laata, the smallest value found is given.
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deviation from the SM is observed (see chapter 6.1). Hence, the results of the event selections
are used to set constraints on the parameters of the MSSM.

In order to obtain these exclusion limits, the stop signal selection efficiencies must be deter-
mined for each considered stop decay mode separately as a function of the stop (and sbottom)
mass and the £, coupling A5,. Furthermore, the branching ratios of the stop decay modes and
the stop masses are calculated for each set of variables in the SUSY parameter space. The num-
ber of observed and expected events, the branching ratios and the selection efficiencies are used
to calculate an upper limit on the number of events which might arise from a stop signal. Finally,
a multi-dimensional scan of the SUSY parameter space is performed. This scan accounts for the
fact that several SUSY parameters are relevant for the limit derivation.
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3
The H1 Experiment at HERA

This chapter gives a short overview of the electron—proton collider HERA at the DESY! [58]
laboratory in Hamburg. Moreover, the H1 detector components which are relevant to the present
analysis are briefly described here.

3.1 The HERA collider

The HERA collider is a facility built to study the nature of high energy electron—proton scatter-
ing. HERA consists of one storage ring for electrons and one for protons. Both rings have a
circumference of 6.3 km and are located in a tunnel 10 m — 15 m under ground.

Circulating in opposite directions in the rings, the beam particles (electrons and protons)
collide at two interaction regions. This offers the possibility of studying electron—proton collisions
with the detectors H1 [59] and ZEUS [60] which have been constructed for this purpose. In
addition, the fixed target experiment HERMES [61] makes use of the electron beam only. The
HERA-B [62] experiment has been operated using the proton beam only. The HERA collider, its
pre—accelerator facilities and the location of the experiments are illustrated in figure 3.1.

The electrons and protons are stored in up to 220 bunches. Each bunch contains about 10*°
to 10! particles. The bunch crossing frequency of 10.4 MHz leads to a time interval of 96 ns
between two subsequent bunch crossings. The electron ring consists of superconducting cavities
and conventional magnets, whereas the proton ring is made of normal conducting radio frequency
cavities and superconducting magnets.

Between 1994 and 1997, HERA was operated with positrons of energy E° = 27.5GeV and
protons of energy Ez? = 820 GeV. In 1998, the proton energy was increased to ES = 920 GeV
and until the beginning of 1999, HERA ran with electrons. From summer 1999 until autumn

!Deutsches Elektronen—Synchrotron
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Figure 3.1: A schematic overview of the electron—proton collider HERA at DESY with an enlarged view of the
pre—accelerator system (right).

2000, HERA was again operated with positrons. This has been the last data taking period of
HERA |. According to Equation 2.9, the centre—of-mass energy of the colliding electrons and
protons at HERA is

319 GeV for Eg = 920 GeV

(3.1)
301 GeV for EI? = 820 GeV.

Vs = \/AEE 0—{

In this analysis, all data collected with the H1 detector in positron—proton scattering in the years
1994 — 1997 and 1999/2000 are used.

3.2 The H1 detector

The H1 detector is located in the north interaction region of the HERA collider. It is a multi—
purpose apparatus designed to study the complete final state in high energy ep collisions. An
isometric view of the H1 detector is illustrated in figure 3.2.

The centre—of-mass of the incoming beam particles is boosted in the proton direction due to
the imbalance of the beam energies. Therefore, the H1 detector is constructed asymmetrically.
Moreover, almost the total solid angle (47) around the beam axis is covered by H1 detector
components, except for the lead—through of the beam pipe. The H1 detector is described in
detail in [59, 63, 64].
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Figure 3.2: The H1 detector.
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The coordinate system

The right-handed coordinate system used is centred on the nominal interaction point (z = 0)
with the positive z—direction defined to be along the incident proton beam. The positive z—axis
is the direction towards the HERA ring centre and the positive y—axis is the upward direction.
The (2, y)—plane corresponds to the transverse plane.

The polar angle 6 is defined according to the z—direction such that & = 0° points to the
proton direction and # = 180° to the electron direction. The azimuthal angle ¢ = 0° is defined
according to the positive x—direction.

3.2.1 Tracking

The tracking system builds the innermost part of the H1 detector and covers the angular range
7° < 0 < 177.5° with full azimuthal acceptance. It consists of the central tracking detector
and the forward tracking detector. These detector components are used to measure charged
particle trajectories, to reconstruct the interaction vertex and to supplement the measurement
of the hadronic energy (see section 3.2.2). This central part of the detector is surrounded by
a superconducting magnetic coil with a strength of 1.15 Tesla. The magnetic field is provided
homogeneously along the z—axis and is used for momentum measurement.

The central tracking system

The central tracking system covers the polar angle range 15° < 6 < 165°. It consists of concentric
cylindrical drift and proportional chambers with their axis being the beam—axis.

e The innermost part of the tracking system is build by the central silicon tracker (CST).
The two layers of silicon strip detectors have a radius of » = 5.75 cm and r = 9.75 cm,
respectively. They are able to provide a high precision measurement of track trajectories
which is exploited to obtain precise information about the track quantities and the vertex
position.

e The track measurements in the two central jet chambers, CJC1 and CJC2, have spatial res-
olutions which differ in the 7—¢ —plane and the z—direction. The resolution is 0,4 = 140 um
in the 7 — ¢ —plane, whereas the precision of the measurement of the z—coordinate is only
0. = 2.2cm. In the magnetic field, the curvature of charged tracks gives their transverse
momentum Pr. It is measured with a resolution of o(Pr)/Pr = 0.01 - Pr GeV.

e A more precise measurement of the z—coordinate is provided by the two thin drift chambers
ClIZ and COZ. These z—chambers consist of sense wires fixed perpendicular to the z-
direction. The resolution of their measurement is o, ~ 350 um.

e The multi wire proportional chambers CIP and COP complement the z—chambers. They
provide fast trigger signals with a resolution of 21 ns.
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The forward tracking system

The forward tracking detector consists of three supermodules which are located around the
z—coordinate in the polar angle range 7° < 6 < 25°. Each supermodule consists of four sub-
detectors: three planar drift chambers which provide a precise measurement of 6, the forward
multiwire proportional chamber, a transition radiation detector and a radial drift chamber which
also deliver a good r — ¢ measurement.

3.2.2 Calorimetry

The tracking system of the H1 detector (see section 3.2.1) is surrounded by the calorimetry
system. The liquid argon calorimeter (LAr) is used to identify jets and electrons and covers the
polar angle range 4° < 6 < 154° with full azimuthal acceptance. Furthermore, it measures the
energies of electromagnetic and hadronic objects. The energy measurement is complemented by
a calorimeter in the backward region, the spaghetti calorimeter (SPACAL). Before the 1994 /1995
shutdown, the LAr calorimeter was complemented with the backward electromagnetic calorimeter
(BEMC) which was then replaced by the SPACAL calorimeter. The tail catcher is able to
supplement the energy measurement on the outside of the inner calorimeters. It is implemented
in the iron return yoke.

The liquid argon calorimeter

The LAr calorimeter is a sampling calorimeter which provides a good electron recognition. lts
position inside the superconducting magnetic coil minimises the passive material in front of the
calorimeter. Along the z—direction, the LAr calorimeter is divided into eight wheels. These wheels
are labelled as BBE, CB1, CB2, CB3, FB1, FB2, OF and IF and each of them is subdivided in ¢
into eight octants.

Moreover, the LAr calorimeter is divided into an electromagnetic and an hadronic section:

e The electromagnetic energy is measured in the inner section of the LAr calorimeter.

The absorbing material of this calorimeter section is lead and the active material filled into
the gaps is liquid argon. The total depth of the electromagnetic LAr section is dependent
on 0 and varies between 20 and 30 radiation lengths. It has an energy resolution of
o(E)/E ~ 12%/+/E/ GeV @ 1%, as obtained in test beam measurements [65, 66, 67].
The electromagnetic energy scale uncertainty of the LAr calorimeter varies between 0.7%
and 3% (see chapter 4.5).

e The hadronic energy is measured in the outer section of the LAr calorimeter.

Here, steel is used as absorbing material and again the active material filled into the
calorimeter section is liquid argon. The total depth of this calorimeter section varies between
5 and 8 hadronic interaction lengths. The response of the LAr calorimeter to hadrons is
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approximately 30% smaller than to electrons of the same energy. This non—compensating
behaviour of the calorimeter is adjusted by an off-line reweighting technique. The hadronic
LAr calorimeter section has an energy resolution of o(FE)/E =~ 50%/+/E/ GeV & 2% for
hadrons. The hadronic energy scale uncertainty amounts to 2% (see chapter 4.6).

The SPACAL calorimeter

In the backward region, the LAr calorimeter is complemented by the spaghetti calorimeter,
SPACAL [68]. It is a scintillating fibre calorimeter which has lead absorbers and covers the
angular range 153° < 0 < 177.8°.

Similar to the LAr calorimeter, the SPACAL consists of an electromagnetic and a hadronic
part. It provides an electromagnetic energy resolution of o(F)/E ~ 7.1%/+/E/ GeV [69].

3.2.3 The muon system

The Muon system of the H1 detector consists of the central and endcap muon detector which
situated in the iron return yoke. It is supplemented by the forward muon detector which uses a
toroidal magnetic field. With these detectors, the identification of muons is possible. Furthermore,
they provide a measurement of the muon direction and momentum.

The central muon detector

The iron return yoke is the outermost part of the detector and is equipped with streamer tubes
to form the central and endcap muon detector in the polar angle range 4° < 6 < 171°. Some
of the up to sixteen tube layers are equipped with pad electrodes which supplement the energy
measurement of hadrons not being completely absorbed in the inner calorimeters (tail catcher).
This means that the instrumented iron could also act as a backing calorimeter. However, the tail
catcher is only used for the muon detection (see section 4.3.2) in this analysis.

The central muon detector is segmented into 64 modules, each being instrumented with 10
layers of streamer tubes. Three additional streamer tube layers, the muon boxes, are mounted at
each side of the instrumented iron such that they cover the edges of the central muon detector.
Thus, the muon boxes improve the track measurement in these detector regions.

In the central muon detector, the muon position perpendicular to the wires is measured by
the signal wires in the streamer tubes. The resolution of the measurement varies between 3 mm
and 4 mm. The muon position parallel to the wires is measured by strip electrodes. These strip
electrodes are situated in five of the streamer tube layers. Their resolution varies between 10 mm
and 15 mm.

The forward muon detector

The forward muon detector is situated in the forward direction and covers the polar angle range
3° < @ < 17°. Outside the main detector, the toroidal magnet provides a field of 1.6 Tesla. The



3.2 The H1 detector 39

spectrometer consists of six double layers of drift chambers which are located on both sides of
the magnet. The orientation of the drift chamber planes is chosen such that four of the layers
provide an optimal measurement in 6 and two of the layers measure accurately in ¢. Muons can
only be identified in the forward muon detector if they have a momentum P > 5 GeV. Else, the
muons cannot be distinguished from energy losses in the inner detectors and the toroid.

