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Introduction

This document was written in order to obtain the French Habilitation Diploma. Since
considerable freedom is allowed for the substance and the form of such a document, I have
taken this opportunity to provide a rather detailed technical report on the new HERA
polarimeter.

After approximately height years of running, the HERA electron-proton Collider of the
German DESY Laboratory has undergone major machine upgrades. These modifications
— which took place during the years 2001-2002 — have two aims: an increase of the electron-
proton luminosity by a factor of four and the supply of longitudinally polarised electrons
at the high energy electron-proton interactions points, i.e. within the two detectors H1
and ZEUS.

During the first year of operation, HERA-II had encountered very difficult background
conditions at the H1 and ZEUS interaction points. To reach the high luminosity, it was
realised that further modifications of the electron-proton interaction point regions were
required. This was the purpose of the year 2003 HERA-II shutdown.

In spite of these difficulties, the good news came from the electron beam polarisation.
Just before the 2003 shutdown, the H1 and ZEUS spin rotators, used to polarise longitudi-
nally the naturally transversally polarised electrons, were switched on and a polarisation
of 50 % was reached.

To cover accurately the physics of high luminosity polarised electron-proton collisions,
an upgrade of the longitudinal polarimeter was proposed and accepted at the end of 2000.
This new polarimeter, currently installed at HERA and waiting for its commissioning, is
the main topic of this document.

In chapter 1, studies of the impact of the polarisation measurement accuracy on three
observables, the right-handed and the standard charged current cross-sections and the
determination of the light quark couplings to the Z° are presented. These topics do not
obviously cover all the HERA upgrade programme but they are quite representative of the
requirements for the precision on the polarisation measurement. The main point is that,
unlike small polarisation asymmetry measurements, absolute cross section measurements
are very sensitive to the polarisation uncertainties. Since the electron-proton luminosity
is expected to increase by a factor of four, we show that the accuracy of the polarisation
measurements must increase as well.

In the second chapter, the beam polarisation built up and the Compton polarimetry
are presented. Very briefly, Compton polarimetry consists in measuring and analysing
the energy spectrum of photons backscattered after laser-electron interactions. The po-
larimeter performances then rely, not only but essentially, on the choice of laser. In this
context, I complete this chapter by a study of the statistic and systematics uncertainties
related to Compton polarimetry. From this study, we conclude that a continuous laser
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beam of a few kilo Watts is desirable to full-fill the physics requirements given in chapter
1.

The polarimeter upgrade, proposed to reach the laser power defined in chapter 2, is
described in chapter 3. The core of this polarimeter is a high finesse Fabry-Pérot cavity
filled by a 750 mW ND:YaG laser. This optical resonator, made of two super-mirrors
located around the electron beam, provides a few kilo Watts laser beam. The main
experimental difficulties related to the operation of such a device are discussed, namely
the mechanical implementation at HERA and the conditions to maintain the optical
resonance. The experimental setup consists in two separate pieces: an optical bench and
a calorimeter located approximately 60 m downstream. Both pieces, together with their
related control and readout electronics are also described.

One important point of the optical setup is the control and the measurement of the
laser light polarisation, this is the subject of chapter 4. In this chapter, basics of light
polarimetry (usually called ellipsometry) are given. We describe the setups used to mea-
sure the laser beam polarisation and to create a laser circular polarisation. This is a
very important aspect of our polarimeter since the determination of the electron beam
polarisation depends directly on the level of the laser circular polarisation. Results of the
calibration of a prototype ellipsometer are reported and an estimate of the uncertainty
on the laser polarisation measurement is given.

Before reaching the final design of the cavity installed at HERA, a prototype cavity has
been built and operated at Orsay. Results of the laser/cavity alignments and performances
of the laser power amplification with this prototype are described in chapter 6. I also give
the performances of the final cavity that we operated both at Orsay and HERA (without
electron beam at the time of writing this document).

An appendix is devoted to electromagnetic calculations related to laser beam propa-
gation in anisotropic plates. This technical work was required in order to reach a high
level of accuracy in the determination of the laser polarisation.

Before ending this introduction, I would like to emphasise that this document does
not only describe my personal contribution but the work of an entire group. The list of
the contributors is: Baroyer, E. Barrelet, W. Beckhusen and his group, C. Berg and his
group, R. Bernier, F. Berny, F. Blot, M. Bouchel, V. Brisson, T. Caceres, J. Colin, P.
Favre, P. Corona, P. Deck, M. Desmond, H. Hirseman, Y. Holler, M. Jacquet-Lemire, B.
Jacquemard, J. Ludwig, F. Marechal, R. Marie, N. Meyners, C. Pascaud, E. Pfuetzen-
reuter and his group, Y. Queinnec, A. Reboux, D. Richard, P. Rivoirard, C. Ronic, K.
Sieber, V. Soskov,T. Szatkowski, S. Trochet, Z. Zhang and the LAL workshop group, the
LAL administrative group and myself.



Chapter 1

Polarisation and HERA Upgrade
Physics program

With HERA-II, the physics of longitudinally polarised lepton — unpolarised proton scat-
tering at high momentum transfer is opened. Experiments of this kind have been carried
out in the past at SLAC [1] and at CERN [2] but on fixed targets and therefore at small
transfer momentum. Though their sensitivity to the electroweak parameters was very
small, these early precise experiments have confirmed the universality of the Standard
Model in lepton-hadron deep inelastic scattering.

With HERA-II, among a large number of physics topics, a high precision electroweak
physics program becomes feasible with longitudinally polarised charged lepton-proton
deep inelastic scattering. These topics were discussed during a workshop held in 1995-1996
[3] and more recently, new topics related to the Quantum-Chromo-Dynamics were covered
in refs. [4, 5]. The experimental advantage of an electron-proton collider experiment, with
respect to a fixed target neutrino-nucleus experiment is manifold (see appendix 1.5.1).

Briefly summarising, the use of longitudinally polarised lepton beams allow to pin
down chiral couplings, that is the couplings of the quarks to the Z° in the Standard
Model. In theories going beyond the Standard Model, additional chiral couplings also
appear. This is the case for lepto-quarks models or super-symmetry theories with R-
parity violation. For these researches, the lepton beam polarisation helps to improve
the limits on these couplings and in case of discovery, to discriminate between various
theoretical scenarios. Assuming that the Standard Model holds, longitudinally polarised
lepton beams also bring new constraints on the parton density functions [4] and on the
parton-parton correlation functions [5].

Although the HERA-II physics programme has been extensively discussed in ref. [3],
the propagation of the statistical and systematic uncertainties of the polarisation mea-
surement to the physics results were not fully investigated in that document.

This point had to be investigated for the HERA longitudinal polarimeter upgrade
proposal [6]. In this context, I have performed a statistical analysis of the effects of the
polarisation measurements for three physics topics: determination of the right handed
charged current (RH) cross-section, measurement of the charged current (CC) cross sec-
tion and determination of the light quark coupling constants to the Z°. In addition, I
also studied the potential gain obtained by doing the analyses with a polarisation binning.
This work is described in detail in the present chapter.

In the following sections, I assume that the reader is familiar with the kinematics and



dynamics of deep inelastic electron-proton scattering. If not, I have included an introduc-
tion to this topic in the appendix of this chapter. This appendix describes the unpolarised
cross-section measurements and the related structure function physics analyses performed
before the HERA-II machine upgrade. For a complete review concerning unpolarised ep
deep inelastic scattering, I refer to the Habilitation document of Zhiqing Zhang [7].

1.1 Right Handed Charged Current

The search for right handed charged current (RH CC) in e p deep inelastic scattering is
one of the most spectacular subjects that one can cover with a longitudinally polarised
lepton beam. For a detailed introduction to this search we refer to ref. [8]. Here, it
suffices to say that the RH CC is a non standard contribution to the pure V-A coupling
of the CC process. In e”p and e'p interactions, it is taken into account by writing the
observed CC cross sections in the following way

14+ P 4 1-P

8+

Oops.co(P) = 5 Ycc + 5 Oin (1.1)
_ 1-P - 1+P -

Oops.cc(P) = 5 ooc + 5 Oru (1.2)

where: ¢}, and 0%y are vanishing in the standard model and represent the RH CC cross-
sections; affc and of,, are the standard CC cross sections (see eq. 1.24 in appendix 1.5.1)
and correspond to the reactions e}, + p — 7. + X and €, +p — v. + X, respectively.

From eqs. 1.1 and 1.2, one sees that ¢, and 0%y can be measured by combining
et and e~ beam data and/or different polarisation P > 0 and P < 0. A data sample of
beam charge + and polarisation +|P| will be denoted by ei‘m throughout this chapter.

Among the possible cross section ratios one can build using the four data samples
{eim}, the following [8]

+ -
Oops.co(—|P]) + 05 cc(|P])
Ry(|P]) = —

- (1.3)
Uobs,cc(|P|) +Uobs,CC(_|P|)

is sensitive to the RH CC signal. In this expression, the subscript obs refers to the
measured cross section at a given value of the lepton beam polarisation P.

Note that, according to the above definition one gets ag,;,CC(P = 0) = 0% /2 in the
standard model. Defining further

e 4 ge 1—|P

T4:0_LH+O—REJ and a = | | = R4(|P|): Oz+7“4 ) (14)
et e 1
Icc T 9cc + P 1+ar

Notice that in the case where only two data samples {e_ ,} are available one has [8]

Ogps,cc(|P]) _%hn __ p (1P|) = o+ 7y
\ _

Ro(|P]) = , =
P =2 ST ™ ot T+ ar;

(1.5)

and an equivalent expression for e*.
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The value of r

B R—«
1—aR’

T (1.6)
can then be obtained by measuring R and a.

However, neither the spin nor the charge of the lepton beam will be changed frequently
at HERA. A measurement of Ry (Ry) is then expected to appear after a few years of data
taking with all the experimental problems implied by merging such data. With a fast
and precise measurement of the lepton beam polarisation it is nevertheless possible to
perform another kind of analysis based on a fit to the observed cross sections themselves
as functions of the polarisation P. Writing eq. (1.2) as
e (P) — UZ‘_C + 0—7‘2_[{ Po—é_(j - 0—7‘2_[{

Oobs,CC -

: Ly (1.7)

0%y is determined from a linear fit to the observed cross section as a function of P. This
fit can be performed step by step during data taking if data are acquired during the
polarisation rise in order to get a polarisation range from 0 to P, (see chap. 2). The
result of this fit is a model independent determination of o¢,.

In both cases, the accuracy is limited by statistical and systematic errors on the cross
section and on the polarisation measurements. Uncertainties on the CC cross section
measurement, as estimated in H1, are shown in fig. 1.1 as a function of Q? and are of
the order of a few percent where statistics is large (at high Q?, systematics will decrease
with an increase of the statistics). As for the polarisation uncertainties, they depend on
the polarimeter performance.

The aim of the following studies is to determine what performance is required for the
physics analysis. We start by an estimate of the influence of the polarisation’s statistical
and systematic accuracies on the r measurement (eq. 1.6). Because error propagations
to the cross section measurement (eq. 1.7) are easily handled, the effects of the CC’s
systematics will be described for this measurement only.

1.1.1 Cross section ratio: the precision requirement for the po-
larisation measurement

For the sake of simplicity we shall consider r, and Ry that we shall denote r and R.
Experimentally, the observed cross sections are derived from the number of events:

e~ No_bs,P
Tops(P) = Lol

where N, is the number of observed CC events with e~ beam of polarisation P and
Lp(e) is the corresponding luminosity.
Statistical uncertainty

The statistical uncertainty of the R’s measurement is therefore given by:

6R _ ONgsp  ONgs _p o OLp(e) 0L p(e7)

R Npup - Ngup  Lole) © Lople)

obs,P
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with a ® b = Va? + b%2. Here the correlations between the polarisation and luminosity
measurements are effectively neglected. We therefore already assume that the luminosity
monitor and the polarimeter are precise and fast enough to control these correlations (see
chap. 2).

Assuming r = 0 for the error calculation and the same luminosity for both polarisation
samples (Lp(e ) ~ L _p(e ")) one gets

SR 4 <5c>2
ik _ +2( =) .
R ch(l—P2)£ L

From eq. 1.6 one further obtains the uncertainty on r:

or [APSR] @ [2v2(1 — R*)4P) (1.9)

r (1+P—-—R1-P)(P-1+R(1+P))’ ‘
where the factor v/2 comes from the fact that there are two independent polarisation
measurements having the same uncertainty 0P. Substituting the expression of R one

further gets:

5 — (1+P+T—PT)25R@M
4P V2P
where it is obvious that the larger P, the smaller 7. Fig. 1.2 shows dr as a function of
d P for an integrated luminosity of 250 pb~! per data sample and neglecting the statistical
uncertainty of the luminosity measurement: in order to be able to neglect the contribution
of the polarisation statistical uncertainty one must keep 6P < 0.2 x 1072

In eq. 1.8 the same value |P| has been taken for the positive and the negative beam
charge samples. In practice they may differ and eq. 1.8 can easily be modified by defining
P, for the value of the positive beam charge and P_ for the negative beam charge. In
fig. 1.2 dr as a function of § P is shown for 6R = 2%R and P, = 0.5, P_ = —0.4 (dashed
curve), P, = 04, P. = —0.5 (dotted curve). As expected, or is very sensitive to Py
because of the (1 + P)/2 polarisation weight of eq. 1.2.

The accuracy on the determination of r can be increased, in principle, by considering
different values of P. This is possible by measuring the polarisation during the polarisation
rise. This possibility will be described in the next section in the context on the cross-
section measurement.

Effect of polarisation’s systematic uncertainties

Finally, using eq. 1.5 one can also estimate the effect on r of an additive systematic
shift dgq4q,sys Of the polarisation measurement. The simplest case corresponds to opy = 0.
In this case 7 =0 and R = (1 — |P|)/(1 + |P|) where |P]| is the polarisation delivered by
HERA. However, the “measured” polarisation factor a reads as & = (1—|P|+8ada,sys)/(1+
|P| 4 0qdd,sys) SO that one obtains a fake “measured” value of r:

5P

_ 6add,sys ~ 6add,sys ' (19)
2 + 6add,sys 2

Therefore, looking at fig. 1.2, it appears to be crucial to keep the systematic uncertainty

on the polarisation measurement below ~ 5 - 1073 absolute.

Note that, if instead of an additive systematic shift, one considers a scaling systematic
shift dseq,5ys(P) o< P, then oo = (1 — |P + 8scq,5ys(P)|)/ (1 4+ |P + sca,sys(P)]). As a result
the systematic shift induced on the determination of r is also given by eq. 1.9 but with
an opposite sign.

Tsys
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Figure 1.1: Top plot: HI measurement off(;(dae_ /dQ*)dQ? as a function of Q*. Bottom
plot: estimates of the statistical and systematic uncertainties. From [23].
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dr in percent

&P

Figure 1.2: Statistical uncertainty on the determination of r in % (see text) as a function
of the statistical uncertainty of P. Full curve: P, = 0.5 and P_ = —0.5; dashed curve:
P, = 0.5 and P. = —0.4; dotted curve P, = 0.4 and P. = —0.5. Systematics are not
taken into account for this figure.

1.1.2 Absolute cross-section: effect of the polarisation rise

To determine directly the RH CC, a linear fit to 0%, o(P) can be performed using

eq. (1.7). Statistical and systematic uncertainties on the polarisation and o5y, oo (P)
measurements can thus be taken simultaneously into account.

Usually one divides the systematic uncertainties in two parts [9, 10]: 1) those which
induce correlations between the measurements (usually named “correlated systematics”)
2) those which do not induce correlations between the measurements (“uncorrelated sys-
tematics”).

However, in the case of the observed CC cross section integrated over %, only one
measurement is considered and thus, this distinction doesn’t make sense. Nevertheless
two kinds of systematic uncertainties can be distinguished in this case [11]:

e Additive sources, i.e. those which do not depend either implicitly or explicitly on
the polarisation: all systematic uncertainties related to the background subtraction
(the contamination from the high @? neutral current is in principle polarisation
dependent, but this dependence shows up only at very high Q* ~ M2). For illus-
tration, effects of an additive systematic shift is shown in the bottom plot of fig
1.3.

e Scaling sources, i.e. those which depend implicitly but not explicitly on the polari-
sation: all uncertainties which scale with the cross-section measurement, that is all

except the additive one in the case of a single measurement (see the top plot of fig
1.3).

In order to perform a quantitative error propagation, we shall consider the situation
where 0%, = 0. This assumption implies that the uncertainty on o, is related to the

14
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Figure 1.3: Cross section as a function of polarisation for £ = 250 pb~! per beam charge.
Full dots show the nominal (unbiased) measurements and error bars are statistical only
(see eq. 1.12 together with eq. 1.13 and 1.15). Empty dots show the shifts induced by
+4% scaling (top plot) and £4% additive (bottom plot) systematic uncertainties. The
full lines and the dashed lines are here as guide lines to illustrate how the unbiased and
the biased cross sections behave respectively.
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limit of existence of the RH CC. In this case the error propagation is very simple. From
eq. 1.7 one can see that the RH CC cross section is given by extrapolating og, o (P) to
P = +1 (see fig. 1.3). Therefore, the uncertainty on 0%, depends only on the statistical
uncertainty and on the additive systematic uncertainties.

In some sense, the search for RH CC is a measurement of the residual background if
such a signal doesn’t exist. It means that all systematic uncertainty studies related to the
CC cross section measurement must also be performed for all backgrounds. In the case
of the CC cross section these effects are of second order but they are of the first order for
the RH CC.

Anticipating section 1.2 one also sees, from eq. 1.7, that the CC cross section is given
by the ordinate intercept at P = —1 (see fig. 1.3). Therefore the uncertainty on this
quantity depends on statistics and on both, additive and scaling, systematic uncertainty
sources (the additive contribution being reduced by constraining the fit to the standard
model expectation).

Note that the systematic error propagation is straightforward in these two physics
cases. Nevertheless we shall incorporate them in the covariance matrix for sake of com-
pleteness.

Fit procedure

The simplest procedure to determine 0% is the x? minimisation. It is defined by
=V WV, (1.10)
with W the inverse of the n x n (n = number of polarisation bins) covariance matrix and
Vi= Ugi;s,cc(Pi) — (aP; + ) .
a and b are the two unknown parameters’

e e e e
Occ =~ Orm ., _ %cc + OrH
2 ’ 2

a = —

P; is the averaged polarisation of the i** bin.
a and b are determined by minimising the x? and 0% is finally given by

ooy =a+b with do%y =V ILM-1TS (1.11)
using standard statistical formula where M is the 2 x 2 fit matrix

1 aQXZ )
= ———pL=a; py=

and T = (1,1) (i.e. partial derivative of (a + b) by a and b). Note that the x? is a
quadratic form of a and b. Hence, since we are only interested in do%,,, the value of the

'We shall only perform a model independent analysis, i.e. two parameters are considered. Using
further constraints, i.e. fixing —a = b and looking at deviations from the SM predictions leads to a more
accurate determination of a limit on the RH CC. This point is described in section 1.2.
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x? doesn’t enter our calculations. Our estimates of do%; are then also valid for the case
0%y 7 0 up to the error treatment which assumes o, = 0.

Instead of a + b, (a + b)/(a — b) or (—b/a) could have also been considered. It can be
shown that for 0%, = 0 all error estimates coincide. However, if 0%, # 0, the derivative
vector 8 Y. depends on a and b in the later two cases. Explicit values of a and b (i.e. a
model for RH CC) are therefore required to perform the error calculations.

