Measurement and QCD Analysis
of Event Shape Variables
in Deep-Inelastic Electron-Proton Collisions
at HERA

Von der Fakultat fiir Mathematik, Informatik und Naturwissenschaften
der Rheinisch-Westfalischen Technischen Hochschule Aachen
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften
genehmigte Dissertation

vorgelegt von

Diplom-Physiker
Thomas Kluge

aus Monchengladbach

Berichter: Universitatsprofessor Dr. Ch. Berger
Universitatsprofessor Dr. G. Fliigge

Tag der miindlichen Prifung: 16. April 2004

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfligbar.






Abstract

Deep-inelastic ep scattering data, taken with the H1 detector at HERA and corre-
sponding to an integrated luminosity of 106 pb™' are used to study the differential
distributions of event shape variables. These include two-jet event shapes (thrust,
jet broadening, jet mass and the C-parameter), as well as three-jet event shapes
(out-of-event-plane momentum and azimuthal correlation) and jet rates. The four-
momentum transfer () is taken to be the relevant energy scale and ranges between
14 GeV and 200 GeV. The event shape distributions are compared with pertur-
bative QCD predictions, which include resummed contributions for many of the
observables. Power law corrections are applied to the predictions to account for
hadronisation effects. A QCD fit is presented for the two-jet event shapes and con-
sistent results are found for the strong coupling constant a; and the non-perturbative
parameter «g.

Kurzfassung

Im Rahmen der vorliegenden Arbeit werden differenzielle Verteilungen von Ereig-
nisformvariablen in tiefunelastischer ep Streuung untersucht. Der zugrundeliegende
Datensatz wurde mit dem H1-Detektor bei HERA gewonnen und entspricht einer
integrierten Luminositit von 106 pb™. Es werden zwei-Jet Variablen (Thrust,
Jetbreite, Jetmasse und der C-Parameter), drei-Jet Variablen (“out-of-event-plane
momentum” und azimutale Korrelation) und Jetraten studiert. Der Viererim-
pulsiibertrag @@ wird als die relevante Energieskala verwendet und nimmt Werte
zwischen 14 GeV und 200 GeV an. Die Verteilungen der Ereignisformvariablen
werden mit Vorhersagen der QCD verglichen, welche fiir viele der Observablen re-
summierte Anteile beinhalten. Hadronisierungseffekte werden durch potenzartige
Korrekturen der Vorhersagen beriicksichtigt. SchlieBlich wird ein QCD-Fit der zwei-
Jet Variablen prasentiert, die Ergebnisse fiir die starke Kopplungskonste a, und den
nicht-perturbativen Parameter ag sind hierbei konsistent.






Contents

Introduction

1

Event Shape Variables

1.1 Overview . . . . . . 0 e e e

1.2 Event Shapes in Deep Inelastic Scattering . . . . .. ... ... ...
1.2.1 Kinematics . . . . . . . ...
1.2.2 QCD Radiation . . . . .. . ... ... .. ... ... ...,
1.2.3  Perturbative Calculations . . . . ... ... ... .......
1.2.4  Non-Perturbative Calculations . . . . . . ... ... .. .. ..
1.2.5  The Breit Frame of Reference . . . . . . ... ... .. .. ..

1.3 Definition of the Event Shape Variables . . . . . . .. ... ... ...
1.3.1  2-Jet Event Shapes . . . . . . . .. ... L.
1.3.2  3-Jet Event Shapes . . . . . . ... ... L.
1.3.3 JetRates . .. .. ... ...

HERA and the H1 Detector

2.1 The Electron Proton Storage Ring HERA . . . . .. ... ... ...

2.2 The H1 Detector . . . . . . . . . . . . . .
2.2.1 Calorimetry . . . . . ..o
222 Tracking . . . . . . . ...

2.3  Event Simulation with Monte Carlo Methods . . . . . . . . ... ...

Data Selection and Reconstruction

3.1 Selection Criteria . . . . . . . . . . . e
3.1.1 Phasespace . .. ... ... ... ...
3.1.2 Data Quality Cuts . . . ... .. ... ... ... .......
3.1.3 Background Estimate . . . . . . ... ... o000

3.2 Reconstruction of the Hadronic Final State . . . . . . . . ... .. ..

Detector Correction Procedure

4.1 Unfolding of Detector Effects . . . . . .. .. ... ... ... ....
4.1.1 Monte Carlo Samples . . . . .. ... ... ... .. ......
4.1.2  Unfolding Procedure . . . . . . ... ... ... ... ...

19
19
21
23
24
24

27
27
28
30
39
40



iv Contents

4.2  QED Radiative Corrections . . . . . . . . . .. .. ... 59
4.3 Experimental Systematic Uncertainties . . . . . . . .. ... .. ... 62
4.4 Combination of Data Sets . . . . . . . . .. . ... ... ... ..., 65
4.5 Results on Distributions . . . . . . . . . . .. ... ..o 69
4.6 Results on Mean Values . . . . . ... ... ... ... ........ 75

5 QCD Analysis 77
5.1 Theory Calculations . . . . . . .. .. ... ... ... .. 7
5.1.1 DISPATCH . . .. .. . . . . . . 78

5.1.2 DISRESUM . . . . ... .. .. . . . . 78

5.2 Fit Procedure . . . . . . . ... 82
5.3 Fits to Distributions . . . . . . . . ... o 83
5.4 Fits to Mean Values . . . . . . . . . ... ... ... 91
5.5 Conclusion . . . . . . . .. 94

6 Summary and Outlook 97
Appendix 99

Bibliography 121



Introduction

The standard model of particle physics describes matter as consisting of structure-
less elementary particles (quarks and leptons), governed by renormalisable quantum
field theories: the electroweak theory and quantum chromo dynamics (QCD). This
model has to be considered as a great success, because since its invention and rise in
the 1970s lots of high precision measurements have been performed, none of them
able to falsify the model.

While the standard model does provide correct predictions, it is unfortunately
an incomplete theory, e.g. it does not include gravity and fails to predict elementary
particle masses. There are several possible extensions of the standard model on the
market, hence it is now up to high energy physics experimentalists to rule out part
of the hypotheses. These days new evidences appear to be just around the corner,
the upcoming large hadron collider (LHC) is expected to shed light on the Higgs
sector and possible super symmetric particles.

QCD is the constituent of the standard model which describes the dynamics
between strong interacting particles, i.e. quarks and gluons. At high energies the
large collider experiments challenge the theory by measurements of various cross
sections with high precision. Perturbative calculations are the standard tools to ob-
tain numerical results from QCD in this regime. In many cases the limited precision
of the calculations affects the conclusions. The precision of perturbative predictions
is an issue, because the determination of the corresponding matrix elements proves
to be difficult and is often at best available for the first non-vanishing term of the
series. Moreover, the uncertainty on the strong coupling constant a,, the single
free parameter of QCD, is still large.

Why is it nowadays still important to investigate QCD? Although meanwhile
the foundations of quantum chromo dynamics appear to be well founded, there are
still areas which are subject to developments:

e The region of low energy, where the application of perturbative methods is
prohibitive, poses still many open questions. An important example is the
hadronisation process, i.e. the transition from quarks to hadrons. Effects
originated by this process are virtually always present in high energy physics
measurements and are often not negligible.

e Another relevant application is the description of high jet multiplicities, i.e.
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reactions where collimated, high momentum particle sprays in the final state
are observed. While it is already interesting to test if QCD describes these
kind of reactions, there is another motivation to study multi jet reactions:
They are an important background for exotic reactions investigated now e.g.
at the hadron electron ring accelerator (HERA) and in the future at the LHC.

This work studies QCD with means of event shape variables, an approach
which highlights the connection of the perturbative and non-perturbative parts of
QCD: the sensitivity being to the hard scattering matrix elements as well as to the
following hadronisation. Hadronic final states in deep-inelastic scattering (DIS)
offer the advantage to probe QCD over a wide range of momentum transfer @) in a
single experiment.

Event shape variables have been studied before, in e*e~ annihilation as well
as in DIS at HERA. In this thesis the topic is revisited with a larger data sample
compared to former H1 analyses and improved data reconstruction and correction
techniques. Due to recent progress on theory side, it is now possible to study the
whole spectra of event shape variables instead of only the mean values. Additional
event shape variables are investigated for the first time in DIS, which are sensitive
to 3-jet production: in total ten event shape variables are studied.

The thesis is organised as follows: Chapter 1 gives an overview of the theoretical
foundations of event shape variables in deep-inelastic scattering and introduces the
observables. The data set the analysis is based on was taken with the H1 detector at
HERA, whose basic features are given in Chapter 2. The selection of the data set is
described in detail in Chapter 3, where also the reconstruction techniques used are
discussed. Subsequently in Chapter 4 the data correction procedure is presented and
the results of the data measurement are given. In Chapter 5 a QCD analysis of five
event shape variables is presented, based on the resummed and matched calculations
accompanied with power corrections. Finally, the results are summarised and an
outlook is given.



Chapter 1

Event Shape Variables

Firstly, this chapter gives a short overview on the topic of event shape variables.
Then the deep-inelastic scattering process, which is investigated at HERA, is briefly
discussed. The Breit frame of reference is introduced and the definitions of the event
shape variables which are studied in this thesis are given.

1.1 Overview

Event shape variables were originally invented to study the characteristics of hadronic
final states in ete~annihilation [1, 2, 3]. The intention is to define a variable as a
function of the hadron four momenta which describes the spatial shape of an event.
For example the event shape variable “thrust” discriminates between more pencil-
like and more isotropic hadron configurations. In general parts of the phase space
are calculable with precision by perturbative QCD. Thus it is possible to test the
SU(3) group structure of the theory [4] and to determine the strong coupling con-
stant o [5]. First indications were provided that gluons are actually vector particles
with analyses of quantities like thrust [6].

Mean values and spectra of event shapes have been studied, whereby perturbative
calculations to fixed order in ay fail to describe the part of the spectra where soft
gluon emission becomes important. In this region resummed calculations are
needed, which incorporate only an approximation of the exact matrix element, but
this approximation to all orders in the a, expansion.

Event shapes can be adapted to DIS if modifications are made, which take into
account that the initial state is not a hadronic vacuum but contains the incident
proton beam [7]. Since in DIS the effective center of mass energy is variable for
fixed beam energies, the scale dependence of event shapes can be probed by just
one individual experimental setup. This has an advantage compared to ete™ anni-
hilation, where results from different experiments and/or beam energies need to be
combined. While analyses of event shapes in DIS are relevant on their own, it is
especially interesting to compare with the results from e*e™ annihilation, in order
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to check the universality of QCD. Despite the slightly different definitions, similar
results were found for ep scattering and ete™ annihilation [8].

Perturbative calculations based on scattering matrix elements are always deal-
ing with (coloured) partons, while measurements are made on (colourless) hadrons.
Technically, event shape variables can be calculated from four-momenta of both par-
tons and hadrons, but it is far from obvious that the detector measurements can
be described by perturbative parton calculations without additional corrections.
Though important for virtually any high energy physics analysis, the hadronisation
process proves still to be one of the major unsolved problems in QCD. There are
phenomenological models for this process, e.g. the Lund string model and cluster
fragmentation (implemented in the programs JETSET [9] and HERWIG [10], re-
spectively), which are tuned to give a good description of the data. However, from
a theoretical point of view, it is unsatisfactory that these models are not derived
from first principles. Moreover, phenomenological models employ (often numerous)
unphysical parameters and, even worse, the uncertainties of the predictions are un-
known.

It is quite common to choose the observables and the phase space under study
such that the impact of hadronisation is small. The remaining effects are then
estimated with the Monte Carlo models mentioned above, and applied as corrections
to the parton level prediction of fixed order perturbative calculations. This approach
is questionable, because the order in «; of the included matrix elements differs in
general in calculations and Monte Carlo generators. Furthermore, parton showers
were up to now only employed in Monte Carlo generators to make up for higher
orders, thus the interface between the uncorrected perturbative calculation and the
hadronisation correction is not well defined. However, recently the matching between
a next-to-leading-order calculation and parton shower simulations succeeded [11],
showing great promise for future.

A possible way to overcome the shortcomings of hadronisation models could be
the concept of universal power corrections [12]. Here a formally perturbative ansatz
is used to deal with the hadronisation, the only free parameter oy being the average
strength of a hypothetical, non-perturbative, infrared finite coupling a.g. Power
corrections have been successfully applied in analyses of event shapes variables in
ep-scattering as well as in ete -annihilation. There are also other areas, e.g. jet
cross sections in pp collisions [13] were power like corrections find application.

Results on the analysis of mean event shape variables in DIS have been published
by the H1 Collaboration [14]. These results give support to the concept of power
corrections in the approach by Dokshitzer, Webber et al. [12] for the description of
the hadronisation. However, a large spread of the fitted values for ag(my) lead to
the assumption that higher order QCD corrections are needed.

The present work puts emphasis on the analysis of differential distributions of
event shape variables in DIS. The evaluation of shapes of this distributions provides
additional sensitivity compared to the mean values, which are simply the first mo-
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Figure 1.1: Diagrams of inelastic ep-scattering in Born approximation. Shown are
the neutral current (left) and the charged current (right) reaction.

ments of the distributions. It is also advantageous that QCD fits can be restricted
to an interval of the full spectrum where the theoretical predictions are reliable,
whereby the mean value includes the complete range by definition.

1.2 Event Shapes in Deep Inelastic Scattering

The production of hadrons in the final state of deep-inelastic ep scattering forms the
basis of this analysis. In this section a short overview of the theoretical foundations
of this process is given, whereby the features important for the present analysis are
discussed in more detail.