3.2.4 Luminosity measurement

The luminosity is determined from the rate of the Bethe—Heitler process ep — epy (elastic
bremsstrahlung process) which has a large and well known cross section. The filling of new
electron and proton bunches into the HERA ring defines a luminosity fill. Each luminosity fill
is divided into runs® and for each run the luminosity is measured separately. For this purpose,
the final state photon is detected — in coincidence with the electron — in a calorimeter which is
located downstream of the interaction point at z = —102.9 m.

3.2.5 The H1 trigger system

The H1 trigger system is able to separate events of physics interest from background events. At
HERA, the bunch crossing rate is about 10.4 MHz. In contrast, the H1 data is taken with a rate
of only approximately 15 Hz. The background event rate amounts to about 50 kHz, dominated
by beam—gas or beam—wall events, beam—halo muons and muons coming from cosmic showers.
Physics processes have a rate of about 20 Hz — 30 Hz; processes with high transverse energies
can be observed only very rarely (e.g. once a day).

The readout system is not able to record the whole detector information for each bunch
crossing. Therefore, a trigger system was designed which reduces the readout rate by providing
a fast decision of keeping or rejecting an event at four levels, L1 to L4.

e The L1 trigger level is a dead time free system and filters the physics events within 2.3 us.
The subdetectors which are used by this first level trigger are called (trigger elements). As
long as trigger information from some trigger elements is missing, the event information is
stored in a pipeline. This procedure is necessary due to the short bunch crossing time of
96 ns. The trigger elements are combined to 128 subtriggers by the central trigger logic. If
the decision of one of these subtriggers is positive, the pipeline is interrupted. The trigger
data are then submitted to the second trigger level.

e The L2 trigger level provides a decision within 20 us. In this time, the L1 decision can
be verified by combining signals from different subdetectors. For this purpose, topological
correlations and techniques including neural networks are used. If the L2 trigger level

2A run can last up to two hours and its quality (good, medium, bad or unknown) is given by the detector
status.
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accepts an event, the detector readout starts and the data are transfered to the L4 trigger
level.

e The trigger level L3 has not been used so far.

e At the L4 trigger level, a fast event reconstruction is performed by a processor farm, using
the entire detector information. The events filtered by subsequent decision algorithms are
finally written to tape with a data taking rate of approximately 15 Hz.
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This analysis uses the data collected with the H1 detector in electron—proton scattering in the years
1994 to 2000 at centre—of-mass energies of /s = 301 GeV and /s = 319 GeV, corresponding
to a total integrated luminosity of 105.8 pb™t. Only good or medium quality runs are selected
in order to ensure that only events arising from ep collisions are considered. In these runs,
all important subsystems were operational. Moreover, several requirements to reject non—ep
background are applied. The basic data selection is used in common with the general search for
new phenomena in ep scattering at HERA [52,70, 71].

The data selection for the event topologies considered in this analysis relies on the iden-
tification of jets, leptons and missing transverse momentum. Therefore, in this chapter the
identification and measurement of these objects is described. Furthermore, the reconstruction
methods of kinematics which are needed for the electron energy calibration and the further event
selection are summarised. Finally, the trigger efficiencies are given and the treatment of systematic
uncertainties are characterised.

4.1 Background rejection

In order to significantly reduce background events not coming from electron—proton collisions,
several requirements on event topologies and the the event timing are applied. The basic event
selection criteria are given in table 4.1.

e The primary interaction vertex has to be reconstructed within 35cm in 2z of the nomi-
nal position of the vertex: —36cm < z,, < 34cm in the 1994-1997 data sample and
—35cm <z, < 35¢cm in the 1999/2000 etp data sample.

e To describe the reconstructed momentum loss in the direction of the incident electron, the
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1994-1997 and 1999/2000 e p reprocessed data, 105.8 pb~!

good and medium runs
full functionality of subsystems:
LAr, CJC1 and CJC2, luminosity system, SPACAL, central muon detector, COP

—36cm < 2y, < 34cm in 1994-1997 data sample

—35cm < zy, < 35¢cm in 1999¢™ /2000 data sample

|ATy| < 11.4 ns

QBGFMAR bits 0 — 8 false for all channels (except channels containing a p)
QBGFMAR bits 0 — 9 false for channels containing a v (except channels containing a p)

Table 4.1: The basic event selection criteria.

observable

> (B = P.y) = ) (Ei(1 - cosb;)) (4.1)

7 7

is introduced, where E; is the energy and P, ; is the z component of the particle mo-
mentum. The index ¢ runs over all hadronic and electromagnetic objects and muons. A
neutral current DIS event is expected to have twice the energy of the incident electron,
> .(Ei— P,;) = 2EY = 55.2 GeV, due to energy and momentum conservation. This value
is achieved if all final state particles in ep collisions are detected or if only longitudinal
momentum along the positive z—direction remains undetected. Because larger values of
>.;(E; — P, ;) could arise from non—ep background from mismeasurement, it is required
that > .(E; — P.;) <75GeV. Lower cuts on this observable are dependent on the final
state investigated (see sections 4.3.4 and 5.3).

e The H1 software package QBGFMAR [72] comprises 26 background finders which are used
to reject non—ep background events. These background finders search for event topologies
typical of cosmic ray and beam—induced background [13]. Since in the channels which
contain a muon (i.e. the jufP channel) the background finders are inefficient [73], they
are not considered here.

e The event timing Ty is required to be consistent with the ep bunch crossing. It must satisfy
|ATH| < 11.4 ns.
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Period L;.: total raw | L;,,; final
[pb~] [pb~]
1994 et 3.17 2.81
1995 e* 5.88 4.39
1996 e* 9.83 8.50
1997 e* 27.92 22.20
1999 et 24.78 18.89
2000 et 59.26 49.04

Table 4.2: The integrated luminosities for the 1994-2000 e™p data sample. The total and final integrated
luminosity amounts to 105.8 pb™!.
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Figure 4.1: The number of selected events per luminosity interval as a function of the accumulated luminosity
for the 1994-1997 data sample (left) and the 1999/2000 e*p data sample (right).

4.2 Luminosity determination

The total raw luminosity is reduced by the requirements on the run quality. Moreover, it is affected
by the correction for the functionality of the subsystems (HV correction) and for sattelite bunches
(zyte correction). For the 1994-2000 e*p data sample, the final total integrated luminosity
amounts to 105.8 pb~!. The integrated luminosities as determined for this analysis for the six
run periods are listed in table 4.2. In figure 4.1, the number of selected events per luminosity
interval is shown as a function of the accumulated luminosity for the 1994-1997 (left) and
the 1999/2000 e*p (right) data samples. The slight drop in the 1999/2000 e*p data sample
distribution around 15 pb~! to 20 pb~! is caused by broken CJC wires in the second part of the
1999 e*p run period. These CJC inefficiencies are taken into account within the MC simulation.
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4.3 Particle identification

The selection of the event topologies as given in table 2.3 rely on the identification of jets, leptons
and missing transverse momentum. Identification criteria for electrons, muons and jets are based
on previous analyses performed on specific final states [52, 70, 71, 13] and are described in the
following sections. Although the basic data selection is the same as in [52,70, 71], the definition
of the particles is slightly different in order to increase the sensitivity to the stop signal.

4.3.1 Electron identification

The electron identification is based on the measurement of a compact and isolated electromag-
netic shower in the LAr calorimeter which is associated to a high quality track if 6, > 10°. Here,
0. denotes the electron polar angle. Detailed studies can be found in [71, 74] and references
therein. The electron finder QESCAT [75], which is implemented in the physics analysis library
H1PHAN [76], contains the search algorithm QECFWD [77]. This algorithm is used in order to
identify electron candidates. The requirements on these electron candidate are:

e The electron candidate must have a transverse momentum of at least 10 GeV and must be
found in the polar angle range 5° < 6, < 140°.

e The hadronic energy within a cone defined by R = \/(An)2 + (A¢)? < 0.5 around the
electron is required to be below 2.5% of the electron energy (Fr—o5/F. < 2.5%). Here,
n = —In(tan(0/2)) is the pseudorapidity and ¢ denotes the azimuthal angle.

e In the region 10° < 0. < 140°, a high quality track is also required to be associated to the
electromagnetic cluster.

Furthermore, a geometrical matching between the track and the cluster centre—of—gravity
is required; their distance of closest approach (DCAY) must be less than 12cm. The
BOS [78] banks DTRA and DTNV contain vertex fitted and non—vertex fitted tracks,
respectively. Tracks from both banks are considered in this analysis.

e Detector regions, in which the electron candidate measurements are not reliable, such as
cracks between calorimeter modules (¢—cracks) or wheels (z—cracks) must be excluded
from the analysis: |¢¢ — @erack| > 2° and |2¢ — Zeraer| > 2 cm.

e The starting radius of the electron track, R, is defined as the transverse distance
between the first measured point in the central drift chambers and the beam axis. If the
electron candidate is detected in the region 20° < 6, < 140° or if the expected radial track
length, l;.qcr, in the CJC is larger than 10 cm, R4+ is required to be below 30cm. This
cut allows efficient rejection of photons which convert late in the central tracker material.
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e Due to hardware problems, the CJC was inefficient in the data taking period 1997 e*p within
the interval 230° £ ¢ £250°. In the data taking period 1999 e*p the interval 190° < ¢ < 280°
was affected. In these periods and ¢—regions, tracks cannot be reconstructed in the CJC.
Thus, the affected data samples, corresponding to integrated luminosities of ~ 21 pb~!
and ~ 8 pb~! [71], respectively, are not considered in the electron candidate identification.

The electron selection criteria are listed in table 4.3. The resulting electron identification efficiency
is around 85% in the forward region and varies between 92% and 98% in the central region [71].

4.3.2 Muon identification

The muon identification is based on the measurement of a track segment or an energy deposit
in the instrumented iron associated with a charged particle track in the inner tracking systems.
In addition, a track solely measured in the forward muon detector is taken as a muon candidate,
if its polar angle is 6, < 12.5°. The muon momentum is measured from the track curvature
in the solenoidal or toroidal magnetic field. In the forward and central tracking systems the
track selection is based on standard quality requirements which are described in [70]. The main
requirements on the muon candidate are:

e The muon candidate must have a transverse momentum of at least 10 GeV and must be
found in the polar angle range 10° < 0, < 140°.

e To reduce hadronic background, the distance between the muon candidate and the nearest
high quality track is required to be R9%* > 0.5.

e A cylinder of radius R = 0.5 is centred around the muon direction associated with its
track. Within this radius, a muon candidate should not deposit more than 8 GeV in the
LAr calorimeter: EL4r . < 8GeV. This calorimetric isolation again reduces hadronic

background.

e Muons with a transverse momentum larger than about 2 GeV are able to reach the central
muon detector and can produce signals in the limited streamer tubes. A pattern recognition
program groups these wire and strip hits into associations and via a 2—dimensional mapping,
wire and strip track segments are derived. Then a track fit is applied, which provides the
final kinematic quantities of the track. After a successful link to a track measured in the
central tracker, the tracks reconstructed in the central muon system are used to identify
the muon candidates. Furthermore, hits in a minimal number of layers are required as well
as a maximal distance of the track extrapolation from the vertex. Details can be found
in [73] and references therein.

e The track reconstruction in the central muon detector is limited due to the geometrical
acceptance. In the affected regions, the muon finding efficiency is increased by the tail
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catcher (see chapter 3.2.3). A track measured with the inner tracking system must match
an energy deposit in the instrumented iron within a distance of R = 0.5. In the tail catcher
calorimeter, the minimum depth of E547 . must be larger than 40 cm which suppresses
hadronic showers. At least one LAr cluster is required to contribute to E£47 .. The detailed
selection criteria for muons in the tail catcher calorimeter are described in [79].