Returning to the calculation of 60, there are two contributions to consider:

o Statistical uncertainty. Neglecting for now the systematics, the matrix W is diagonal
(Wi = w;) and depends on the luminosity since the statistical precision is estimated
from the number of CC events:

uneli) NowcoP) — [oe(1— B) (1.1
stat\l) =~ »CZ - 2£Z .

and w; = 1/6%,,(i). L; is the luminosity corresponding to the i bin, normalised to
the total luminosity:

H(Piy1) 1 Lror

/t(Pi) *) () = (1+0.42t/5.9)1/0-42 Yoo Li (1.13)
where the following beam (time dependent) life time 77 (¢) ~ 0.42 x t + 5.9 with ¢
given in hour, has been used as estimated by looking at a typical HERA fill (see fig.
2.5 in chap. 2); t(P) is obtained by inverting the time evolution of the polarisation

P(t) = Py[1 —exp (—t/7)] (1.14)

with 7p = Tep/Psp X P, Ts7 = 43.2 min, Psp = 0.916 as determined at HERA [12].
It is worth mentioning that the rising curve is not as smooth as eq. 1.14 in reality
(see chap. 2). For numerical estimates L7or = 250 pb~! will be used. This number
corresponds to the, optimistic, expected luminosity corresponding to one year of
data taking. An average fill duration t,,,, = 12h will be chosen. In the expression
for 2, the value of the polarisation P is the mean weighted by the luminosity:

B S5 ()L (t)dt
_ o ,

Ho

(1.15)

e Systematic uncertainties. For CC, the sources of systematic uncertainties are deter-
mined for the whole data sample, so that they do not depend on the polarisation
value. Therefore dividing the CC measurements into polarisation bins introduces a
correlation between these bins. These effects are taken into account via the covari-
ance matrix [11]:

Covij = 0501 (8)0ij + Oscali) X Gsca(F) + Gada (i) X dada(7) (1.16)

where ¢;; stands for the Kronecker symbol, d,44(7) and ds.,(i) are the additive and
scaling systematic uncertainties respectively . If €,44 and €., are the relative additive
and relative scaling systematic uncertainties, then

) - ) 1- P,
6add(7/) ~ 6addo—éc ) 6sca(z) ~ escaTUgC
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In these expressions the difference between scaling and additive uncertainties is
explicit. The additive source is taken to be a fraction €,44 of a reference data sample
of a given beam charge (here P = —1 = 0,5 = 0cc): because the “background
cross section” doesn’t depend on polarisation, its contribution is the same in any
polarisation bin 7. On the contrary, the scaling uncertainty is proportional to the
observed CC cross section (i.e. o0& (1 — P;)/2). For numerical estimates €,4q and
€sco Will be defined by the quadratic sum of all systematic uncertainties of each type
since the measurement is the same in all polarisation bins.

It is worth mentioning that the covariance matrix expression (eq. 1.16) holds only in
the case of symmetric systematic uncertainties. Asymmetric systematics require a special
treatment [13] which can noticeably modify the results.

In fig. 1.4, ng, oc is plotted as a function of F; for two extreme bin widths, 0.5 and
0.01, using the numbers given above and P, = £0.5. One first remarks that, because
of the polarisation and luminosity time evolution, the bulk of the statistics is located
around %|P|. The use of the polarisation weighted by the luminosity reduces the max-
imum polarisation when the bin width is large (0.47 in our simplistic description). Note
that because of the low statistics observed in certain bins the x? procedure is not re-
ally adequate. The adequate statistical procedure should be the likelihood maximisation
which is not considered here.

10}

Nb of CC e events

T S ) S
-0.4 -0.2 0 0.2 0.4

Polarisation

Figure 1.4: Number of events computed using o = 50 pb as a function of the po-
larisation for two bin width, dP = 0.5 (stars) and dP = 0.01 (empty dots). Here two
beam polarisation data samples are considered €Lip| and |Py| = 0.5. Each sample repre-
sents 250 pb~!. The statistical uncertainties shown in this figures reflect the polarisation
build up curve as specified in the text as well as the luminosity decay during the fill. A
Iuminosity fill duration of 12 h has been considered.
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Numerical estimates

To perform numerical estimates of 6(c%,,), we choose: P, = £0.5 (see eq. 1.14), 0& = 50
pb which corresponds to Q? > 10* GeV? (above this threshold the background is below
1%) and an average luminosity fill duration of 12h. As for the systematics we take
€sca = 0.04 and €449 = 0.01 (the value of €444 is not determined in the unpolarised CC
analyses, it is estimated from the uncertainty on the background subtraction). These
are not exactly the numbers corresponding of the H1 1998-1999 o¢., measurement but
the systematic error propagation is so simple that any change in the relative additive
systematic uncertainty is directly applicable to §(0%y) (€sce has no effects as we shall
see).
Three analyses are performed using:

e [+/—] = two data samples €_ip| and €yipp

e [—]| = single data sample €_p

e [+] = single data sample e .

For each data sample we take Lror = 250 pb~! (there are two times more events in
analysis [+/—] than in [—] and [+]) and we vary the number of polarisation bins between
1 and 50.

Effect of CC’s uncertainties only

The relative uncertainty 6(c%,,) has been estimated, for the three analyses, according
to the procedure described in the previous sections.

To illustrate such a linear fit, the error band of the [+/—] analysis, when no polarisation
bins are used, is shown in fig. 1.5. (0% ) is given by the extrapolation of the error band
at P =41 and 6(0§) by the extrapolation at P = —1.

Another parameter has been introduced for this study: a timing threshold above
which the luminosity and polarisation measurements begin. For now, in the HERMES
analyses, only runs with |P| > 0.4 are used for physics (below this limit, the polarisation
measurement is currently not precise enough). For |Py| = 0.5 and using our simplistic
polarisation build up formula, |P| = 0.4 is reached at ¢ = 40 min. Therefore we show
the error estimates as a function of the polarisation bin width for three timing thresholds
tewt = 0, 10 min (one may not be able to take data at the beginning of the luminosity
run) and 40 min.

As a result, §(0%,;,) decreases significantly when the polarisation bin width decreases
for the [+] and [—] analyses (see fig. 1.6). There is no improvement for the [+/—]
analysis as can be seen from fig. 1.7. The reason is that, because of the linearity, no
additional information is provided by the polarisation binning when two charge samples
are considered.

In order to illustrate the effect of the non-diagonal terms of the covariant matrix (=
the correlations), we have repeated the [4+/—] analysis by fixing Cov;; = 0 for i # j. The
result is shown in fig. 1.7. Without accounting for these terms, the uncertainty on 6(c%y)
is overestimated as well as the influence of the polarisation bin width.

Another study that can be made is the polarisation/depolarisation scenario: once the
polarisation growth is finished, the beam is depolarised so that another rise starts again.
One can model it by changing the average duration of the run to, say, 2.5 h (it is 12h
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for the results given above). The results are shown in fig. 1.6 for the analysis [+]. With
this scenario one looses sensitivity for all the analyses since the weight of the largest
polarisation value is reduced.

50

G,ps(P) / pb

40

30

20

10

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

P

Figure 1.5: CC cross section measurement together with the error band computing from
the linear fit. Two beam polarisation data samples are considered ey p and |P| = 0.5.
FEach sample represents 250 pb~!. The inner error bar of each data point represents the
statistical uncertainty and the outer error bars is obtained by adding quadratically the
statistical at the systematic uncertainties. The full curve correspond to the case where the
statistical uncertainty on the polarisation measurement is fixed to 0.2% and the dashed
curve to 2%.

Effects of C'C’s uncertainties and polarisation’s statistical uncertainty

The influence of the statistical uncertainty of the polarisation is estimated by adding
quadratically dP x o¢/2 to the diagonal of the covariance matrix (eq. 1.16). The result
is shown in fig. 1.8 (see also fig. 1.5). As already stated in section 1.1.1,we also find
here that the polarisation’s statistical accuracy must be kept at the few per mill level,
even when the CC cross section’s uncertainties are taken into account. The gain by
going from P,, = 0.5 to P, = 0.6 is also shown. In the same figure another scenario
is shown: a sample of €lpn| corresponding to 250pb~! and a sample of unpolarised e~
corresponding to the HERA-I data taking are combined. As a result it appears that this
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Figure 1.6: All plots show the uncertainty (statistical plus systematics) on 0%, /osm
in percent for J* > 1000 GeV? as a function of the polarisation bin width dP. These
results are obtained from a x? minimisation for one data sample ei‘ p) and |P| = 0.5,

corresponding to 250 pb~'. The plots of the first column (a,d) correspond to t.,; = 0 (see
text); the second column (b,e) to t.,; = 10 min; the third column (c,f) to te; = 40 min.
Plots (a), (b), (¢) correspond to an average luminosity fill duration of 12 h and plots (d),

(e), (£) to 2.5 h.
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Figure 1.7:  Uncertainties on 0%, /osym as a function of the polarisation bin width dP.
These results are obtained from a x* minimisation to two data samples ey |p With |Ps| =
0.5, each corresponding to 250 pb~t. The stars show the contribution of the statistical
uncertainty; the full dots takes into account all systematic uncertainties (see text) and
the open circle are the results of the calculations where the non-diagonal terms of the
covariance matrix are neglected.
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Figure 1.8: Uncertainties on 0% /osn as a function of the polarisation statistical uncer-
tainty 0 P. The curves for which the statistical and systematic uncertainties on the CC
cross section are taken into account are obtained from a x? minimisation to the two data
samples €1 p| (for two cases P = £0.5 and P = £0.6), each corresponding to 250 pb™'.
The curves for which only the statistical uncertainty are considered have been determined
as explained in section 1.1.1. For comparison, results of the x? fit to the positive polarised
and a 100 pb~! unpolarised independent data samples are also shown (=curved denoted
by P=0 and P #0).
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scenario permits a determination of RH CC better than the 2% level. The difference
between the analysis [+/—], the optimum case, and this latter scenario decreases as the
polarisation | Py | increases.
Effects of C'C’s uncertainties and polarisation’s systematic uncertainties

We finally give an estimate of the effect due to a systematic shift of the polarisation
measurement. Minimising the x? (eq. 1.10) by taking the “true” value P; to evaluate
0% oo and the shifted polarisation P; + d44(P) to compute the linear form, it is easy to

show that, with 0%, = 0, one gets the following fake RH CC

-1
5syst(a + b) = —(Ssys(P)O'gC§. (117)

Taking 0444(P) = +0.01, one gets dqqq(a + b) = F0.25 pb (i.e. 0.5% relative) using the
previous example. This value is very close to the uncertainties estimated above. It is then
important to keep the systematic uncertainty on the polarisation below 0.01.

If instead of an additive shift, a scaling shift P;(1 + 0,.,(P)) is used, the effect is also
given by eq. 1.17.

Model dependent Limit on the RH CC

The present highest limit on the non-standard boson Wx (or W') mass has been deter-
mined by the D0 Collaboration from a peak search in the Jacobian distribution [14]. They
obtain My, > 720 GeV at 95 % CL. This is of course a model dependent search since it
relies on Monte Carlo distributions where the W width is used for the Wy width. From
the expression given in ref. [8] we estimate the limit on My, using the measured cross
section above a Q* threshold Q2. by simply integrating the propagators. In order to
compare with the DO result, the left and right couplings are taken to be the same and
the mixing angle is neglected (i.e. g = ¢’ and ( = 0 in the notation of ref. [8]). From the

[+/—] analysis discussed above, we obtain:

(Mg, + Qi) (M, + ) <9y 90kn)
(M, + Q2 ) (Mg, + 5) 0ée

ohy <2 X 8(chy) at 95% CL = (1.18)

Results are shown in fig. 1.9 for @2, = 1000GeV? and various beam polarisation and

luminosity values. It will be very hard to reach the DO limit at HERA. As illustrated
in this figure, to approach the DO limit, a very high luminosity, a very high machine
polarisation, a high polarisation accuracy and a complete control of all systematics are
required.

However, unlike the Tevatron result, the HERA measurement will provide a model
independent cross section measurement. To illustrate this point, let us take into account
the Wg width [15] in eq. 1.18. We obtain

/S (Mng + Q2)2 sz < 2(5 - ?mn) % 5(”?}1)
@2, (M, + @)% + 1%, Mg, )? (M2, + Q%) (M2, +5) © 08,

where the W width has been neglected. Using this expression, limits in the plane
(Cwy, My,,) can be computed. They are shown in fig. 1.10 where the uncertainty on
the polarisation measurement is neglected. Values of 'y, as large as 200 GeV will not
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change significantly the limits on Myy,. This is obviously not the case for hadron-hadron
colliders.

In addition, it should be mentioned that the W's are produced in the ¢ channel at
HERA while they are produced in the s channel at the Tevatron.
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Figure 1.9: 95 % CL limits on My, as a function of the statistical precision on the
polarisation measurement for: P = 0.7 full curves and P = 0.5 dashed curves. Uncertainty
on 0%, /osy has been computed using eq. 1.8. For each group of curves, the upper one
correspond to an integrated luminosity per charge samples of 1000pb~!, the middle one
to 500pb~t and the lower one to 250pb~!. Only the statistical accuracy on the CC cross
section measurement has been taken into account.

1.2 Propagation of the polarisation uncertainties to
the CC cross section

The procedure of the previous section can also be used to extract the CC cross section
integrated over Q. In practice one may be more interested in the single or double differ-
ential CC cross section. The qualitative features derived in this section should also apply
to these observables.

From a statistical point of view, one can roughly estimate the required precision on

the polarisation measurement by considering one data sample and a beam polarisation
P:

e _ e 1=P _ 006 _ Ny oL 0P
g = O' = N I
obs ccC 2 O-g_cq Nobs £ 1 _ P )
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Figure 1.10: 95 CL limits in the plane (I'w,, Mw,). The six curves correspond to the
six experimental conditions of fig. 1.9. Uncertainty on the polarisation measurement are
neglected for this plot.
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which requires, taking the same numbers as in section 1.1.1, 6P < 1%.
Concerning the fit procedure, there are two possibilities:

e A two-parameters fit (see fig. 1.5) leading to occ = —a + b. The derivative vector
is here 9% = (—1,1) (see eq. 1.11).

e A one-parameter fit constraining b = —a leading to occ = —2a = 2b. In this case
one has docc = 2//0%x?/9%a.

Effects of C'C’s uncertainties only
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Figure 1.11: Same as fig. 1.7 but for the CC cross section measurement. The results of
the one parameter fit (see text) are shown in the bottom plot and the top plot shows the
results of the two parameters fit.

The numerical estimates of the previous section are repeated for these two new fits.
Conclusions are the same as in the RH CC case (see section 1.1.2).

The bias obtained by neglecting the non-diagonal terms in the covariance matrix is also
shown in fig. 1.11 for the two fits. Here 6(oc¢) is underestimated but the polarisation
bin width influence is still overestimated. The statistical uncertainty contribution to
d(occ) is also shown and one can verify that the systematic uncertainty is effectively
~ 4% @ 1% = €sca D €add-
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Effects of C'C’s uncertainties and polarisation’s uncertainties
As in the previous section, effects due to a systematic shift of the polarisation are
estimated. For the two parameters fit one gets the same formula as eq. 1.17 but with an
opposite sign. For the one parameter fit one gets
- >y (1= P)Wy

0 dd\a) = —080 dd P b = 1.19
a ( ) cCc¥a ( )Ziyj(l_Pi)(l_Pj)Wi' ( )

Suea(0) = — 0% buea(P) it L~ LW
sca cCcYsca Zi,j(l _ R)(l _ P])I/VZ

(1.20)

For a given polarisation shift and for the two analyses [+/—| and [—], the ratios on the
right hand side of eq. 1.19 and 1.20 are of the order of 1/2 (same as in eq. 1.17). For the
analysis [+], these factors reach ~ 2 and &~ 1 in eq. 1.19 and 1.20 respectively.

It is then also necessary to keep the systematic uncertainties of the polarisation below
the percent level to enable a meaningful CC cross section measurement.

1.3 The neutral currents case: effect of the polarisa-
tion rise

Neutral Current (NC) measurements at high @Q* permit the determination of the quark
couplings to the Z° [3, 16, 17]:

_ 79 _ 79 L2
a, = I3 and v, = I3 — 2e,sin” Oy

where I7 is the third component of the weak isospin of the quark flavour ¢q. As usual we
shall only distinguish the U (= u, ¢) and down D (= s, ¢, b) type of quarks so that ¢ = U
or D in the above equation. Since the v and d contribution dominates at high Q? at
HERA, the determination of ay p and vy p is complementary to the results of LEP heavy
flavour measurements.

The NC cross section d?c/dzd@Q? depends on the lepton charge and on the polarisation
at high Q?. TIts expression is lengthy and can be found in ref. [18, 19]. We shall follow
the work described in this article but in a much more simplified form. The reason is that
we are looking at the gain of an analysis performed in bins of polarisation with respect
to the same analysis performed with only two polarisation states +|P|. Our simplified
procedure is the following

e the Born cross-section is used to compute d?c/dzd@Q? ( = no Monte Carlo generation
is performed) for Q? > 1000 GeV?

e the z and Q? bins of [10] are chosen so that the statistical error is estimated (by
mean of the average theorem) to be

d*c
i) =\ TR A
Q2

where d?o stands for d?c/dxdQ?* A, and Ag: are the bin widths and z (z =
0.02, ...,0.65) and Q% ( @* = 1000, ...,30000 GeV?) the bin centres.
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e A x?is computed: x? = x2; + x2- with

_ (20" (Ps; 6y, 0v,) — d?05,, (P))

Xox = (o) (1.21)

i’I’Q2

and ¢ = U,D. In eq. 1.21 the “measurement” is d?0%,,(P;) and the “theory” is
d2aei(PZ-; dag, dv,). The unknown parameters day, dap, dvy and dvp are defined by

aq = ag5m +0aq , Vg = Vgsm + 0,

where the subscript SM stands for Standard Model. Here d?cgy; is the “measure-
ment” (i.e. da, = 0 and dv, = 0) so that x* = 0 when the fit parameters vanish
since the “measurements” are not smeared (we checked that applying a Gaussian
smearing doesn’t change the results).

As in the previous section we define a polarisation binning. We have considered, as
in [19] an integrated luminosity of 250 pb~! per type of beam and per polarisation sign.
Taking P = 0.7,0.5 and fixing ay vy (ap and vp fixed) we obtain, using MINUIT, the
1 o contour plot shown in fig. 1.12. It is astonishingly close to the result of ref. [19]
which includes electroweak higher order effects and detector simulation. The same kind
of agreement is obtained for ap and vy (ay and vy fixed) and for the fit where the four
couplings are free.

Vu

0.2

0.195

0.185 |-

S I N IO RSN NS RN RS
0.485 049 0495 05 0505 051 0515
a

)

Figure 1.12: 1o contour plot for vy, ay (vp, ap fixed) and P, = 0.7 (inner curve),
P, = 0.5 (outer curves). The full dots indicate the result obtained with four data samples
eim and the open circles show the results obtained using the same data samples but in
bins of polarisation (10 bins of width 0.05). As in ref. [3] (p. 185), we have considered
250 pb~! for each data samples.
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As a result, when the four data samples eiuv\ are included in the fit we find no signifi-
cant differences between the fit with or without polarisation binning (see fig. 1.12). Even
with a fine binning such dP = 0.01.

We have finally studied the effect of a systematic uncertainty on the polarisation
measurement: in eq. 1.21 the “true” polarisation P; is used to compute d?o sy (F;) and it
is shifted by d,,s(P) to compute d?o. Then the fit is repeated. The resulting shifts of the
couplings are shown in figs. 1.13 and 1.14 for d,,,(P) = £0.01 and £0.02. From these
figures we conclude that it is crucial to control any systematic uncertainties at a level
below 0.01. This is particularly important for the up quark couplings since the future
HERA-II measurement will provide a precision comparable with LEP [20] as shown in
fig. 1.15. In addition, the HERA-IT and LEP measurements are complementary since the
couplings to the heavy quarks ¢ and b are determined at LEP.

0.205 - A 8,P=-0.02
i P=05

0.195 F
0.19 |

0.185 [

m 5, P=+0.02

Lo b v b v b b b b
0'170.48 0.485 049 0495 05 0505 051 0515 052

ay

Figure 1.13: The full curve shows the 1o contour plot for vy, ay (vp, ap fixed) and P = 0.5
assuming a perfect polarisation measurement . The points show the ellipse centre shift
observed when the polarisation is shifted by the values indicated on the plot. We have
taken 250 pb~! for each of the four data samples ei‘ Pl The uncorrelated systematic
uncertainties are not taken into account.