1.2.1 Kinematics

The investigation of ep scattering provides an insight into the elementary interac-
tions participating in the process, namely electroweak theory and quantum chromo
dynamics. There are two contributions to the total cross section at HERA, shown as
diagrams in Fig. 1.1: the neutral current process (NC), where a photon or a massive
7% boson mediates the interaction, and the charged current process (CC), where a
W boson is exchanged. The four-momenta are labeled as follows:

e [: incoming electron,

I': scattered lepton,

e p: incoming proton,

p': all particles in the hadronic final state X,

q: exchanged vector boson, space like.
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The kinematics of ep scattering can be determined by measurements of the scattered
lepton and/or the hadronic final state. The momentum of the final state neutrino in
charged current reactions cannot be directly measured (in a multi purpose detector
of the size of H1), resulting in a less accurate reconstruction of the kinematics.
Therefore only the neutral current reaction is discussed in the present analysis.

The kinematics of ep scattering are commonly specified by the following Lorentz
invariant quantities, defined via the four-momenta [, p and g:

s=(+p)? W'=@p+q’ Q=-¢=-1-1),

2

x = ¢ . yzw, (1.1)
2p-q p-l

where s is the center of mass energy squared, @Q? the negative four momentum

squared of the exchanged boson, W the invariant mass of the hadronic final state,

z the Bjgrken scale variable and y the inelasticity. If Q% 2 5GeV and W > m, the

reaction is called deep-inelastic scattering (DIS).

Energy-momentum conservation implies Q% = sxy and W? = Q?(1 —x)/z (if the
masses of the electron and proton are ignored), hence only three of the kinematic
variables are independent. For fixed beam momenta the center of mass energy /s is
constant and one is left with two independent variables, whereby Q% and x are most
often used. In Born approximation and the infinite momentum frame of the proton x
corresponds to the proton momentum fraction which is carried by the struck parton.

The double differential Born cross section for neutral current scattering is given
by

dzof\lic? _
dzd@?
2 N 2 9 3
2;54 (14 (1 —y)?) Fao(z, Q%) — %FL(x, Q)T (y — %) zFy(z, Q?)} . (1.2)

where « is the electromagnetic fine structure constant. Each of the generalised struc-
ture functions F» and Fj, includes contributions from photon exchange, photon-Z°
interference and Z° exchange. In contrast 2 F; misses the pure photon exchange con-
tribution and only depends on photon-Z° interference and Z° exchange terms. The
weak contributions due to the Z° are suppressed for Q* < m?% = 8315 GeV? because
of a propagator term Qﬁ—in% In the present work values of Q% up to 10000 GeV?

are observed, therefore ZY exchange can in general not be neglected.

QED radiative corrections modify the simple Born picture. Experimentally, real
photon emissions are especially important, because the effect on the measured cross
section depends on the detector acceptance and the experimental cuts applied. Real
photon emission from the electron can be divided into three characteristic experi-
mental signatures
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e Initial State Radiation (ISR), where the radiated photon is collinear with the
incoming electron. If this photon is not detected, the effect is equivalent to

a reduction of the electron beam energy, in consequence the kinematics are
modified.

e Final State Radiation (FSR) denotes the emission of a photon collinear with
the outgoing electron. Usually the electron and the photon are detected as
only one electromagnetic object, in this case the correction is only small.

e For Q% = 0 there is a sizeable contribution from the QED-Compton process,
which is characterised by a final state electron-photon system of large invariant
mass. Here the photon can be measured as a separate object in the detector.

Equation (1.2) indicates the cross section for the inclusive process ep — eX.
In the next sections the properties of the hadronic final state X are studied in
more detail.

1.2.2 QCD Radiation

While the actual measurement is performed on hadrons, in a theoretical approach
initially one deals with the level of partons. The hadronisation will be covered in
section 1.2.4.

Fig. 1.2 shows several contributing diagrams to the production of final state
partons: the lowest order diagram and first order QCD corrections to order a,. The
real corrections are labeled QCD Compton (@) and Boson Gluon Fusion (@), their
relative frequency compared to the lowest order depends on the value of the strong
coupling constant a.

In the QCD Compton case the scattering matrix element M for gluon radiation
off a quark contains a factor 1/(p, + p,)?, with

(pg +1g)° = 2Dy - Py = 2E,E,(1 — cosf,,), (1.3)

where p, and p, are the four-momenta of the quark and the gluon, respectively.
Evidently M gets singular when 6,, — 0 (collinear) or E, — 0 (soft). Integration
over the phase space of the gluon yields

dO'pQCD ~ Qg — qu¢. (14)

The perturbative inclusive cross section develops a double logarithmic divergence
for a soft and collinear emission, which is partly canceled by virtual corrections (e.g.
from @), while the remaining part is absorbed in parton densities. It can be shown
that a similar argument holds for the boson gluon fusion graph as well as for the
emission of more than one parton.
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Figure 1.2: Diagrams for deep-inelastic ep scattering. Shown is the Born approxima-
tion (@) and two diagrams of real corrections: QCD Compton (@) and Boson Gluon
Fusion (®). In the lower row two virtual correction graphs (@+@) are depicted.

For a specific observable to be calculable in perturbative QCD it needs to be
assured that the real and virtual correction terms cancel order by order. This is
guaranteed for infrared and collinear (IRC) safe quantities. Infrared safety requires
the observable not to change if an extra parton with vanishing energy £ — 0 is added
to the particle configuration. A variable is collinear safe if it is invariant under a
splitting of a single parton into two collinear ones, which carry in sum the original
momentum. Any observable which is linear in the hadron momenta fulfills the IRC
requirement.

Two extreme cases of QCD radiation can be distinguished.

a) Hard parton emissions, far away from the singular regions, lead to pronounced
jet configurations. If n hard partons are present and nothing else, such a
configuration is labeled the Born level of an n-jet event!. The cross section
gets small with increasing n, because every additional jet is suppressed by
another power of aj.

b) On top of any given n-jet configuration there can be in addition soft-collinear
emissions. The cross section for this is enhanced due to the singular behaviour
mentioned above, resulting in a large number of accompanying soft partons.

! In DIS, events with n jets from the hard scattering are sometimes referred to as “(n + 1)-jet”
events, to underline that there is in general an additional jet from the proton remnant. In this
work the remnant is only of minor importance, therefore the notation “n-jet” was found to be
more descriptive.
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Hard and soft QCD radiation is accounted for in different ways when calculating
cross sections. Case a) is treated by the leading order (LO) term of the perturbative
expansion in ay, exact matrix elements are available in DIS up to a2, corresponding
to 4-jet cross sections in leading order [15]. Case b), the higher order correction to
a given n-jet cross section, is more challenging to handle.

bl) Tt may appear straightforward to calculate the full matrix element simply to
higher orders, unfortunately this task proves to be very difficult. For DIS
the highest order available up to now is next-to-leading order (NLO) for 1-,
2- and 3-jet events. Care has to be taken that real and virtual parts of the
corrections cancel, whereby two procedures are used: The phase space slicing
method, implemented in MEPJET [16], and the subtraction method, which is
used in DISENT [17], DISASTER++ [18] and NLOJET++ [15].

b2) A popular approximative approach is that of final state parton showers (PS):
in the leading log 1/Q? approximation of QCD, described by the DGLAP equa-
tions [19, 20, 21| all orders of ay are included. These parton showers are used
in Monte Carlo event generators [22] to make up for otherwise missing higher
orders.

b3) For specific observables, e.g. event shape variables, there are also resummations
of logarithmically enhanced terms to all orders in «a; available. These terms
can be added to fixed order calculations, in practice NLO, to get an improved
prediction. The combination of the fixed order and resummed part of the
calculation needs to be done in a specific matching scheme, to prevent double
counting of terms. Resummations had always to be performed in tedious
work by hand, for a single observable at a time. Only recently a generalised
resummation, suitable for a large class of observables, has been presented [23].

Event shape variables can be understood as a measure how the geometric prop-
erties of the energy flow of an event differ from the Born level. To make clear what
kind of Born level is referred to, the variables are labeled as “2-jet shapes”, “3-jet
shapes” etc. For n > 1, any (n + 1)-jet event shape variable is defined to become
zero in the n-jet Born limit, and is of order 1 if additional hard emission of type a)
are present, e.g. in the case of an (n 4 1)-jet Born event.

While all event shape variables discussed in the present work are infrared and
collinear safe, they are nonetheless sensitive to low energy emissions, therefore
small deviations from the Born limit 0 < F' < 1 are observed for type b) emissions.
The sensitivity of event shapes to QCD radiation, and consequently to the value of
the strong coupling, makes it possible to perform ay fits, either to mean values or
distributions of shape variables. If event shapes are investigated as a function of the
scale (), the scale dependence of QCD can be studied.



10 Chapter 1. Event Shape Variables

1.2.3 Perturbative Calculations

The ingredients of perturbative calculations for event shape variables are both the
fixed order contribution and the resummed part. This section briefly presents what
is available for DIS, citing formulae from Refs. [24, 25].

Consider the cumulative cross section R of an event shape observable F' nor-
malised to the Born cross section oyg:

F 1 de
R(F):/O a_od_F' (1.5)

The normalised distribution can be obtained later by differentiating this expression
with respect to F. A perturbative expansion of R in the strong coupling reads

R(F) =1+ icn(F)a;‘, (1.6)

n

™) matrix element. In next-to-leading order this

where ¢, is known from the O(«
simplifies to
Rato(F) =1+ ¢ (F)a, + co(F)a?. (1.7)

s

In general, this describes well the inclusive phase space region, where F' is of the
order of 1. In order to perform a fit of a, to measured data, a prediction of at least
NLO precision is needed.

The region of F' < 1 is dominated by soft and/or collinear partons, where
the corresponding divergences lead to incomplete cancellations of real and virtual
corrections. This results in a bad convergence of the series (1.6). Numerically each
power of the coupling is accompanied by up to two powers of a large logarithm
L = log(1/F), such that the series contains terms (aylog®1/F)", which need to be
resummed to all orders. Therefore a reorganisation of the expansion is necessary,
making use of L as a second variable for the expansion.

Many observables have the property to exponentiate, which means that it is
possible to write:

R(F) = exp (Z al (Z Crm L™ + O(F))) . (1.8)

m=0

Leading logarithms (LL) are now terms with m = n + 1, while next-to-leading
logarithms (NLL) are those with m = n. The resummed result in next-to-leading
logarithm accuracy is

Rain(F) = (c) + a/scll)eLgl(asL)‘FgﬂasL)‘ (1.9)

To allow comparisons with data over the full range of F', it is necessary to add
both, the fixed order and the resummed part, and remove the terms which would be
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counted twice, being the O(a,) and O(a?) terms of the resummed result. A simple
matching of R itself does not work, because the result does not vanish for £ — 0,
therefore the logarithm of the cross section, log R, is used instead. The final result
for “log R-matching” has the form

R — Ry (Mo R a2 (R0 R Lot bm?) (o)
where R(™ is a term to order O(a®).

There are other valid matching schemes available, hence an ambiguity in the
result is introduced, which is generally small and contributes to the uncertainty of
the prediction.

In a more realistic discussion than presented here, the hadronic initial state has
to be accounted for. This can be achieved if the scalar constants ¢ and g become
matrices which operate on vectors of parton densities. Moreover, depending on the
event shape variable, there may be more singularities than F' = 0.

1.2.4 Non-Perturbative Calculations

One important process in the description of event shapes in DIS has been neglected
in the discussion so far: the transition from the final state partons to experimentally
observable hadrons, labeled hadronisation.

Perturbative QCD breaks down if the relevant scale approaches values as low as
Aqep =~ 200 MeV. If one extrapolates into this non-perturbative regime, a pole is
reached at p, = Aqcp. A diverging coupling reflects the confinement of the partons
at low scales, where quarks and gluons cannot be treated as free particles.

The hadron masses which determine the scale of hadronisation are of the order
of Aqep. rendering the application of perturbative QCD impossible. It is interesting
to note that QCD is unique among the theories of the standard model in that both,
strong and weak coupling regimes, are relevant to current high energy experiments.

All event shapes variables are subject to the non-perturbative effects of hadro-
nisation, therefore the calculations in the previous section are incomplete and need
to be corrected. The corrections can be determined by Monte Carlo models like the
Lund string fragmentation. For many applications these models lead to a reason-
able description, however the interface between perturbative and non-perturbative
processes is unclear and there are usually unphysical parameters which need to be
tuned.

Due to the semi-inclusive nature of event shapes it is not actually needed to
describe every feature of the hadronic final state, e.g. hadron multiplicities and the
frequency of individual hadron species. Because of this, it is tempting to make use
of an analytical approach.

It can be inferred from various data analyses that non-perturbative corrections
in general are suppressed by a power law of the form (Aqcp/Q)P. In the case of
event, shapes the leading corrections are proportional to 1/Q.
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The power law behavior of the corrections can be described if a hypothetical
effective coupling a.g, valid for long distances respective low scales is introduced
[26]. For large scales the effective coupling has to align with the usual renormalised
coupling a4(Q), whereby the matching is made at a scale p7, which is conventionally
chosen to be 2 GeV.

In the language of Feynman diagrams the effective coupling corresponds to the
introduction of massive gluon loops. This ansatz results in only one single non-
perturbative parameter, being the first moment of the coupling:

1 223
ao(pr) — E/o o () dE. (1.11)

Power corrections for event shape variables in DIS have been calculated to one-
loop accuracy in [7] and to two-loop accuracy in [27]. For the differential distribu-
tions the power correction results in a shift

1 do(F) 1 doP°P(F —apP) (1.12)
Otot dF a Otot dF )
where ar is of order one and can be calculated perturbatively. The power correction
term P is assumed to be universal for the observable and the process.