If the muon candidate has no track which has been measured in the central tracking
system and if its polar angle is 0, < 12.5°, the forward muon detector is used to measure
the transverse momentum of the muon candidate. These muon candidates must fulfil
a specific track quality [70]. Furthermore, the z—position of the first point of the track
measured in the forward muon detector must fulfil —400cm < z < 300 cm.

For muon pairs, the track opening angle c,; ,o and the polar angle sum of muon pairs
(6" + 6"2) must fulfil a,; 0 < 165° and [0 + 672 — 180°| > 10° if a1 e > 150° to
reject cosmic muons. For this purpose, information from both the central tracking system
and the central muon detector are used. The event timing for muon events must satisfy
|ATy| < 3.8 ns. The difference of the event timing in the upper and the lower part of the
central muon detector must fulfil T . — T} .. < 3.8 ns. Moreover it is required that the
muons originate from the vertex which rejects beam halo events. These cuts are described

in detail in [73].

The muon selection criteria are summarised in table 4.3. The resulting efficiency to identify
muons is larger than 90% [6].

4.3.3 Jet identification

Jets are reconstructed from energy deposits in the LAr calorimeter combined with well measured
tracks using a modified inclusive & algorithm [80,81] in the laboratory frame with the separation

parameter set to 1. A P weighted recombination scheme is used in which jets are treated as

massless. Electron candidates are excluded from the algorithm. Moreover, not all particles are
assigned to hard jets. The requirements on the jet candidate are:

e Only jets in the polar angle range 7° < 0. < 140° are considered to ensure that they

are reliably measured. Moreover, the transverse momentum of the jet must be at least
10 GeV. The Pp cut mainly reduces events coming from higher order QCD radiation and
non—perturbative effects [53]. The cut on the polar angle also reduces the contribution of
fake jets at large polar angles (see below). Besides, for 0., < 10° the MC calculations do
not fully confirm the jet energy calibration [70].

In some detector regions, in particular in regions with a huge amount of dead material,
the electron finder is inefficient. Thus, a jet can be faked by the scattered electron or the
electron may be a part of a jet. This inefficiency mainly affects multi—jet events, i.e. the
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J77 P, channel, especially if the jets have high transverse momenta. To reject electrons
which are misidentified as jets, topological criteria for electron—jet separation are applied:

— The invariant mass of a jet is defined as M7“* = |/(>". p!)?, where the sum extends
over the four-momentum p!' of each object i which is assigned to the jet. The jet
energy fraction measured in the electromagnetic part of the LAr calorimeter is denoted
as EM{¢t.. The invariant mass of the jet divided by its transverse momentum Pj!
is restricted to M7 /P}“ > 0.1 and to M’/ P/ > 0.15 if EM{t, > 0.9.

— The radial moment of a jet is defined as (R) = >_. Pr;R/“"/>". Pr,;, where the sum
runs over the transverse momentum P;; of each object 7 which is assigned to the
jet. Here, R/¢ denotes their distance to the jet axis in the 7 — ¢—plane. The radial
moment is restricted to (R) > 0.2 and (R) > 0.4 if EMJc, > 0.9. These cuts

account for the high collimation of the jets which are faked by electrons, considering
the large value of EM{<

rac*

A detailed description of these cuts can be found in [70]. About 80% of fake jets and 3%
of genuine jets are rejected for the bosonic stop decay channels. In the ed channel (the
R, stop decay channel; see table 2.3), the fake jet rejection cuts are not applied since they
reject only about 30% of events where an electron is misidentified as a jet.

The jet selection criteria are listed in table 4.3. The resulting jet selection efficiency is greater
than 95% [52].

4.3.4 Missing transverse momentum

The missing transverse momentum /°, is derived from a summation over all identified particles
and energy deposits in the event:

P = \/(Z(El sin 0; cos qbi))z + <Z(El sin 0; sin¢i)>2. (4.2)

2 3

In the channels where one or more neutrinos are expected, the missing transverse momentum
must exceed at least 12 GeV. In addition, in these channels an event is only accepted if the
energy and the momentum in the beam direction fulfil > .(E; — P, ;) < 50 GeV. This requirement
reduces the contamination due to badly measured NC DIS events in which fake missing transverse
momentum is reconstructed.

4.4 Reconstruction methods of kinematics

There are four measurable inclusive kinematic quantities: the energy and the angle of the electron
and the hadronic final state, respectively. The Lorentz invariant kinematic quantities Q?, y and
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Electron
selection criteria

Pr > 10 GeV

5% < 6, < 145°

identified with the electron finder QESCAT

Ep—os/E. < 2.5%

not in ¢—region and time period affected by CJC failure
|0° — Derack| > 2°, With @ {0°,45°,90°, 135°, 180°, 225°, 270°, 315°}
|2¢ — Zerack| > 2 cm, with zeqe {—64.63 cm, 23.17 cm}
DCAY < 12cm

Rt < 30cm if 0 > 20°

Riore < 30cm if l;pqer > 10 cm

good quality (DTRA)

Muon
selection criteria

basic muon selection criteria

Pr > 10 GeV

10° < 0, < 140°

RI* > 0.5

EkAr o < 8GeV

cosmic and beam halo background rejection cuts

Jet
selection criteria

Pr > 10 GeV

7% < O < 140°

reconstructed with inclusive k; algorithm
Mt /P > 0.1

Mt PE* > 0.15 if EMpq. > 0.9

(R) > 0.02

(R) > 0.04 if EMj,q0 > 0.9

Table 4.3: The main selection criteria for electrons, muons and jets. For electrons, the track conditions apply to
both DTRA and DTNV tracks if not otherwise stated.

x can therefore be reconstructed with different methods which are described below. Here, only
the variables needed for this analysis are given.

The electron method

The electron method uses solely the measurement of the polar angle 6., the energy E, and the

transverse momentum Py, of the electron with the highest Pr in the event:

yezl_

Eo(1 —cost.)
2F0 ’

P2 2
S o, _ Qe (4.3)

Q: = :
1 - Ye YeS
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In NC DIS events, these electron quantities are associated to the scattered electron.

The hadron method

In the hadron method which is the only method to determine y in CC events, all variables are
solely calculated from the hadronic energy deposited in the detector. The kinematic quantities
are therefore indicated by the index h. Here, y, is calculated by using the Jacquet—Blondel
ansatz [82]:

> :h(Eh — Pzh)
- ) 4.4
Yh R0 (4.4)
The inclusive hadron angle ~;, is defined by
Y 2on(En— Pep)
tan — = , 4.5
2 Pr haa ' (45)

where Prjqq is the total transverse momentum of the hadronic final state.

The double angle method

The double angle method is based on the measurement of 6. and the inclusive hadron angle ;.
With these angles, the energy of the scattered electron can be calculated as
_ 269

"~ 1—cosf, +sinf, tan(v,/2)

Epa (4.6)
and serves as reference energy to the electron energy E. which is exploited for the electron energy
calibration (see section 4.5).

The sigma method

The sigma method combines the variables of the electron and the hadronic final state, exploiting
energy and momentum conservation of the initial and the final state. This method is independent
on the energy E? of the incoming electron and thus not sensitive on radiative effects by initial
state radiation. The kinematic variable y can be expressed as

ys = ZZ(E’L - Pz7i)
¥ (B — P.y) 4 E.(1—cosb,)

(4.7)

4.5 Electron energy calibration

Since the kinematics can be reconstructed with different independent methods (section 4.4) and
thus are over—determined, a calibration of the electron energy is possible. The energy of electrons
has been calibrated with a high @* NC DIS sample [83], dependent on z, the octant and the
year. In this analysis, the calibration is revised with a similar NC DIS sample, in which electrons
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are selected as described in section 4.3.1. In order to verify the electron energy calibration, the
calorimetric energy F. of the electron candidates is compared with their double angle energy
Ep4. The following requirements on the NC DIS sample must be satisfied:

e The electron must be found with E, > 15 GeV within the angular range 10° < 6. < 150°.
e The selection is restricted to y. < 0.9 and Q? > 200 GeV.
e The total missing transverse momentum must satisfy P, < 25 GeV.

To ensure a reliable resolution with the double angle method, the following additional quality cuts
are applied:

e To reduce initial state radiation, it is required that 45GeV < ) .(E; — P.;) < 65GeV.

e The inclusive hadron angle must fulfil 75, > 8° which ensures a complete measurement of
the hadronic final state in the calorimeter.

e Furthermore, it is required that ys < 0.3 for z < 20cm and ys < 0.5 for z > 20 cm which
assures a good resolution of the double angle energy Ep4 [84] (see section 4.4). Here, the
lower event rate in the forward region z > 20 cm requires the looser ysx cut.

The comparison of the electron energies F, and Epy4 is done dependent on the wheels, the z
direction, the polar angle 6., the segments and the energies E, and Ep4. A segment is an octant
(1...8) within a wheel (BBE,CB1,CB2,CB3) as described in chapter 3.2.2. The last segment
combines the wheels FB1, FB2 and IF. Hence, the LAr calorimeter is divided into a total of 33
segments. In figure 4.2, the distributions of the electron energy and the double angle energy Fp4
of electron candidates with the selection criteria given above are shown for the 1994-1997 and
the 1999/2000 e*p data sample. In addition, figure 4.3 shows the distributions of the z—position
of the electron candidate for both e™p H1 data samples. The data is described well by the MC
simulation in the whole electron energy and double angle energy ranges for both data samples,
as well as the z—position measurement is confirmed by the NC DIS Monte Carlo.

The ratios Fpa/E. dependent on the variables listed above are shown in figures 4.4 and
4.6 for the 1994-1997 and the 1999/2000 e*p data sample, respectively. In order to deter-
mine the electromagnetic energy scale uncertainty, the ratio Eps/FE. of the data has to be
compared with that of the NC DIS Monte Carlo. Figures 4.5 and 4.7 justify that the ratio
Raata/ Ravie = (Epa/Ee)data/(Epa/Ee) e varies between 0.7% and 3%, dependent on the 2—
position of the particle’s impact on the LAr calorimeter. Except in vicinity of the z—cracks, the
electromagnetic energy scale uncertainty is largely confirmed to be

e 1% in the backward part, z < —145cm,
e 0.7% in the CB1 and CB2 wheels, —145cm < z < 20cm,

e 1.5% for 20cm < z < 100 cm and
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Figure 4.2: The distributions of the electron energy E,. (left) and the energy Ep 4, calculated with the double
angle method, (right) of electron candidates with the selection criteria given in section 4.5 for the 1994-1997
(top) and 1999/2000 e*p (bottom) data sample.

e 3% in the forward part, z > 100 cm,

as determined in [83]. Regarding the ratio Rgu:./Rac in dependence of the electron energy
or the double angle energy, it is confirmed that the electromagnetic energy scale uncertainty is
around 1% in the most part of the NC DIS sample. Even dependent on the segment, the ratio
Ragata/ Ryrc does not exceed 2%.