1.4 Summary

The precision required for the polarisation measurement at HERA-II has been estimated
for three topics, the RH CC, the CC cross section measurement and the extraction of the
quark electroweak couplings. As a result a statistical precision and a systematic precision
better than 0.01 (absolute) are needed.

We have shown that with only one beam charge and polarisation data sample, eZ|p)

or e,

PP the smaller the polarisation bin width, the better the statistical uncertainty on
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Figure 1.14: The error bars show vp, ap (vy, ay fixed) obtained by the fit with P = 0.5
and a perfect polarisation measurement. The points show the central value shift observed
when the polarisation is shifted by the values indicated on the plot. We have taken 250
pb~! for each of the four data samples ei‘ Pl The uncorrelated systematic uncertainties

are not taken into account.
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Figure 1.15: Same as fig. 1.12 with the latest LEP results.
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the measurements of RH CC and CC cross sections. To some extent these features also
apply for the electroweak coupling determination.

Let us stress that throughout this chapter we have assumed that the luminosity and
the polarisation are uncorrelated. As it will be shown in chap. 2, this is only true when
the polarisation is measured bunch by bunch within one minute approximately.
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1.5 Appendix

In this appendix, an introduction to the deep-inelastic electron-proton scattering is given.
This text is an updated and slightly modified version of a long proceeding written for the
Ringberg Workshop on the new trends in HERA physics (1999).

1.5.1 Introduction

In the Deep Inelastic Scattering (DIS) processes observed at HERA, a lepton ¢ = e* of
27.5 GeV interacts with a proton P of 920 GeV yielding a lepton ¢ and a set of hadrons
X in the final state. Following the nature of ¢’ the interaction proceeds via a neutral
(0" = e*) current (NC) or a charged (¢ = v, 7,) current (CC). DIS events are collected in
the H1 and ZEUS experiments [21] which are located at the two e* P interaction points
of HERA.

The kinematics of the DIS inclusive processes, (k) + P(p) — ¢'(k') + X, is determined
by two independent kinematic variables, besides the energy of the incoming lepton and
proton. One usually chooses them among the four Lorentz invariants?

Q? p-q
G =k o=y = e W)

At HERA energies, one can neglect the lepton and proton masses so that the useful relation
Q)? = xys holds. These kinematic variables are obtained experimentally by measuring the
momentum and/or the hadronic energy, the direction of the scattered lepton and/or the
hadronic energy flow.

In this Appendix we shall restrict ourselves to the cross section measurements at
HERA in the medium 1.5 GeV? < Q% < 150 GeV? and high 150 GeV? < Q? < 30000
GeV? domains of the DIS regime. During the past, a large number of precise measurements
have been performed in the medium @Q? region by fixed target experiments [22]. With
HERA, three major improvements may be noticed:

e an extension of the Q? domain to very high @Q? (10* GeV?) but also to very small
(7 1079) (see fig. 1.16);

e an almost hermetic (47) detection of the final state leading to the determination
of the energy and angle not only of the scattered lepton but also of the produced
hadrons;

e an over constrained determination of the kinematic variable;

e from the previous items it follows that the detection of both NC and CC is feasible
in the same detector and during the same data taking period;

The somewhat arbitrary distinction between medium and high Q? is related to differ-
ent physics interests. In both regions perturbative Quantum-Chromo-Dynamics (pQCD)
describe the HERA data [26, 27]. The pQCD analysis of medium @? data is part of a long

2In the so called 'naive quark’ model, x is the proton momentum fraction carried by the struck quark.
In the reference frame where the proton is at rest, y is the inelasticity (=fraction of the incident electron
energy transfered to the proton). W is the invariant mass of the final state hadronic system X.
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Figure 1.16: Comparison of the HERA and fixed target kinematic domains. From [23]

tradition [30] from which the parton distributions of the nucleon and the strong coupling
constant a; have been extracted. On top of that, very high Q? (~ M%) NC and CC data
open a field of research in electroweak physics.

The rest of this appendix is organized as follows. In section 1.5.2 the measurements
of NC and CC differential cross sections are described. Section 1.5.3 is devoted to a
phenomenological analysis of these measurements.

1.5.2 Measurement of NC and CC cross sections

Neutral current events, at medium and high @2, are basically identified by the presence
of an electron (or a positron) in the final state. This is done by using tracking and
calorimetric devices covering the range 7° < 6, < 177° and E! >4 GeV(at HERA the
forward direction 8, = 0° corresponds to the direction of the incoming proton).

The differential cross section measurement is done by counting the number of events
within a kinematic interval in, say  and Q?. Therefore one of the experimental prob-
lems is to achieve a good reconstruction of these kinematic variables from the detector
information. Both H1 and ZEUS, can use the outgoing lepton and hadronic final state
information, namely polar angles, momenta and deposited energies. It is then possible to
define the kinematics of each event by using different (and independent) combinations of
experimental information.
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In ZEUS the double angle method [24] is used

sin v, (1 + cos 6,) B sin @, (1 — cos )

2 2
= 4F o — - -
Qia Ya sin vy, + sin 6, — sin(y, + 6,)

“sin~yy, + sin 0, — sin(7y, + 6.)’
E, siny, + sin 6, + sin(y, + 0,)
Tda = 5 - . . .
d E, sin~y, + sinf, — sin(y, + 0)

The hadronic polar angle v, is defined by tan+,/2 = " .(E; — p..i)/ P, where E; and
P., are the energy and longitudinal momentum of the final state hadron 7 and where P, ,
is the total transverse momentum of the hadronic final state particles.

Since dz/x = 1/ydE! /E!, the electron method is used in H1 to determine Q? and z:

El 2 o3 206 El
Qg = (el)ia Ye = 1- Ee Sin2(0€/2)
— Ye e

for y > 0.15, while for y < 0.15 the ¥ method [25] is used

Q% = (EL)?sin” b, Js = 2i(Ei — pzi)
; o S (B —p.i) + EL(1 —cos,)

I —ys
The reason for the differences between the methods used by H1 and ZEUS are related to
the calorimeter performances: H1 possesses finely segmented electro-magnetic calorime-
ters and ZEUS a very good hadronic calorimetry.

The redundancy in the determination of the kinematic variables is a crucial point
and presents many advantages: minimization of the migration between the ‘true’ and
the measured kinematic variable by choosing one particular method; cross calibration of
the various calorimeter devices, and studies of photon radiation from the lepton line by
comparing leptonic and hadronic information.

Once the collected events are gathered in z-Q? bins, besides the subtraction of pho-
toproduction background, correction factors are applied for: the efficiency of the event
selection; detector acceptance; wrong reconstruction of the kinematics due to detector
effects, and the contribution of higher order electroweak processes. When possible, these
correction factors are determined and/or cross checked from the data themselves. If this is
not possible, then they are determined from a full simulation of the DIS and background
processes including the detector response.

For the medium ? data we shall describe the results of the high statistics 1996-1997
data analysis [26]. For high ()?, e* beam data published in ref. [27] will be presented.

At medium @Q? and for the H1 measurements, the main systematic uncertainties are:
the electron energy scale (= 0.3%), the hadronic energy scale (= 2 — 3%), the electron
polar angle (= 0.3 mrad), the photoproduction background at high-y only (= 3% effect
on the measurements) and the correction factors (see above) applied to the data (each
one is of the order of 1-2%). The overall data normalization (including the luminosity
measurement) uncertainty is 1.5 %. The systematic uncertainty is, in total, of the order
of 3% and is larger than the statistical uncertainties which are at the level of 1 % for
(QQ?< 100 GeVZ.

At high Q? the systematic uncertainties are similar. In ZEUS the statistic and sys-
tematic uncertainties amount to 3-5% for the kinematic range 400 GeV? < Q? < 30000
GeV? considered in the analysis.
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In charged current (CC) events, the outgoing neutrino escapes the detection. Such
events are then characterized by missing transverse energy pimiss (the analysis cut is
DPtmiss = 12 GGV)

For the reconstruction of the kinematic variables, one can only use information from
the hadronic final state, i.e. the Jacquet-Blondel method [28], giving,

Zz(EZ_pZ,Z) Q2 _ p%,miss
T R

Yjp =

The CC event statistics is still low, &~ 900 events for Q? > 400 GeV? in ZEUS (and similar
numbers for H1). However the systematic uncertainty, for both experiments, is dominated
by the hadronic energy scale, which induces an effect of the order of 10%, except at very
high @Q? and very high x where the effect is above 20%. Other systematic sources related
to the pymiss cut, acceptance correction and photoproduction background subtraction (in
the lowest Q? bins) lead to measurement uncertainties between 4% and 8%.

1.5.3 Phenomenological analysis of inclusive measurements at
HERA

As mentioned in the introduction, we shall distinguish the phenomenological analysis of
the medium Q? data from the high Q2 data. As we are interested in the HERA data, it
should be noted that we are considering the region of large W?2 > 10 GeV?2. Therefore,
we will not be concerned by the non-perturbative effects and the higher twist effects
appearing in the small W? region so that the symbol pQCD, appearing below, refers to
the leading twist of pQCD.

For all the mathematical details which cannot be given here we refer to ref. [29] and
references therein.

Analysis of the medium Q? NC data

In the one boson exchange approximation, the NC differential cross section reads

+
do® P 2maenYy

drd@? zQ*

2
Y.
o, 0y = Fy(z, Q%) — }y/—FL(a:, Q) F s—aFy(e, @), (122)
+ +

where Yy = 1+ (1 — y)?. The nucleon structure functions are modelled using the quark-
parton model and pQCD. In the so called naive parton model one writes

Fy(x) = ZAi(Q2)«T[qi(«T) +@(r)], Fs(z) = ZBi(Cf)[qi(w) — Gi(7)]

where ¢; (¢;)is the density function of the quark (anti-quark) of flavor ¢, ny is the number
of active flavors and Fj, = 0 in the quark parton model. The functions A; [18, 30] depend
on the electric charge e; (4; = e? for Q*< M%) and embody the effects of the Z exchange
and v — Z interference in their Q? dependence. The same holds for the functions B; [30]
except that they vanish at Q*< MZ.

Going beyond the simple parton model, higher order contributions in «; are taken
into account. In doing so, mass singularities appear in the initial state of DIS processes
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and cannot be regularised without resumming the whole perturbative series. This resum-
mation is done in a restricted kinematic region where aylog Q? is large [29]. This latter
region is defined by Q?> A? ~ 0.32 GeV?, and the pCDQ calculations are safe for )
above a few GeV?. In this domain, the parton density functions (pdf) are given by the
solution of the DGLAP equations [29]:

aqiiNS (z, MI%)

MF’@T = Pys ® ¢,y s(w, Mp)
o (S(x, M%) ) <P ngP ) <2(a: M2) )
M iR _ qq "ftag ® » AR 1.23
oMy <9($: M3) Pyg Py g9(z, M7) ( )

with A ® B = f A(z)B(z/z) dz/z and where ¥ = Y (¢; + @) is the singlet quark
density, ¢; yg = ¢ = qZ — @; and qZ,NS = ¢; + §; — X/ny are the two non singlet densities
and g is the gluon density. The splitting functions P;; = ozs(M%)Pi(g) + a?(MIQ{)PZ(;)
describe the branching of parton j from parton ¢, and they can be computed with pQCD
up to the second order. In eq. (1.23) M is the factorization scale (below which the mass
singularity is resummed) and Mp, is the renormalisation scale (related to the ultra-violet
singularity). As the two scales must be chosen somehow arbitrarily, a natural choice for
Mp is \/@, i.e. the virtual mass of the probe. We shall, as usual, also set Mz = My for
convenience. It is worth mentioning that the DGLAP equations are universal, i.e. that
they are independent of the specific hard process.

Eq. (1.23) embodies the mass singularity resummation and therefore it only describes
the so called light parton, i.e. the parton of flavour ¢ and mass m; such that m?/Q* < 1.
In the medium @? range one can take the gluon, the up, down and strange quarks as
the light partons. For the heavy quarks (charm and beauty) one needs to specify a
particular scheme. We have chosen the fixed-flavor-scheme (FFS) [31] — suitable in the
HERA medium Q? range — where beauty is neglected, and where the charm contribution
is computed from the boson-gluon-fusion process 79 — ¢ plus the a? corrections. In
this scheme charm is produced ‘outside’ the hadron. The relation between the pdfs and
the structure functions depends on the renormalisation scheme. In Next-to-Leading-Log-
Approximation (NLLA) and in the MS scheme one ontains:

R, Q) = Z | (14 5220 @ e @)+ e, @)

as(Q%)

2
+ 2

Cj,g ® 9] + FiCE(JU; Q2)

for ny = 3 and where 7 = 1,2 (there is a similar expression for F3 with F§° = 0); C,,
and C;, are the coefficient functions depending on the hard process; F° is the charm
contribution [32]. It suffices here to say that it depends on m? and on a renormalisation
scale that we choose to be /m?2 + Q2. Note that F;, = Fy, — 22F) # 0 in the NLLA.

To solve the system of integro-differential equations (1.23), one must provide some
initial conditions, i.e. some input functions of x at a given Q? for each pdf. Since these
functions reflect some unknown non-perturbative mechanism, they must be parameter-
ized with the help of a set of parameters. As we shall see below, these parameters are
determined by comparing the calculations to the experimental data.
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Concerning the data-theory comparison, from which the input pdfs have to be deter-
mined, both H1 and ZEUS use a x? minimization procedure. The main steps of the fitting
procedure are summarized below. For each iteration:

1. the pdfs are parameterized at a given value of Q? denoted Q3, chosen to be 7 GeV?
in the ZEUS fit and 4 GeV? in the H1 fit,

2. the DGLAP equations are solved numerically in the z-space [33].

3. the evolved pdf’s are convoluted with the coefficient functions to obtain the structure
functions.

4. Assuming that all experimental uncertainties are normally distributed a y? is com-
puted. A crucial point of the analysis is the y? expression which permits the use of
the correlations introduced by some of the systematic uncertainties. Details can be
found in ref. [9].

Further details on the fit can be found in the H1 publication of ref. [26]. The result of
the H1 fit is shown in fig. 1.17 together with the data. The agreement between data and
pQCD is excellent. The gluon density obtained from this fit is shown in fig. 1.18. The error
bands of the gluon density include the experimental error propagation as defined in ref. [9]
and a theoretical uncertainty which includes the variation of all the fit ingredients (charm
mass, 2, data rejection cuts, parameterisation forms, «,, experimental error treatement).
The theoretical uncertainties are now dominating the determination of gluon momentum
xg, i.e. the third order splitting functions are needed.

Analysis of the high Q> NC and CC data

The fits applied to the high Q% data differ from the one described in the previous section by
a different calculation of the contribution of the heavy quarks to the structure functions.
As m. ~ 1.5 GeV, one has m./Q* < 1 at high Q. The large term a”log"(Q*/m?) —
dominating the calculation of F5® — must be resummed already at Q?~ 20 GeVZ. The
massless scheme is therefore used and only data with @Q? > 10 GeV? are included in the
fit 3. In the massless scheme, charm and beauty are considered as partonic constituents
of the proton and their density functions are obtained by solving the DGLAP equations
with the initial conditions ¢(z, @* < m?) = 0 and b(z, Q* < m7) = 0. Such fits describe
the HERA NC and CC (see figs. 1.19 and 1.21) data above Q*= 10 GeV?.

In fig. 1.19 one can observe the different behavior of e p and e™p cross sections at very
high 2. This is related to the different sign of the contributions of F3 to o,. Fig. 1.20
shows do /dz together with the results of two pQCD fits including or not the Z exchange
and v — Z interference. With the present data, sensitivity to electroweak effects in NC is
for the first time observed at HERA.

Up to now we have only described the NC cross sections and related structure func-
tions. For CC processes, in the one boson exchange approximation, one has

etp 2 4

ted? = 2 (00, + @y =0 (1.24)

3This Q? threshold is indicative and it can been lowered
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Figure 1.17: HI measurements of o, together with the result of a pQCD fit (see text). The
dotted lines describe the fit result extrapolated in the region where the data are exculded

from the fit (i.e. Q* < 2.5 GeV?).
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where G is the Fermi constant, and where the functions ®, depends on CC structure
functions (see [30] for example). From eq. (1.24) one can first remark that the Q? slope of
the CC differential cross section (see fig. 1.22) permits a determination of My, assuming
(or not) the precisely measured value for Gy [34]. To extract My, H1 and ZEUS have
used two different procedures. In H1, My, is taken as an extra free parameter (G is
fixed) of the pQCD fit and in ZEUS, the pdfs of CTEQ [35] are used in order to extract
My, and G (variations of the pdf choice is taken into account within the errors). The
results are

H1: Mw = 80.9 + 3.3(stat.) £ 1.7(syst.) + 3.7(theo) GeV
ZEUS : My = 80.4152(stat.) T30 (syst.) 132 (pdf) GeV

and treating G as free, ZEUS obtain

My, = 80.8712(stat.) *5 5 (syst.) 15 (pdf) GeV,
Gp = [1.171 £ 0.034(stat.) T5025 (syst.) Toois (pdf)] x 5-107° GeV ™.

Let us point out that, concerning the H1 result, the theoretical uncertainty is dom-
inated by the variation of the results when varying the ratio d/@ in the pQCD fit, and
by the choice of the nuclear corrections applied to the deuterium target data entering the
fit. These results, in good agreement with the world average values [34], show that the
standard model gives a good description of both space-like (CC in DIS) and time-like (W
production in pp and eTe™ collisions) processes.

In order to see the sensitivity of the CC cross section to the pdfs, we write & in LO

¢, =zU+(1—-y)zD; & =azU+ (1 —y)xD

with U = u+c and D = d+ s. From these expressions and from fig. 1.21 one can remark
that: with positron (electron) beams one can determine d” (u”) at high x and small-y and
u+¢ (d+5) at small y. Let us mention that d, and the sea quarks are basically determined
in the global pQCD fits by p-deuterium and v(v)-iron fixed target data, which require
some nuclear corrections. Therefore, with the HERA e*p CC events one may have, with
more statistics, a unique means to determine these quark densities.

In fig 1.23, do/dz is shown together with the error band determined by the ZEUS
pQCD fit (without the CC and NC data described in this appendix), and with the results
of a recent analysis where an ansatz d/u # 0 as x — 1 [36] was introduced. Although
the statistics is still low, one can notice from fig. 1.23 that this latter hypothesis is not
required by the HERA data.

In fig. 1.24, the measurement of do® ?/dx is shown. The error band of the pQCD is
much smaller than in fig. 1.23, therefore one can expect a better determination of elec-
troweak parameters. The size of the error bands reflect that u” is much better constrained

than d¥ in the pQCD fits.
Extraction of Fj

The longitudinal structure function is very hard to determine. It requires to combine
data in a given 2-Q? bin from different beam energies. However, from eq. (1.22), one
observes that at high y the cross section receives a contribution both from F, and F7j.
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Therefore, taking F» from the result of a pQCD fit (see previous section) applied to the
low y (y < 0.35) data one can determine Fy, at high y by subtracting Fy, extrapolated to
high y. To reach lower ), where pQCD is not reliable, another method is used. Writing

aO'r . 8F2 —222_yF—£ 8FL
dlogy  Jdlogy Y Y2 Y, dlogy’

neglecting 0Fy,/0logy, and assuming that 0F,/0logy is a linear function of logy, one
can determine FJ, (these assumptions being justified by experimental onservations). %‘g’“g
is shown in fig. 1.25 and F}, in fig. 1.26. This determination is consistent with the NLO
calculation of pQCD. It should be pointed out that because of the high sensitivity of F7,
to the gluon density zg, a precise measurement of F; would provide a complementary

determination of zg.
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Figure 1.25: HI1 determination of a?(;ﬁ (see text). The sensitivity of this quantity to F,
is demonstrated by comparing QCD calculation in the two extreme cases F; = 0 and

FL - FQ.
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Figure 1.26: HI1 determination of Fj, compared to fixed target measurements and to QCD
calculations.
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Chapter 2

Electron beam Polarisation and
Polarimetry

In this chapter, the electron beam polarisation rise in storage rings and the polarisation
measurement are described. The former topic has been covered by many review articles
and text-books in the past ([1, 2, 3, 4]). Another very useful document is a thesis on
the HERA polarisation after the HERA-IT upgrade [5] where qualitative and quantitative
aspects are much developed. Since I didn’t contribute in this field, I will only give a very
brief account on this very rich topic.