The mean value of an event shape is then modified by non-perturbative effects

by an additive constant

(F) = (F)pacp + arP, (1.13)

with the same coefficient ar and power correction P as for the distribution.
The power correction P is proportional to 1/Q and evaluated to be
16 pr Bo Q K 2
P=—M—= — Qg —— |In=—4+—=+1 . 1.14

MG loou) — 0@ = 3 (S + 2+ 1)ad@L (L1
The coefficient Gy = 4wb = 11 —2/3ny, where np is the number of active flavours, is
taken from the perturbative expansion of the renormalisation group equation (5.1).
The Milan factor M =~ 1.49 assures the universality at the two-loop level [27].
Finally, K accounts for the difference between the MS and the CMW renormalisation
scheme

Qs,cMw = Q§fs + %ai,ﬁs’ (1.15)
and is defined as - .
T
- — _ _ Zn- 1.16
6 2 9'F (1.16)

The quoted universality of the power corrections has been tested experimentally,
for mean values compatibility with ag(u; = 2GeV) = 0.5 on the 20% level was
found in DIS as well as in ete™ annihilation. While comparable conclusions were
drawn in an analysis of differential distributions in e*e~ annihilation [28], fits to
distributions in DIS had not yet been carried out, and are subject of the present
thesis.
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Figure 1.3: Scattering in the Breit frame of reference. Born level (left) and QCD
Compton (right). Transverse momenta are only generated through QCD radiation
and are balanced.

1.2.5 The Breit Frame of Reference

In addition to the hadronic flow from the hard scattering, there are also hadrons in
the final state stemming from the dissociation of the hit proton, which occurs at a
lower scale of O(mp) < @, hence it is necessary to separate this proton remnant
from the event. In the 1-jet Born level the separation is maximised in the Breit frame
of reference, see Fig. 1.3, defined by 2xp + ¢ = 0, where z is the Bjgrken scaling
variable, p" the momentum of the proton and ¢ the momentum of the exchanged
boson. In this frame the momentum transfer ¢ is purely space like and anti parallel
to the proton direction. The z-axis in the Breit frame is defined to coincide with
the proton-boson axis, the proton going to the +z-direction, the photon or Z° to
the -z-direction. In practice, the Breit frame transformation is calculated with the
help of the experimentally accessible kinematic quantities @Q? and v.

Particles building the remnant are almost collinear to the proton direction, hence
the hemisphere defined by pseudo-rapidity? n > 0 is labeled the remnant hemisphere
(RH). The incoming quark is exactly back scattered at the boson of virtuality @ into
the current hemisphere (CH), such that the Breit system of reference is sometimes
called the “brick wall frame”. The current hemisphere can be identified with one
half of an eTe™ annihilation event with a center of mass energy /s = Q.

Event shapes are usually defined for momenta in the current hemisphere (CH, n <
0) alone, or in a more general way to some restricted region in pseudo-rapidity, e.g.
1 < 3. In the Born picture there is just the struck quark in the CH, collinear to the
-z axis. Additional QCD radiation in the final state generates transverse momenta in
the event. Contrary, in the laboratory frame the recoil from the scattered electron in
general makes for transverse momenta not caused by the hard QCD matrix element.

Multiple QCD radiation may lead to particles from the hard subprocess leaking
into the remnant hemisphere, causing an imperfect separation and an energy loss

2The pseudo-rapidity is defined as 7 = — log(tan 6/2) with 6 the polar angle w.r.t to the z-axis.
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in the current hemisphere. This feature of event shapes in DIS poses a problem
for theoretical calculations of some event shape variables, which, however, has been
solved. A better separation (of the current region from the proton remnant) than
with the Breit frame of reference is only possible if a more detailed knowledge of the
hadronic final state structure is available.

1.3 Definition of the Event Shape Variables

Many event shapes variables have been defined so as to be sensitive to different
aspects of QCD dynamics, e.g. the longitudinal or transverse development of jets.
They all have in common to be dimensionless, positive definite quantities and most
of them fulfill the requirement of infrared and collinear safety. The variables used in
this work can be assigned to three categories: 2-jet event shapes, 3-jet event shapes
and jet rates.

1.3.1 2-Jet Event Shapes

The 2-jet variables studied in this work are two kinds of thrust (7 and 7.), the
jet broadening B, the jet mass p and the C-parameter. These are defined for the
particles in the current hemisphere (CH) alone, corresponding to a cut on the pseudo-
rapidity in the Breit frame of n < 0.

Thrust 7 = 1 — T measures the longitudinal momentum components projected
onto the virtual boson axis

7 = 2anccn [Panl (1.17)
ZheCH|ph|

Thrust 7o = 1 — T uses the direction 77 which maximizes the sum of the
longitudinal momenta of all particles in the current hemisphere along this axis

T, — 2meomlPh-Tir| (1.18)
2 hec |Ph]

The jet broadening B measures the scalar sum of transverse momenta with
respect to the virtual boson axis

B = M. (1.19)
QZheCH | P |

The jet mass py is defined in a way to not depend on hadron masses

.
o DPn| — € p
P > onecw IPnl = (02, C2H h). (1.20)
(22 e 1pnl)
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The C-parameter is defined as

O — §Zh,ieCH ||| D3| sin? 0y,
2 (Xhecm [P])?

where 6p; is the angle between particle i and h.

It is important that the event shape variables are defined independently to hadron
masses, because otherwise universality-breaking terms are introduced to the power
corrections. Of the observables listed, only the jet mass was originally defined in a
mass dependent way. The definition shown above treats the hadrons massless within
the p-scheme, i.e. references to the particle energy E were replaced by the modulus
of its 3-momentum [p]. The normalisation is always performed with respect to the
sum of momenta in the current hemisphere.

An event is only accepted, i.e. contributes to the 2-jet event shape distributions,
if the energy in the current hemisphere exceeds some value €,,,. This is necessary to
ensure the all-order infrared and collinear safety of the observables, because higher
order processes may lead to event configurations where the partons are scattered
into the target hemisphere and the current hemisphere may be completely empty
except for arbitrarily soft emissions. It is important to choose €, not to be too
small a fraction of (), we take

(1.21)

Y By > awm=Q/10, (1.22)

heCH

otherwise the event is ignored. This cut-off is part of the event shape definitions,
the precise value is not critical [14].

The event shapes defined in the current hemisphere may be distinguished accord-
ing to the event axis used. The definitions of 7 and B employ momentum vectors
projected onto the boson direction, while the others do not, like their counterparts
in ete™ reactions. Explicit use of the boson direction implies sensitivity to radiation
into the remnant hemisphere through recoil effects on the current quark [25].

For all five presented event shapes detailed calculations are available: a pertur-
bative part at O(a?) + NLL precision, together with power corrections.

1.3.2 3-Jet Event Shapes

Interest has only recently moved to 3-jet event shapes in DIS, whereby the presented
work shows the first measurements for two variables of this type, out-of-plane mo-
mentum K, and azimuthal correlation y. These event shapes are sensitive to large
angle soft emissions, i.e. to emissions between hard jets, and are more geometry de-
pendent than 2-jet event shapes. Because of this, the pseudo rapidity requirement
is loosened to n < 3. The definition of K, is taken from [29], the definition of y
from [30].
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Thrust Major Axis

5

Event Plane

Figure 1.4: The definition of the out-of-event plane momentum K,,;; makes use of
an event plane spanned by the virtual boson momentum and the thrust major axis.
Partons pointing out of these plane contribute to K.

The out-of-event plane momentum is sensitive to momenta perpendicular to
a suitably defined event plane, and can only be non-zero for configurations with at
least three partons:

/
Kow = Y Ip3™- (1.23)
h

Here p9"* is the out-of-plane momentum of the hadron h with the event plane defined

as the plane formed by the virtual boson momentum ¢ in the Breit frame and the
unit vector 7 which enters the definition of thrust major:

—

|
Ty = mgxézl|ﬁh-ﬁ|, i B=0. (1.24)
" h

The actual event shape which is investigated in this work is Koy /Q, the out-of-
event plane momentum normalised to ). The sum indicated by Zh' extends over
all hadrons with pseudo rapidity in the Breit frame 7 less than 3. The observable
Ky is similar to the out-of-plane jet shape studied in ete™ annihilation, where the
event plane is defined by the thrust and thrust major axes [31].

The calculations in [29] are carried out for small values of Koy, i.e. near to
planar parton configurations and are inspired by the following scenario, see Fig. 1.4:
Two relatively hard partons with transverse momentum p; lie back-to-back in the
Breit frame and span necessarily a plane together with the virtual photon. The
momentum of a third, possibly soft parton is then probed with the K, variable.
For the event plane to be well defined, only events with sufficiently high p; ~ @) have
to be selected, which is accomplished by a cut on the 2-jet resolution 1, defined by
the k; clustering algorithm: 0.1 < y, < 2.5. For the definition of y, see section 1.3.3.

An observable which is well known in e*e™ environments is the energy-energy
correlation (EEC), which is a function of the polar angle between pairs of hadrons
weighted by their energy. A similar quantity has been adopted to DIS:
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The azimuthal correlation involves the azimuthal angles between all hadron pairs
h and 7 in an event:

PthPi
Q7

where the azimuth in the Breit frame of hadron A is denoted by ¢,. The azimuthal
correlation is the only variable presented in this work, where not a plain (normalised)
differential cross section is determined. In this case a single event contributes not
only one value y to the differential distribution, but instead every pair of hadrons
enters with a weight w. The restrictions with respect to n and y, apply in the same
way like for the out-of-plane momentum K.

While resummed calculations for Ko, and x have been performed [29, 30], the
matching to NLO and power corrections are not yet available. Hence in this work
comparisons to leading order Monte Carlo programs only are drawn.

X = 7m—|op— @], weighted by w = (1.25)

1.3.3 Jet Rates

Jet rates belong not to the class of classical event shapes, although they exhibit
many similar features. The main difference being that for the separation of the
proton remnant no fixed cut in 7 is made, instead the particles entering further
calculation are determined dynamically by the jet algorithm.

Jet definitions were introduced in the first place to get observables which resemble
on detector level the underlying hard parton momenta as closely as possible. To
achieve this, adjacent final state momenta, determined by some distance measure
are consecutively merged. There are so called “cone” and “cluster” jet definitions,
where in this work only the latter will be used.

Cluster algorithms make use of a resolution parameter ..., which determines
the minimal separation of partons to resolve them as two different jets. For the
definition of a jet cross section, the resolution ¥y, stays fixed and the jet algorithm
calculates for any event the number and momenta of the identified jets.

In the case of jet rates it is the other way around: the number of jets to look for is
fixed, and the appropriate value of y.. is determined for any event by the algorithm.
The n-jet rate is then defined as the distribution of ., for the transition of a n-
to a (n — 1)-jet configuration, normalised to the total cross section. While jet cross
sections are relatively insensitive to soft radiation, this is not the case for jet rates,
a feature also found for the “classical” event shapes.

The jet definition used in this work is the k; clustering algorithm in its exclu-
sive mode [32, 33], where two distance measures are introduced: one for distances
between two particles, y;;, and another for the separation of each particle from the
remnant, y;,:

 2min(E7, E7)(1 — cos ;)

Yij = Q2 )

(1.26)
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2F2(1 — cos 6;)
Yir = 02

The pair with the minimal y;; or ;. value of all combinations is selected to either
form a new pseudo-particle or to assign the particle ¢ to the remnant. The procedure
is repeated until a certain number of jets n is found. Since the proton remnant is
treated explicitly by the jet algorithm, all hadrons of both hemispheres enter the
calculation. The event shape variables y,, are defined as the minimum of y;; and y;,
where the transition of n- to (n—1)-jets occurs. In the present analysis distributions
of y2, y3 and gy, are measured.

Fixed order calculations in NLO are available for y, and y3, while for y, the
present state of the art is LO accuracy. Resummation for these observables should
be possible in the near future with a generalised resummation program [23]. Power
corrections could not yet successfully applied to jet rates, on the other hand hadro-
nisation corrections are known to be much smaller compared to what is known from
classical 2-jet event shapes.

. (1.27)




Chapter 2

HERA and the H1 Detector

The previous chapter showed that deep inelastic scattering is a fruitful process for
studying the various aspects of the standard model and in particular of QCD. Now,
what are the experimental setups needed to produce DIS events? Obviously at least
one kind of particles, leptons or hadrons has to be accelerated. Because there is no
dense material out of leptons alone, one is left with two possibilities.

e Accelerate leptons on hadronic matter (fixed target)

e Bring two high energy beams, out of leptons and hadrons, into collision (col-
lider, storage ring).

However, the kinematics of fixed target experiments are always restricted to the high
x, low Q? region. In 1992 DESY, until that time successful in building and operating
ete™ storage rings, started the operation of the first electron-proton storage ring,.
HERA, in order to open the door to high Q?, low z DIS physics.

2.1 The Electron Proton Storage Ring HERA

HERA consists of two separate accelerators, housed in one common tunnel of 6.3 km
circumference.

e The electron machine is operated with normalconducting magnets and partly
with superconducting RF cavities, where the maximum beam energy amounts
to 27.6 GeV at currents of up to 50mA. It is possible to switch between
electron and positron operation.

e For the proton machine superconducting magnets and normalconducting RF
cavities are used. From 1992 to 1997 the proton storage energy was fixed to
820 GeV, which could then be raised to 920 GeV. The highest proton currents
achieved are 100 mA.

19
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North hall

Figure 2.1: The storage ring HERA (left) together with the preaccelerators (right).