52 Data Selection

'2 - ' ' —e—H1 data 94-97 '2 " —e—H1 data 99/00
e 40 - — NC DIS Monte Carlo Q s — NC DIS Monte Carlo
w E 1 w 10 E
10°} ; 2 E
- 10 -
0 ; 10 ;
1F E 1 T 1
R TR T S AN S TN RN N I T S T B SNNT S | A b PR S T T N S T T T NN T Y S S [ N LA A
-200 -100 0 100 200 -200 -100 0 100 200
Z, [cm] Z, [cm]

Figure 4.3: The distributions of the z—position of the electron for the 1994-1997 (left) and 1999/2000 ¢ p
(right) data sample.

4.6 The hadronic final state

The hadronic final state is defined as all particles measured in the detector, i.e. the LAr calorime-
ter, the SPACAL, the instrumented iron and the inner tracking system. Only electron candidates
are excluded by this definition. The hadronic final state is reconstructed using the software pack-
age FSCOMB [85,86]. This algorithm makes use of the fact that the energy measurement in
the calorimeters is the more precise the larger the energy is. In contrast, the precision of the
measurement of charged particles with low energy is much better in the central tracking system.
As a consequence, combined objects are defined by the following procedure: Tracks with a trans-
verse momentum below 2 GeV pointing to the primary vertex are extrapolated to the calorimeter
front face. Concentric to this track, a cylinder of radius 25 cm is defined in which all energy
deposits in the electromagnetic part of the LAr calorimeter are associated to the track. Energy
deposits in the hadronic calorimeter section have to be contained in a cylinder of radius 50 cm
to be assigned to the track. The measurement of the calorimetric energy is used if it is larger
than the track energy; then the track is rejected. Else, the calorimeter cluster with the smallest
distance of closest approach to the track is removed. This procedure is repeated until the cluster
energy is sufficiently comparable with that of the track energy.

Calibration of the hadronic final state

In this analysis, the hadronic final state has been calibrated with an energy weighting scheme of
the LAr calorimeter as described in [86] and references therein. In [52,70], further reweighting
factors are applied to the transverse momenta of the jets, investigating a NC DIS sample similar
to that in [83]. The uncertainty of the relative hadronic energy scale in the LAr calorimeter turns
out to be 2%. For details of the hadronic final state calibration see [70].
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Object | Energy scale | 6 unc. ¢ unc. | ldentification | Trigger
unc. eff. unc. eff. unc.

Jet 2% 5 mrad — 10 mrad | - - 3%

Electron | 0.7% — 3% 1mrad =3 mrad | 1 mrad | 2% - 15% -

Muon 5% 3 mrad 1 mrad | 5% 5%

Table 4.4: The systematic uncertainties attributed to the particle measurements.

4.7 Trigger efficiencies

The LAr calorimeter delivers the main trigger for events with high transverse momentum. If
the energy deposit in the electromagnetic section of the LAr calorimeter arises from a high Pr
electron, the trigger efficiency is close to 100% [13]. The trigger efficiency for events which are
triggered only by one jet is above 90% if P/ > 20GeV [53]. For events which are triggered
by muons only, the trigger efficiency is above 70% [87]. Missing transverse momentum leads to
trigger efficiencies of 60% if . > 12 GeV and 95% if P, > 25 GeV [88].

Since in the ed channel and je /) channel the final state contains an electron, the trigger
efficiencies are assumed to be approximately 100% (see above) in these final state topologies. In
addition, a channel containing more than two objects® also have very high trigger efficiencies [71].
In all final state topologies which result from a bosonic stop decay at least three objects are found.
In the ju /21 channel, the trigger efficiency is determined by the muon or the P, trigger, whereas
in the jjj /. channel the jet and the P, trigger are used. Thus, the trigger efficiencies in the
kinematic ranges investigated in this analysis are approximately 100% in all selection channels.
A more detailed description of the triggers can be found in [71].

4.8 Systematic uncertainties

This section describes the sources of experimental and theoretical systematic uncertainties consid-
ered in this analysis. The experimental systematic uncertainties which originate from the object
measurements are described in the following. In addition, they are summarised in table 4.4. All
systematic uncertainties are added in quadrature.

e The electromagnetic energy scale uncertainty is determined to be between 0.7% and 3%
depending on the particle’s impact position in the LAr calorimeter [13] (see section 4.5).
The uncertainty on the polar angle of electromagnetic clusters varies between 1 mrad and
3 mrad, depending on 6 [13]. The uncertainty on the azimuthal angle is 1 mrad.

Here, an object denotes an identified electron, muon, jet or missing transverse momentum.
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Process Uncertainty

ep — jjx and ep — jyx 15%
ep — jvx and ep — jex 10%
ep — jjva and ep — jjexr | 15%
ep — pp and ep — ee 3%

ep — Wz and ep — Wiz | 15%
ep — eyx and ep — evyj 10%
ep — eyp and ep — evp’ | 5%

Table 4.5: The uncertainties attributed to the different processes of the SM expectation.

The Monte Carlo simulations of tracks in the central tracking system are not very accurate.
This leads to uncertainties on the electron identification efficiencies. The tracking efficiency
is known with a precision of 2% for polar angles above 37° and deteriorates to 15% in the
forward region.

The muon transverse momentum scale uncertainty amounts to 5%. The uncertainty on
the polar angle is 3 mrad and on the azimuthal angle is 1 mrad.

The hadronic energy scale of the LAr calorimeter is known to 2% [52]. The uncertainty on
the jet polar angle determination is 5 mrad for @ < 30° and 10 mrad for 6 > 30°.

The trigger efficiency uncertainty is estimated considering the object with the highest trigger
efficiency. It is determined to be 3% if the event is triggered by a jet [89]. If the event is
triggered by a muon, the uncertainty on the trigger efficiency amounts to 5% [87]. Else,
the trigger efficiency uncertainty is negligible.

The uncertainty on the integrated luminosity results in an overall normalisation error of
1.5%.

Depending on the SM production process different theoretical uncertainties are used. These
amount to 15% for W production to 10% for NC DIS processes and to 15% for photopro-
duction. For ep — vjjjX reactions, the theoretical uncertainties are about 20%, which
takes into account the inadequacies of the parton shower modelling of multi—jet production.
All theoretical uncertainties attributed to the different processes of the SM expectation are
listed in table 4.5.

For the SUSY signal detection efficiencies, an uncertainty of 10% is assumed resulting
mainly from the linear interpolation in the grid of simulated mass values. An additional
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theoretical systematic error, mainly due to the uncertainties on the parton densities, af-
fects the signal cross section. This uncertainty varies between 12% at lower stop masses
(x =~ 0.3) up to 50% for stop masses of 290 GeV (z ~ 0.8) at /s = 319GeV. An addi-
tional uncertainty of 7% on the signal cross section [5] arises from the variation of the scale
at which the parton densities are evaluated.

For the limit derivation (chapter 6.4), the systematic uncertainties have to be determined as
a function of the transverse or invariant mass. The systematic uncertainties on the SM prediction
are fitted for each selection channel investigated. Their distributions are shown in figure 4.8 for
the four selection channels as a function of the transverse or invariant mass. The uncertainties
on the SM prediction at /s = 301 GeV and /s = 319 GeV differ slightly due to the different
uncertainties arising from the statistics and the track efficiencies. The resulting total uncertainty
range in the relevant mass regions is roughly between 20% and 50% for the je/’, channel,
between 15% and 90% for the ju /P, channel, between 25% and 75% for the jjj /2. channel
and between 5% and 30% for the ed channel. The average integrated systematic uncertainties
amount to about

e 24% in the je /2, channel,
e 18% in the ju P, channel,
e 28% in the jjj /. channel and

e 12% in the ed channel.
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Figure 4.5: The ratio Ryatq/Rymc of the data and the NC DIS Monte Carlo expectation dependent on the
wheels, the z direction, the polar angle 0., the segments and the energies E. and Ep 4 for the 1994-1997 data
sample.
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the z direction, the polar angle 0., the segments and the energies E. and Epa for the 1999/2000 ¢*p data

sample.
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5
Analysis of the Stop Decay Channels

In this chapter, the selection and analysis of the final state topologies considered in this work are
described.

According to table 2.3, the bosonic stop decay can lead to three different final state topologies.
If the W boson decays into leptons, the signature is a jet, a lepton (electron or muon) and
missing transverse momentum (je 2, channel and ju 2, channel). The W decay into Tv,, where
7 — hadrons + v, is not investigated in this analysis since a 7 identification is very difficult. If
the W boson decays into hadrons, the signature is three jets and missing transverse momentum
which arises only from the /£, sbottom decay b— vd (jjjP. channel).

For stop and sbottom masses for which M; ~ M; + My, holds, the £, decay { — ed becomes
dominant (see figure 2.13) and has to be taken into account in order to cover most of the
branching fraction in the stop mass range analysed.

The analysis of the the final state topologies under consideration is based on the four-momenta
given for each particle. These quantities are provided by the basic data selection, as described
in chapter 4, which has also been used in the general search analysis [52,70,71]. In the present
analysis, the criteria for the event selection are weaker than in [52,70,71] in order to increase the
sensitivity to the stop decay topologies.

5.1 The bosonic stop decay channels t — jeP,
and t — jup,

The signatures of the je/’, and ju/’, channel are a high energy electron or muon, a jet and
missing transverse momentum. These final state topologies correspond to the events with isolated
electrons or muons and missing transverse momentum, observed at H1 [6]. In order to maximise
the stop signal sensitivity, the event selection is slightly different in the present analysis. In
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addition, the presence of a jet is required because in this analysis a search for new particles with

a jet in the final state is performed.

Moreover, the final states of the bosonic stop decays with the W boson decaying into leptons
are complementary to the final states considered in the previous /£, SUSY analyses of squark
production by H1 [5,4].

5.1.

1 Event selection

The selection criteria for the je/’, and ju /P, channel are the following.

In the je /P, channel, at least one electron is required to be found with Pj§. > 10 GeV within
the polar angle range 5° < 6, < 120°.

In the ju /P, channel, at least one muon is required to be found with Pj: > 10 GeV within
the angular range 10° < 6, < 120°.

The cuts on the polar angles reflect the different detector acceptance for electrons and
muons.

At least one jet is required to be found with P/° > 10GeV within the angular range
7% < Oj0 < 140°.

The total missing transverse momentum must satisfy 7, > 12 GeV.

The difference in azimuthal angle between the lepton [ and the direction of the system
Xiot, composed of the measured energies of all other particles in the event, must be
AP(l — Xyor) < 165°. NC background events with a mismeasured lepton are rejected by
this cut.

The ratio V4p/Vp is required to be less than 0.3. The variables Vp and Vsp are defined
as the measured transverse calorimetric momentum parallel and anti-parallel to ﬁT,had, re-
spectively [90]. Here, ﬁthad is the direction of the total calorimetric transverse momentum
(see chapter 4.4). Vp and Vyp are determined from the transverse momentum vectors Pr,
of all particles belonging to the hadronic final state. This cut removes NC DIS events which
generally have high values of V4p/Vp. Besides, it rejects photoproduction background [90].