In this chapter I will therefore concentrate on the electron beam polarisation mea-
surement. Moreover, with regard to the HERA machine I will only describe polarimetry
experiments in high energy electron storage rings.

2.1 Electron beam polarisation

The definition of the polarisation of an electron bunch is not straightforward. We shall
therefore start by the very basic definition in order to define precisely what is the “polar-
isation” that we do measure in the HERA ring.

As we shall later see in this chapter, the polarisation of an electron bunch can be
measured by Compton scattering, i.e. via laser beam - electron beam interactions. The
polarisation measurement thus gives access to an average value. In Quantum Mechanics,
this measurement corresponds to a statistical system with missing information (i.e. the
spin state of all electrons at a given time). To describe such a system the density matrix
formalism [6] is the most useful one [3].

Let us first give the definition of the “spin vector” 5_”19) attached to a single particle
circulating on a given trajectory at a given energy. Giving the quantum state |¥, >
describing this system, one gets, in the centre of mass of the electron:

5_’>k =< \Ifk|§>|\lfk >

where S = (Sx, Sy, Sz) is the spin vectorial operator (in the basis of the eigen-vectors
of the third Pauli matrix, is represented by the three Pauli matrices @°). The direct
axis system is chosen such Z coincides with the direction of motion and Y is the vertical
axis, see fig. 2.1).
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We can now define the spin polarisation of a mono-energetic electron bunch [3]:
P S >= (T
:ﬁzpk<\l’k| Uy >= 7 )
k

where py, is the probability of a single particle state |¥; > to occur. Hence, the bracket
stands here for the average of all possible one particle spin quantum states (i.e. ensemble
average).

2.1.1 Polarisation build up in storage rings

Figure 2.1: Axis system and perfect circular orbit around a magnetic field.

Unlike linear accelerators where polarised electrons are created and kept polarised
up to the interaction point [7], in storage rings the polarisation is built up thanks to
synchrotron radiation in the bending magnets. This is the so called Sokolov-Ternov effect
8].

Since this effect is the key point of polarisation at HERA, let us give here more
details. An electron beam deflected around a magnetic field aligned along the Y axis
radiates photons (see fig. 2.1). During this process, a flip of the projection of the electron
spin along Y can occur. The spin-flip probabilities per unit of time w4 (spin up — spin
down) and w4 (spin down — spin up) corresponding to an electron spin aligned and
anti-aligned respectively with the magnetic field have been calculated in ref. [8]. Using
the notations of ref. [2], one has:

5\[ 8 o 5v/3 8 o
Wry = —F <1+V>C)\’I"0 3,wu~:? 1— 5\/_ C)\’I"O3

where 7y is the electron Lorentz factor, p the bending radius of the magnetic field,
Ae = h/(mec) = 3.8616 - 10 P m
is the reduced electron Compton wavelength and
ro = €?/(4megmec®) = 2.8179 - 10 ¥ m

is the classical electron radius.
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The fact that w4+ # wy, implies that starting from an unpolarised beam, synchrotron
radiation induces a transverse polarisation. Asymptotically, this polarisation is given by

wy —wyr 8
Pop = = ~ 92.4%
T w53 )

and the time evolution reads
Py(t) = —Psr (1 — €_t/TST>

with
1 B 8p°
Wi+ Wi 5v3eA 107

where Pgp is often called equilibrium or asymptotic polarisation and the subscript ST
refers to the Sokolov-Ternov effect. Note that the asymptotic polarisation is a constant,
below 1 and anti-parallel with respect to the magnetic field (it is parallel for positron
beams). At HERA for an electron beam energy E, ~ 27 GeV one gets 7¢r ~ 40 min.
This very long time, reflecting the small spin-flip probability, must be compared to the
time interval between two photon emissions ~ 10~ % s.

These results are valid under the following assumptions: the magnetic field is homo-
geneous, after radiation the electron stays on its perfect circular orbit and synchrotron
radiation is a random process. Although the latter assumption is justified, this is obvi-
ously not the case for the formers. We must now then look at the spin-orbit coupling
effects.

TsT =

2.1.2 Depolarisation effects

we

vY vY

Figure 2.2: Naive illustration of depolarisation effects. Left plot: precession of the spin
vector around the magnetic field normal to the plane of motion. Right plot: precession
around a magnetic field perpendicular to the beam direction and inside the plane of
motion.

The evolution of 5 inside homogeneous and inhomogeneous electromagnetic fields is
described by a first order semi-classical differential equation, named the T-BMT equation
(see [4] for an overview). One of the key features of the spin motion in magnetic fields is
the spin-precession. It is illustrated in fig. 2.2: when the magnetic field experienced by
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the electron is perpendicular to the plane of motion, the spin direction changes but its
projection along Y remains constant while the precession around a magnetic field inside
the plane of motion reduces the spin projection along Y.

Since the T-BMT equation is a linear differential equation containing a cross product
between electromagnetic field vectors and the spin vector, electric and magnetic fields
change the direction of a spin vector but not its absolute value, i.e. spins precess. We
have already seen that synchrotron radiation in dipoles causes a build up of polarisation
by the Sokolov—Ternov effect. However, it can also lead to depolarisation. This happens
as follows: after a photon of synchrotron radiation is emitted, a particle jumps from its
original orbit to another. A spin then “feels” magnetic fields in the quadrupoles which it
would not have felt in the absence of photon emission and, by the T-BMT equation, its
precession is modified. Then, since photon emission is stochastic, the spins in the bunches
“diffuse”. In the presence of depolarisation the asymptotic polarisation is reduced with
respect to Pgy.

To get an idea of these dynamics one must look at the time scales. The orbit period
is ~ 107°s at HERA and the betatron and synchrotron oscillations periods are ~ 107% s
and ~ 107* s respectively. Once excited, these oscillations are damped within ~ 1072 s
typically. If we now compare these time scales to the time scale for synchrotron emissions
~ 1078 s, we see that an electron bunch corresponds to a superposition of a large number
of orbits.

The major effect of transverse perturbating magnetic fields is the resonant depolari-
sation. In a perfectly flat machine, the number of 27 spin precessions around the vertical
direction per turn is given by vy = a7y with a = (¢ — 2)/2 the electron gyro-magnetic
anomaly. This is the so called “naive spin tune”[3] (vy = 62.5 at HERA). In a real ma-
chine, the spin tune is not given by this simple formula (although in HERA the real “spin
tune” is still approximately proportional to the beam energy[3]) but the important point
is that, when the spin tune and the frequency of the perturbating magnetic field are the
same, then the spin is coherently kicked at each turn. To optimise the beam polarisation,
one obviously has to choose a beam energy far from depolarisation resonances.

Another source of depolarisation is the effect of the proton bunch charge on the electron
bunch polarisation. This phenomenon, named beam-beam effect, can be viewed as a
quadrupole magnet effect on the electron beam. There is no clear statement about the
importance of this depolarisation source for HERA-II, though some experience was gained
after the 2000 proton focusing upgrade. With the HERA-IT upgrade, it is then expected
that beam-beam effect will further reduce the polarisation.

An important point for polarimetry must be noted here. Comparing the polarisation
build up characteristic time (&~ 40 mn) to the other process time scales, one sees that
polarisation is varying very slowly and is therefore the same, in absolute value but not in
direction, all over the ring.

2.1.3 Spin rotators and longitudinal polarisation at HERA

From what has been described in the previous sections, one sees that the electron beam is
vertically polarised at HERA. To convert this polarisation into a longitudinal polarisation,
spin rotators must be supplied.

In principle a spin rotator is a simple device. Making use of the spin precession, a
set of transverse magnetic fields can transform a transverse to a longitudinal polarisation.
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These spin rotators are located around the electron-proton interaction points (in the
arcs of HERA) and longitudinal polarisation must be transformed back to transverse
polarisation before the arcs in order not to depolarise the beam. That’s why rotators
always appear by pairs.

In practice one has to face many problems for the rotator design: the space constraints
(e.g. solenoids are space consuming and are weak spin rotators unlike bending magnets),
the beam orbit stability, sensitivity of the field design to the beam energy, facility to
switch from e~ to et and the optimisation of the beam polarisation.

The mini-rotator solution [9] has been chosen for HERA. It consists in three series
of horizontal bending magnets interleaved with vertical bending magnets as shown in fig
2.3.

ORBIT ' H3 | H2 | H1

tOp VieW [ -- - oo ‘ =
o i . .
‘ | 'horizontal deflections

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

v SN2 vt

positive helicity

side view /\ vertical deflections

63° 97° 36°
SPIN A SN SN
NN TS
/ ‘ /o / e-beam
: ; g ‘ ! ; direction
A | 7y | v | IP
41° 77° 36°

Figure 2.3: Mini rotator at HERA. A schematic view of the orbit motion is shown in the
two top plots and changes of the spin direction in the bottom plot. Symbols V and H
refer to vertical and horizontal bending magnets respectively. The total length of the spin
rotator is 56 m.

2.1.4 Optimisation of the polarisation at HERA

When nothing is done to counteract depolarisation effects, the equilibrium transverse
polarisation, written here P, with Py, < Psp, is very low [10]. A description of the
complex techniques used to optimise the polarisation in a ring like HERA is outside the
scope of this document.

With regard to the performances of the polarimeter, it is however necessary to mention
one of these techniques, the “closed orbit spin matching” [11]: eight ensembles of magnets
(named the harmonic bumps) are located in the HREA straight sections in order to
minimise the effects of the distortion of the closed orbits on the polarisation. [11]

To optimise the harmonic bumps, an empirical procedure is adopted: an operator
varies the kick amplitudes of the beam inside the magnets constituting the harmonic
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bumps and then observes the expected asymptotic polarisation. If the polarisation in-
creases then the variation is continued, if not the process is stopped (see also fig. 2.9).
Therefore a very fast and accurate polarisation measurement would help to optimise the
polarisation at HERA.

2.1.5 DPolarisation operations at HERA

Before the year 2000, HERA operated with two spin rotators around the HERMES ex-
periment. After the HERA upgrade, spin rotators have been installed around H1 and
ZEUS experiments (see fig. 2.4). Thus the HERA ring now contains three pairs of spin
rotators.

Spin
Rotator HERMES

/ ~ Spin Rotator (new)
H1

\
\ \
{ HERA RING ]’
v Spin Rotator (new) ZEUS

\ \

Laser

/
/7 7

4
Laser
k ‘/electrons
TPOL
HERA B

Figure 2.4: Schematic view of the HERA ring. Before 2000, two spin rotators where
installed around HERMES. Since the 2000 shutdown, pairs of spin rotators have been
installed around the H1 and ZEUS experiments. Positions of the TPOL and LPOL

Compton polarimeters are also indicated.

Two polarisation measurements are currently performed at HERA (see section 2.2):
the longitudinal polarisation (LPOL) measurement is performed after the HERMES in-
teraction point (IP) and the transverse polarisation (TPOL) is measured in the west hall
close to the HERAB experiment!. Both measurements agree within their measurement
uncertainties and their accuracies are indicated in tab. 2.1. The variation of polarisation
with time is shown in fig. 2.5 for three different machine fills. These measurements pro-
vide an illustration of the behaviour of the polarisation at HERA: rise time of the order
of 40 min, non-reproducibility of polarisation variations from a fill to another.

! The reason why no polarimeter is located after H1 or ZEUS is that not enough space is available
around the experiments and that it is not needed.
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Laser beam power | APy APy,
LPOL | 33 MW (pulsed) 1%/min (all bunches) | ~ 2%

1%/bunch over 30 min
TPOL | 10 W (continuous) | 1%/min (all bunches) | ~ 2%

Table 2.1: Main characteristics of the existing HERA polarimeters: laser beam power,
statistical and systematic uncertainties.

0.7

05

electron polarization

03

02

0.1} !

time (h)
Figure 2.5: Polarisation rise at HERA for three machine fills. Measurements come from
the HERA-LPOL setup [12].
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There are approximately two hundred electron bunches circulating in the HERA ring
(the beam current is around 50 mA) and some of them do not collide with protons. Hence,
they do not suffer from beam-beam effects and their polarisation is often different from
that of the colliding bunches. Typical differences between the polarisation of colliding
and non-colliding bunches are shown in fig. 2.6. The two plots of this figure correspond
to different machine fills and one can see that relative difference of polarisation between
colliding and non-colliding beams varies from fill to fill and can reach 10 — 50%.
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Figure 2.6: Left plot: polarisation as a function of time measured by the HERA-LPOL
[12]. Right plot: polarisation as a function of the bunch number measured by the HERA-
LPOL [12]. In both plots, polarisation of the colliding and non-colliding bunches are
shown separately.

To further illustrate the unpredictable aspect of the polarisation behaviour, an online
measurement performed after the TPOL data acquisition system upgrade [13] is shown
in fig. 2.7. The structure of the three trains of bunches is clearly visible and the bunch to
bunch polarisation variation inside one train is attributed to the interaction between the
electron beam and its associated wake-field and the RF cavities (which vanishes between
two trains of bunches). Variations of the equilibrium polarisation also appears naturally
because of the slow drift of the beam orbit? inside the magnetic fields during a run duration
(typically 10 h). Fig. 2.8 shows that such variations can be as large as ~ 10%.

Finally, an illustration of the tuning of the harmonic bumps is shown in fig. 2.9.
This tuning was performed after a change of the beam optics. The optimisation steps
are clearly visible (“bumps” in the polarisation rise-up). As mentioned above, a fast
and precise polarimeter would certainly help to avoid the decrease of the equilibrium
polarisation.

2.1.6 Polarisation and physics analysis

Two important topics are described here: the value of the longitudinal polarisation at the
H1 IP and the systematic uncertainty on physics measurements due to the uncertainty
in the knowledge of the polarisation. The results reported below were produced for the
LPOL upgrade proposal [14].

As mentioned in the Introduction, the increase of luminosity at HERA is achieved by
further squeezing of the electron and proton beams at the IP. This stronger focusing is

2For example, this can happen when the machine group optimises the orbit to increase the luminosity
for one of the HERA experiments.
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Figure 2.7: On-line polarisation measurement as a function of the bunch number. Data
come from the upgrade TPOL setup. Isolated points above 0.5 correspond to the non-
colliding bunches.
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Figure 2.8: Off-line TPOL and LPOL polarisation measurement as a function of time.
Polarisation is averaged over all bunches.
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Figure 2.9: Optimisation of the harmonic bumps after a machine modification.
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Figure 2.10: Side view of the H1 detector. The various upgrades performed for HERA-II
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Figure 2.11: Schematic view of the corrected orbit in the horizontal plane inside the H1
solenoid. GO and GG are the combined function long supra-conducting magnets. From

[

obtained by installing, among other optical elements, two long combined function super-
conducting magnets (for vertical beam focusing and electron-proton beam separation)
inside the ZEUS and H1 experiments [15]. While these ~ 2 m long magnets fit well
outside the ZEUS solenoid the situation is different in H1 where one of the magnets (on
the upstream electron beam side) is located inside the solenoid (see fig. 2.10). Then the
direction of polarisation changes between the H1 entrance and the H1 IP (see fig 2.11)
so that the rotators must be slightly retuned to ensure that the polarisation axis remains
vertical in the arcs and extra depolarisation is avoided [5]. The new layout also precludes
the use of compensating solenoids. Thus the resulting effects on the optics have been
neutralised with skew quadrupoles. This, together with the new, more complex fields at
the ends of the H1 solenoid causes extra depolarisation.

The second topic is related to the question of what polarisation inputs are needed for
physics analysis. When N,,,, machine fills are combined, what is indeed needed is not the
absolute beam polarisation but the luminosity weighted polarisation:

S Nrun [imasr S Nounch P by t) L (r, bs t)dt

r=1 tmin,v‘

ZNrun tmaz,r Zé\]:bqfnch E(T, b7 t)dt

r=1 tmin,r

P =

(2.1)

where (tazr — tminys) is the duration of the 7™ run, Ny,uen is the number of colliding
bunches and L(r,b;t) and P(r,b;t) are the instantaneous luminosity and polarisation of
the b bunch of the 7 machine fill respectively.

From eq. (2.1) it appears that two systematic sources can propagate to the physics
measurements: the space and time correlations between luminosity and polarisation. The
time correlation effect is important when data taken at the beginning of the machine
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Figure 2.12: Polarisation (a), C*(P,L) (b), C*(P, I.) (c) and C*(P, I,) (d) versus the time
for one typical fill. From ref. [14].

fills are kept in the analysis. During this period the electron beam current is maximum
but luminosity and polarisation are 100% anti-correlated: luminosity decreases with time
and polarisation rises up. However, as indicated in section 2.1.5, one cannot correct
accurately using a model for the polarisation rise-up. Therefore, to precisely control the
correlations between polarisation and luminosity during this period, a fast polarimeter
must be operated. A precise estimate of the required time for polarisation measurement
depends strongly on the shape of the non-reproducible polarisation rise-up and of the
“to”, i.e. the H1 and ZEUS Data Acquisition Systems start up.

The second effect is related to a possible bunch to bunch correlations between polari-
sation and luminosity. That is, for a given run r and at a given time ¢

1 Npunch

P(r,b;t)L(r,b;t)

N,
bunch b—1
is not a priori the same as

1 Npunch Npunch

7 2L Plnbit) Y Linbit).
b=1

bunch  p—q

To quantify such a correlation, let us introduce the time evolution of the bunch to bunch
correlation coefficient C*(P, X') between the polarisation and a variable X. It is defined
by:

Spbuner (Py— < P >)(X;— < X >)

\/EN:bmh(pb_ < P >)2nunen (X;— < X >)2

C'(P X)=

with < P >= 1/Npypen X Sp2e"" Py and < X >= 1/Npunen X Zp2im" X;. Here, X can
be e.g. the luminosity £, the lepton beam intensity I, or the proton beam intensity Ip.
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In fig. 2.12(a) the polarisation as a function of time is shown for a typical HERA fill.
For this fill the correlations to the luminosity, the electron and the proton current are
shown in fig. 2.12(b), 2.12(c) and 2.12(d) respectively. The luminosity and the current
intensity are measured every 10 s and the polarisation corresponds to an average over
10 min. Although correlations seems to exist in the early part of the fill no conclusive
statement can be drawn with the current level of accuracy. These studies show anyhow
that a fast and precise polarimeter would be useful to measure the luminosity-polarisation
correlations, if they exist.

2.2 Polarisation measurement: Compton scattering

Several methods exist for measuring an electron beam polarisation at high energy (see refs.
[10, 16] for examples). Among them, the most accurate one at high energy is Compton
polarimetry. We therefore concentrate on this method in the following sections. Since
interactions between polarised electrons and polarised light are involved, we start with a
general and brief introduction to laser light polarisation.

2.2.1 Jones and Stokes-Mueller Formalism in optics

For a detailed introduction to optics and light polarisation we refer to refs. [17, 18]. We
summarise here the Jones and Stokes-Mueller formalism.

The electric field vector E of an electromagnetic wave is obtained by solving the
Maxwell equations with the appropriate boundary conditions. For monochromatic and
not too divergent waves, the plane wave approximation holds: in isotropic media, E is
located in a plane perpendicular to the wave vector k, with |k| = k = 27 /) and \ the
wavelength.

Introducing a direct system of coordinates {x,y, z} and a corresponding unit vector
basis {X ,¥ ,z } such that k = kz , one can write E = E,x + E,y and define the
polarisation by the time evolution of (E,, E,). The beam intensity is defined by the
Poynting vector. That is, for plane waves in homogeneous and non-absorbing media[19]:

1
I = ]I + Iy = 5”600(|EI|2 + |Ey|2)

with n the optical index of the medium, ¢, the vacuum dielectric constant and ¢ the light
velocity. This is the energy per unit area per unit time. Since we shall only consider
beam intensities in the air, the constant factor in the intensity expression will be skipped
so that we shall write I = I, + I, = |E,|* + | E,|*.