The beam pipes of both accelerators are solely connected at two interaction regions,
where a sophisticated design assures that the much stronger bending magnets for
the protons do not interfere with the electron beam line. Collisions between electron
and proton bunches occur at a rate of 10 MHz and at a center of mass energy of

318 GeV (301 GeV) for a proton energy of 920 GeV (820 GeV).

Around the interaction regions the multi purpose detectors H1 and the ZEUS
are placed, in order to measure the particles emerging from the scattering process.
The highest luminosity measured by H1 amounts to £ = 1.8 - 103! cm?s.

Both beam lines are also used for fixed target experiments, concurrently with
the collision operation: There is the HERMES experiment, studying the scattering
of longitudinally or transversally polarised electrons of 27.6 GeV energy on a resting
target of polarised hydrogen or deuterium [34]. The HERA-B experiment measures
collisions of 920 GeV protons with the nuclei of target wires [35].

Figure 2.1 shows on the left hand side the layout of HERA with the four exper-
iments and on the right hand side the preaccelerator complex in a magnified view.
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2.2 The H1 Detector

Purpose of the H1 detector is to measure cross sections of a broad spectrum of
ep reactions. The features most important for the presented analysis are the mea-
surement of the scattered electron and the hadronic final state. A full description of
H1 can be found in [36, 37]. Since commissioning in 1992 the detector was subject to
several modifications, the description given below refers to the setup of 1996-2000,
where the majority of the data used in the presented analysis was taken.

To identify neutral current or charged current reactions, it is necessary to sep-
arate the scattered lepton from the rest of the event and determine its momen-
tum. Electrons can directly be measured with tracking devices and high granularity
calorimetry, as long as a good lepton/hadron separation is achieved. Neutrinos, on
the other hand, have too a small reaction cross section in an apparatus of the size
of H1, and can therefore not be directly measured. Their identification uses the at-

neutrino. This approach needs calorimetry as hermetic as possible.

In addition to the scattered lepton, many more particles may be produced in the
reaction. Inelastic reactions are characterised by the occurrence of many hadrons,
mostly charged pions. In the optimal case, the identities and four momenta of all
reaction products are determined by the detector. Momenta and particle identifica-
tion of long lived charged particles can be achieved in a drift chamber by measuring
tracks and their differential energy loss dF/dx. Though tracking devices have two
drawbacks: they are insensitive to neutral particles and their momentum resolution
gets worse for increasing momenta. Both issues are addressed when the tracking
information is complemented by electromagnetic and hadronic calorimetry.

To calculate from an observed number of events the corresponding cross section,
it is necessary to determine the luminosity at the interaction point. This is done
via measurement of the event rate from a reference reaction with well known cross
section. At HERA the Bethe-Heitler process ep — epy serves as the reference.

Unfortunately, most of the reactions occurring within the acceptance of the H1
detector are background processes from interactions of the beams with resting mat-
ter. This can be beam-gas, i.e. a beam particle hitting a nucleon of the remaining
gas molecules in the vacuum beam pipe, or beam-wall, i.e. an off-momentum beam
particle getting out of the aperture of the accelerator and hitting the material of the
beam pipe. To prevent background events from flooding the data stream, one needs
fast trigger electronics which decides in real time, based on raw data, whether an
event is likely caused by ep scattering or by some background process. In addition
the trigger logic is programmed to accept mostly events from interesting low cross
section processes.

Figure 2.2 gives an overview of the central parts of the H1 apparatus. The main
active components can de divided into calorimetry and tracking.
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Figure 2.2: The central region of the H1 detector.
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2.2.1 Calorimetry

The liquid argon sampling calorimeter (LAr) covers the polar angle interval (4° <
0 < 154°). It consists of a lead/argon electromagnetic section and a stainless
steel/argon section for the measurement of hadronic energy . The lepton energy
uncertainty in the LAr calorimeter varies between 1% in the backward region and
3% in the forward region, while the systematic uncertainty of the hadronic energy
amounts to 2% for the present analysis. The depth of the electromagnetic section
corresponds to 20-30 radiation lengths, depending on the polar angle of the energy
deposition. Accordingly, the hadronic section represents 4.5-8 hadronic interaction
lengths.

The LAr is non-compensating, i.e. pions generate a smaller signal than electrons
of the same energy. Therefore a weighting technique is applied to the electromagnetic
and the hadronic components of the energy deposition, in order to account for this
non-compensating nature of the calorimeter.

In the presented analysis the LAr is utilised to identify electrons, which exhibit
compact, high energetic clusters in the electromagnetic part, together with only
small deposits in the hadronic part. Between the single active volumes of the LAr
there are small gaps, called “cracks”, leading to inferior calibration around these
areas. These cracks are evenly and symmetrically distributed over the solid angle
and are excluded for electron measurements in this analysis, resulting in a small
acceptance loss, which is accounted for in the detector correction.

The LAr is used to measure the energy of the hadronic final state particles as well.
Hadron clusters are less compact than electron clusters and extend in gerneral over
many calorimeter cells. The capacity of any single cell generates noise, which may
get sizable when summed up over all cells of a hadronic cluster candidate. In order
to reduce such fake clusters, a noise suppression is performed, with the drawback
that also low energy particles cannot be measured by the calorimeter anymore. Here
the combination with data from the tracking devices improves the situation.

While the LAr is the main calorimeter of H1, there are few more devices which
extend the acceptance of the experiment: In the backward region (153° < 6 <
177°) energy is detected by a lead/scintillating fibre Spaghetti-type calorimeter
(12] SPACAL), while the very forward region (0.7° < 6 < 3.3°) is covered by a
copper/silicon calorimeter ( PLUG). Hadronic showers of very high energy may
not be completely contained in the hadronic LAr, therefore part of the instrumented
iron ([10] Tail Catcher) is also equipped with calorimetric readout.

Finally, compact calorimeters (Taggers) are set up long way off in the tunnel, in
order to detect photons and electrons collinear to the electron beam line. This way
photo production events, DIS with initial state radiation and Bethe-Heitler reactions
can be identified.
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2.2.2 Tracking

The central tracking devices (2] CTD) are situated within a solenoidal magnetic
field of 1.2 T, in order to determine the transverse momentum of charged particles
by their bending radius. The main tracking detector is a large jet chamber (CJC),
which covers the polar angles 25° < 6 < 165°. The CJC is used to reconstruct
tracks from charged particles, which tell again the transverse momentum p, and the
particles direction 6 and ¢ with respect to the vertex. The p; resolution amounts to
0,/p* =5-1072 GeV™L. Two z-drift chambers in the central region improve the 6
measurement of reconstructed tracks.

In the presented analysis, the central trackers are used to identify electrons by
demanding a track pointing to an electromagnetic cluster in the LAr. The CTD also
supplement the hadronic measurement by means of combined objects, build out of
calorimeter clusters and tracks. Precise timing information from the CJC is used to
suppress non-ep background.

Proportional chambers in the central and forward region provide already on
the first trigger level timing and vertex information, allowing to suppress non-ep
background.

The forward tracker modules (3] FTD) are used to identify tracks with 5° <
0 < 25°, while in the backward region 153° < 6 < 177° a drift chamber improves
the angular resolution of the SPACAL.

Silicon micro vertex detectors improve the reconstruction of the primary event
vertex and allow to identify secondary vertices which may occur when heavy quarks
are produced in the ep reaction.

Penetrating muons are measured by two dedicated systems for the central ((10]
CMD) and the forward (9] FMD) region.

2.3 Event Simulation with Monte Carlo Methods

H1, as any measuring device, is subject to imperfections which affect the measure-
ments made. These are e.g. inefficiencies, limited resolutions and restricted accep-
tances, which are also in general time dependent. To make the results independent
of such detector effects and to allow comparisons with other experiments, corrections
are applied to the data.

Detector corrections can be determined with the help of computer simulations,
which are carried out in two steps. Firstly, events stemming from the physical
process under study are generated by a Monte Carlo program. Four vectors are
given for particles after hadronisation, therefore an event at this stage is called the
hadron level (or generator level). The event is then fed into the detector simulation
H1SIM, which models the response of the detector components and the readout.
H1SIM is based on GEANT [38] and is used in this work in its “fast” mode, where
electromagnetic showers are not simulated in detail, but parametrised. The result
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are Monte Carlo events on detector level, which in the ideal case have the same
properties as measured ones. If the observables on detector level are well described
by the Monte Carlo, it is plausible to assume that also the difference between hadron
and detector level is similar for data and Monte Carlo. This difference can then
be used to extract the detector correction, which applied on the data, yield the
measurement on hadron level.

Depending on the method to determine the detector correction, it is not neces-
sary to have a Monte Carlo generator which describes every detail of the studied
physical process, it is more important that the detector simulation is reliable. It is
a common practice to utilise two different Monte Carlo generators for the detector
corrections and take their difference as the model uncertainty, which contributes to
the systematical error.

In the presented analysis the Monte Carlo generators RAPGAP 2.08 [39] and
DJANGOH 1.2 [40] are used for detector and QED radiative corrections. RAPGAP
has the ability to generate deep inelastic scattering and diffractive events. The hard
scattering includes processes with two outgoing partons, initial and final state parton
showers in leading log approximation take account of the QCD cascade. Parton
density functions of the proton are taken from the CTEQS5L [41] set, included in
the PDFLIB 8 [42, 43] package. The hadronisation is treated with the Lund string
model, QED radiation to O(«) is calculated with HERACLES [44].

DJANGOH shares many properties with RAPGAP. The main difference lies in
the model of the QCD cascade, where for this work RAPGAP was used with parton
showers (MEPS) from LEPTO 6.5 [45], while in DJANGOH the color dipole model
(CDM) of ARIADNE 4.08 [46] was employed.

The number of events simulated with both Monte Carlos is in every part of the
phase space at least four times that of the data, at high Q* much larger.

In addition to the neutral current DIS process, several background reactions were
studied with the help of special Monte Carlo generators. Photo production events
were generated with PYTHIA 6.1 [47] for the direct and the resolved subprocess
separately, corresponding to an integrated luminosity of Li,, = 100pb~!. A charged
current DIS sample has been produced with DJANGOH 1.2 (L;; = 2700 pb~1).
While inelastic QED Compton scattering is included in RAPGAP and DJANGOH
and hence already included in the detector correction, the elastic QED Compton
component is still missing, and was therefore generated with WABGEN [48] (L =
630pb~!). Photon-photon reactions into electron pairs have been generated with
the GRAPE Monte Carlo [49] (L, = 3000 pb~1). Finally, a W= production sample,
where the weak boson decays into leptons, was simulated with EPVEC [50] (L =
1000 pb™1).
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Chapter 3

Data Selection and Reconstruction

The following sections describe how the event sample on which this work is based
on is extracted from the bulk of H1 events. Measurement of event shape variables
rely on the determination of the hadronic final state, which is therefore discussed in
more detail.

3.1 Selection Criteria

The presented analysis is based on data taken with the H1 detector during the
years 1995 to 2000, corresponding to an integrated Iuminosity of 106 pb . Since
the operating mode of the HERA accelerator changed within this period, the data
set is divided into three subsets, see Tab. 3.1. A preselection discards exceedingly
small runs, and requires all major detector components to be operational.

From the recorded events a data selection is build, with the following require-
ments.

e The sample has to consist of neutral current DIS events and to be mostly free
of background.

e The event kinematics need to be precisely determined, especially for the boost
to the Breit frame of reference, as well as for the differential measurement with
respect to the scale Q.

’ No. ‘ Year ‘ E Proton ‘ Lepton Type ‘ E Lepton ‘ Int. Luminosity ‘
@ | 1995 — 1997 | 820 GeV et 27.6 GeV 30ph !
@ 1998 920 GeV e~ 27.6 GeV 14pb~!
@ | 1999 — 2000 | 920 GeV et 27.6 GeV 62pb !

Table 3.1: The three data subsets used in the analysis. The integrated luminosities
are calculated with the run selection and high voltage corrections applied.
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e The results of the event shape analysis are corrected for photon radiative
effects, these corrections are precisely known from QED. Nevertheless, regions
of phase space where the corrections are getting large should be avoided.

3.1.1 Phase space

First of all the phase space is chosen with respect to the kinematic variables Q2 and
y. It is known from [25] that the theory calculations for event shape distributions (in
NLO/NLL precision including 1/Q power corrections) loose their predictive power
for low scales (Q < 20 GeV), because hadronisation effects get large. Therefore it is
most promising to study the region of high ), hence the lower bound in this analysis
is set to

Q Q > 14GeV (Q* > 196 GeV?).

The upper limit of @) is given by the center of mass energy of the ep system
(301 GeV or 318 GeV), where the event in the selection with the highest scale features
Q = 200 GeV. The region of high Q? NC DIS corresponds experimentally to an elec-
tron scattered into the LAr calorimeter, which acceptance begins at Q? ~ 100 GeV.
As a suitable trigger for electrons in the LAr the subtrigger ST67 is employed. It is
sensitive to compact electromagnetic energy depositions together with a valid trig-
ger signal from the central proportional chambers. Subtrigger ST67 is fully efficient
for electron energies above 11 GeV [51], therefore the phase space for this analysis
is restricted to

Q E, > 11GeV.

The final identification of electrons and their calibration is performed by the software
module QESCAT at the reconstruction stage.

To fully constrain the phase space, also the interval in the kinematic variable
y has to be specified. When determining the cuts on y, it is important to take
into account the resolution of the kinematic reconstruction, which is hence briefly
discussed in the following.