In the je P, channel, the selection is restricted to y. > 0.3. This cut reduces the remaining
NC DIS background since particles coming from a bosonic stop decay are boosted in the
forward direction. This leads to a rising do/dy distribution (see figure 5.1) which contrasts
with the steeply falling do/dy ~ y~2 distribution of NC DIS events.

In order to confirm that the data is well understood, several control distributions are viewed
after the first two selection cuts. This preselection does not have a restriction on the missing
transverse momentum or the value of ) (E; — P.;) and thus contains a large part of NC DIS

events.



5.1 The bosonic stop decay channels i — jeP, and i — juP. 63

Figure 5.1 shows the control distributions for the transverse momenta and the polar angles of
the electron and jet, respectively, the missing transverse momentum and y, for the je’, channel.
Here, only the spectra of the data and the SM background for the 1999/2000 e*p H1 data sample
are shown. The control distributions of the 1994-1997 H1 data sample look very similar but the
statistical errors are larger. The stop signal which is indicated by the filled histograms has an
arbitrary normalisation. Data and SM prediction are in good agreement for this control sample.

In figure 5.2, the control distributions of the variables V4p/Vp and A¢(l — X;0r) < 165° for
the ju /) channel are shown. It can be seen that the restrictions on these quantities are very
efficient to suppress the NC DIS background. Furthermore, the transverse momenta of the muon
and the jet and the missing transverse momentum are illustrated in the figure. In all histograms,
the stop signal in arbitrary normalisation is again indicated by the filled histograms.

In the je/’, and ju /. channel, the stop mass cannot be reconstructed since there are two
neutrinos in the final state. Therefore, the transverse mass distributions are investigated. The
transverse mass is defined as

My =\ (Py + Ph+ PRy — (P o+ Pht Blety, (5.1)

where Pl, ﬁ% and ﬁfjet are the missing transverse momentum, lepton and jet momentum,
respectively. The transverse mass distributions are shown in figure 5.3 a) and 5.3 b). The
uncertainty on the SM background (see chapter 4.8) is indicated by the shaded error band. In
both figures, the signal of a hypothetical 260 GeV stop which decays into a sbottom of 100 GeV
and a W boson is illustrated. It is indicated by the dashed histogram and given in the same
arbitrary normalisation in both channels. In the je/, channel, 3 events are found while the
expectation from the SM is 3.84 4+ 0.92 events. In the ju /P, channel, 8 events are found while
2.69 4+ 0.47 are expected. This slight excess could be interpreted as a scalar top decaying via
t — bW [7] (see section 6.1). Between 60% and 70% of the SM expectation arises from the
production of real W bosons. The numbers of events and SM expectations can be found in
table 5.2 in section 5.4.

All 11 events in the je/?, and ju /P, channel were also found in [6], where additional events
were selected since there were no explicit requirements on jets. In table 5.1, all events with a high
energy isolated electron or muon and missing transverse momentum (”isolated lepton events”)
selected in the H1 e™p data sample [6] are listed. The channel in which the isolated leptons end
up in the present analysis is given in the third column. In addition, the right column gives their
rejection reasons in this analysis. The 6 and Pr cuts on the jet are the main restrictions on the
selection which discard the remaining isolated lepton events from this analysis. About 30% of the
isolated lepton events are rejected by these jet requirements. One additional event is removed by
the cut on the z,.;.

The event display in figure 5.4 shows an example event which is attributed to the je 2, channel.
The transverse momenta are P§ = 41GeV and PJ* = 32GeV and the missing transverse
momentum is PP, = 43 GeV. The transverse mass of the event amounts to M; = 116 GeV.
Figure 5.5 shows an event detected in the ju /2, channel with P): = 47 GeV, P/ = 14 GeV and
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Figure 5.3: The transverse mass spectra for the e™p H1 data set: a) transverse mass of the je]?, channel; b)
transverse mass of the jul’| channel. The data are compared with the SM expectations with the systematic
uncertainties shown as the shaded band. The expected signal from a stop with mass 260 GeV which decays into
a sbottom of 100 GeV and a W boson is also shown with arbitrary normalisation. It is indicated by the dashed
histogram.

P, = 60GeV. Here, the transverse mass of the event is M, = 120 GeV. The jets and the
leptons of both events have polar angles below 45°. Thus, these two events could be the result
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Run | Event | Channel | Rejection reason

00264 | 313 |ep. It < 7°
186729 | 702 | jup.
188108 | 5066 | jup.
192227 | 6208 | jup.
195308 | 16793 | jup.
196406 | 38438 | je L

248207 | 32134 | jep.
251415 | 43944 | jup.
252020 | 30485 | jep.
253700 | 90241 | jup.
266336 | 4126 | jup.

268338 | 70014 | Zyta| > 35cm
269672 | 66918 | ef P/t < 10 GeV
270132 | 73115 | jup.

274357 | 6157 | ePL g7t < 7°
275991 | 29613 | ef, 67t < 7°
276220 | 76295 | e, no jet
277699 | 91265 | e, P/t < 10 GeV

Table 5.1: The events with a high energy isolated electron or muon and missing transverse momentum (" isolated
lepton events”) selected in the H1 e*p data sample [6]. The right column gives their rejection reasons in this
analysis.

of both a Standard Model process or of a stop decaying bosonically.
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Run 248207 Event 32134 Class: 4567 811 19 2528 Date 16/10/2003

E[GeV] (DCLU)

Figure 5.4: The event display of an example event observed in the jel, channel with P; = 41 GeV,
Pt =32 GeV, Pi =43 GeV and My = 116 GeV.

5.1.2 Signal selection efficiencies and mass windows

The selection efficiencies for the final state topologies arising from stop decays are obtained as de-
scribed in section 2.6 in the mass ranges 180 GeV < M; < 290 GeV and 100 GeV < M; < 210 GeV.
The stop and sbottom mass grid is segmented in steps of typically 20 GeV. The last step to the
highest stop (sbottom) mass is only 10 GeV since stop masses above 290 GeV are hardly accessible
at HERA and thus not considered. For each point in this grid, a total of 1000 stop signal events
are simulated. The efficiency for stop detection is calculated by counting the stop signal events
which have passed through a complete simulation of the H1 detector and the relevant selection
cuts corresponding to the considered stop decay channel. Between these efficiencies obtained for
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Run 253700 Event 90241 Class: 6 79 10 11 16 19 24 25 28 Date 15/10/2003

E[GeV] (DCLU)

L

Figure 5.5: The event display of an example event observed in the julP, channel with Py = 47 GeV,
Piet =14 GeV, P, =60 GeV and My = 120 GeV.

each mass grid point, a linear interpolation is applied. The efficiencies are furthermore calculated
for different £, couplings \|4; to account for variation of the efficiencies with the coupling X5,
when the stop mass and width are both large.

The stop signal efficiency amounts typically to 35%—-45% for the je . channel and 30%-—
40% for the ju P, channel and depends mainly on Af; and M;. Figures 5.6 and 5.7 illustrate the
efficiencies for the je /| channel and the ju 2, channel, respectively, at /s = 301 GeV (left) and
Vs = 319 GeV (right) in a 2—dimensional plot as a function of the stop and the sbottom mass. In
these examples, the 2, coupling N5, is fixed to 0.3 which is about the electromagnetic strength.
The light points indicate the simulated points in the stop and sbottom mass grid. At very high
stop masses (M;z 280 GeV), where the stop width gets very large, the efficiencies decrease to
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Figure 5.7: The signal selection efficiencies for the julP, channel at \/s = 301 GeV (left) and \/s = 319 GeV
(right) as a function of the stop and the sbottom mass. The R, coupling N\3; is set to 0.3. The light points
indicate the simulated points in the stop and sbottom mass grid.

only a few percent, especially at the lower centre—of—mass energy of 301 GeV. In this high stop
mass region the efficiencies also depend markedly on the /£, coupling \|5; which is accounted for
in the signal simulations. The regions at M; ~ 260 GeV and M; = 240 GeV in the je, channel
(figure 5.6), where the efficiency is slightly larger than in the environment, arise from fluctuations
of the efficiency. The diagonal limit which can be seen in the plots is caused by the fact that
only the mass region M;< M; + 80 GeV is investigated.
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The sliding mass window method

For the limit derivation (see chapter 6.3), only events which could have been produced by a bosonic
stop decay or the direct £, stop decay (see section 5.3) are taken into account. Therefore, a
sliding mass window method is applied which filters such events. For this purpose, in each stop
decay channel the number of observed and expected events satisfying the relevant selection cuts,
Naata and Ngyy, are integrated within a mass bin (transverse mass bin) around the calculated
stop mass (transverse mass), corresponding to the stop decay channel under consideration. Then,
in each channel the width of this mass bin is adjusted to the expected mass resolution such that
each bin contains events reconstructed within +2 standard deviations of the given stop mass.
These mass bins slide over the accessible stop mass range. The mean value of the mass bins and
the resolution of the mass windows are determined using the root mean square which is given in
the jef, and ju /) channel by

(5.2)

The sum runs over all stop signal events simulated for one specific stop and sbottom mass (and
|51) combination.
Since in the je /P, channel and ju /2, channel the transverse mass is taken into account, the
corresponding mass windows are very large and contain most of the observed data events and
the SM background expectation.

The mass windows calculated with the sliding mass window method are shown in figure 5.8
for the je P, channel and in figure 5.9 for the ju /2, channel. They are given for both centre—
of-mass energies: /s = 301 GeV (left) and /s = 319GeV (right). The R, coupling X\, is
again set to 0.3 in both examples. The hashed lines indicate the mean values of the calculated
transverse mass windows. Both mass windows are very broad due the limited resolution in the
transverse mass which is caused by energy losses arising from the two neutrinos in the final state.

In general, the mass windows get broader with the mass. Nevertheless, at the centre—of-mass
energy of /s = 301 GeV, the mass window narrows again for very high transverse masses. This
effect is caused by the very low efficiency (below 1%) at stop masses of 290 GeV (see figures 5.6
and 5.7). Therefore, the width of this last mass bin cannot be determined at high accuracy.
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5.2 The bosonic stop decay channel t — jjj P,

The bosonic stop decay with the subsequent W boson decay into hadrons is also not considered
in the existing /£, SUSY analyses. In those works, at least two jets are required, whereas in the

present analysis all three jets which could occur in the jjj /2, channel are searched for.
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5.2.1 Event selection
For the 777/, final state topology the following criteria are required.
e Three jets must be found with

— PJe > 20 GeV,
— P/ > 15GeV and
— PJ > 10 GeV,

each with polar angle 7° < 0., < 140°. Here, Pje'* (P;“*?) is the transverse momentum
of the jet with the (second, third) highest Py in the event.

e The total missing transverse momentum must satisfy /2, > 25 GeV.

e The selection is restricted to y, > 0.4 exploiting the different y;, distributions of the stop
signal and the SM background. This cut is applied in analogy to the y. requirement in the
jeP, channel. The y,—cut in this jjj /., channel is more restrictive in order to maximise
the signal sensitivity.