Working in the complex space — i.e. E,, E, € C® — and concentrating on the polari-
sation, the effect of a perfect * optical component can be described by a 2 x 2 matrix M

called Jones matrix [21]
)= ()
x — M
(i) =0 (i

3The electric field being given by the real part of the complex field. The use of the complex field to
solve the Maxwell equation easier with complex fields (see ref. [20] for example).

4By perfect we mean that transmission of plane waves through the optical element does not generate
interferences. L.e., multiple internal reflections, if existing, are neglected.
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where (E,, E,) and (E;, E}) are the electric field components before and after the optical
element respectively. Jones matrices of the commonly used elements (retardation plate,
linear and circular polarisers, rotators ...) can be found in textbooks [18, 22, 23].

To describe light polarisation, an alternative approach is the Stokes vector and the
Mueller matrix formalism. The Stokes vector is defined by

So = | Egl* + | By |* 1
S1 = |Ef* - |E, I - 1,
= = 2.2
5 Sy = EIE';< + E;Ey ]+7r/4 — ],W/4 ( )
Sg - ’L(Z?IZ?;!k - E;Ey) IL - ]R

where the symbol * refers to the complex conjugate. [ is the beam intensity; I, I,
I 7y and I_; /4 are the intensities measured after a linear polariser oriented along X , ¥ ,
X +¥ and X —§ respectively; I, and I are the intensities after circular left and right
polarisers respectively. For polarised light, the following relation holds:

So=1/S?+ 53+ 52

In the forthcoming chapters, we shall often designate S3; as the degree or level of
circular polarisation.

The relation between the Stokes vectors before and after an optical element is also
linear and is then described by a 4 x 4 matrix (called Mueller matrix).

Both formalisms are in principle equivalent and are related by well known mathemat-
ical transformations. Essential differences are:

e Partially polarised light is directly described by the Mueller formalism but not in a
straightforward way by the Jones formalism.

e When multiple reflections inside anisotropic parallel plates are taken into account
together with the Gaussian nature of the laser beam, only the Mueller matrix can
be defined (see appendix A).

e Aswritten in ref. [24]: “The quantum theoretical treatment of electromagnetic radia-
tion fits in very well with the treatment of optics by means of the Stokes parameters.
This is quite natural since the Stokes parameters are actually the “observable” quan-
tities 1n phenomenological optics.”

This later statement is of prime importance in our case since we are going to collide a
high energy electron beam with a laser beam and then observe scattered photons.
In the rest of this document, both formalisms will be used.

2.2.2 Laser beam-electron beam interaction

Interaction between a free photon and a free electron takes place by the well known
“Compton scattering” process. However, going from this elementary process to the laser
beam — electron interaction is not that simple. To understand this point one has to return
to former works (see [24, 25, 26] for ex.). Briefly summarising:
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e The two helicity states +1 of the photon correspond to circular left and right wave
polarisations. In Quantum Field Theory (QFT), the photon field operator can be
modified, according to a unitary 2 x 2 matrix transformation, to describe elliptically
polarised radiation (see Zeeman effects in arbitrary oriented magnetic field for ex.).

e The Stokes parameters have the same form in wave optics and in QFT. However the
physics interpretation is different: in QFT, |E,|?/hw and |E,[*/hw, with w the light
wave angular frequency, are the number of photons per unit area unit time observed
when the beam passes through linear polarisers (i.e. filters) oriented along X and
y respectively. In wave optics |E,|* and |E,|* are the light intensities as stated
above.

e For currently used laser beams one can assume that the photons are independent
and all in the same quantum state. The laser beam-electron interaction is then
reducible to the photon-electron elementary process.

To simplify our model for the laser beam-electron beam interaction, we shall further
assume a mono-energetic and mono-directional electron beam. In this way, and according
to the above items, the electron-photon Compton cross section will be used to describe
the interaction of the two mono-energetic beams. The electron beam energy spread (of
the order of one per mille of the nominal beam energy at HERA) and the beam angular
spread will be taken into account in a future work.

The number of scattered photons per unit of time and solid angle in the electron rest
frame (with the Z axis along the direction of motion of the electron) is given by [10]:

diny _ L,.C3 [1+ cos® 0 + 2(k; — k) sin® Q]
dtdQ — ° T

— [S) cos 2¢ + Sy sin 2¢] sin® 0

— 2sin #sin’ gSg,[Py sin ¢ — Py cos ¢]

— 2cos 0 sin® g(kf + ki)S?,Pz}. (2.3)

where k; = kiﬁi and kg = kfﬁf are the momenta of the incident and scattered photon
in the electron rest frame; € is the angle between k; and k¢ in the electron rest frame;
¢ is the azimuthal angle (e.g. orientation of the projection of k¢ in the plane XY')
= PxX + Pyy + PzZ is the electron polarisation vector introduced in section 2.1;
Sy is the level of laser light circular polarisation; £, is the luminosity for the laser beam-
electron beam interaction (see eq. (2.4) in the next section). The global factor C reads

C = 1 62 kf 2
2\ m? k;
where e, m, and ¢ are the electron electric charge, the electron mass and the light velocity
respectively.
Kinematics and angular distribution of the scattered photons are extensively described

in refs. [27, 28]. From these studies we see that with a high energy electron beam, the
photons are scattered within a cone of a few hundreds of prad in the direction of the
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electron beam. Therefore the energy distribution can be measured completely within a
small calorimeter.

Since Compton scattering is a two body® process, the cos # distribution in the electron
rest frame is linearly related to the scattered photon energy distribution in the laboratory
frame. Hence, from eq. (2.3) one sees that:

e For best determination of the components of P one must maximise the level of
laser circular polarisation (i.e. S; — =£1) and thus minimise the level of linear
polarisation (i.e. \/S? + 53 — 0).

e Knowing the laser beam polarisation, the electron longitudinal polarisation can
be determined by a fit to the distribution of the scattered photon energy (after
integration over the azimuth angle). To determine the transverse polarisation, one
must measure both the energy and the azimuth angle ¢ although it is expected to
be very small in the region where the longitudinal polarisation is measured (between
a pair of spin rotators).

For obvious reasons, an accurate measurement of the longitudinal polarisation is easier to
perform.

2.2.3 Polarisation measurement modes

Assuming a Gaussian shape for the electron beam and the laser beam intensity, expressions
for the laser beam-electron beam luminosity £, have been calculated in ref. [27]. For
a non-vanishing electron-laser beam crossing angle «, they obtained the total luminosity
(integrated over the space variables):

1 14 cosal, PugerA 1
V2r sina ec he oZ, + 02

L~ (2.4)

where 0., and o, are the electron beam radius along the = axis and the laser beam radius
(see appendix 3.6.1 of chap. 3) respectively; Plgser is the laser beam power; I, is the
electron beam current. Note that eq. 2.4 assumes that the plane of interaction of the
electron and laser beams is vertical (along y).

In a storage ring where electron bunches are separated by At in time, the number of
back-scattered photons per bunch in then given by

d*n
n.,/bunch = At // dtdédQ'

Depending on the value of n,, one can define three different measurement modes:

e Single photon mode: n, < 1
e Few photon mode: n, ~ 1

e Multi photon mode: n, > 1.

5At HERA the centre of mass energy of the Compton process is below the pair mass threshold (i.e.
ete™ pair cannot be created).
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When n, > 1, the statistical uncertainty on the measurement of the longitudinal
polarisation is better as well as the ratio of the signal to background. But, in fact, high
values of n, induce large systematics on the scattered photon energy measurement and
therefore the few photon mode appears to be a good compromise between the single and
the multi photon modes. In addition, a high energy pulsed laser beam in needed for the
multi photon mode and the laser beam transport and diagnostics are not easy for such
beams so that additional systematic bias may thus appear.

Mathematical details of the statistical analysis leading to the determination of Py
in these three modes are given in appendix 2.3. In this section, we briefly discuss the
advantages and disadvantages of these three modes. A detailed description of the few-
photon mode polarisation measurement is given in section 2.2.4. This mode was not
considered by previous experiments, this is our original contribution in this field.

For the three modes of polarisation measurement, one must supply an experimental
setup similar to the one shown in fig. 2.13, that is: a photon extraction line and a
calorimeter to measure the energy and beam position if the determination of Py and/or Py
is foreseen. In such experiments, the two main backgrounds are: beam-gas bremsstrahlung
and beam-blackbody radiation Compton scattering (see section 2.2.4 for details).

laser lab, room 616 beam expander cable shaft (no. 150)
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box #1 ind
Pockels cell*\ % \ W'% mirror M 1
D)ool D
Nd:YAG  variable o .
laser attenuator beam shutter
pump

() |screenl

N 472m
Q) g
Q>screen 3 25m

mirror M 5/6
Comptonsy

mirror M 3 /| ()

screen 2

mirror M 2

calorimeter
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Figure 2.13: Layout of the present longitudinal polarimeter at HERA. The laser beam is
brought inside the electron vacuum beam pipe by an entrance window. Compton photons
are scattered in the direction of the electron beam within a very narrow angular cone.
Back-scattered photons escape the beam pipe through an exit window located at the end
of the right section and enter a calorimeter =~ 60 m downstream from the laser beam-
electron beam interaction point (IP). An optical bench is located on the other side of the
IP to stop the laser beam and to measure the light polarisation.

Single photon mode

In this mode, the probability that two Compton scatterings occur within a single bunch
crossing is negligible. Therefore eq. (2.3) can be used to fit the experimental data.
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Figure 2.14: Back-scattered Compton photon energy spectra for three values of the
laser degree of circular polarisation S3 = 0,4+1. Also shown is the electron beam - gas
bremsstrahlung background for an electron beam energy of 27.5 GeV. Relative normalisa-
tions between Compton and bremsstrahlung spectra are arbitrary and no detector effect
has been taken into account.
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Fig. 2.14 shows the energy distributions calculated with eq. (2.3) for P; = 0.5 and
S3 = £1 using the HERA electron beam energy (27.5 GeV) and the ND:YAG laser beam
wavelength A = 1.064um. From this figure one sees that the sensitivity to P, is mainly
located in the high energy region of the spectrum. Calorimeters operating in the range
1-10 GeV are then required. In fig. 2.14, the edge of the Compton energy distribution
comes from the kinematic limit of the Compton scattering.

To discuss the performance of the single photon mode, let us describe the present
TPOL measurement setup at HERA [10]. A 10 W laser with green light is used and
n, &~ 0.01/bunch. The calorimeter is segmented in two parts in the vertical direction
so that the total photon energy and the vertical position of the photon impact can be
reconstructed simultaneously.

A description of the data analysis leading to the measurement of Py is outside the
scope of this work (see[10]) . What is interesting to mention here is that Py is measured
at a few percent level. This accuracy is limited by: the knowledge of the electron beam
shape, the determination of the y position from the energy measurements, the statistics.
Currently, the statistical precision of the HERA-TPOL measurement is ~ 10% per bunch
and per minute.

The advantage of the single photon mode is that one can calibrate the calorimeter
absolutely using the Compton edge (and the bremsstrahlung edge, see fig. 2.14). With
the recent upgrade of the HERA-TPOL data acquisition system, the accuracy on the
absolute calibration is below 0.5% and controlled on a 1 min time base. The disadvantage
of this mode is the low statistics due to low luminosity. In the case of large background
levels, the signal may also be too diluted thereby reducing the polarisation measurement
accuracy.

From the performances of the TPOL measurement in the single photon mode, one
sees that the accuracy of the longitudinal polarisation measurement would be limited by
statistics in this mode.

Few photon mode

To extract the longitudinal polarisation, one proceeds as in the single photon mode except
that we must now consider a Poissonian superposition of back-scattered photons. Multi-
convolutions of eq. (2.3) must then be calculated and a fit has to be performed to the
experimental data. Fig. 2.15 shows the energy distributions in the few photon modes.
Comparing with the single photon mode one can remark the presence of the double
Compton edge and a high energy tail. This means that one gets three points to perform an
absolute calibration of the calorimeter: the two Compton edges (and the bremsstrahlung
edge, see fig. 2.14). This allows a survey of the calorimeter linearity.

For longitudinal polarisation, we proved that non-linear fits are numerically stable and
reproduce the experimental distributions (within the accuracy of these measurements, see
appendix 2.3)

Experimentally one must use a very high continuous laser beam power (typically a
few kW) to reach n./bunch = 1. Nevertheless, special experimental setups are feasible as
will be shown in chap. 3.

With respect to the single photon mode, advantages of this method are threefold: first
the statistics is large, second the ratio signal to background is better and third single and
double Compton edges can be used to calibrate the calorimeter. Very precise longitudinal
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Figure 2.15: Compton energy spectra for S; = %1 in the few photon mode (n,/bunch =
1). Distributions are shown on linear and logarithmic scales to exhibit the long energy
tail. Gaussian smearing of the photon energy has been applied as indicated in appendix
2.3.

polarisation measurement (below 1%/bunch/min) can then be achieved in principle. The
disadvantage is that one has to perform a non-linear fit, but it turns out that this is more
a numerical difficulty than a disadvantage.

Multi photon mode

When the background is large, or when the polarisation needs to be known after a single
bunch crossing (i.e. at linear colliders), high energy pulsed lasers are used. After a
bunch-laser beam interaction a large number photons are back-scattered, typically =
1000/bunch.

One can then apply the limit theorem so that P is obtained from the measurement
of the average energy and average impact position in the calorimeter. The averages are
linear forms of the components. To illustrate the measurement of P, in this mode,
experimental energy distributions taken by the HERA-LPOL are shown in fig. 2.16.
The longitudinal polarisation is linearly proportional to the difference between the two
distributions obtained with a laser beam polarised circular left and right.

The disadvantage of this mode is that a total energy ~ 10 TeV is seen by the calorime-
ter. Since the energy calibration of the calorimeter is done using low energy beam electrons
(and the single photon Compton edge), the polarisation measurement is affected by a sys-
tematic uncertainty of the order of a few percent 6. Another difference compared with the

6At LEP, the transverse polarisation was measured in the multi-photon mode [29] and an overall
systematic uncertainty of 15% was quoted [30] (which was not a limiting factor since the polarimeter was
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Figure 2.16: HERA-LPOL experimental photon energy distributions for S3 = +1 (spin
3/2 in the plot) and S3 = —1 (spin 1/2 in the plot). From [12].

two other modes is that one cannot extract the polarisation without combining the two
photon energy spectra corresponding to the laser beam left and right polarisation. The
statistics is limited by the laser pulse frequency (100 Hz maximum for the HERA-LPOL)
this leads to a statistical precision of the present HERA-LPOL comparable to the one of
the HERA-TPOL (see above).

Before ending this section, it should be mentioned that in linear colliders it is possible
to detect the scattered electron instead of the scattered photons. The advantage is twofold:
the polarisation information is carried by the lower part of the electron energy spectrum
and the use of a spectrometer leads to a measurement of both the scattered angle and the
energy. This redundancy led to the high precision longitudinal polarisation measurement
at SLAC-SLC [7] using a high power pulsed laser.

Since we are detecting the scattered photons at HERA, in order to reach the per
mille level on the statistical and systematic accuracies on the longitudinal polarisation
measurement, we choose to use the few photon mode. The rest of the chapter is devoted
to a more detailed description of the few photon mode.

2.2.4 Polarisation measurement in the few photon mode

In this section we present the basic formula used in our studies. Our “experimental
setups” are also described there. Next, a numerical study, describing the performance of
the LPOL measurement in the few photon mode is presented. This study was performed
for our proposal of the LPOL ugrade.

Signal

For a longitudinally polarised electron beam, the Compton scattering differential cross-
section is obtained from eq. (2.3). In the laboratory rest frame and as a function of the

used to measure the beam energy by depolarisation resonances [31]).
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back-scattered Compton photon (BCP) energy one gets (see eq. (8) of [10], we won’t give
here the complete expression which is obtained by elementary algebra from eq. (2.3)):

do. dao doz
dE, ~ dE, 5P dE, (2:5)
where S3 = —1 for a circular-right polarised laser beam and S3 = +1 for a circular-left

laser beam; P is the electron beam LPOL; E, is the BCP energy in the lab. frame.
doy/dE, and do,/dE, are two functions of E. and of the lepton and laser beam energies,
E. E) respectively.

In our numerical studies we shall use E, = 1.165 eV (the ND:YAG laser energy) and
E, =27.5 GeV.

Beam Gas bremsstrahlung background

The differential cross section do(e+ g — e+ g+)/dE, - where g stands for the residual
gas in the beam pipe - is described by eq. (1) of ref. [32]:

do,, , BEo [(E:+E2 2\, . ~ 1
9 — 4 ¢ e ¢ _ Z)[Z%In(184.15Z27 V3 + Z1In(1194Z 23 + (22 + Z
e = ot | (B - Sz )+ Z1n( I+ 52+ 2)

(2.6)

where E. = E, — E,; r. is the electron classical radius and o = 1/137. The mean atomic
number of the residual gas nucleus is taken to be Z = 4.2 [32].
A more complete formula [33] has also been implemented in our numerical program.

Compton-blackbody scattering background

This background is extensively described in ref. [34] where it has been studied using the
TPOL set-up. It consists of blackbody photons radiated by the beam pipe (Ta 310 K). A
rate of 0.013/bunch for a current of 0.3mA /bunch has been reported. However, the LPOL
interaction point is located after 50m of an HERA straight section (to be compared to
7.3m for the TPOL where a weak dipole deviates the beam). Therefore, with an electron
beam current of 40 mA and 190 bunches, one expects a rate of ~ 0.06 photons per bunch
for LPOL.

To describe this background we shall follow the calculations of ref. [34] to which we
refer for more details.
The blackbody energy spectrum (in the lab. frame) is given by:

dE,\ €E/\/kBT —1

where kp is the Boltzmann constant. The energy distribution of the blackbody photon
scattered by the electron beam (in the lab. frame) is given by

Examaz dn(Ey) do
1 + Bcosfy)——dE\d cos 0, 2.7
/COS 9)\ mzn /;A min dE)‘ ( ) dE"/ ( )

where:
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e 0, is the angle between the incoming blackbody photon and the electron beam
direction in the lab. frame;

e [~ 1 is the electron beam velocity;

® ) maq is infinite in principle but it suffices — for the numerical computation of the
integral — to take E) e = Emin + 12 X kT

e doy/dE, is the unpolarised Compton differential cross-section (c.f. eq. (2.5)) in-
cluding both E) and 6 dependences;

e the lower bound of the integral is given by the kinematic relations:

meki,min _l . E)\ o meki,min
B’YE/\,max 6 ’ e ’}/(1 + BCOS 9/\)

with v = 1/y/1 — 2 and k; in = Ex/2(Ee — E)).

e the proportionality factor is not important since we normalised the amount of events
to the integral over the energy (from 0 to 3 GeV).

(€08 0) min =

The maximum energy reached by the scattered blackbody photon is given by

E.

me
1 + 27Ek,maz(1+/3)

E7,maa: =
and amounts to ~ 3 GeV for E) ;4, = 0.3 V.

Synchrotron radiation background

All details concerning the synchrotron radiation around the IP of the LPOL can be found
in ref. [35]. Here we just briefly summarise the main features related to this background.

The IP is located inside the HERA 90BH bending magnet. The calorimeter is then
illuminated by synchrotron radiation which is made of a large number of low energy
photons ( the total reaches ~ 1 TeV). A lead plate is located in front of the calorimeter
so that only 100 MeV is seen in the detector. We shall not consider this background in
the present study since it appears as an energy pedestal in the calorimeter and can thus
be determined experimentally [34]. The effect of the lead plate on the resolution will be
studied by varying the energy resolution of the calorimeter.

Measurement set-up

To extract the electron longitudinal polarisation, we shall adopt the usual measurement
procedure. The following three measurements are performed successively:

1. Laser off: background energy distribution is measured (eqs. (2.6,2.7)).

2. Laser beam circular left polarised (=Laser left): signal measurement with S = +1
(eq. (2.5), pile-up with backgrounds of (egs. (2.6,2.7)) is included.