A measurement of either the scattered electron or the hadronic final state alone
is sufficient to fix the kinematic variables of an event. However, if information from
both objects is used, the redundancy helps to improve the experimental resolution.
When dealing with the hadronic final state, it is convenient to define the following
quantities

Y
S=Y (Ei—p-i). pra= \/(me)? + (O pyi)® = 2arctan —, (3.1)

Pr,n

where the sums include all final state particles, except the scattered electron. In the
case of only one collimated jet in an event, the inclusive hadronic angle ~;, denotes
the polar angle of the hadronic system.
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Figure 3.1: Resolution of the kinematic variables for three reconstruction methods,
determined with RAPGAP. “gen” and “rec” subscripts denote variables on generator
and detector level, respectively. The shaded areas are not part of the data selection.

Various methods exist to reconstruct the event kinematics, using either the elec-
tron or the hadronic final state or both. The electron method uses the polar angle
0. and the energy FE, of the scattered electron

E, Q?
2 _9F,E.(1 0, e =1——(1—cosb f = —% 3.2
Qe 0 ( =+ cos )7 Y 2E0 ( COS ) z VoS ) ( )

with Ej being the energy of the electron beam.
It is the hadronic final state alone, which is used in the hadron or Jacquet-
Blondel method

pTh _ )y _ Qi%
Q= T—y "T2E T g (3

The sigma method combines variables from the scattered electron and the
hadronic final state

E.sinf,)? by Q2
Q%:%a ?JE:ZE—_p, xzzy?i- (3.4)

Since the energy of the electron beam does not enter this calculation, the sigma
method is less sensitive to initial state radiation (see also Section 1.2.1).

Fig. 3.1 shows the experimental resolution of x and Q% as a function of y for
the three presented methods, determined with simulated events from the RAPGAP
event sample, including QED radiative processes.
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The electron method exhibits a worse resolution in x for low y, whereby for high y
the hadron method degrades strongly. The sigma method appears optimal, because
it results in the best x resolution of the three methods over most of the shown y
range, only for high values of y the electron method performs slightly better.

It is obvious from the right hand side of Fig. 3.1 that there is no alternative
to the electron method when reconstructing @? in neutral current deep inelastic
scattering. A combination of the electron and the sigma method, referred to as the
electron-sigma method, leads to the best overall resolution and is hence used in
this analysis for the boost to the Breit system of reference. It is defined as

Qi = Q% Yx = . ez;’ Tey, = Tx. (3.5)
eX

Badly measured events can lead to unphysical values of  and @2, which in conse-
quence result in an ill defined Lorentz boost. Because of this, a consistency require-
ment is applied:

O Q% <sand 0 <z <1.
A lower limit on the inelasticity
Q0.1 < yes,

ensures a good resolution in z.5. Moreover, this requirement selects events with high
particle multiplicity in the central region of the detector, which assures a reliable
reconstruction of the event vertex [52].

Fig. 3.2 shows the expected contribution of photo production events to the total
data sample for low and high values of Q? separately. It demonstrates that the
background events accumulate at values of high y.. Hence a cut on y,:

Q y. < 0.8,

yields a substantial reduction of the photo production background. For lower Q?,
this region is already kinematically suppressed by the E., > 11 GeV cut. QED
radiative events also give rise to high values of y. and are hence reduced by this cut
as well.

3.1.2 Data Quality Cuts

Now that the phase space is determined, it is necessary to further suppress remain-
ing background. It has also to be checked if the Monte Carlo event samples from
RAPGAP and DJANGOH, which contain only NC DIS events, describe the data
reasonably well. In the following, several distributions of variables which are used
for data quality cuts are pictured. The distributions of the data include statisti-
cal errors and are compared to the Monte Carlo predictions, which are normalised
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Figure 3.2: The photo production background, as predicted by PYTHIA. The nor-
malisation is made to the integrated luminosity of the data. The photo production

contamination rises with y,, but is for lower Q? (left hand side) suppressed by the
E. > 11 GeV cut.

to have the same integrated luminosity as the data. For each individual variable
displayed, the cut condition on this variable is released, but in turn marked by a
shaded area, whereby all other cuts are applied as usual.

Although for all three data sets @-® simulated event samples are available and
used for the detector correction, only the @? plot is shown threefold. For sake of
brevity, all other plots are based on sample @ from 1999-2000, which contributes
most to the total set. The plots which are not displayed here were also checked, and
showed a similarly good description.

To reduce the contribution by fake electrons from hadrons of photoproduction
events, a track reconstructed by the CJC and pointing to the electron cluster can-
didate is required. The track is then also used for the measurement of the electron
angles 6, and ¢.. Fig. 3.3 (left hand side) shows the distance of closest approach be-
tween the cluster center of gravity and the nearest vertex fitted track. A maximum
distance of

Q Aclus,trk < 12c¢m

is allowed in order to fulfill the matching requirement. DJANGOH describes the
region around the cut better than RAPGAP, which underestimates the data in the
region of large Acpus,trk-

Fiducial cuts are placed on the position of the electron in the calorimeter, to
exclude cracks in the LAr, where the energy measurement is poor:
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Figure 3.3: Distance of closest approach between the electron cluster and a cor-
responding track (left). Relative difference between a direct measurement of the
electron energy and a cross check with the double angle method DA (right).

Q (¢ mod 45°) & [—2°,2°] and z. ¢ [—70 cm, —65 cm], z, & [15cm, 20 cm).

If a hard final state radiative photon is emitted and the corresponding energy
deposit is not clustered to the electron, it will be assigned to the hadronic final state.
In consequence both, the measurement of @? as well as of the hadronic final state are
spoiled. Such cases can be identified and cut if the direct electron energy measure-
ment is checked with the double angle method. The latter reconstructs the electron
energy with the help of the polar angles of the electron and the hadronic system,
and is in first order independent of the absolute energy scale of the calorimeters:
2FE sin

EDA _
€ sinqy, + sin 6, — sin (v, + 0.)

(3.6)

Events where the deviation between both values is larger than 10% are cut:
Q (E.— E™)/E” < 10%.

Fig. 3.3 (right hand side) reveals that both Monte Carlos give a reasonable descrip-
tion of this relative difference.

Vertices from NC DIS events are to be found around the nominal interaction
point according to a Gaussian distribution along the z axis (the width depending on
the length of the colliding bunches), while the background from beam-gas and beam-
wall collisions is almost flat or pronounced at massive structures, e.g. collimators.
To reject those non-ep background events, the reconstruction of a primary vertex is
required and a cut on the z-component of this vertex is applied
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Figure 3.4: The z-component of a reconstructed primary vertex (left) and the > (F—
p.) distribution (right).

O —35 cm <V, <35 cm.

Fig. 3.4 (left hand side) shows the distribution of V,. Both Monte Carlos had to
be reweighted in order to describe the V, distribution within the accepted interval.
This measure results in an improved description of the electron scattering angle 6,
and consequently also of Q2.

Another useful variable to assure data quality is Y (E — p,), which equals two
times the electron beam energy for NC DIS events in a perfect detector (> (E—p,) =
2-27.6 GeV). If particles are lost in the backward direction (e.g. the beam electron
in case of photo production or an ISR photon), a too low value of > (E — p,) is
reconstructed. In order to further reduce non-ep background, photoproduction and
hard initial state radiation, the following cut is applied:

Q 40GeV < S (E —p.) < 70 GeV.

A slight difference between the Monte Carlos is visible at the lower tail of the
> (E — p,) distribution in Fig. 3.4 (right hand side), whereby DJANGOH is more
close to the data.

A pion within the hadronic final state of a charged current event may fake a
scattered electron. To suppress such charged current events, the momentum bal-
ance in the transverse plane is utilised, whereby precisely measured neutral current
reactions are characterised by

b= \/(pr)Q + (Zpy>2 ~ 0 eV, (3.7)
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because the incoming beams have vanishing transverse momentum, which is con-
served in the scattering. Charged current events feature apparently missing momen-
tum, because of the undetected neutrino. Therefore a cut

a IJL < 15GeV,

suppresses CC background. The p, distribution is resembled by both used Monte
Carlos, presented in Fig. 3.5 (upper right).

Purely electro magnetic reactions like elastic QED-Compton or 77 events are
characterised by small hadronic activity in the calorimeters and can therefore be
suppressed by a cut on the hadronic fraction of the total measured energy,

Q ELY i/ Bln < 10% ,

hadronic

shown in Fig. 3.5 (upper left). The mean hadronic fraction is to some extend over-
estimated by DJANGOH.

Diffractive events, where a colourless particle mediates the interaction, exhibit a
rapidity gap between the proton direction and the remainder of the hadronic final
state. This feature is not included in the analytical calculations of the QCD analysis
to follow nor in the RAPGAP and DJANGOH Monte Carlo samples. In the phase
space under investigation, no major contribution of rapidity gap events is expected,
which is confirmed by Fig. 3.5 (lower plot). Here the rapidity of the most forward
cluster with energy of more than 0.4 GeV is plotted. Rapidity gap events exhibit
low values of nyax, however no excess is seen in the data. An additional cross check
was performed with a RAPGAP event sample containing also rapidity gap events.
No significant deviation in the event shape distributions was found.

To further reduce non-ep background events, a proper event timing with respect
to the colliding beam bunches is required. The event timing is precisely measured
by the central jet chambers CJC and has to match within 12ns:

Q J£67C — tgominal] < 12ns.

Finally, events originating from cosmic muons are identified by the QBGFMAR
package [53] and removed.

Now that all cuts against background have been introduced, the Monte Carlo
description of the kinematic variables on detector level is studied. Fig. 3.6 shows
the ? distribution on a double logarithmic scale, all data sets are well described by
the Monte Carlos.

Distributions of inelasticity ¥y, reconstructed with the electron and the sigma
method are pictured on Fig. 3.7. A logarithmic abscissa is chosen for ys to focus
on the low yx region, where the corresponding cut is placed. The photoproduction
background in the highest y. bins is obvious in the data. DJANGOH undershoots
the data somewhat, which is only visible on the linear ordinate of the ys plot.
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Figure 3.5: Hadronic fraction of the total measured energy (upper left), modulus of
the transverse missing momentum vector (upper right) and the maximum rapidity
of a cluster with energy greater than 0.4 GeV.
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Figure 3.8: Distribution of the scattered electron energy FE, in linear and logarithmic
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Q? > 196 GeV

0.1 <ys

Ye < 0.8

11GeV < E,

Trigger: ST67

QESCAT electron with track/cluster link < 12 cm
-3 ecm <V, <35 cm

lpr| < 15GeV

40GeV < 33(E — p;) < T0GeV
(EQPSCAT — EDA)JEPA < 10%
Bl onic/ Bl < 10%

|thC _ tgomina1| < 12ns

Table 3.2: Overview of phase space and data quality cuts.
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Figure 3.9: Event yield as a function of the data taking run number. The interval
on the abscissa corresponds to the years 1995-2000.

Fig. 3.8 shows the reconstructed energy of the scattered electron, which is well
described by both Monte Carlos over the whole range. A summary of all cuts is
given in Tab. 3.2.

Fig. 3.9 shows the event yield, i.e. the number of selected events per integrated
luminosity, against the consecutive number of data taking runs. It depends on the
trigger performance and detector acceptance, which may vary with time. The gaps
are caused by special data takings periods as well as by periods without beams, where
run numbers were consumed for cosmic muon data taking. The event yield appears
quite stable for the whole used data set. If inefficient regions within the central
tracker had been excluded, the stability could be further improved. Anyway, a
precise absolute cross section determination is not the aim of the presented analysis,
which deals with normalised differential cross sections.

To summarise, the Monte Carlos RAPGAP and DJANGOH describe all control
distributions well, but not always to the same level of precision. In consequence it
is concluded that the selected data consist of clean neutral current DIS events. The
total selected event sample amounts to 107693 events for an integrated luminosity
of 106 pb™*.

The data is further divided into bins of @), given in Tab. 3.3, to study the scale
dependence of the event shape variables.

3.1.3 Background Estimate

The total contribution of background processes to the event sample is small. It
may however be that the few remaining background events accumulate in only few
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# of @ bin 1 2 3 4 5 6 7
Interval/ GeV | [14,16] | [16,20] | [20,30[ | [30,50[ | [50,70[ | [70,100[ | [100,200[
Events N 26614 | 35324 | 30536 | 12015 | 2102 867 235

Table 3.3: Definitions of bins in the momentum transfer Q).

Process yp CC el. QED Compton Yy W# production
Monte Carlo PYTHIA | DJANGOH WABGEN GRAPE EPVEC
total relative

contribution 1073 107 1075 1073 107
typical bin

significance < 0.2 0.0 < 0.02 < 0.2 0.0
highest bin signifi-

cance observed 0.7 0.006 0.08 0.3 0.001

Table 3.4: Contribution of background processes to the selected data set, estimated
with simulated Monte Carlo samples.

bins of the event shape distributions and this way compromise the measurement.
To quantify this, a measure of significance is introduced. The significance of a
background process in a single bin is defined as

ﬁ; (3.8)

VT
with B the number of background events and T the total number of events in the
bin. Tab. 3.4 summarises the expected remaining background in the selected data
set, estimated with Monte Carlo simulations. The biggest contribution stems from
photoproduction. However, within the 679 investigated result bins, the highest
observed significance is well below unity. It can hence be noted that the background
is sufficiently suppressed.

3.2 Reconstruction of the Hadronic Final State

Any measurement of event shape variables relies on a precise measurement of the
hadronic final state, which is (in neutral current deep inelastic scattering) defined
as everything measured in the detector save the scattered electron. The following
describes how this is performed in the work at hand.

The present analysis enhances former investigations of event shapes at H1 [8, 14]
twofold:

e Instead of calibrated calorimeter clusters alone, combined objects of clusters
and tracks make up the hadronic objects. This approach leads to a better
reconstruction of less energetic hadronic particles.
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e A new energy weighting scheme for the LAr calorimeter was chosen (based
on studies described in [54]), which is known to exhibit significant improve-
ments in the response and linearity, the energy resolution and the signal shape
compared to the standard (H1REC) energy weighting scheme.