The control distributions in figure 5.10 show different kinematical quantities after a preselection
in which only the presence of the jet with the highest Pr is required. Furthermore, the cut on
yn is not applied in this preselection. These control distributions show that the SM expectation
is in agreement with the data for CC DIS-like processes which mainly contribute here. The stop
signal in arbitrary normalisation is again indicated by the filled histograms.

Assuming that only one neutrino is present in the event and applying the constraints

P =PV and (5.3)

> (Ei—P.;)+ (B, — P.,) = 2E), (5.4)

i
the four—vector of the neutrino can be calculated from the total four-momentum of the event,
Pr 1ot Since neutrinos are assumed to be massless, the energy of the neutrino can be calculated

as
(P%)Q + (E,, — Pz,V)Q

b, = 5.5
2(E, —P,,) (5.5)

Hence, the invariant mass M,.. can be reconstructed using equation 5.4,
Mrec = \/(Etot + El/)2 - (Pz,tot + Pz,u>27 (56)

where P, , is computed from equation 5.3. In this final state topology, M,.. is reconstructed with
a mass resolution of about 15 GeV. The reconstructed mass distribution for the jjj /2, channel
is shown in figure 5.11 c). The uncertainty on the SM background is indicated by the shaded
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error band and again the signal of a hypothetical 260 GeV stop which decays into a sbottom of
100 GeV and a W boson is illustrated as dashed histogram. The stop signal is given in the same
arbitrary normalisation as the stop signals for the je/’, and ju /) channels. A total of 5 events
are found while 6.24 £ 1.74 events are expected from SM processes (see table 5.2). The SM
background arises predominantly from CC DIS processes.

5.2.2 Signal selection efficiencies and mass windows

Again, the selection efficiencies are determined as a function of the stop mass, the sbottom mass
and the coupling \|5;. The stop detection efficiency is typically 35%—-50% in case of this final
state topology. Figure 5.12 illustrates the signal selection efficiencies for the jjj /| channel at
Vs =301 GeV (left) and /s = 319 GeV (right) as a function of the stop and the sbottom mass.
The R, coupling A}, is chosen to be 0.3.

The sliding mass window method explained in section 5.1.2 leads to the adjusted mass windows
shown in figure 5.13 for /s = 301 GeV (left) and /s = 319 GeV (right). The R, coupling A5,
is again chosen to be 0.3 in these examples. In both plots, the hashed lines indicate the mean
values of the calculated reconstructed mass windows.

In figure 5.14, an event which is detected in the jjj /P, channel is shown. The transverse
momenta of the jets are P/l = 60GeV, P/? = 24GeV and P/ = 13 GeV. The missing
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Figure 5.12: The signal selection efficiencies for the jjjIP| channel at \/s = 301 GeV (left) and /s = 319 GeV
(right) as a function of the stop and the sbottom mass. The R, coupling N3, is set to 0.3. The light points
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Figure 5.13: The adjusted mass windows for the jjjPP) channel at \/s = 301 GeV (left) and /s = 319 GeV
(right). The hashed lines indicate the mean values of the calculated reconstructed mass windows. The %, coupling
N3y is set to 0.3.

transverse momentum of the event amounts to /2, = 72 GeV. Because of its large reconstructed
mass of M,.. = 221 GeV, this event is contained in the calculated mass window over the whole

stop mass range, i.e. for each stop mass which is computed in the jjj /2, channel (see figure 5.13).
Thus, this example event could arise from both a Standard Model process or a stop decaying
bosonically. The muon track which can be seen in the display of the muon system belongs to
one of the jets. It is not attributed to an identified muon candidate since it does not fulfil the

muon identification criteria.
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Figure 5.14: The event display of an example event observed in the jjjPP, channel with P3¢ = 60 GeV,
Pfet2 = 24 GeV, P =13 GeV, . = T2 GeV and M, ... = 221 GeV.

5.3 The R, stop decay channel t — ed

Events in which stop quarks decay into an electron and a quark via R—parity violating processes
are characterised by high Q? NC DIS-like topologies. The momentum transfer squared, Q?, is
obtained from the scattered electron (see chapter 4.4). Both the stop decay and the NC DIS
final states consist of a jet and an electron with high transverse momenta.

5.3.1 Event selection

The selection criteria for the ¢ — ed channel are the following:
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Figure 5.15: The control distributions of the quantities 2., (left) and Y . (E; — P, ;) (right) in the ed channel
for the 1999/2000 e*p H1 data sample. The filled histograms indicate the stop signal in arbitrary normalisation.

The allowed longitudinal momentum loss in the direction of the incident electron is limited
by requiring 40 GeV < Y .(E; — P.;) < 70 GeV.

An electron must be found with P§. > 20 GeV within the polar angle range 5° < 6, < 120°.
A jet must be found with P/ > 20 GeV and with polar angle 7° < 6. < 140°.

The missing transverse momentum and +/P% must fulfil 2, /\/P% < 4/ GeV, which takes
into account the energy resolution of the LAr calorimeter.

Only events within the kinematic range Q? > 2500 GeV* are considered.

The selection is restricted to 0.1 < y. < 0.9.

Low values of v, are excluded since the resolution in the mass M, decreases with decreasing
Y. High values of 3, are excluded to avoid the region where migration effects due to QED
radiation in the initial state are largest. Background from photoproduction where a jet is
misidentified as an electron, is also suppressed by this cut.

Figure 5.15 shows the control distributions of the variables z,., (left) and ) _.(E; — P, ;) (right)
for the 1999/2000 e*p H1 data sample. The distributions of the data are in good agreement with
the SM expectation. Both data and SM background have a peak at Y .(E; — P,;) ~ 55GeV,
as expected for NC DIS processes. The filled histograms indicate the stop signal in arbitrary

normalisation.

Since in the ed channel NC DIS-like topologies are investigated, the stop mass can be recon-

structed and is obtained from the scattered electron according to equation 2.45 by

M, = a5, (5.7)
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Figure 5.16: The distributions of Monte Carlo events in the (y., M. )-plane at \/s = 319 GeV for the NC DIS
process (left) and the SUSY signals of a stop of mass 260 GeV decaying via I},, into e + d. The cuts on y. are
indicated by the horizontal lines.

Here, the Bjorken variable x, is related to the other kinematic quantities by Q? = z.y.s (equa-
tion 2.11). Stop decays via £, lead to a resonance peak in the M, distribution. The resolution
in M, for stop quarks is found to be between 5 GeV and 9 GeV, depending on the stop mass. It
degrades towards higher invariant masses.

Stop quarks which are produced in the s—channel decay isotropically in their rest frame leading
to a flat do/dy distribution, contrasting with that of NC DIS events!. In addition, the distributions
of the events in mass M, and vy, are different for the SUSY signal and the NC DIS background.
In figure 5.16, the differences in the M, and v, distributions are illustrated in 2—dimensional plots
for Monte Carlo events arising from NC DIS (left) and from the /£, stop decay (right). The stop
mass in this example is 260 GeV which is indicated by the vertical line. In both plots, the cuts on
Y. are indicated by horizontal lines. The sharp edge on the left side of the NC DIS Monte Carlo
arises from the requirement on Q2.

In order to maximise the signal sensitivity, a mass dependent lower y.—cut is applied, chosen
as in [5]. This cut exploits the differences in the M, and v, distributions between the SUSY signal
and the NC DIS background. The lower y.—cut which is applied in the ed channel is illustrated
in figure 5.17 as a function of the mass M,. For low stop masses, the lower y.—cut values are
quasi stable, but above stop masses of about 150 GeV, the y.—cut values decrease with the mass.
An interpolation fit between the optimised points is applied. For details on the optimisation

1The do/dy ~ y~2 distribution of NC DIS events can be obtained for the dominant QED contribution from
equations 2.11 and 2.12.
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Figure 5.17: The lower y.—cut as chosen in [5] as a function of the invariant stop mass.

procedure see [91].

The distributions of the variables y. and Q? for data, SM expectation and the stop signal
are shown in figure 5.18 before (top) and after (bottom) the lower y.—cut is applied. The small
deficit in the data around Q% = 15000 GeV? can be explained by statistical fluctuations and has
also been observed in other analyses by H1 [83,92].

The M, spectra for data and for the SM expectation are obtained after the lower y.—cut is
applied. They are shown in figure 5.19 d) for the entire H1 e*p data sample. No significant
deviation from the SM is found. In particular at masses above ~ 180 GeV where the stop signal
is searched for, no significant peak is observed in the data. The signal from a hypothetical stop
of mass 260 GeV in arbitrary normalisation is illustrated by the dashed histogram. A total of 1100
events are found in the e*p data set, while 1120 + 131 are expected from SM processes, mainly
from NC DIS events. The number of events and the SM expectation can be found in table 5.2.

5.3.2 Signal selection efficiencies and mass windows

The stop selection efficiencies are obtained as a function of the stop mass and the Yukawa
coupling i 3;. In the ed channel, the typical stop signal efficiency is about 30%—-45%. Figure 5.20
illustrates these efficiencies for /s = 301 GeV (left) and /s = 319 GeV (right) as a function of
the stop mass. Here, the I, coupling A5 is again chosen to be 0.3.

The adjusted mass windows determined with the sliding mass window method are shown in
figure 5.21 for /s = 301 GeV (left) and /s = 319 GeV (right). The 2, coupling X}, set to 0.3.
The mean values of the calculated invariant mass windows are indicated by the hashed lines. In
the ed channel, the sliding mass window method (see section ) is also applied in order to further
reduce the contribution from the NC DIS background in the mass dependent limit calculation. At
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Figure 5.18: The control distributions of the variables 3. and Q? for the 1999/2000 e*p HI data sample in the
ed channel before (top) and after (bottom) the lower y.—cut is applied. The filled histograms indicate the stop
signal in arbitrary normalisation.

low stop masses, the width of the mass windows is very small but it increases with the invariant

mass M.,.
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Figure 5.19: The M, distribution for the etp H1 data set of the ed channel. The data are compared with the
SM expectation with the systematic uncertainties shown as the shaded band. The expected signal from a stop
with mass 260 GeV with arbitrary normalisation. It is indicated by the dashed histogram.
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Figure 5.20: The signal selection efficiencies for the ed channel at 3\/s = 01 GeV (left) and \/s = 319 GeV
(right) as a function of the stop mass. The R, coupling X3, is set to 0.3.

5.4 Selection summary

In table 5.2, the total numbers of selected events and the SM expectation are summarised for
the four investigated stop decay topologies in 106 pb~! of H1 data in positron—proton scattering.
The numbers are given for the 1994-1997 H1 data sample, the 1999/2000 e*p H1 data sample
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Figure 5.21: The adjusted mass windows determined with the sliding mass window method for the ed channel
at /s = 301 GeV (left) and \/s = 319 GeV (right). The hashed lines indicate the mean values of the calculated
invariant mass windows. The It,, coupling X}3; is set to 0.3.

and the combined data sample. For the je/, channel and ju /2, channel, the SM expectations
arising from W production are given in brackets. The selection cuts of the decay channels ensure
that less than 0.1% of the SM background or stop signal events contribute to more than one
selection channel. Moreover, all data events contribute to only one selection channel. Therefore,
explicit cuts on the exclusivity of the selection channels for the data, the SM background or the
stop signal are not necessary in this analysis.