3. Laser beam circular right polarised (=Laser right): signal measurement with S = —1
(eq. (2.5), pile-up with backgrounds of (egs. (2.6,2.7)) is included.
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With a 10 MHz data acquisition system, one can consider at most ~ 3 - 10° records
per minute for each electron bunch and each of the three experiments. These records
contain any kind of background or signal photons and even electronic noise (e.g. electronic
pedestals).

Note that, once the backgrounds are understood, only one experiment (laser left or
right) is required in principle to determine the polarisation.

2.2.5 Numerical studies

Mathematical expressions of the statistical estimators that can be used to extract the
longitudinal polarisation are given in appendix 2.3.

We shall concentrate here on the few photon mode and therefore use the estimator
#1 of the appendix 2.3 (= a Likelihood fit to the scattered photon energy spectrum).
A fitting programme has been written and tested with experimental data of the HERA-
LPOL. These data were taken by “reducing” the power from the HERA-LPOL pulsed
laser. However, since the electronics, the laser operation mode (i.e. pulse delay) and the
calorimeter are designed for the multi photon mode, the data quality is not optimum for
the single and the few photon modes. This feature is illustrated by the top plots of figs.
2.17 and 2.18 where the background fits are compared to the laser off measured energy
distributions. The very large Gaussian centred at 0 is the pedestal distribution which
extends up to the bremsstrahlung edge. In any case, by fitting these distributions one
finds P ~ —0.55 and n, ~ 1.5, 6 for figs. 2.17 and 2.18 respectively. Fit results are shown
together with experimental data and it is important to note that the high energy tails are
well described. Notice that the two laser-on distributions of fig. 2.18 are not Gaussian.

We have performed a series of studies to estimate the accuracy of a longitudinal po-
larisation measurement in the few photon mode considering a ND:YAG laser (wavelength
A = 1.064pm). Laser off, left and right energy histograms for one electron bunch are
computed varying n, and P. The number of entries correspond to 6s DAQ period, i.e.
~ 6 - 10 DAQ events. Next a fit using estimator #1 is performed and both P and its
uncertainty are determined.

The absolute statistical accuracy AP obtained from this analysis is presented in fig.
2.19 for P = 0.5 and two bremsstrahlung background rates describing the range presently
observed in the HERA-LPOL region. For n, > 0.3 one sees that a statistical accuracy
below 1% /bunch/min is reached. However, using eq. (2.4) one finds that this number
corresponds to a ND:YAG laser power of ~ 20kW for a 1 mA electron beam current (that
is &~ 500W for 40 mA) and a laser-electron crossing angle of 58 mrad.

Using our numerical programme, we can also estimate the main systematic uncer-
tainties. To do so, the calorimeter energy response is modelled by a Gaussian of width
o = 14.4%VE @ 0.435%F corresponding to the new calorimeter. Three Compton rates
n,/bunch = 0.1, 1, 2 and eight values of the electron beam polarisation P = 0,0.1,...,0.8
are chosen. The following effects have been studied:

e Uncertainty on the linear calibration constant: taking a scale uncertainty of 0.5%7,
the systematic shifts of the polarisation measurements are below 0.1%.

e Uncertainty due to non-linearity: taking a non-linearity of 1% at 20 GeV, the sys-
tematic shifts of the polarisation measurements are shown in fig. 2.20. The effect is

"This is the present uncertainty quoted by the HERA-TPOL, see section 2.2.3
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Figure 2.17: Data taken at the HERA-LPOL by the HERMES Collaboration (crosses).
Upper plot is the observed laser off energy distribution, lower plots are the laser on
experiments. Laser wavelength is A = 0.5um and electron beam energy E, = 27.5GeV .
Full lines show the results of a fit to the experimental data.
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HERMES preliminary (F. Menden data analysis)
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Figure 2.18: As fig. 2.17 but for a higher laser pulse energy and a vertical logarithmic
scale.
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Figure 2.19:  Statistical uncertainty of the polarisation per bunch and per minute as
a function of the number of back-scattered photons, n,. Two curves are shown for two
different background levels of 1% and 10%. Also shown is the laser power needed to
obtain a given number of back-scattered photons, assuming a crossing angle of 58 mrad.
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large, especially for a large event rate. Fig. 2.21 shows the numerical derivative of
the energy distributions with and without 1% non-linearity. Using the three points
(17, 27y and bremsstrahlung kinematic edges), such an effect can be controlled at a
few per mille level so that the remaining systematic uncertainty on the polarisation
measurement can be reduced at a few per mille level as well.

e Uncertainty due to the knowledge of the dead material in front of the calorimeter:
to estimate this effect we have generated the energy spectra taking into account 2X0
of lead (model of ref. [36] is used) and perform the fits without it. The systematic
shifts obtained for the polarisation measurements are shown in fig. 2.22. This is an
important effect. Our example is not realistic but it shows that a precise control
and modelling of effects of dead materials is necessary.

From this study we conclude that an accuracy at the few per mille level can be achieved
in the few photon mode. A longitudinal polarimeter operating in this mode is then ade-
quate for the HERA-II physics programme. A precise control of the calorimeter response
and material is however mandatory.
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Figure 2.20: Systematic shift of the polarisation measurement induced by 1% calorimetric
non-linearity at 20 GeV.
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Figure 2.21: Numerical derivatives of the energy distributions for a perfect detector (full
curves) and including a 1% non-linear calibration factor (dashed curves). The lower curve
is the laser-off distribution. The numerical deivatives shown in this figure are simply
obtained by subtracting the containts of all pairs of adjacent bins of the photon energy
spectra.
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Figure 2.22: Systematic shift of the polarisation measurement induced by ignoring the
two radiation lengths of lead in the fit (see text).
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2.3 Appendix

This appendix is a revised version of an internal note written by C. Pascaud and myself.
It describes the statistical analysis of the back-scattered Compton photons (BCP) energy
distribution in the three modes defined in section 2.2.3. We thus construct some statistical
estimators from a model of the BCP energy spectrum. Since our statistical treatment for
the few photon mode cannot be found in the literature, details are given here.

2.3.1 Statistical estimators
Notations

In order to introduce our notations let us first consider the single-photon mode. Let us
also consider one of the three experiments defined in the previous section. In this case
there is, at most, one photon observed in the calorimeter. Then, after one period T ¢ of
Data Acquisition (DAQ), the average number of events of energy between E and F+ AFE
is:

3

niy(i,n,e, E) = Zak(n,z’) X €5 X fr(F) (2.8)
k=1

where i stands for the bunch number; n is the number of DAQ periods accumulated
since the beginning of the luminosity run (n x Tpag is the total elapsed time ); e is the
experiment index (e = 1,2, 3); the constants a; will be determined by the fit, they are
defined by

al(n, Z) = LB(TL, Z) X TDAQ
GQ(TL, Z) = £C(TL, Z) X TDAQ (29)
az(n,i) = P(n,i) x L.(n,1) X Tpag;

Lp(n,i) and L.(n, i) are the background (electron beam - residual gas and electron beam -
blackbody photons interactions) ® and electron beam-laser beam luminosities respectively,
they are defined for each bunch ¢ and are functions of the elapsed time nTpaq. fi(E)
is the background energy distribution; fo(F) is the energy distribution for unpolarised
electrons; fo(E)+ f3(E) is the energy distribution for totally polarised electrons and laser
beam circular left polarised (P = +1); € characterises the three experiments described
in the previous section and has the following values:

e ¢, =1,0,0 Laser off;
e ¢ =1,1,1 Laser left;
e ¢ =1,1,—1 Laser right.

f1, fo and f3 can be determined by a full simulation of the detector response to the
BCP and to the background. To be explicit we give here the expressions of these functions

8In fact there is one parameter a per background source. In order to simplify the presentation we
choose to gather all these parameters into a single one.
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in the case of the single-photon mode. Neglecting for now any detector effects, one has:

E+AFE d
fi(E) :/ ﬂdEl

. 4B
E+AE dO'O

f2(E) :/E dE’dEl (2.10)
E+AFE dUZ

f3(E) :/E dE’dEI

However, in the general case the number of photons observed in the detector is not
fixed. Some complex mixtures are expected: one (or more) BCP can occur together with
one (or more) background event. We shall now turn to the description of this general
case.

Probability for the number of photons per bunch-crossing

We drop now the bunch and elapsed time indexes. The average number of photons

observed in the detector after one bunch-crossing for one experiment set-up e is given
by

* dme(E)
M, = dE 2.11
/0 el (2.11)

where dm.(E)/dE is simply obtained by dropping the integral over the energy in the
expressions of fi (see eq. (2.10)).
The fluctuations of M, following a Poissonian law, one has:

e Py = e Me is the probability to have 0 photons when one expects M,;

o Py =¢ Me AI/{;],V is the probability to have N photons when one expects M,.

In the following we shall drop the experiment index e.

Probability for an energy measurement per bunch-crossing

Once a given photon ¢ is observed, the probability to find it with an energy between E;
and E; + AE; is m(E;)/M. Hence, the probability to get N photons of energies between
Ei and EZ+AEZ,Z: 1,...,NiSI

Py ]] m](\fi) - %Hm(a) (2.12)

1=1

In our case only the total energy F = Ziv E; is measured. Using eq. (2.12), we can
write the probability to get N photons with total energy between FE and E+ AFE as follows

M mN(E)
© TN
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with

E+AE dmZ(E’)

dmz Be e i L dm(Ey)
dE}, .
/ / ’“)H dE;, "

k=1

(2.13)

Explicitly, we have

i (E) /E+AE dm(E' )dE’

dE'
E+AE min Ee, E/ - E// dm E//
/ / on (8E’ ) X dé?” )dE"dE' =mEm

E+AE  pmin(Ee,E'") ) _(E'— E" dm(E"
my(E) :/ / - ) m )dE”dE'Em®m...®m
E (0

OB N OF o7
(2.14)

where we have used dm(E" — E")/d(E' — E") = Om(E' — E")/OE" and where the symbol
® is introduced for convenience.

Finally the probability to receive in the detector an energy between E and F + AFE
is:

PR AP(E) oM i (E)
/E — =B = E;T (2.15)

The detector response is modelled by a Gaussian of width o = aVE + o, where o,
represents the pedestal effect. Possible bias of the energy scale is taken into account by
using two real parameters 5 and vy (see eq. (2.16)). Functions m; must then be replaced
by the smeared functions:

_[BQ4+EI- B2
dm;(E) /+°° dm;(E") . € g
dE 0 dE’ V2mop
Even when no photon enters the calorimeter, because of pedestal, one may measure a

non-vanishing energy. We must then extend the range of the index ¢« down to 0 and
introduce

dE'. (2.16)

in egs. (2.13,2.14). With this change and extensions, the probability to “measure” in the
detector an energy between E and F + AF is:

E+AE dP(EI) m E+AE d\IJ
E'=e™ : E' 2.1
[ S D g [Ty
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where the last equality serves as a definition of the function ¥ that we shall use below.
Eq. (2.17) is normalised as follows:

* dP(F)
—=dE =1. 2.18
| % 219
Proof:
Integrating eq. (2.13) and using eq.(2.11) one gets
* dm;(E) — dm(Ey) .
dE = dE, = M' 2.19
/0 dE g /0 dE, " (2.19)
so that
XdP(E) .y~ M ow
/0 — B = ;Z‘ —eMxeMl=1. (2.20)

Estimator #1: Likelihood of the energy distributions

This first estimator is a likelihood maximisation of the energy distributions. In order
to simplify the mathematical expressions, let us consider one of the three experiments
described in section 2.2.4. During one DAQ period Tp4q we assume that there is a sam-
pling of S measurements (per electron bunch), S being fixed and known. The Likelihood
density 0L of such an experiment is given by:

5L = ﬁ dPLE) (2.21)

To show how this likelihood density is normalised we turn to the dimensionless likelihood
and reformulate eq. (2.21) as follows:

L:ﬁ{émhf}

with

Pret dP(E)
P = / ———=dE,
7 )y,  dE

where the E; are a set of energies increasing with £ and ranging from —oo for £ = 0 to
~+o0 for k = K.

The integer variable h¥ characterises the i event: h¥ = 1 if the measured energy is
between Ej and Ej.; and 0 otherwise. For an event i there is only one value of £ such
h¥ # 0; this can be expressed by:

K
> Prhf =1 (2.22)
k=0
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then eq. (2.18) may be rewritten:

K
> PrPr=1
k=0

We see that L is as a function of the variables hf. Its normalisation is obtained by
summing over the k¥ under the constraint of eq. (2.22):

iiiiﬁ{i?khf}:l (2.23)

Proof:
We start by performing all the sums related to a given event j. As only the factor
concerning the event j depends on that variable we may rewrite eq. (2.23) as follows:

11 11 S K 11 K
(oY TPt {3 [t =
R9=0h}=0  h%4=0h%=1  i#j “k=0 h9=0hi=0 k=0
Using { b =1 = hl =0 for | # k} we obtain
11 K K
Z Z [Z thﬂ = Zpkpk
hY=0h9=1  ~k=0 k=0

which is equal to 1. Finally, working out all the events we arrive at the expected result
of eq. (2.23).

Let us now look at the practical use of eq. (2.21). To be explicit, let us re-introduce
the experiment index. Instead of 6L we shall consider

3 Se
W = —2IndL = QZ{SeMe - Zln(d\l;;ié&))} :
e=1 i=1 L

In fact the measured events will not be kept individually by the acquisition system but
rather put in an histogram. H bins covering the energy range Fy to Ey are then defined.
With

E
v o U(E)dE
YO BBy
we get
H
W =2 (SM =) Nyln \1/;1> : (2.24)
h=1

where N}, is the number of events contained in the bin A (this quantity is measured exper-
imentally). Notice that in eq. (2.24) there is an implicit sum over the three experiments.

In eq. (2.24) we have omitted two contributions which do not depend upon the pa-
rameters ag:
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e a combinatorial factor In(S! H,Ilil Np!), which comes from the fact that one would
get the same histogram from two experiments differing only by interchange of events
iand j;

e a sum over the bin widths In(E, — E},_ ;).

The parameters to be determined by minimising eq. (2.24) are — for each bunch and
each DAQ period — a1, az and a3 (which are directly related to P, L., Ly,;). In order to
reach this goal we search for the maximum likelihood. In eq. (2.24) N, and S are taken
from the experimental energy histogram and the variations of W with a; are all contained
in U(E)) and M.

The maximum of W corresponds to the following set of partial differential equations
(obtained by differentiating eq. (2.24):

M 1 0
W' (a) = ov :288——22Nh 0

= =0. 2.2
8ak 8ak 0 ( 5)

In order to solve this system we use a classical iterative scheme similar to a x? minimisation
procedure. We define

H H

. 1 °W 1 ov oV 1 020
= —————— = - - - _ N, —
J 2 aakaaj hzzl h (\111)2 8ak aaj Z h ! aakaaj

(2.26)

h=1

and we write a; some initial values of the unknown parameters. We then search for a set
of parameters ay + day such that all the derivatives vanish. Writing a first order expansion

for W'(ay)

W’(ak + 5ak) = W’(ak) + mjéaj (2.27)
we obtain
3 ~
Sap ==Y W' x W'(ay). (2.28)
i=1

and we iterate until the solution is reached.
Finally the uncertainty on the determination of ay is as usual given by:

Aay = W' (2.29)

Note: in the single-photon mode W’ being a linear function of the unknown ay, the
second term of eq. (2.26) disappears and W is positive definite.

Estimator #2: the average energy

This estimator makes sense for the multi-photon mode, i.e. in the limit M — oo where
the energy distribution becomes Gaussian. However, even outside this limit the average
energy can always be taken as an estimator to measure the polarisation. In this section
we derive the expressions of the average and of the width of the energy distribution.
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Let us define the average energy of a photon entering the calorimeter (here again we
drop the experiment index):

B * dm(FE)
E=M"" —— 2 FdFE
/0 dE
and its variance
AE =M / E2dE &£

For N photons entering the calorimeter after a bunch-crossing, the average energy is
given by
< E>y=NE&
. N . 2 N N
with B =3 E;. Defining E* =377 > " | E;Ej, one gets
< E? >y= N(AE)? + N2

Finally, introducing the Poissonian law to describe the probability that /N photons are
produced one obtains:

< FE>= Ze —<E>N_M£

Notice that one could have also derived this expression more directly since

dP(E)
E >= ————FdE =M
< FE > /0 o d £.

For the variance, writing
-M 2 2 2
7 >= E —<E >y=M(AE)" + M(M + 1)&

we get
(AE)* = M(AE)? + ME?

where one should remark the presence of the often forgotten extra term AE2.
To build an estimator from the measured average energy we shall consider the limit
M — oo. In this limit the energy distribution is Gaussian:

—MmE)2
aP(E) _ exp— iy
dE V2rAE
and the Likelihood function is then given by:
3
(Ef — Me£°)?
=-2InL= In[(AE°)? 2.
a= Yoy HLEY g AR, (2.30)

e=1 h=1
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where the factors containing 7 have been removed and where Ej is the energy measured
in the bin h. To simplify eq. (2.30) we use

Eh Meg) 1 ege\2 ! e ece e
BET (AE€)2< (MeE°) +hzlE —2M°E ZE

h=1

=

so that introducing the average and the variance of the measured energy distribution

H
ZE;, (AEE) —12 E€)?,

h=1

one finds the following expression for the estimator

W= ZH&{ (B = Mzze; (BB | ln[(AE8)2)} . (2.31)

The unknown parameters a;, are finally determined by minimising eq. (2.31).

Estimator #3: x? for the average energy

By assuming that, in the previous estimator, (AFE,,)? is a good estimator of (AFE)? one
may transform the likelihood estimator into a x? estimator:

X _Zﬂe AEAZ)ege) ' (2.32)

This estimator is just a simplified version of the previous one and is usually used experi-
mentally.

Estimator #4: Asymmetry

For a given bin h of the energy distribution, the energy asymmetry is defined by

Ni — Ni

A =
P TONE+ N} —2NL

where the upper-scripts refer to the experiment number. In the single-photon mode this
quantity is described by P x A} with Al = f3(Es)/fo(Es) (see section 2). Because A}
is directly proportional to P, one usually takes it as the LPOL estimator. However, this
is only true for the single-photon mode since the relation between A}* and P is no longer
linear in the few-photon mode. In the latter case it is of course possible to describe
consistently A7* but then the relation becomes complicated because the denominator also
depends on P. Therefore we shall define an estimator using the energy asymmetry only
for the single-photon mode. A straightforward estimator is then

XH: (A — P x AT)?2
— (AAp)?
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where AA}" is the experimental uncertainty of the measurement of A}". From the condi-
tion dx%/OP = 0 we obtain:

ZH AhmAE
. h=1 (AAhm)2

= on A (2.33)
D -1 (DA

)2
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Chapter 3

A Fabry-Perot Cavity for an upgrade
of the HERA longitudinal
polarimeter

In chap. 1, it has been shown that a fast and precise polarimeter is necessary to reach a
high precision on the physics results produced after the HERA upgrade. In chap. 2, we
have shown that a solution for a high accuracy Compton polarimetry is the use of a high
power continuous laser.

In this chapter, we describe the experimental solution leading to a high Compton
scattering rate, namely the Fabry-Perot! optical resonator.

3.1 A Fabry-Perot cavity for polarimetry

The formal aspects of optical resonators are the subjects of numerous monographes and
articles. In order not to repeat what has already been described elsewhere I refer to refs.
[2, 3]. Only the main features concerning laser Gaussian beams and cavity modes are
summarised in appendix 3.6.

Details on the use of a Fabry-Perot cavity for polarimetry are given in the very com-
plete ref. [4] (see also [5]) and in CEA-Saclay technical notes [6].