The basic way to measure energetic hadrons is to use both the electromagnetic
and hadronic sections of the LAr and SPACAL calorimeters. However, particles orig-
inating from the event vertex have to cross dead material in front of the calorimeter.
At low particle energies, energy loss in the dead material can be problematic, all the
more because a noise suppression algorithm has to remove isolated clusters of very
low energy. The central tracking chambers CJC have a good momentum resolution
for low energy particles, therefore it may appear obvious to combine signals from
both devices, as long as no double counting of energy occurs.

H1 combined objects are constructed by the FSCOMB [55] algorithm, the built
entities are called HFS objects. The algorithm works as follows:

1. Clusters already assigned to the scattered electron are removed.
2. The noise suppression removes isolated low energy deposits.

3. Primary vertex fitted tracks are selected, with py < 2GeV and a minimum
angle to the electron of 1° in  and 5° in ¢. An energy is assigned to the tracks
under the assumption of a pion mass hypothesis.

4. For each track the following procedure is performed:

- The track is extrapolated into the calorimeter, where successively clusters
are removed, beginning with smallest distance of closest approach to the
track, until the removed energy equals the track energy within one stan-
dard deviation of the energy resolution or all clusters within a cylinder of
radius 25 cm (electromagnetic part) or 50 cm (hadronic part) around the
track have been removed.

- If the total removed energy is larger than that of the track, the last cluster
is kept and rescaled to match the track energy instead.

5. Finally, all remaining clusters and tracks form the HF'S objects.

Event shapes are by their definition sensitive to low momentum particles, thus it
can be expected that the inclusion of low momentum tracks in HF'S combined objects
leads to an improved measurement. In an ideal detector a measured quantity would
be the same on detector as well as on hadron level. Due to the limited resolution
of a real world detector, the reconstructed value will always deviate to a greater or
lesser extent. However, if the observable is binned, it is only of interest if an event
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is assigned to the right bin or not. This is the reason why bin sizes should match
roughly the resolution of the observable.

To quantify the performance of the reconstruction, it is common practice to study
the bin purities and stabilities of the final distributions with the help of Monte Carlo
event samples. Purity P; and stability S; of bin ¢ are defined as follows:

Ndetﬂhad Ndetﬂhad
P = ZNdet g Si = }Vhad (3.9)
i i
with
Nlet : number of events assigned to bin ¢ on detector level,
Nhad : number of events assigned to bin 2 on hadron level,

N detnhad number of events assigned to bin i on both,

detector and hadron level.

Only events passing cuts on detector level are considered, therefore the detector ac-
ceptance is separated from purity and stability. High purities and stabilities indicate
a reliable reconstruction.

Fig. 3.10 shows exemplarily for two event shape distributions purities and sta-
bilities for calibrated clusters and combined objects. It is obvious that in every bin
the combined objects give better results of up to ~ 5%, which can be explained by
the fact that the combined objects on detector level approximate the hadron level
better than cluster do, thus bin migrations are lessened. This conclusion holds also
for the other investigated event shape variables and over the whole studied () range.

The hadronic calibration of the non-compensating LAr calorimeter relies on an
energy weighting technique, which equalises the electromagnetic and hadronic com-
ponents of a shower by software. The different response of the calorimeter to single
electromagnetic and hadronic particles can be expressed in the e/m ratio, which is
known from test beam measurements. Being always greater than unity, this ratio
is a function of the particles energy, giving rise to a non linear response for energy
deposited by hadrons.

The energy weighting procedure is performed as follows:

1. Initially the electromagnetic calibration is applied to all clusters.

2. A shower shape analysis identifies the hadronic clusters, the fine granularity
of the LAr calorimeter is essential in this step.

3. The hadronic clusters are reweighted, weighting factors depend on the location
of the cluster, its energy density and on the energy in the neighborhood of the
cluster.

Within the framework of other H1 analyses, e.g. of inclusive cross sections [51]
and of dijet cross sections in photoproduction [56], it could be demonstrated that
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Figure 3.10: Comparison of calibrated clusters and combined objects, determined
with the RAPGAP Monte Carlo event sample. Purity (left) and stability (right),
exemplarily shown for thrust 7 (upper) and jet rate yo (lower).
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the final calibration is described by the Monte Carlo simulation to a precision of
better than 2%. This residual difference is taken as the systematic error for the
absolute hadronic energy scale.

To evaluate the calibration for the present work, the transverse momentum bal-
ance pr./prn of neutral current events is investigated. If the hadronic final state
is properly calibrated, it will balance the transverse momentum of the electron,
resulting in a transverse momentum balance of one. A comparison of py./pry be-
tween data and Monte Carlo is pictured in Fig. 3.11, as a function of the inclusive
hadronic angle v, to study the homogeneity throughout the calorimeter. The up-
per plot proves that the momenta are well balanced, though small deviations can be
seen. The lower plots depict the double ratio of the transverse momentum balance,
i.e. the data distribution divided by the Monte Carlo distribution. It is documented
that the Monte Carlo models the data to an accuracy of 2% for the new energy
weighting, where for the old scheme only 4% accuracy can be quoted. The usage
of combined objects or calibrated cluster is not pivotal when working with the new
weighting.

The bottom line is, that by using the new weighting scheme in this work, the
hadronic energy scale uncertainty can be reduced from the original 4% to 2%. The
restricted knowledge of the absolute hadronic energy scale proved to be the largest
contribution to the experimental systematic error for jet rates in former analyses.



3.2. Reconstruction of the Hadronic Final State 45

< 2.0
QI_— + e Data
o 5 — RAPGAP 2.8
QI_—" T DJANGOH 1.2
1.5+
0.5~
0_07”‘\‘”\‘”\”‘mum”mum
0 20 40 60 80 100120140
v,/ T
ol .08 ol .08
'_|§ r ¥ Combined Objects '_§| r
= , e [ |
§_1.06 . A G §_1 .06: A: > L
o, r L) r | | |
&1.04 104 MMA% | %
51.02; x X X 51.02;‘ x4++$‘7 T‘
0 ol * o0 Ad VA -2 C X . ! v
=1.00 % P SR S 4 2100 Yy Vo T
o - v a .
20.98 - 098 4y
2 F 2 P
0.96 - 0961 =&
0.94;* 0.94;* old weighting
Covv b b b b b by by Covv b b b b b b 1y
O'920 20 40 60 80 100 120 140 0'920 20 40 60 80 100 120 140
v,/1° Y,/1°
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Chapter 4

Detector Correction Procedure

The measured data are degraded by detector effects, i.e. the specific parameters of
the H1 apparatus influence the distributions. To make the results comparable to
other data, e.g. from the ZEUS collaboration, detector effects have to be compen-
sated by a correction procedure, i.e. results are given on hadron level.

The comparison with theory calculations could in principle be done on detector
level, if the calculated events were fed into a detector simulation. However, this is not
possible with the NLO calculations used in this work, because events corresponding
to real and virtual corrections of a parton configuration need to enter the same
result bin, in order to partly cancel each other and yield the correct cross section
(see also section 1.2.2). If one would apply the detector simulation on the NLO
events, this could not be guaranteed, because the limited detector resolution leads
to bin migrations. Therefore the data are corrected to the hadron level.

The correction is done with a Bayesian unfolding method, which is especially
suitable if bin migrations are relatively high. Moreover, this method is not so de-
pendent on the exact description by the Monte Carlo used for unfolding.

QED radiative effects depend on detector resolution and acceptance, and are so
far not included in the theory calculations. Hence these are also corrected for in the
data, which are then given on the “non-radiative hadron level”.

4.1 Unfolding of Detector Effects

The influence of the detector properties on the reconstructed distributions can be
infered from the detector simulation, in order to correct for resolution effects, ac-
ceptance gaps and possible biases. A prerequisite for this are Monte Carlo event
samples of the physical process under study: neutral current DIS in the present
analysis.

The Monte Carlo generators used for the detector correction are RAPGAP 2.8
and DJANGOH 1.2, both are expected to give a fair estimate of the event shape
distributions. This will be investigated in the next subsection. Thereafter, the
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actual unfolding method is presented, yielding data distributions on hadron level,
which are the basis for the fit in chapter 5.

In principle one could also perform the correction to the level of hard partons in
the Monte Carlo, thus the correction would also include the hadronisation. This is
not done in this work, because of the ambiguities mentioned in section 1.2.4, instead
power corrections are applied on the theory calculations. Moreover, by not unfolding
to parton level, the dependence on the specific hadronisation model is considerably
reduced.

4.1.1 Monte Carlo Samples

The high statistics Monte Carlo event sets, as described in section 2.3, are compared
to data on detector level. Again, for the sake of brevity, only plots for data set ®
(see also section 3.1), are shown. Fig. 4.1-4.2 picture the spectra with statistical
errors of all ten event shape variables, which are studied in this work. Out of all
seven () bins, three are shown: for the lower, middle and high @ region. The
description is in general good. At low ), both Monte Carlos are close to each other
and to the data, only for the multi jet rates y3 and y4 discrepancies are visible.

At high @, the description of RAPGAP is similarly good, whereas DJANGOH
is a bit more off. The latter predicts for some observables (all but the jet rates and
Koyt ) distributions, which are too high at the QPM limit F' = 0 and consequently
too low at higher values. This feature of DJANGOH (used together with the CDM
hadronisation model as implemented in ARIADNE) was also found in a previous
analysis of 2-jet event shapes [57].

For high ) and at high values of the shape variable 7, B and p,, there are some
data bins which seem to lie above a (imaginary) smooth distribution. The reason
for this is not clear. However, as will be shown in section 4.2, these regions are
strongly affected by QED radiation effects (but not for 7. and C-parameter), in
such a manner that the bin contents are increased by radiation. It could be, that in
rare cases high energetic clusters from FSR photons contaminate the reconstructed
hadronic final state. Particles in the vicinity of the scattered electron correspond
to objects on the edge between the Breit frame hemispheres, far away from the
current jet, and may hence give rise to high values of a 2-jet event shape (compare
section 1.2.2). On the other hand, both Monte Carlos include QED radiation and
should therefore describe such effects.

While not precise for all bins, the Monte Carlo description is sufficient for un-
folding. To take into account the discrepancies observed, both Monte Carlos are
used for the detector correction. The result obtained with RAPGAP is taken as
the central value, half the difference to the result from DJANGOH is taken as the
systematical error for the model dependence.
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4.1.2 Unfolding Procedure

Most straightforward and often used is the so called bin-by-bin correction

2
ziata - diicdéataﬁ (41)

MC
where h' and d' denote the content of bin 4 on hadron and detector level, respectively.
The corrected result in a bin depends only on data of the same bin on detector level,
thus bin migrations are completely neglected. When this method is applied, it is
usually demanded that the migrations, evaluated by bin purities, are not too high.
E.g., in a recent analysis by the H1 collaboration of inclusive cross sections, a bin
purity greater than 0.3 is required [51].

Bin purities for the event shape distributions of the present work are studied in
the following. The azimuthal correlation y is an exception in that sense, that for
this observable the concept of bin migrations is not applicable. For this observable
any event fills n? bins of the distribution, where n is the number of hadrons (on
hadron level) or of HES objects (on detector level). Because the number of hadrons
and HF'S objects will in general be different, no unique assignment of bin entries is
possible, and therefore the bin purity is not well defined.

Fig. 4.3 shows the purities for all bins of the present analysis in an overview.
To guide the eye, the region of purity less than 30% is marked by a shaded area.
Although bin migrations have been lessened by choosing combined objects, the bin
purities are still in general rather low, especially for the jet rates and parts of the
Koy distribution. It is obvious that the 4-jet rate y; is already at the limit of
resolution of the H1 detector: to measure even higher jet rates is not reasonable.

While the full range of definition is always shown in Fig. 4.3, only part of the
bins will later be used for the QCD fit. No explicit cut on a minimum bin purity is
applied for bins used for fitting.

Low bin purities could lead to problems, if a fit of the unfolded data treats the
bins as uncorrelated. To account for the correlations, the full covariance matrix is
needed, however the bin-by-bin correction does not provide such a matrix. Therefore
only for y the bin-by-bin correction is used, whereas for all other observables a
method which takes the migrations into account is needed.

The response of the detector can be expressed by the smearing matrix C¥,
which is defined via the equation

d'=C"h. (4.2)

The smearing matrix contains the complete information of bin-to-bin migrations. It
is reasonable to add an extra bin to the distribution, which holds events which did
not pass requirements in the event shape definition!. This way migrations in and
out of the interval of definition are accounted for.

I Examples for such requirements are the y» cut in the definition of Koy and y, or the minimum
current hemisphere energy requirement for the 2-jet event shapes, compare section 1.3.