No significant deviation from the SM prediction can be observed; two of the three decay chan-
nels resulting from bosonic stop decay modes and the /£, decay channel are in good agreement
with the SM expectation. The slight excess which is observed in the ju /2, channel is discussed
in section 6.1.
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Channel v/'s = 301 GeV v/s = 319 GeV combined
data | SM expectation | data | SM expectation | data | SM expectation

jepP. 1 1.16 £ 0.28 2 2.68 +0.64 3 3.84 +0.92

(W: 0.75 £+ 0.12) (W: 1.80 +0.29) (W: 2.55 +0.41)
JuPL 4 10.84£0.14 4 1.85+0.33 8 12.69+£0.47

(W: 0.57 + 0.09) (W: 1.36 + 0.22) (W: 1.93 +0.31)
7177 P, 1 1.914+0.54 4 4.33 £1.21 ) 6.24 £ 1.74
ed 366 | 384 £ 45 734 | 736 £ 86 1100 | 1120 4+ 131

Table 5.2: The total number of selected events for the etp HI data set of the stop decay channels at
/s =301 GeV, /s = 319 GeV and the combined data set. For the jel?|, channel and the jul?, channel the
SM expectation arising from W —production are given in brackets.



6
Interpretation of the Results

In this chapter, the results of the analysis of the final state topologies considered in this thesis
(see chapter 5) are interpreted in terms of the Minimal Supersymmetric Standard Model. A
stop signal cross section, depending on the stop mass, is calculated for the final state topologies
classified as a bosonic stop decay. First, an interpretation of the bosonic stop decay channels is
given, then the method of calculating exclusion limits is presented.

Although the slight excess in the ju /2, channel might arise from a stop decaying bosonically,
the presence of a stop is not confirmed by the observation in the other three selection channels.
Thus, the analysis results of chapter 5 are used to obtain exclusion limits in the MSSM with £, .
Finally, a scan of the SUSY parameter space is performed and the resulting exclusion limits are
discussed.

6.1 Interpretation of bosonic stop decay searches

In the ju /P, channel, a slight excess of events compared with the SM expectation is observed,
confirming the previous H1 analysis of isolated lepton events [6]. All other channels are in good
agreement with the SM (see table 5.2).

Assuming the presence of a stop of mass M; decaying bosonically, the observed event yields
are used to determine the allowed range for a stop production cross section o;. This signal cross
section for different stop masses is determined from the number of observed and expected events
in the corresponding mass or transverse mass bin, Ny.:, and Ngys (see chapter 5.1.2), for each
bosonic stop decay channel. The cross section is calculated by folding in the signal efficiency
¢, the £ and W branching ratios BR; ;- BRy,_ ;5 and taking into account the integrated
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Figure 6.1: The stop cross sections o; for all bosonic stop decay channels as a function of the stop mass.

luminosities L3071 and La1g:

Naata — Nsur ' 1
€-BR; ;- BRy ;7 7o Laon + L3y

of(M;) = (6.1)
Here, L301 and L319 are the integrated luminosities for the centre—of-mass energies /s = 301 GeV
and /s = 319 GeV, respectively. The variable 7, is the ratio of the cross sections at /s = 319 GeV
and /s = 301 GeV. The branching ratio for f — bW is assumed to be BR; j;; = 100%. If
Ngaate and Ngj are identical, the cross section is expected to be zero.

The uncertainty on the cross section, Aoy, is determined from the statistical errors on the
numbers of observed events and the theoretical and experimental uncertainties on the SM pre-
diction which are described in chapter 4.8. The error Ao; of the cross section is dominated by
the statistical error. The uncertainties on the cross sections are added in quadrature for each
error source.

In figure 6.1, the calculated cross sections and its errors are shown for all bosonic stop decay
channels as a function of the stop mass. In order to obtain the allowed cross section regions, a fit
is applied which gives the envelope of the values 0; + Ao; and 0; — Aoy as a function of the stop
mass. As a result, the bands in figure 6.2 represent the allowed cross section regions o; + Ao;
for all bosonic stop decay channels. The band for the jjj 2, channel is narrow (i.e. the error is
small) due to the large branching ratio BRy _ 4.

From both figures (6.1 and 6.2) it can be seen that the excess observed in the ju /2, channel
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Figure 6.2: The bands representing the allowed stop cross section regions o; £ Ao as a function of the stop
mass as obtained from the analysis for each bosonic stop decay channel.

cannot be interpreted as a stop signal since it is not supported by the other decay modes. For
instance, the probability that the observed event rate in the jj7 /7, channel fluctuates upwards to
produce at least the number of events expected on the basis of the signal in the ju /2, channel is
around 0.5% to 1%, depending slightly on the stop mass. This probability corresponds roughly
to a compatibility of the ju P, and jjj P, channels at the 20 level which has also been observed
in other analyses by H1 [93]. Hence, exclusion limits on the 2, SUSY model described in section
2.5 are derived.

6.2 Madified frequentist confidence levels

In the present analysis, a modified frequentist approach and its implementation described in [94]
is used. This method is based on likelihood ratios and has also been used in the LEP searches
for the Higgs boson [37,95,96,97]. The basic concepts of this method of calculating modified
frequentist confidence levels are summarised in the following.

Likelihood ratios

The likelihood ratio @ is a test statistic (or discriminator) which is introduced to distinguish signal—-
like results from background-like results of a search with n independent selection channels. For
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this purpose, a signal + background (s + b) hypothesis and the background—only (b) hypothesis
are assumed. In the selection channel 7, the likelihood ratio @); is defined as the ratio of the
Poisson probabilities for observing the s+ b and the b—only hypothesis. Thus, the likelihood ratio
of this selection channel can be written as

6_(si+bi)(8i + bz)d1 /e_bib?i

Qi = (6.2)

where b; is the estimated SM background and d; is the number of observed candidate events. The
expected number of signal events in the selection channel i is given by s; = N - (¢ - BR);. Here,
N is the total number of simulated signal events and (e - BR); is the product of the efficiency
and the branching ratio of this selection channel.

The total likelihood ratio for a set of n independent channels is defined as the product of the
likelihood ratios of the selection channels:

Q= H Q;. (6.3)

Confidence levels

Confidence levels (CL) are determined using the total likelihood ratio of equation 6.3 which is
used as a test statistic. The confidence level C'L,, is defined as the probability that this test
statistic would be less than or equal to that observed in the data,

CLs+b = Perb(Q < Qobs)- (64)

It gives the probability that an ensemble of s + b experiments is more background-like than the
observation. A search with downward fluctuating background will set strong exclusion limits on
1 — CLgyy. Hence, the confidence level C'L, is calculated equivalent to C'Lg,,, assuming the
presence of the background only. It can be written as

CLy = Py(Q < Qobs) (6.5)

and gives the probability that the number of the estimated background events is smaller than or
equal to that of the number of observed data candidates.

Figure 6.3 illustrates an example of the probability density functions (p.d.f.) of the test
statistic as a function of —2In @ [98]. In this example, a hypothetical observed likelihood of
—2In(@ = —3 is assumed and the confidence levels C'L,,; and 1 — C'L, are illustrated. On
the left hand side, the s + b-like p.d.f. is shown, whereas the b—like distribution can be seen
on the right hand side. The probability that an ensemble of background—only experiments is
more signal—like than the observation is indicated by the region marked as 1 — C'L; in the upper
histogram. The probability that an ensemble of s + b experiments is more background—like than
the observation is indicated by the C'L,,; region in the lower histogram.
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Figure 6.3: An example of probability distribution functions (p.d.f.) for background—only (right side) and signal
+ background (left side) experiments. The shaded area in the upper histogram, 1 — C'Ly, gives a measurement
of the compatibility with the background—only hypothesis while the shaded area in the lower histogram, C'Lgy,
gives a measurement of the compatibility with the signal + background hypothesis. The plot is taken from [98].

The CL used to obtain exclusion limits is the CL of the modified frequentist approach. It is
given by
- CLs—i-b

L
CL. CLy

(6.6)

An upper limit Ny, on the number of events coming from stop production is calculated at
the 95% confidence level using a confidence level computation program [94,99]. The limit is
determined such that C'L, < 0.05 for N > Nj;p,-

The systematic uncertainties on the signal and the SM background expectations are both
taken into account in the limit calculation. For details on the computation see [94].
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6.3 Derivation of exclusion limits

The results from the selection channels considered in this analysis are combined to derive con-
straints in the MSSM. For a given set of parameters within this model, the full supersymmetric
mass spectrum, in particular the stop and sbottom masses, and the branching ratios of all stop
and sbottom decay modes are calculated with the SUSYGEN package [54,55]. Each considered
selection channel contributes to the calculation of the upper limit NV, (see section 6.2) via:

e the numbers of observed events in the data sets within the sliding mass bins (transverse
mass bins) around the calculated stop mass (transverse mass), as defined in chapter 5.1.2,

e the corresponding numbers of events expected from SM background processes and their
experimental and theoretical uncertainties,

e the signal efficiencies for all stop decay modes in all selection channels and their errors (see
chapter 2.6),

e the calculated branching ratios of all stop decay modes.

Finally, Nj;,, is translated into a bound on the stop production cross section oy;,,. The given
set of model parameters is excluded if it predicts a cross section which is larger than oy;,.
Theoretical errors on the signal cross section are included in the systematic uncertainties of the
signal efficiencies (see chapter 4.8). Besides it has been tested that the deduced limits are rather
insensitive to systematic uncertainties on the SM expectation.

6.4 Exclusion limits in the MSSM

The interpretation of the results is performed within a Minimal Supersymmetric Standard Model
(see chapter 2.4.1) in which the masses of the neutralinos, charginos and gluinos, as well as
the couplings between any two SUSY particles and a standard model fermion or boson, are
determined by the usual MSSM parameters: the “mass” term p which corresponds to the Higgs
boson mass parameter in the SM, the soft SUSY breaking mass parameters M7, My and M3
for U(1), SU(2) and SU(3) gauginos and tan (3, the ratio of the vacuum expectation values of
the two neutral scalar Higgs fields. The usual GUT relations between M;, M, and M; given
in equations 2.25 and 2.26 are assumed to hold. Thus, only the parameter M, is arbitrary and
chosen to be 1000 GeV. All sfermion masses as well as the squark mixings 0; and 6; and the soft
SUSY breaking trilinear couplings A; and A, are free parameters in this model. The higgsino and
slepton masses and the squark masses of the first two generations are chosen to be 1 TeV. The
squark mixing parameters, masses and the SUSY parameters A;, A;, tan 3 and p are related by
the equations 2.40 and 2.41. These parameters are investigated as described in the following.
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6.4.1 Scan of the SUSY parameter space

In order to investigate systematically the dependence of the sensitivity on the MSSM parameters,
a scan of the SUSY parameter space is performed. The parameters p, M and tan 3 are used to
determine the masses and couplings of the neutralinos and charginos as explained in chapter 2.4.1.
Thus, especially the parameters ;2 and M have to be restricted to high values in order to suppress
kinematically the usual stop and sbottom decays into gauginos.