3.1.1 Principle of Fabry-Perot cavities

In its simplest version, a Fabry-Perot cavity consists in two spherical mirrors located
opposite to each other. When an incident plane wave arrives in the cavity in phase with
the plane waves circulating inside the cavity, the interference is constructive and the power
inside the cavity increases. This is a resonance phenomena and since the phase shift of a
plane wave after a round trip between two mirrors is k x 2L, with L the distance between
the two mirrors and k the wave vector, the resonance condition simply reads

2L c
A= — =q— 3.1
p = =gy (3.1)

L According to the French administration, there is no accent on the letter e of Perot [1].
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for ¢ € N* and where A\ = 27 /k and v = kc/27 are the laser wavelength and frequency
respectively.

In practice one has to deal with laser beams which are not plane waves but usually
almost Gaussian beams. Fortunately, the eigen-modes of a spherical resonator are also not
plane waves. They are determined by the solutions of the paraxial Maxwell equations with
the proper boundary conditions. The fundamental mode of these solutions is Gaussian
so that, in order for a Gaussian laser beam to propagate inside a cavity, one must add to
the frequency matching condition of eq. 3.1 the spatial mode matching conditions (i.e.
one must match the cavity/laser waist in size and position).

If the laser beam axis of propagation coincides with the cavity optical axis (see ap-
pendix 3.7) and if the laser beam is perfectly Gaussian and mode matched, then there
exists only one resonance frequency (modulo 27) and the full power of the laser beam is
efficient. If the mode matching is not perfect (laser beam ellipticity for example) or/and
if the laser/cavity alignment is not perfect, then the cylindrical symmetry is broken and,
depending on the new geometrical configuration, higher order modes can propagate (see
appendix 3.6). The resonance frequencies for these excited modes are all different for
stable cavities so that the net effect of such faults is a loss of power in the fundamental
mode of the cavity.

Applying the continuity conditions for the electromagnetic field on the cavity mirrors
one gets the expression of the field inside the cavity and therefore the corresponding
power:

T 1

X
(1= R)> " 1+ gt sin® 2100L 7

Pm:P()XG, G =

where P is the incident power, G is the cavity gain, Av is the difference between the laser
and cavity resonance frequencies, R and 71" are the reflection and transmission coefficients
(for intensity) of the mirror coatings (see appendix 3.7.1). G is shown in fig. 3.1 for a
2 m long cavity with R and T given in table 3.2 of appendix 3.7.1.

From this figure and from the above expression, one defines the following useful quan-
tities:

e the Free Spectral Range F'SR = ¢/(2L) (frequency distance between two longitudi-
nal modes of the cavity);

e the Full Width at Half Maximum FW HM (width of the resonance peak).

e the Finesse ' = FSR/FWHM =~ nv/R/(1 — R) (the number of round trips of a
plane wave inside the cavity is thus given by F/7 ?);

e the characteristic time or filling time of the cavity. For a high finesse, it reads as [4]

LF
TR —.
™

For a 2 m long cavity and for a Nd:YAG laser (A = 1064 nm) one gets
FWHM

14

~ 10 M

2Thjs the number of round trip of a plane wave until the intensity vanishes. This is simply obtained
using  o°r™ =1/(1 —r) with 7 = v/R the amplitude reflection coefficient.
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with the above formula and using the numbers given in table 3.2 of appendix 3.7.1. One
also gets the following cavity filling time 7 & 60us.

In other words, if one wants to keep such a cavity at the resonance, one must match
the cavity length and the laser beam frequency at 107! level. Clearly, a fast feedback
system is required in order to ensure this condition.

A feedback loop can act on the cavity length (piezo-electric transducer moving the
mirrors) or on the laser beam frequency (frequency continuously tunable laser). For
practical reasons, explained in the next section, we have chosen the second solution.

Gain
=y
sy

0%

0%

O e U E U E R HAV R AU R B
-100 -80 -60 -40 -20 0 20 40 60 80 100
Av/kHz

Figure 3.1: Gain of a 2 m long cavity as a function of the difference between the laser
and cavity resonance frequencies. Values of the cavity mirror reflection and transmission
coefficients are those given in appendix 3.7.1.

3.1.2 Choice of the cavity geometry for HERA

The principle of the implementation of a cavity around an electron beam pipe is described
in fig. 3.2. The cavity mirrors are introduced inside the cavity, near the electron beam
pipe and the laser and all the other optical components are located on the optical table
close to the cavity. Since the mirrors are located inside an ultra high vacuum region
(= 1079 Tor), it is not convenient to use actuators for the feedback. The solution of a
monolithic cavity has therefore been chosen. This experimental set-up has been operated
successfully at Jefferson Laboratory on the CEBAF accelerator [4, 7, 8] and we have taken
advantage of the experience accumulated there.
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Figure 3.2: Simplified scheme of the implementation of a Fabry-Perot cavity inside the
electron beam pipe. The optical elements and the laser are located close to the beam
pipe. From [4].

The exact layout of the cavity is determined by the total distance between the two
mirrors, the radius of curvature of the mirrors and the crossing angle between the laser
beam and the lepton beams. This angle is given by a ~ 2d + ®/L, where L is the cavity
length, d is the distance between the electron beam axis and the edge of the mirror and
® is the mirror diameter. To avoid synchrotron radiation, the laser beam must cross
the electron beam in the vertical plane, i.e. along the y axis (see fig. 2.1 of chap. 2).
The minimum value for d is then fixed by the machine requirements, that is 2 ¢cm. One
must also add 2.5 cm for mechanical purposes. The cavity waist (see appendix 3.6.1 for
a definition), i.e the laser beam waist, depends on the mirror radius of curvature R,.
In section 3.7.2 we show that, for confocal cavities R. = L, the mechanical stability is
optimum. Considering a confocal cavity with d = 4.5 cm and ® = 25.6 mm and using
eq. 2.4 of chap. 2 for the laser beam/electron beam luminosity, one can determine the
Compton event rate as a function of the remaining free parameters, the cavity length and
the light power inside the cavity. This rate is shown in fig. 3.3 for a 1 mA electron beam
intensity and various values of the light power inside the cavity. The grey hatched area
corresponds to the scattered photon rate of 1 to 2 photons per interaction for an electron
current of 40 mA (typical value for the HERA running). In chap. 2 we have shown that
with this event rate the polarisation measurement accuracy is much below 1 per mille per
bunch and per minute. Therefore, from this figure it can be seen that a 2 m long cavity
intersecting the lepton beam at 3.3 degrees (58 mrad) will deliver the needed luminosity
provided a laser beam power of the order of a few kW is supplied, that is 3 kW to fix a
number.

In summary, a 2 m long confocal cavity has been chosen for HERA on the basis of
mechanical and luminosity constrains. This is twice longer than the CEBAF cavity.

3.2 Mechanical design of the cavity

3.2.1 Constraints

One of the main considerations when designing the cavity is that wake fields from the
passing electron beam should not disturb the cavity operation, and that the cavity should
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Figure 3.3: Event rate per bunch normalised to a total electron current of 1 mA as a
function of the cavity length (bottom scale) and the crossing angle (top scale). For the
plot it is assumed that the separation between the beam axis and the mirror centre is
kept constant at 5.75 cm.

not perturb the electron beam. The mutual perturbation is minimised by the introduction
of a 15 mm diameter tube, which is used to suppress the propagation into the cavity of
high frequency modes from the passing beam. Numerical calculations indicate that this
tube should extend +80 c¢m from either side of the hole in the beam pipe (see figs. 3.4
and3.5). By making the hole for the laser beam in the beam pipe as small as possible the
power loss through electromagnetic heating is also reduced to an almost negligible level
(18 W during injection, less than 0.1 W during normal beam operation [9]).

Another constraint comes from the presence of the small tube around the laser beam
inside the cavity. The laser beam must pass ‘far away’ from the tube surface in order not
to loose intensity by diffraction. In appendix 3.7, the determination of the mechanical
tolerances is described. The laser beam tube size defines in fact the maximum tolerable
angular and axial relative misalignment between the two cavity mirrors. For 15 mm
diameter, it is safe to require angular and position tolerances of 1 mrad and 1 mm. Under
these conditions, the cavity optical axis crosses the mirrors within 3 mm, at most, from
their centres. Of course, once the mirrors are mechanically aligned, one has to align and
mode match the laser. But with these tight tolerances, we ensure that losses induced by
diffraction are negligible.

Another constraint comes from the laser itself. Once turned on, one should not change
its frequency by more than =~ 70 GHz. Above this threshold, the longitudinal mode of
the laser changes and this may induce some perturbation on the feedback operations.
This frequency threshold induces a constraint on the maximum variation of the distance
between the two mirrors. This distance must not exceed 70 pum once the cavity has been
locked.

3.2.2 Mechanical design

From the constraints given above, the cavity must consist in a cylindrical vacuum vessel
surrounding a beam pipe section on which two small tubes are soldered. The mirrors
also have to lay in the vacuum and therefore inside the vessel but, because of heat effects
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Figure 3.4: Technical drawing (longitudinal view) of the cavity. See text for comments.
From [10].

Figure 3.5: Picture of beam pipe inside the cavity (half is shown). Above the elliptic
electron beam-pipe, a circular tube is soldered to reduce the wakefield excitations.
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and possible vibrations propagating along the beam pipe, they cannot be mounted rigidly
on the vessel. The solution adopted is to mount the mirrors in a post holder fixed to a
plate resting on two big cylindrical legs clipped on the optical table (see table 3.10). The
post holders are linked to the vessel through metal bellows thus filtering the remaining
vibrations. In this way, the cavity mirrors are completely part of the optic table which
supports all the optics.

Figure 3.6: Three dimension technical drawing of the cavity and of the optical scheme.
See text for comments. From [10)].

The mechanical scheme is shown in figs. 3.4 and 3.6 and a picture taken during the
installation is given in fig. 3.7. All components are made of stainless-steel. To reduce the
vibrations coming from the beam pipe, the beam pipe inside the cavity is isolated from
the rest of the HERA beam pipe by two standard HERA bellows (not visible on figs 3.4
and 3.6). The cavity vessel is isolated from the beam pipe inside the cavity by two other
bellows. The vessel is finally mounted on the table via two pairs of passive absorbers (see
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Figure 3.7: Picture of the cavity taken during the installation. The laser and the optical
elements before the cavity entrance are located on the rail parallel to the cavity vessel.
The red laser diode, used to aligned the cavity mirrors, enters the cavity by the opposite
entrance. It is visible on the picture: between the rail and the cavity vessel and mounted
on a post holder at a height higher than the rail.
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fig. 3.8). The optical table is therefore isolated from the beam pipe by a three stage filter:
two pairs of bellows and two pairs of absorbers.

The inner part of the cavity is shown in fig. 3.5 (see also fig. 3.4). To increase the gas
conductance between the beam pipe and the vessel, holes have been implemented during
the soldering of the laser beam tubes. To reduce heat effects induced by synchrotron
radiations, the size of the beam pipe inside the cavity has been increased. The tubes are
supported by rectangular plates, they have been assembled with respect to the tolerances
given in the above section.

The cavity vacuum windows are 3 mm thick and 30 mm diameter silica plates. To
avoid birefringence, the windows have been anti-reflection coated and soldered to the
stainless steel flanges according to a special procedure (glass-metal soldering). Since the
laser beam inclination is 58 mrad with respect to the electron beam, the vacuum windows
have been also inclined by 58 mrad.

The optical table must be kept in the machine plane (‘HERA is tilted’ by 8 mrad
and 3 mrad around the horizontal axes x and z respectively, see fig. 2.1 for the axes)
and isolated from ground vibrations. Because of large temperature variations inside the
HERA tunnel (more than 10 K between open and running conditions), active isolators
would have induced movements of the table, therefore only passive absorbers could be used
to isolate the table from the ground. A special mechanical interface has been designed to
align the table/cavity onto the HERA plane.

Inside the cavity, the vacuum is maintained by two ion pumps visible on fig. 3.6 and
pressure is measured by a vacuum gauge (on the top of the cavity vessel, see fig. 3.4).
The heavy ion pumps are isolated from the optical table by passive absorbers (see fig.
3.9).

The mirror mounts are shown in fig. 3.10. It is important to be able to align the
two mirrors within the accuracies given in the above section. To do so, the rotation
around the normal of the optical table is done using a lockable air-vacuum rotator. The
orientations of the mirrors in the other directions are performed using a standard optical
technique (named ‘gimbal mount’): the mirror is attached to a plate which is moved via
three micrometric screws acting on a plane, a line and a point. With this technique, the
mirror centre stays at the same height during the alignment operations.

The cavity mirrors are aligned with respect to each other using the auto collimation
technique and a red laser diode (see chap. 5 for details). The laser diode — visible on
fig. 3.6 — is injected inside the cavity by two mirrors (see fig. 3.11) rigidly mounted on a
movable rail.

3.2.3 Implementation at HERA

To control the thermal expansions of the cavity and of the optical table, the whole system
is surrounded by an isotherm house (see the picture of fig. 3.13). Inside this house, the
temperature is controlled and kept constant within £1°. This is enough with regard to
the laser longitudinal modes since all mechanical components, including the optical table,
are made of stainless-steel® (thermal dilatation = 36 ym per degree).

Another purpose of the cavity housing is the radiation protection. The optical elements
located on the optic table are made of glass, quartz, calcite, KD*P, TGG and YAG doped

30nly the plates on which the cavity mirror post holders are mounted are in Aluminium.
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Figure 3.8: Technical drawing of cavity vessel mount. From [10)].
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Figure 3.9: Technical drawing of the ion pump (blue cube on the right of the figure) and
of the optical table mount. From [10].
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Figure 3.10: Technical drawing of the cavity mirror mounts (lower and upper mirrors on
the left and right sketches respectively). The cylinder around the mirror is the cavity
vessel. The belows, used to isolate the mirror mount from the cavity vessel is visible on
the left sketch (below the vessel). From [10].

crystal. They are all sensitive to deep UV, X-rays and gamma-rays. For example, natural
quartz (SiOq crystalline) always contain a small amount of crystal site defaults: Al, Na,
Li atoms and OH~ molecules [11, 12]. These defaults do not modify noticeably the optical
properties of quartz except when it has been irradiated. In this case the quartz is solarised:
contaminating atoms are ionised and this leads to absorption of light in the near infrared
and visible domain [13].

To avoid radiations, a 3 mm lead shielding is located all around the cavity house.
During the summer 2000, we have let a couple of cavity mirrors (junk items) directly on
the beam pipe at the future cavity location and we observed no alteration of their optical
properties.

3.3 Optical scheme

One needs to provide a set of optical elements in order to inject adequately the laser beam
inside the cavity and to control the light polarisation. In this section a brief description
of these optical elements is given.

We start by a description of the laser, focusing on the informations necessary to
understand our experimental results described in chap. 5. Next all optical elements used
in our set-up are described. This section is closed by a discussion on the expected level
of parasitic birefringence induced in our set-up.
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Figure 3.11: Technical drawing of the ellipsometer. Also visible are the two mirrors used
for the cavity mirror alignment. These mirrors, mounted on a rigid rail located ~ 24.7 cm
above the table, are used to inject the red laser diode inside the cavity. The Glan-Thomson
prism, also mounted on this rail, used for birefringence calibrations is also shown in this

picture. For sake of clarity, the electron beam pipe has been removed from the drawing.
From [10].
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Figure 3.12: Picture of the cavity output. Visible on this photograph is the cavity housing
(thermal isolation plates and aluminium structure), the temperature controlled photodi-
ode box (in front) and the optical elements of the ellipsometer. The lamps were used to
heat up the cavity and the optical table.
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Figure 3.13: Picture of the cavity house. The electronics is located on the top of the
cavity house.
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Figure 3.15: Nd:YAG crystal of a non-planar ring laser (see text for details). The tilts of
the light path at points B, C' and D fix the polarisation state of the stimulated emitted

light .From [14].

The only laser available from industry, finely tunable in frequency is a non-planar ring
Nd:YAG? laser (Lightwave®, model 126). To operate at A = 1064 nm, the Nd:YAG rod
is pumped by a GaAlAs laser diode cooled in order to emit at 808.5 nm (see fig. 3.14,
reasons why a laser is used to pump another laser are given in ref. [16]).

The principle of non-planar-ring oscillator [14, 17] (NPRO) is shown in fig. 3.15. The
light emitted by the laser diode enters the rod at point A. The rod surfaces are finely
polished and coated in such way that total inner reflection occur at points B, C, and D
(at point A the transmission is partial and the surface is curve and coated). The crystal

4Tt is a solid state Neodymium doped Yttrium-Aluminium-Garnet laser.
5Recently, the company Innolight has provided a cheaper similar laser. This new laser is, in addition,
less noisy and has a smaller linewidth. But it was unfortunately not yet available when we ordered our

Lightwave laser ...
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Figure 3.16: Square of the laser beam radius as a function of the distance from the laser
box. Measurement is performed with a beam-scan from Photonics.
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Given/constructor

measured

Initial Power

760 mW

600-700 mW

Noise amplitude 0.019% rms
(bandwidth 5 Hz to 10 MHz)
Coherence length >1000 m

Polarisation

300:1, vertical

Linewidth

5 kHz over 1 ms

Frequency jitter

<200 kHz/s

Frequency drift

<50 MHz/hour

Thermal tuning range

30 GHz @ 1 GHz/s

Piezo tuning range

30 MHz @ 4.6 MHz/V
(30 kHz bandwidth)

Waist position

5 cm vertical

4.7 cm vertical
5.5 cm horizontal

Waist size

0.35 mm vertical
0.46 mm horizontal

0.32
0.42

Beam divergence, full angle

3.9 mrad vertical
3.0 mrad horizontal

We measure the

Table 3.1: Main characteristics of the Lightwave 126-1064-700 laser.
laser beam radius with a beam scan and determine the waist and waist position from a
quadratic fit to these measurements.
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is surrounded by a magnetic field H (see fig. 3.14) to match the polarisation state of the
resonant mode (garnet is a magneto-optic crystal). The main advantage of such a ring
laser, with respect to the standard linear laser cavity, is the reduction of heat inside the
crystal (for Nd:YAG laser, heat variation is the main phenomenon broadening the spectral
width).

The laser output spatial mode depends strongly on the rod/laser diode alignment [14]
and of the entrance surface radius of curvature. We indeed observe a small ‘triangular’
halo when measuring our beam shape with a CCD camera as shown in ref. [14] (this
effect is however very small).

The laser beam is also elliptic as shown by our waist measurements reported in fig. 3.16
(the waist in vertical and horizontal direction are different). An intensity measurement
performed at 25 ¢cm from the laser box is shown in fig. 3.17. A characteristic diffractive
pattern is clearly visible and, as also shown in this figure, Gaussian fits performed on
two projections are very bad. This pattern, depending on the distance between the laser
box and the beam-scan device (the intensity shape gets more Gaussian as this distance
increases, as expected [3]), induces a bias in the determination of the laser beam waist and
therefore on the laser/cavity coupling (the propagation of such beam is more complicated
than the one of a pure Gaussian beam). It is difficult to estimate the coupling of such
beam to our Fabry-Perot cavity but, in any case, we expect a power reduction inside the
cavity.
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Figure 3.17: Measurement of the laser beam intensity at 25 cm from the laser box. A 3D
view (top left), a 2D contour (bottom left) and two projections (right) are shown. In the
latter plot, results of Gaussian fits are also shown.

There are two ways to modify the laser beam frequency:

e a piezo-electric transducer is located on the rod, thereby modifying the rod geometry
and therefore the laser beam frequency (in other words, the transducer changes
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the laser cavity length). This is a fast and fine tuning: the laser beam frequency
changes by 3.4 MHz for per Volt applied on the actuator (fast channel, bandwidth
~ 30 kHz).

e The rod temperature can be varied thanks to a Peletier module (controlled by a DC
voltage). This temperature variation induces a change of the laser beam frequency
of 5GHz per Volt applied on the Peletier module. This is a slow frequency variation
(slow channel, bandwidth ~ 1 Hz).

In fig. 3.18, a schematic picture of the noise intensity is shown. The noise is reduced
by feedback control on the laser diode temperature. This laser is a low noise laser and is
therefore adequate for our purpose.