52 Chapter 4. Detector Correction Procedure

1 Q= 15GeV Q=18 GeV 1 Q= 15GeV Q=18 GeV 1 Q=15GeV Q=18 GeV
o o o
L} " -
5y I m 51 m r = S5 m " g L]
n"n m e Sy u
.llIl- ..lll. ..llll.. ...-..I- Egu® ngn®
n
1 Q=24 GeV Q=37 GeV 1 Q= 24 GeV Q=37 GeV 1 Q=24 GeV Q=37 GeV
[ ] . " - L
5 ® Fo. 5 m Fm 5" m " m e
"samn "magn, "Eamnng "EEmaaa, Sgpm Egal
" ¢ n u
1 Q=58 GeV Q=81 GeV 1 Q=58 GeV Q=81 GeV 1 Q=58 GeV Q=181 GeV
] u " " [ ] u
5 m Fm 5 « [ = . ++ 50 4 an " ..-'
'lll.+ L o L ¢+ L "aam® LI R
'la Q=116Gev '@ Q=116Gev 1 Q116 Gev
n
L L + t L
5 "pmmme T S| mmmay T 5 —_— B
"
0.0 0.2 0.4 0.0 05 1 0.0 0.2 04
Te T
1 Q=15GeV Q=18 GeV 1 Q=15GeV Q=18 GeV 1 Q=15GeV Q=18 GeV
o o o
L ]
5" m | = 5L - 5L L
| | n | |
EgEEg LI LN T i Spggu"nm R T T T L L
1 Q=24 GeV Q=37 GeV 1 Q=24 GeV Q=37 GeV 1 Q=24 GeV Q=37 GeV
- | |
s " Fom S e, . 5 3
L [ ]
L LI L. "y "aan""a -.-...ll.I...-.ll...
1 . TQ=58Gev . TG=8TGev | [ Q=58GeV |  Q=81GeV L o - 7 — B ¢ =¥ M ¢ T A—
n
n
n
5F F 5F . 5F r
"an_® L] -lll.-* u am [ ] L ° L] [ R ]
PR | amgm * Egugn BN auuEg® o gummE®"EE
e Q=116GeV 1T as116Gev 1 a516Gev
S | m L
5 II..* po 5 ...-.l-+ C .5-...II-I. y2
-0 01 02 90 05 1 020 15 1.0 -05 0
00 [¢] loato va2
1 Q=15GeV Q=18 GeV 1 Q=15GeV Q=18 GeV 1 Q=15GeV Q=18 GeV
o o o
5L L 5L L 5 L
nt I..l = "
"sapguun"dEmgguun” "Eag o -Illn..* . .-l-..
1 Q=24 GeV Q=37 GeV 1 Q=24 GeV Q=37 GeV 1 Q=24 GeV Q=37 GeV
5t 3 5F H 5F _m Fm
.l* -I.* " ™ .I. ++
T TTLL +III. Sammggk T L] "faaan "ug
1 Q=58 GV Q=81 GeV 1 Q=58 GeV Q=81 GeV 1 Q=58 GeV Q=81 GeV
5 F + L 5F = 5 ® fmm
. L + " (Y] +
..I.*+ ann" . .H* .+*+ uh [ ]
! Q=116 GeV — 1 Q=116 GeV D 1 Q=116 GeV ‘
L L |-
n
5 "L y3 5 y4 5 -j KOUt/Q
- “ut ¥
020 15 1.0 05 0 020 15 -1.0 -05 0 90 05 1
loato va loato va Kout/Q

Figure 4.3: Bin purities, determined with RAPGAP. To guide the eye, the shaded
area marks the region below 0.3. For the definition of purity see Section 3.2.



4.1. Unfolding of Detector Effects 53

C Q= 15GeV C Q=116 GeV

prany . H prary
ﬁ 107 — ﬁ 10
= - =
3 | =L 3
i - m [l - ,
57 . » -.-. . 57
- aEEs -
] .-.. . =
|- = HE = - ] - H o=
|- mm - - =
l‘- . . ‘ . !‘-‘-‘- |
00 5 10 O0 5 10
bin# {had) bin# {had)

Figure 4.4: Smearing matrices for the C-parameter event shape for the lowest (left)
and the highest @ bin (right). Bin 11 contains events which are not accepted by the
current hemisphere energy requirement.

The smearing matrix for Monte Carlo events C’ﬁc can easily be calculated, be-
cause dy;q as well as hi;- are known. Fig. 4.4 shows the smearing matrix for the
C-parameter in two @) bins.

It may appear obvious to simply invert the smearing matrix
i (vid y—1
Unic = (Cyic) ™ (4.3)

where Uf\%c is labeled the unfolding matrix, and apply it on the detector level dis-
tribution,

f:lata - lt/][C fiata' (44)

As a matter of fact, this procedure yields a bias free estimate of h,,, [58]. However,
it is well known that this matrix inversion method leads to instabilities, because
small statistical fluctuations in the measurement can produce large effects on the
result. To overcome this issue, various regularisation methods exist.

The present work adopts an iterative algorithm exploiting the Bayes theorem
for the determination of the unfolding matrix, which was introduced in [59]. This
method was also used in a previous event shape analysis by the H1 collaboration
[14, 57], as well as in a recent dijet analysis [60].

The Bayes theorem connects the conditional probability P(C;|E;), that an effect
E; is due to a cause C}, with the inverse conditional probability P(£;|Cy) and the
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initial probability Py(C;) of the cause:

P(E;|C;) R (Cs)
P(Ci|E;) = J . 4.5
(GIE;) >, P(E;|Cr) Po(Cy) (45)
Applied to the problem of unfolding, the causes can be identified with the hadron
level and the effects with the detector level. Consequently, the smearing matrix
corresponds to P(E;|C;). The algorithm proposed in [59] yields the following pre-
scription for the unfolding matrix:

g iR
Uyic = MO0 : (4.6)
Zk CII\C/fC (Zk Cll\]/fChIS)

If the smearing matrix is known from Monte Carlo simulation, the measurement
d' alone is not sufficient to draw a conclusion for the hadron level: in addition a
“prior” h{ has to be given.

The method of the iterative algorithm is, to take a rough estimate as the prior
to determine the hadron level with the help of equations 4.4 and 4.6, and then use
this intermediate result as prior h{ for the next iteration. With every iteration the
so far unfolded result is fed as the prior distribution in the unfolding formula. The
solution is expected to approach a good estimate in just few iterations. The result
is relatively independent to the hadron level distribution of the Monte Carlo which
is used to determine the smearing matrix, i.e. the model dependence of the detector
correction is reduced compared to the bin-by-bin correction [57].

What should be used as the prior in the first iteration? In case of complete
ignorance about the form of h’, even a flat distribution may be suitable. However,
event shape distributions are very different from flat distributions, compare Fig. 4.1-
4.2, so in this work the hadron level from the unfolding Monte Carlo is used as the
prior, to speed up convergence.

Naively one could argue that in the limit of infinite iterations, the result converges
to the optimal result. That is in general not the case, as G.D’Agostini points out
in [61]: “...in practice this technique [the iterative procedure] is just a 'trick’ to give
to the experimental data a weight (an importance) larger than that of the priors.”.
It may happen, that after some iterations fluctuations build up, a problem also
well known for the matrix-inversion method. So it is rather that the Bayes solution
converges to the solution which would be obtained with matrix inversion. A possible
modification to damp fluctuations was proposed in [61]: smooth the distributions
between two iterations with the help of a low order polynomial. This has also been
tested for the present analysis, but was found to be not helpful, possibly because
the distributions to unfold are rather steep.

In consequence, one needs to find a number of iterations when to stop, which will
be studied in the following. Fig. 4.5 shows the unfolded data distribution of thrust
in @) bin no. 4, after 1-10 iterations. While the bins in the center of the distribution
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Figure 4.5: Data unfolded with the Bayesian method, in linear (left) and logarithmic
(right) scale. RAPGAP is used as unfolding Monte Carlo.

remain stable, the bins at the edges experience some dependence on the number of
iterations. To study the unfolding procedure in more detail, simulated DJANGOH
events are treated like real data and unfolded with the help of the RAPGAP event
set. This way, one can compare the unfolded result to the “true” values, see Fig. 4.6
where the histogram marks the optimal solution. In the leftmost bin the solution
converges to the right result, whereby in the rightmost bin the solution drifts away.

Fig. 4.7 shows the relative difference between the unfolded result and the true
distribution, over 10 and over 100 iterations. The solution appears stable, with the
exception of the two rightmost bins. The dependence from the number of iterations
varies by observable and @ bin: compare Fig. 4.8, showing the 2-jet rate over 10
iterations. Again, few bins at the tail of the distribution drift away.

On the right hand side of Fig. 4.8, the absolute value of the relative deviations of
all observables within the intervals used for the QCD fit are summed for all @) bins,
and plotted against the number of iterations. For comparison, the corresponding
value for the bin-by-bin unfolding is given as a line. The unfolded result resembles
the correct hadron level best after three iterations, then it starts to drift away again.
So the recommendation of three iterations given in [61] can be confirmed by this
study. Moreover, in case of this Monte Carlo scenario, the bin-by-bin correction
performs less well, as long as the number of iterations for the Bayesian unfolding is
chosen between 2 and 20.

To give an idea of the size of the corrections, Fig. 4.9 shows the correction
factors that are obtained by the bin-by-bin method. Mostly, the corrections are less
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than 30%, however discrepancies are observed at high ). This is expected, because
DJANGOH and RAPGAP disagree at high @ (see Fig. 4.1). The consequences for
the unfolded results are visualised on Fig. 4.10, where it can be seen that the model
dependence on the Monte Carlo model is smaller for the Bayesian unfolding, as it is
expected. However, at high @) the statistics of the data are limited, anyway.

To illustrate the effect of the detector resolution, Fig. 4.11 displays the correlation
matrix as determined by the Bayesian unfolding, where non diagonal elements are
due to bin migrations. Bin correlations are smaller at high @), corresponding to a
better detector resolution at higher energies.

Conclusion:

e The Bayesian unfolding is used in this work, because it incorporates bin mi-
grations and provides a covariance matrix.

e A test, namely unfolding one Monte Carlo with another, revealed that for the
bins used in the QCD fit, the Bayesian method yields more precise results than
the bin-by-bin method.

e The best overall solution is reached after three iterations.

The bias which is introduced by the unfolding is estimated via unfolding the Monte
Carlo with itself, and is included in the systematical error.
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Figure 4.11: Correlation matrices for the jet mass for the lowest (left) and the
highest @ bin (right). The numbers denote the correlation in per cent.

4.2 (QED Radiative Corrections

Currently available NLO calculations do not account for QED radiation, therefore
the unfolded data is corrected for this radiative effects in a second step. This is done
by applying bin-by-bin correction factors. It is not possible to build a smearing
matrix in this case, because an event with an additional radiative photon will in
general lie in a different ) bin than its counterpart on Born level.

In order to determine the correction factors, two additional sets of event samples
from RAPGAP 2.8 and DJANGOH 1.2 are used. They are generated with exactly
the same settings as the central set, except that the QED radiation in the HER-
ACLES submodule was turned off. Correction factors are then derived from bin
divisions of both samples on hadron level. Only phase space cuts were applied on
the non radiative hadron level, therefore also the detector acceptance is corrected
for.

Fig. 4.12-4.13 display the correction factors to be applied to the data. Depend-
ing on the observable, the corrections get quite high with increasing ). The factors
are consistent with previous findings [57].

Thrust 7 and jet broadening B feature large sensitivity to QED radiation already
at low scales. A possible explanation of this could be that both event shape variables
make explicit use of the virtual boson axis in their definition. Radiative photons
alter the virtual boson axis because of momentum conservation. The other 2-jet
event shapes (7., pp and C-parameter) do not use the virtual boson axis explicitly:
e.g. the thrust axis used in the definition of 7. can follow rotations of the current
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Figure 4.12: Correction factors for the event shape distributions, including QED
radiation and detector acceptance, determined with RAPGAP/HERACLES.
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Figure 4.13: Correction factors for the event shape distributions, including QED

radiation and detector acceptance, determined with RAPGAP/HERACLES.
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hemisphere, which is fixed to the virtual boson axis.

Since jet rates are defined on particles of both, the current and the remmnant
hemisphere in the Breit frame of reference, the acceptance corrections are in general
larger than for the 2-jet event shapes. This property is visible for the region of low
12 and low Q.

The azimuthal correlation x appears to be nearly insensitive to QED radiation.
Apparently the definition relying on azimuthal differences A¢ lets radiative effects
mainly cancel.

4.3 Experimental Systematic Uncertainties

The reconstruction and detector correction procedure aims to the best central value
of the observables, but uncertainties remain, e.g. on the absolute value of the energy
scales and on the Monte Carlo model used for unfolding. To get an estimate for
the systematic errors of the results, several parameters are varied, to an extent
corresponding to what is assumed to be one standard deviation. The analysis is
then individually repeated for every variation, whereby the change in the result bins
marks the systematic error.

Systematic errors can be determined from data as well as from Monte Carlo event
samples. It has been checked that the results obtained from both are compatible at
low and moderate @; the actual systematic error determination was then performed
based on the RAPGAP Monte Carlo sample, in order to profit from the very good
statistics at high @), where the data is subject to statistical fluctuations.

Most systematic error estimates, which are briefly discussed in the following, are
standard for H1 analyses (see e.g. [62]), only the hadronic energy scale needs special
treatment for event shape variables.

The kinematics and therefore the boost to the Breit frame of reference depends
on the reconstructed electron, thus the electromagnetic energy scale is varied by its
uncertainty of +(1% — 3%), depending on the z position of the electron cluster. In
addition polar and azimuthal angles of the electron are changed by £3 mrad each.

Clusters from the SPACAL calorimeter contribute only to a lesser extent to the
hadronic final state. The variation of the hadronic energy scale of this calorimeter
by £7% showed negligible impact, and is hence not included. Likewise, a shift of
the track momentum for combined objects by +3% was checked, but not included
in the final systematic error.

For hadrons, a LAr calorimeter energy scale uncertainty of 2% is quoted (compare
section 3.2), consequently this value is used for the jet rates, the out-of-event plane
momentum K¢ and the azimuthal correlation x. In case of the other event shape
variables, any hadronic energy scale variation cancels by definition. Though, it
appears too optimistic to assume an error free measurement with the LAr, thus
another variation is used for these variables, which is described in the following.
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Figure 4.14: Differential energy flow as a function of the z position within the
detector.