The SUSY parameter space is selected such that the combined branching ratio fulfils

BRtot - BRf—md + BR{_J)W . BRI;—med > 85% (67)

The choice of BR;,; > 85% determines the values of My and p for which a bosonic stop decay
can occur. In figure 6.4, BR;, is shown in a 2—dimensional plot as a function of the SUSY
parameters M, and u. Here, the parameter tan (3 is set to 10. The mixing angles do not have a
large influence on B R, and are fixed to 0; = 6; = 1.2 in this example. Shown are the regions
in which the branching ratio is larger than 10%, 50% and 85%. In large parts of the latter
region, the branching amounts to 100% and decreases only at the edges of the displayed area.
It can be seen that for values of M, and u below about 400 GeV the branching ratio BR;,; falls
quite steeply from ~ 100% to a few percent. The parameters M, and p are therefore chosen
to be above 400 GeV in this analysis. These restrictions on the SUSY parameter space lead to a
combined branching ratio which is always BR;,; ~ 100%. Hence, the exclusion limits are given
by the SUSY parameters only and the cut on the branching ratio is a supplementary requirement
on the parameter space.

For the scan, the SUSY parameter space is restricted to the following values:

e The parameter M, is set to 1000 GeV.
The parameter p is restricted to the range 400 GeV < p < 1000 GeV.
Both requirements ensure that the masses of the neutralinos, charginos and gluinos are large
enough to forbid kinematically fermionic squark decays via their usual gauge couplings.

e The mixing angles ¢; and 0; are allowed to vary between 0.6 rad and 1.2 rad.

In principle, the choice of the mixing angles is arbitrary but their values are chosen such
that they are reliable in terms of resonant stop production and the subsequent bosonic stop
decay.

Higher values of 6; suppress the stop production cross section which is proportional to
cos? 0, according to equation 2.48.

Higher values of ; suppress the branching ratio BR; ;,, which is proportional to cos® 6;
(see chapter 2.5.2).

e The ratio of the vacuum expectation values of the Higgs fields tan (3 is set to 10 since the
sbottom mass can only be quite small if tan 52 10 [23] (see chapter 2.4.3).
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Figure 6.4: The combined branching ratio BR;,; as a function of the SUSY parameters Ms and p with tan § = 10
and 9{ = 95 =1.2.

e The trilinear couplings A; and A, are needed to determine the masses of the heaviest stop
and sbottom, according to equation 2.40, and are set to A; = A, = —100 GeV.

e The stop and sbottom masses are allowed to vary between 180 GeV < M; < 290 GeV and
100 GeV < M; < 210 GeV (see chapter 2.5.2). Here, the notations ¢ and b are equivalent to
#1 and by, respectively, since the production of the heavier stop is kinematically suppressed
(see chapter 2.5.1).

All specific parameter ranges are listed in table 6.1. For the given values of M,, tan 3, A; and
Ay, the parameters 6;, 0; and 1 are scanned in the (M, Mj)—plane for fixed values of A5, and
in the (Mj, N 4;)-plane for M; = 100 GeV.

6.4.2 Resulting limits

For each point in the 5—dimensional parameter space (M, M;, 03, 6; and 1), an upper bound
on the coupling X}, is obtained. The resulting limits are given for two cases:

e every point in the scanned SUSY parameter space is excluded which gives the strongest
exclusion limits,
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SUSY Parameter Range

My = 1000 GeV
400 GeV < p < 1000 GeV
tan 3 = 10
180 GeV < M; < 290 GeV
100 GeV < M; < 210 GeV
0.6 rad < 0575 < 1.2 rad
Ay = Ay = —100 GeV

Table 6.1: The chosen SUSY parameter range in the MSSM.

e at least one point in the scanned SUSY parameter space is excluded leading to the weakest
exclusion limits.

The resulting limits obtained for tan 5 = 10 are shown in figure 6.5 a) and b) in the (M, M;)-
plane for Xj;; = 0.1 and N3, = VAmae, = 0.3, respectively, where /4ra,,, = e is the
electromagnetic charge and o, denotes the fine structure constant. The two full curves indicate
the strongest and the weakest limits on the masses in the parameter space investigated. At
Ai3; = 0.1, stop masses M; <250 GeV can be excluded, while masses M; <275 GeV are excluded
at a Yukawa coupling of electromagnetic strength, i.e. N5, = 0.3.

The resulting limits projected on the (Mj, Ai4;)—plane for AM; = 100GeV are shown in
figure 6.6. Again, the two full curves indicate the strongest and the weakest limits on A5,
in the parameter space investigated. Both figures show the same exclusion limits but in the lower
diagram, the coupling A5, is displayed in a logarithmic scale and the curve is smoothed by a
fit. For M; = 200 GeV, couplings \|4; 20.02 are ruled out and for M; = 275 GeV the allowed
domain is A4, £0.3. The kink which can be seen at a stop mass of about 260 GeV is caused by
one event in the jjj P channel. This event has a reconstructed mass of roughly 200 GeV. As
soon as the stop mass is larger than about 260 GeV, it is not contained in the mass window any
more, as can be seen from figures 5.11 and 5.13. Therefore, the event is not taken into account
for the limit calculation at high stop masses.

The limits do not significantly depend on tan 3 or M,, provided that M; > 400 GeV, which
has been checked by repeating the analysis with tan 3 = 2 or My = 400GeV. This can be
seen by comparing the limits in figures 6.5 and 6.6 with those in figures 6.7 and 6.8. Here,
the resulting exclusion limits are calculated with tan 3 = 2 and M, = 400 GeV. They differ
only very slightly from the limits obtained for tan 3 = 10 and M, = 1000 GeV. For example,
in the the (Mj, M;)—plane for Aj5; = 0.3, the strongest limit on the masses is a little worse at
M; ~ 100 GeV.
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The exclusion limits on the /2, coupling |5, obtained in this analysis are competitive to those
in previous analyses in [£, squark production by H1 [5]. Although the SUSY parameter space
is different in both analyses, the qualitative comparison of single limit points can be used as a
coarse consistency check. These points have to be in the mass region where the /£, stop decay
t — ed dominates (M; =~ M; + My) since this NC DIS-like final state is also considered in the
existing squark search.

Comparison with the general search analysis

In the general search for new phenomena in ep scattering at HERA [52, 71, 70], a model—-
independent search for deviations from the SM predictions has been performed. In that analysis,
events are divided into exclusive event classes according to their final state. The invariant mass
and the sum of transverse momentum distributions of all event classes are systematically inves-
tigated. A search for new physics signals using a novel statistical algorithm is performed. The
statistical significance of the deviations observed in the data are quantified by the probability
called P. Its definition is given in [52].

In order to test the significance of the analysis procedure, a set of pseudo data samples
has been investigated using a Monte Carlo technique. The prediction of a specific model for
new physics (e.g. the resonant stop production at HERA) is added to the SM prediction. A
detailed description of this procedure can be found in [71]. The production of stop quarks via
the £, coupling X\, is tested with Aj;; = 0.1 and M; = 100 GeV, using the distributions of the
scalar sum of transverse momenta > Py and the invariant mass M, of all objects.

In figure 6.9, the resulting diagrams are shown for the event classes e-j, e-j-v, p-j-v and
j-j-j7-v which correspond to the ed, je P, , juu P and jjj P, channels, respectively, of the present
analysis. The sensitivity for a stop quark decaying bosonically is decreasing with the stop mass,
as expected. The exclusion limit at the 95% CL as obtained in the present thesis is given by
the hashed vertical line. For M; = 180 GeV the sensitivity in the event classes resulting from
a bosonic stop decay is very low, whereas the sensitivity in the e-j event class is high. This
behaviour can be explained by the characteristics of the branching ratios shown in figure 2.13.
The branching ratio BR;_,,, is almost 100% at M; = 180 GeV and decreases rapidly with the
stop mass.

Concluding, the results of the general search analysis show that HERA is sensitive to the
production of stop quarks via the 12, coupling \5,. These results support the exclusion limits
which have been obtained in the present analysis.
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7
Summary and Outlook

In this analysis, a search is performed for scalar top quarks resonantly produced in electron—
proton scattering at HERA in R-—parity violating supersymmetry. The most general Minimal
Supersymmetric Standard Model is R—parity violating. This allows for the resonant production
of supersymmetric particles at colliders. In particular, at HERA single squarks with masses up to
the order of the centre—of-mass energy /s can be produced in e*p collisions via the /2, Yukawa
coupling \'. The present analysis uses the e™p H1 data taken in the years 1994-2000 which
correspond to a total integrated luminosity of about 106 pb~!.

The stop quarks which are produced resonantly in e*p collisions can decay bosonically into a
sbottom quark and a W boson, ¢ — bW. The subsequent R, sbottom decay into SM particles,
b — v.d, and leptonic and hadronic W decays are investigated. In addition, the direct /£, decay
t — ed can occur. The R—parity conserving bosonic stop decays lead to three final state topolo-
gies considered in this analysis: the je®, channel, the ju/, channel and the jjj /P, channel.
R—parity violating direct stop decays have topologies similar to those of NC DIS processes. The
analysis is particularly interesting following the observation of events with isolated electrons or
muons and missing transverse momentum at H1 [6] which have final state topologies similar to
those of the je, or jufP. channel.

In the ju /) channel, a slight excess of events compared with the SM expectation is observed.
Nevertheless, no evidence for stop production is found in the final state topologies under con-
sideration, since the excess in the ju /2, channel is not supported by the other three channels
analysed in the present thesis.

For the first time, direct constraints on stop quarks decaying bosonically are derived. Includ-
ing the direct /£, stop decay, mass dependent limits on the coupling A}, are obtained within the
MSSM. For this purpose, the SUSY parameters i, My and tan 8 which determine the gaugino
masses are chosen such that fermionic squark decays via their usual gauge couplings into neu-
tralinos, charginos or gluinos are kinematically forbidden. Moreover, a scan of the mixing angles
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0; and 0; is performed. In a large part of the MSSM parameter space, the existence of stop
quarks coupling to an e*d pair with masses up to 275 GeV can be excluded at the 95% CL for
a strength of the Yukawa coupling of \j3; = v/4ma.,, = 0.3. Consistency checks show that the
deduced exclusion limits are similar to those of previous analyses in squark production by H1 [5].

To give an outlook, the HERA collider has recently been upgraded in order to significantly
increase the integrated luminosity of the HERA |l data sample; the machine will operate until
2006/2007. The expected enhancement of statistics might be able to establish the slight excess
in the ju /2 channel, either it is caused by statistical fluctuations or it is a sign of new physics.
Furthermore, the exclusion limits on stop production will be improved. In addition, at HERA I
the electron beam is longitudinally polarised. Since in e*p scattering mainly up—type squarks can
be produced, the longitudinal polarisation of right—-handed positrons will increase the sensitivity
to the production of stop quarks.

SUSY has not been discovered so far, but the search for supersymmetric particles will continue
at the Large Hadron Collider (LHC). Moreover, the TESLA linear collider which might be build
at DESY would be able to provide precise measurements of the properties of SUSY particles.
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