The main characteristics of the LightWave laser are given in table 3.1. In chap. 5
we shall advocate the ‘large’ value of the linewidth to explain why not all the laser beam
power could be coupled to the cavity. It is then useful to define the laser linewidth here.

The linewidth is the width of the laser lineshape. The lineshape is defined by the
Fourier transform (from time to frequency space) of the electric field autocorrelation
function E*(t)E(t+ 7). The physical origin of a non-vanishing linewidth is related to the
random emission phase inside the laser medium. For a solid state laser like the ND:YaG,
for example, mechanical strain and temperature variations induce some changes of the
optical indices and then of the emission phase [18] (many mechanisms contribute to the
lineshape [19], an account for this rich physics topic is obviously beyond the scope of
the present work). It can be shown [18] that such phase fluctuations lead to a Lorentzian
lineshape. The linewidth thus depends on the mechanical and thermal quality of the laser.
Even with a perfect device, the irreducible contribution of the spontaneous emission to
the stimulated laser light gives a lower limit on the linewidth (the so called Townes limit
[16]). This limit is two orders of magnitudes below the number given by the manufacturer.

The coherence length is a parameter related to the laser linewidth and random emission
phase. It can be determined by a Mach-Zehnder like interferometer [24]: if the optical
path between the two arms of the interferometer is greater that the coherence length,
then no interference pattern is observed. Let us get an idea of the impact of a 1000 m
coherence length on the cavity resonance conditions. Taking a finesse around 30000, as
the one of our cavity, one gets a number of round trips of ~ 10%, that is a total optical
path inside the cavity of 40000 m. Comparing the two numbers one sees that the coherent
length is smaller than the optical path (and the laser linewidth greater than the cavity
FWHM which is around 3 kHz, though it is given at a different time scale) so that we
may not be able to ‘fill the cavity completely’.

3.3.2 Details of the optical scheme

One needs to provide a set of optical elements to fulfil the following functions:

e creation of a circular polarisation laser beam and switching between left and right
polarisation;

e laser/cavity mode matching;

e laser/cavity geometrical alignment;
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Figure 3.18: Approximate distribution of the residual noise intensity (as a function of the

laser beam frequency variation). From [7].
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Figure 3.19: Schematic view of the optical scheme together with main distances. From
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Figure 3.20: Principle of the Faraday isolator used to protect the laser from the light
reflected by an ensemble of optical elements (named optical bench on the figure). The
first polarisation cube delivers linear polarised light. Then the polarisation is rotated
by 45° by the Faraday rotator. This component is made of a terbium gallium garnet
crystal located inside a permanent magnet. After the second cube, the polarisation of the
beam reflected by an optical bench (dashed ellipse and dashed arrow in the figure) will
be rotated by another 45° by the Faraday rotator so that it will by deflected by the first
polarisation cube. The second polarisation cube is then used to match the orientation
of the polarisation vector after the Faraday rotator and the polarisation of the reflected
beam. This scheme leads to a 40 db laser isolation.
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Figure 3.21: Effect of a half wave plate on linear polarisation. See chap. 4 and appendix
A for details.
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e extraction of the signal reflected by the cavity for the feedback;

e measurement of the laser beam polarisation.

In addition, because the optical table is close to the HERA beam pipe, all operations on
the optical components must be done remotely.

Our Saclay colleagues met the same constraints for the CEBAF cavity project[4, 8].
They provided a very well suited optical scheme that we also used with small modifica-
tions. Our optical scheme is shown in fig. 3.19 (see also fig. 3.6). Starting from the laser
box we find:

1.

9.

10.

A Faraday isolator which insures that no reflected beam enters the laser (this would
perturbate the NPRO and then the cavity feedback). This element is made of a
gyromagnetic crystal surrounded by a permanent magnet and located between two
polarisation separation cubes (see fig. 3.20).

. A second Faraday isolator used to increase the laser isolation (80 db in all). At the

time of writing this document this component is not yet installed.

. Alens (f1 =400 mm) to provide a small laser beam inside the Pockels cell and for

the laser/cavity mode matching.

. A quartz half wave plate (thickness ~ 180um) to turn the linear polarisation before

the Pockels cell (see fig. 3.21).

. A Pockels cell: electro-optic KD*P crystal (see appendix 4.7 of chap. 4). For a

certain value of the power supply on the crystal the cell acts as a quarter wave
plate (i.e. the linearely polarised beam is transformed into a circularly polarised
beam, see fig. 3.22). The polarisation is switched from left to right by changing the
polarity of the Pockels cell high voltage.

. Two lenses (fo = —100 mm and f3 = 250 mm) for laser/cavity mode matching.

Two 6° wedge glass plates (see fig. 3.23) to pick-up the beam reflected by the
cavity (see fig. 3.24). This signal is used for the cavity feedback (see section 3.4) ©.
Let us mention that the scheme used at CEBAF (see chap. 5) is not usable since
the switching of the Pockels cell power supply unlocks the cavity. The two wedge
scheme is independent on the beam polarisation and therefore avoids the locking
breakdown.

Four flat 45° dielectric mirrors M1, M2, M3 and M4: they have been coated in the
same run. Two of them are motorised using four Micro-Control stepper motors.

The cavity: a vacuum window, the two cavity mirrors and another vacuum window.

Two flat 45° dielectric coated mirrors — Mol and Mo2 — to bring the beam emitted
from the cavity down to the ellipsometer (see also fig. 3.11).

5In order not to increase the number of optical elements, we first installed the feedback photodiode
behind the mirror M4 [23]. But, once installed at DESY, for an unknown reason, we lost a factor twenty
on the feedback signal. Due to a lack of time, we used two available wedges, it would have been simpler
to use a one face anti-reflection coated parallel plate.
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11. An holographic beam sampler. This is a coated glass plate inducing forward diffrac-
tion. The two lateral first order beams are emitted at 10° from the main beam and
contain 1% of the power. We use them to control the cavity power and the cavity
mode (see also fig. 3.11).

12. The ellipsometer: it consists in a quartz quarter wave plate (QWP), a Wollaston
prism (see fig. 3.25) and three InGaAs photodiodes (see chap. 4): two of them
read the light intensities of the two beams emerging from the Wollaston prism and
the third one reads the laser beam power before the QWP (see previous item).
These elements are also visible on the cavity output drawing of fig. 3.11 and on the
photograph of fig. 3.12. This is a standard ellipsometer, by rotating the QWP in
its plane and then fitting the two intensities measured after the Wollaston prism to
an appropriate theoretical expression, one determines the polarisation state of the
incident light.

13. Two infrared CCD cameras: one for the alignment (looking at the diffusion on the
mirror M1) and one to visualise the mode after the cavity (directly in the beam).

For precise details concerning the optical principles related to the above elements we
refer to [20, 21]. We shall briefly describe here the function of some of these elements.

The half wave plate (HWP) works in conjunction with the Pockels cell. For a given
value of the DC voltage supplied on the Pockels cell, it serves to rotate the incident vertical
polarisation and therefore contributes to define the polarisation state after the Pockels
cell (see chap. 4 for details). This component is added with respect to the Cebaf’s optical
scheme.

The three lenses fi, fo and f3 provide the spatial mode matching of the laser beam to
the cavity. There is a matrix algebra (named ABCD algebra, see refs. |2, 3]) determining
the effects of a convex (concave) surface on the spatial and phase properties of a Gaussian
beam’. Taking into account the fact that the cavity entrance mirror is spherical we have
determined the position and the focal of the three lenses (in fact two would have been
enough but we also have to provide a small beam inside the Pockels cell). Since our laser
beam is elliptical (i.e. waists are different in z and y directions) and since it is not that
easy to determine the exact position of each object on an optical table, the second lens
has been mounted on a remotely controlled linear translation stage.

The four mirror M1-M4 system are used to align the laser beam onto the cavity optical
axis. Two mirrors would have been sufficient for this purpose but we use four mirrors to
reduce the birefringence effect (see section 3.3.3).

All our optical components are anti-reflection coated for 1064 nm. The support is an
aluminium rail and the interface elements between this rail and the optical mounts have
been designed and built in the LAL workshop.

We have spent much effort on the light polarisation measurement, i.e. operation and
calibration of the ellipsometer. This is the subject of chap. 4.

"It can be easily shown, in the paraxial approximation, that a Gaussian beam is equivalent to a
spherical wave with a complex radius of curvature. The ABCD algebra is then derived from the paraxial
geometrical optical rules.
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Figure 3.24: Picture of the mirror M1, the two wedges system (located inside a black tube)
and the feedback photodiode and its readout electronic box (with a diffuser in front). Also
visible are the CCD used for the laser/cavity alignment (white tube, right upper corner)
and the third lens (right bottom corner).
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Figure 3.25: Principle of (a) Glan-Thomson prism and (b) Wollaston prism. Both com-
ponents are made of calcite (uniaxial crystal, see chap. 4 and appendix A) with optical
axes as indicated in the figures. They consist in two prism optically glued. Inside the
Glan-Thomson prism, at the interface between the two prisms, total internal reflection
occurs for the ordinary ray so that the transmitted light is linearly polarised along the
extraordinary electric vector (the second half only serves to align the transmitted ray with
the incident one). For the Wollaston prism, the optical axes are oriented differently in the
two halves. This leads to an angular separation of the ordinary and extraordinary waves.

3.3.3 Parasitic ellipticity and birefringence sources of the optical
setup

One of the main constraints for the optical scheme design is the necessity to provide the
highest degree of circular polarisation at the centre of the cavity (for Compton scattering
with the electron beam, see chap. 2). And measure it accurately afterwards.

The light polarisation state is controlled by a half wave plate and a Pockels cell.
However, all the optical elements located between the Pockels cell and the cavity centre
can modify the laser beam polarisation. Non-absorbing elements can in fact induce a
parasitic phase shift between the vertical and horizontal components of the electric vector
E, and E,. This phenomenon will be called here birefringence (although this word refers
to the phase shift). In addition to birefringence, an ellipticity can be induced. The main
contributors for this effect are the 45° mirrors and the two wedge system.

Two ‘regions’ must be considered: before the cavity centre and after the cavity centre.
In the former region, the parasitic birefringence reduces the effective degree of circular
polarisation at the laser-electron IP. In the latter region, the birefringence introduces a
systematic bias on the laser beam polarisation state measurements.

Let us give here a brief introduction on birefringence using the Jones formalism (for
anisotropic crystals, see chap. 4 and for axis-symmetric induced birefringence see ap-
pendix 3.8). The Jones matrix of an ideal non-birefringent optical element is simply the
2 % 2 identity matrix. To take into account a small birefringence one can first assume that
the effect is homogeneous within the size of the laser beam spot. Considering the normal
incidence and neglecting any internal multiple reflections, the Jones matrix describing
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small birefringences of a non-absorbing element is simply the one of a retardation plate:

v (g 0) (32)

where ¢ is called the birefringence and where this matrix expression is given in the so
called neutral or eigen-basis. If the incident polarisation is not aligned along the eigen-
vectors of M, then a relative phase shift is induced between the two components of the
electric field. To determine the birefringence of an optical element, a robust method is
then to turn this element between two crossed polariser and then to measure the variation
of the transmitted intensity. This method leads both to the birefringence and the neutral
axis directions.

To control the birefringence/ellipticity of each of our optical elements, one possibility
would then be to calibrate all of them accurately. But this task is impossible with regard
to the complexity of the phenomenon. Birefringence effects are inhomogeneous, they
strongly depend on the beam characteristics, ambient temperature, mechanical stress
induced by the mounting and therefore on the laser beam impact point.

The first thing to do is therefore to reduce, when possible, the parasitic elliptic-
ity /birefringence. The dominant source of parasitic ellipticity/birefringence is the 45°
dielectric mirrors since they have different reflection coefficients for Transverse Electric
(TE) and Transverse Magnetic (TM) waves®. No information is provided by the manu-
facturer, but looking at various manufacturer catalogues one can estimate that reflection
coefficients for TM and TE waves may differ by ~ 0.5%.

To reduce this effect, we have adopted a well known mirror scheme ?: four identical
45° dielectric mirrors M1, M2, M3 and M4 are oriented in such a way that M1 (M2) and
M3 (M4) have their normals perpendicular to each other. In this way, the TE and TM
waves for M1 (M2) become TM and TE for M3 (M4) respectively so that the ellipticity
is, in principle, cancelled out after M4. Since the beam must be inclined by 58 mrad
inside the cavity, to keep the orthogonality between M2 and M4, M4 has been turned by
58 mrad around the x axis.

It is difficult to estimate the residual ellipticity /birefringence for this four mirrors
scheme. Some studies were performed on a two mirrors scheme (like the one use after
the cavity) for the Cebaf cavity project and the result was that the degree of circular
polarisation is only modified by one per mille (and roughly one per mille per degree of
angular mismatch between the orientation of the two mirrors)[27]. This is satisfactory.

Because it is located after the four mirrors, the cavity entrance window may induce
a noticeable birefringence. Although constituted of fused silica, mechanical constraints
appear because of air/vacuum pressure (this is mentioned in [25]) and the manufacturing
process [28, 29, 30]. In appendix 3.8 we estimate numerically the birefringence induced
by the air/vacuum pressure. We find that this effect is negligible. The birefringence
induced by manufacturing process (glass-metal soldering from Vermetal) was measured
by M. Lintz [31] using the crossed polariser method described above (plus a ‘fine tuning’
rotation/translation of the sample between the polarisers). The result is shown in fig.

8These are the two directions of the electric vector: in the plane of incidence (TE) and perpendicular
to plane of incidence (TM). Here the plane of incidence is defined by the normal of the mirror and the
laser beam propagation axis. See [24] and chap. 4 for more details.

9For example, this scheme is used at SLAC/SLC[25] and JLAB/CEBAF [26]
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3.27. Within a few millimetre from the window centre, the birefringence can reach at
most 5 mrad.

As for the cavity entrance window, one can try to compensate, at least partially,
this parasitic birefringence by adjusting the orientation of the HWP and the Pockels cell
power supply. In addition, depending on the orientation of the neutral axes within the
laser beam spot size, the parasitic polarisation may not be totally spatially Gaussian (see
appendix 3.8) so that it may be filtered out when the cavity is locked on the fundamental
mode.

However, a second vacuum window is located between the cavity centre and the ellip-
someter. To estimate the bias on the determination of the degree of circular polarisation
— i.e. the value of the the fourth component S; of the Stokes vector (see section 2.2.1) —
induced by the 5 mrad window birefringence, let us start from eq. 3.2. Sj is extracted
from the intensity measurements done after the Wollaston prism. The two orthogonal lin-
ear polarisation directions transmitted by the Wollaston prism define the absolute basis
denoted by {%X ,¥ }. In this basis, the Jones matrix of the birefringent component reads
[21]

M' = R(—a)MR(«)

with « the orientation the neutral axes basis in the absolute basis (we restrict ourselves
to the normal incidence) and where R(«) is the 2 x 2 rotation matrix. If we assume that
the laser beam is perfectly circular inside the cavity, then the polarisation state after the
window is given by E, = M'E; with ET = (1,4)/v/2. The degree of circular polarisation
is further given by (see eq. 2.2 in chap. 2)

Sy = i[Eo.% (Eo.§ )" — Eo.§ (Eok )].

To second order in ¢, one can write S3 = 1+ AS; with AS; = —p?/2, i.e. the bias
is quadratic in (. It means that degree of circular polarisation of the laser beam is a
priori measured with a systematic uncertainty of ~ 25 -107% which is much smaller than
our requirements. Let us mention that such small birefringence is compatible with some
transmission measurements performed within the VIRGO Collaboration on the same kind
of window [32].

The cavity mirrors may also introduce a birefringence because of the thermoelastic
deformation due to the high power circulating inside the cavity [34]. In appendix 3.8
we estimate this effect numerically and we conclude that it is negligible. Concerning
the birefringence that could be induced by the mirror coating, one can safely neglect it
according to the following arguments: the laser beam is reflected under normal incidence
and the diffusion coefficients are extremely small (a few ppm see table 3.2). The last
source of birefringence for the cavity mirror is the mounting system. This system is
shown in fig. 3.26 and it essentially consists in a spring pushing a ring in contact with
the cavity mirror. The order of magnitude of the birefringence induced by mechanical
stress can be estimated using a simplified version of the calculation presented in appendix
3.8. Following [33], we introduce an effective parameter C' &~ 10712 Pa™! for glass such
that the induced birefringence reads 2wreCp/A with p the pressure supplied on the mirror
and e the mirror thickness. The force supplied by the spring on the mirror has been
measured (by supplying weights on the system) and is estimated to be at most 2 N, that
is a pressure on the mirror ~ 10~* Pa and then a birefringence of the order of 107! for
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e = 6 mm. We can therefore avoid a more quantitative estimate and conclude that this
source of birefringence is negligible.

Finally, the two mirrors and the HBS located after the cavity can also induce a birefrin-
gence. The HBS birefringence was also measured by M. Lintz [31] but, for this component,
it was found to be below the measurement sensitivity (~ 0.3 mrad) and therefore negligi-
ble with regard to our precision requirement. However, the HBS was mounted in a mirror
mount for this measurement and we observed a noticeable birefringence when the locking
screw was too tight. We then fixed the HBS in its mount using a stress-free glue. As for
the two mirrors system, an in situ calibration procedure has been foreseen (see section
3.3.4) though, as described above, they are not expected to modify significantly the light
polarisation.

Figure 3.26: Technical drawing of the cavity mirror mount system. (I): mirror holder; (2)
: mirror; 3): spacer; @ : spacer; B : spring; ©) : stop screw. From [10)].

3.3.4 Optical calibration procedure

As mentioned in the previous sections, the laser beam polarisation is not measured before
the inner part of the cavity and ellipticity /birefringence can be induced by certain of our
optical elements. To optimise the degree of circular polarisation at the laser/electron IP,
we follow the method of ref. [25]: since the Compton total cross section is an increasing
function of the level of circular polarisation, we vary the Pockels cell’s voltage and the
optical axis orientation of the associated HWP in order to maximise the total number of
backscattered photons. Since at the time of writing this document no electron beam has
run in HERA yet, we cannot give any result on this procedure.

In order to control the parasitic ellipticity /birefringence induced by our optical ele-
ments, we have foreseen to insert a high quality linear polariser (i.e. a Glan-Thomson
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Figure 3.27: Result of the vacuum window birefringence measurement. Different curves
correspond to different linear position scans (at the centre and + 5 mm apart). The
window’s centre corresponds to 11 mm on the abscissa axis and half the birefringence is
plotted on the vertical axis. Measurements are from [31].
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prism) at various places in our optical scheme: before the four mirror system, before the
cavity, after the cavity, before the QWP of the ellipsometer. Rotating the QWP for all
these configurations leads, step by step, to an estimate of the optical response of the main
pieces of our setup. Again, but here because of a lack of time, we didn’t perform this
study at the time of writing this document. We postponed these series of measurements
for the HERA shutdown of winter 2003.

3.4 Feedback system
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Figure 3.28: Simplified view of the feedback system (see text).

The ‘Pound-Drever’ technique [35, 36] is used for the laser-cavity feedback. This
method is illustrated in fig. 3.28. The laser beam frequency is modulated by applying a
periodic signal of 50 mV amplitude and 2 = 930 kHz frequency on the piezo transducer
(via the laser fast channel, see section 3.3.1). Beside the laser beam frequency vy, two
side bands of frequencies v, + (2 are generated by this modulation [37]. The electric field
has thus three frequency components and the reflected signal measured by the photodiode
results from the interference between the central and the side bands. It can be shown
(details can be found in ref. [4]) that a demodulation of this signal at the frequency {2
leads to an error signal usable for a feedback loop: close to a cavity resonance frequency
Ve, the error signal is linearly proportional to the difference vy, — v, (see fig. 3.29).

To lock the cavity, an electronic feedback system has been designed and built by the
SIG group of Saclay. It is a copy of the system used for the CEBAF cavity (itself inspired
by the PVLAS experiment system [38]).

This system is depicted in fig. 3.30. A 10 V peak-to-peak ramp, together with the
930 kHz modulation, is supplied on the laser piezo transducer (via the fast channel). The
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