Event shapes are sensitive to the intercalibration of the calorimeters, i.e. to the
relative calibration between parts of the detector. Inhomogeneities are in general
included in the detector simulation, and are this way corrected for in the unfolding
step. As a suitable quantity to check how well the description of the Monte Carlo
actually is, the differential energy flow is used. This variable denotes the mean total
hadronic energy, measured at some position within the H1 detector.

Fig. 4.14 shows the differential energy flow on detector level, as a function of
the z position at the inner calorimeter surface. Several structures are visible in the
distribution, which stem from regions of dead material within the LAr. Especially
the z crack at +20cm (compare section 3.1.2) results in a prominent gap. This
energy flow distribution is well described by RAPGAP/H1SIM.

Fig. 4.15 displays the relative difference between tha data and RAPGAP in two
dimensional spherical coordinates. The root mean square of the deviations amounts
to 8.6%, but one has to take into account that the statistics of the data is limited.,
hence part of the observed deviations are statistical fluctuations. However, regions
of correlated shifts are visible, e.g. corresponding to the upper right (data lower than
RAPGAP) and lower middle (data higher than RAPGAP) in the plot.

Now the assumption is made, that this deviations are a rough estimate of the
uncertainty on intercalibration. In a systematic study, the calibration of the hadronic
final state objects is modified by a factor taken from the bin contents of Fig. 4.15,
according to the polar angle 6 and azimuth ¢ of the object,

Apdats — A MO dE
Evaried - Ecalibrated (1 + AEMC ) AE(@, ¢> = /bin m (47)
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Figure 4.15: Double differential energy flow as a function of the position within the
detector. Shown is the relative difference between data and RAPGAP in per cent.

The resulting change in the results is considered as the systematic hadronic energy
uncertainty for 7., 7, B, pg and the C-parameter. Since in the measured spectra a
large number of events contribute, which are evenly distributed in ¢, the effect on
the results is small (compared to e.g. the electromagnetic energy scale uncertainty).

All systematic variations which have been considered are summarised in Tab. 4.1.

The uncertainties due to the energy scales and electron angle measurements give
rise to correlations between the bins of the unfolded event shape distributions, hence
a covariance matrix is build for these systematic errors. This is done in two steps:
Firstly an intermediate covariance matrix V"’ is prepared [63]

Vii=1/2 ) 5505, (4.8)

ec+,—

where i and j are bin indices and € denotes the variation of the scale (up/down). The
deviation with respect to the central scale in bin ¢ is denoted by d5. Obviously this
estimate of the covariance matrix is not exactly precise, because only two samples
(on top of the central scenario) enter the calculation. In a second step the errors are
symmetrised:

0; = max (|0F]) (4.9)

ee+,—
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1. Variation of the electromagnetic energy scale of the QESCAT electron finder
by +£(1% — 3%).

2. Variation of the polar and azimuthal angles of the electron by +3 mrad each.

3. Variation of the hadronic energy scale of the LAr calorimeter by +2% (for ys,

Y3, Y4, Kout and X)
Variation of the intercalibration of the hadronic energy, with root mean square

of ~ 8% (for 7., 7, B, py and C-parameter).

4. Usage of RAPGAP with parton showers and DJANGOH with the color dipole
model for unfolding, half of the difference is taken as error.

5. An estimate of the bias from the unfolding procedure was determined by
unfolding MC samples with themselves. The mean value from RAPGAP and
DJANGOH is taken as the error.

Table 4.1: Experimental systematic uncertainties considered in the present analysis.

denotes the symmetric standard deviation. The correlation matrix C' is calculated
from the covariance matrix

v
Oy = ——1_ (4.10)

and finally the covariance matrix for symmetrised errors reads:

Vij = Sicijgj- (4.11)

4.4 Combination of Data Sets

All unfolded histograms are available threefold, because of the separate analysis of

@ proton beam momentum: pp = 820 GeV, beam lepton: e™

@ proton beam momentum: pp = 920 GeV, beam lepton: e~

@ proton beam momentum: pp = 920 GeV, beam lepton: e™

Each unfolded histogram comes with a covariance matrix for the statistical and
the systematical error. In this section it will be discussed how the results are com-
bined. For completeness, in Appendix 6 all results are also given individually for
the three data sets.
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Figure 4.16: Event shape distributions unfolded for detector effects and QED radia-
tion. Data sets with proton beam energies of 820 GeV and 920 GeV are compared,
corresponding to a center of mass energy of 301 GeV and 318 GeV, respectively.
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Fig. 4.16 compares positron data at two different proton beam energies (® and
@), three event shape variables are presented in three bins of @ each. The dis-
tributions are compatible within statistical errors. This is expected, because the
difference in the center of mass energy amounts to 6%, corresponding to only small
discrepancies in the mean values of () and Bjgrken x for all seven bins of (). The vari-
able with the strongest dependence on x among the studied event shapes is known
to be thrust 7 [57] (especially at high @), however no discrepancies are visible here.

Consequently it appears sensible to average both sets of distributions. In order
to take into account the different amount of data in @ and @, the weighted mean val-
ues are computed, with the weight given by the inverse of the integrated luminosity.
Accordingly, the resulting covariance matrices are calculated by error propagation,
such that @ and ® are assumed to be fully uncorrelated with respect to the statis-
tical uncertainty, and fully correlated with respect to the systematical uncertainty.
The latter assumption affects that the systematical errors are not reduced by the
combination procedure, which is intended.

The effective center of mass energy of the combined et sample amounts to
313 GeV, whereas the shifts of the central values of ) and x are considered and
found to be not larger than 4%.

When combining this new set of histograms with sample @, it is important to
take into account not only the unequal center of mass energies, but also the different
lepton charges. Equation 1.2 shows that a part of the total cross section, namely
the xF3 contribution, enters with opposite sign for e*p and e p scattering. This
contribution, generated by Z° exchange and vZ° interference, is noteworthy at high
scales Q in the order of the Z° mass.

For the normalised event shape distributions, any change in the total cross sec-
tion cancels. However, the coupling of the neutral vector bosons (y and Z9) to
quark/antiquark pairs differs, because of the additional axial vector coupling of the
7. Therefore in general a difference is anticipated between event shapes measured
in eTp and e p scattering [64] at high @. This difference is however expected to be
small.

Fig. 4.17 shows three event shape variables in three bins of @), separately for
e™ (combined) and e~ data. While the data sets at lower @ show no distinctive
features, for the highest ) bin shown one could argue that some discrepancy in the
slope is present, which is not covered by the errors.

There is a NLLO Monte Carlo program including electroweak contributions, MEP-
JET [16], but because of the employed phase space slicing method it is not suited
for the determination of event shape distributions [25]. Moreover MEPJET has
been found to give substantially different results compared to DISENT and DISAS-
TERA++ [65].

Unfortunately, the state-of-the-art NLO calculations used in this work (DISENT,
DISASTER++ and NLOJET++) do not include Z° exchange, hence possible dis-
crepancies due to differing matrix elements can not be studied here.
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Figure 4.17: Event shape distributions unfolded for detector effects and QED radi-
ation. Data sets for etp and e~ p scattering are compared.
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#ofQbin | 1 2 3 4 5 6 7
Interval/ GeV || [14,16] | [16,20] | [20,30] | [30,50] | [50,70] | [70,100] | [100,200]
(Q)/GeV || 14.93 [ 1775 | 2381 |36.84 |57.58 | 8059 | 116.34

(z) 0.00871 | 0.01196 | 0.02011 | 0.04622 | 0.10842 | 0.18450 | 0.30008

Table 4.2: Mean values of Bjgrken x and momentum transfer @) for the bins of the
combined data set.

If the effect is really as large as Fig. 4.17 suggests, fits to theories including only
photon exchanges are problematic. Following a suggestion from M. Dasgupta and
G. Salam [64], the effect can be lessened, if the cross section weighted distributions
from et and e~ data are used:

Ao’ N d3o¢
1 dgean dzdQ2dF " dzdQ2dF
= dzd@” : 4.12
gmean  JF /Q—bin z Q d20.e+ d20.e_ ( )

dzdQ?  dzdQ?

This way the part proportional to xF5 cancels. The determination of the combined
covariance matrices is made in analogy to the combination described above for the
820 GeV and 920 GeV data, the weights used here are the cross sections instead of
the luminosities.

The remaining problem are the Fy and Fj, parts, where the relative weights of
the different quark flavours are also modified by the Z° contributions. In principle
this could be accounted for by a modification of the effective quark charges in the
calculations, but this has not been done yet.

A practical drawback of the cross section weighted distributions stems from the
fact that H1 has collected roughly six times more e*p than e~ p data. Because of this
asymmetry the statistical uncertainty of the combined result is degraded, compared
to a scenario where an equal amount of data were available. However, this effect is
somewhat attenuated: at high (), where statistics plays the major role, the inclusive
cross section for e p scattering is significantly larger than for e*p scattering. At the
highest @ bin in the presented analysis, the cross section for e™p is twice as large as
for et p.

In the following, all results are given for the weighted means according to equa-
tion 4.12, this way the fits to the pure electro-magnetic theory calculations are better
founded.

4.5 Results on Distributions

Fig. 4.18-4.20 show the measured unfolded event shapes distributions. Depicted is
the non radiative hadron level together with theory histograms for comparison. The
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normalised cross sections are not bin center corrected, hence also the theory (which
could be binned fine enough to display a smooth curve) is given integrated over the
bins.

These distributions are a main result of the presented work.

e 2-jet Event Shapes
The five studied 2-jet event shapes are well established observables. The mea-
surement is precise, which is reflected by a small systematic error for most
part of the phase space. Since no severe cuts are made in the definition of
these variables, the full data statistics is exploited, hence only the highest )
bins are statistically limited.

A strong dependence of the shapes on the scale () demonstrates their sensitivity
to quantum chromo dynamics. Sophisticated theory calculations are available,
which allow for a QCD fit. The result of the fit, which is described in the
following chapter in more detail, is already here shown for the 2-jet event
shapes in comparison. Even if not applicable for the full range of phase space,
the perturbative calculations together with power corrections provide a close
description of the data.

e 3-jet Event Shapes
Out-of-event plane momentum and azimuthal correlation were only recently
introduced for deep inelastic scattering. The present work shows the first
measurement of this quantities. As described in section 1.3.2, a cut on s is
made in their definition, which reduces the statistics of the data compared to
the 2-jet event shapes.

Unfortunately a resummed and matched calculation is only almost finished
at the time of completion of this thesis, thus no QCD fit can be performed.
Instead, the data is compared to RAPGAP, which at large describes the data.
On the other hand, discrepancies are visible for the azimuthal correlation at
the 2-jet limit (at low values) and at high scales.

e Jet Rates
Of the observables shown here, only the 2-jet rate has been studied before in
detail in DIS [14]. The distributions are strongly peaked at zero, hence usually
the logarithm of the jet rates is studied.

It is expected that the measurement gets difficult with increasing jet multiplic-
ity, because of the decreasing cross section and the growing importance of the
limited detector resolution. This is reflected in the large experimental errors
of the 4-jet rate.

Attempts of an a4 fit to the jet rates with fixed order calculations and hadroni-
sation corrections showed no success in the context of this work. Thus ys and
ys are displayed together with predictions from NLOJET++ at a literature
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value of ag; = 0.118, and g4 together with a distribution determined by the
RAPGAP event generator. The description is in all cases good.
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Figure 4.18: Measured distributions at non radiative hadron level. The data are
compared with the results of a fit based on NLO QCD including resummation and
power corrections. The fit predictions are shown with dashed lines for those data
points which were not included in the fit.
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4.6 Results on Mean Values

The present work focuses on differential distributions of event shape variables. In
order to allow for a comparison to former analyses of 2-jet event shapes, also mean
values of this distributions are determined.

Different methods exist for the extraction of mean values, which are studied in
more detail in [57]. One possibility is to calculate the mean value from the unfolded
distributions. This method introduces a bias, at least in principle, because of the
finite bin widths, but has been shown to be less model dependent. In order to reduce
the bias, the distributions were unfolded with a finer binning (20 bins like in [57]),
before the mean values were calculated.

Fig. 4.21 shows the mean values of the 2-jet event shapes as a function of the scale
Q. The present analysis is compared to the previous H1 analysis [14] and to results
from the ZEUS collaboration [66]. All three measurement are compatible to each
other within errors. However, the deviations between the new and the published H1
data seem to be correlated between the bins, e.g. the new results are always higher for
thrust 7 and always lower for the jet mass py. This could be explained by correlated
systematic uncertainties, because both analyses employ different electromagnetic
and hadronic calibrations, which introduce correlations between the bins.



76 Chapter 4. Detector Correction Procedure

"b0.15) & I
v ol v 03 ég
E -
- *w 0.2+ *5
0.10+ *9 i %
I N i
% & g 0.1 ' Q% ¢
0.08] f
0 50 100 0 ——"%0 00
Q/GeV Q/GeV
A A
o G-o.08-

0.3:— % : : %
r %t 0.06_— ’h
0.2 LR [ *é

¥ 4 0.04 #%’ 4

0.1-
" " " " 1 " " " " 1 " " " " " " 1 " " " " 1 "
0 50 100 0.03 50 100
Q/GeV Q/GeV
AT
O I
vV 050
- % ® Data (this analysis)
F % O H1 Data (EPJ 2000)
0.4 t % ZEUS Data (EPJ 2003)
[ )
I %
0.3+ % #
o2 . 1
0 50 100

Q/GeV
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Chapter 5

QCD Analysis

In previous analyses dealing with mean values of event shape variables in deep
inelastic scattering, fits to the data have been performed, based on fixed order
theory calculations plus power corrections [14, 66]. The free parameters of such
simultaneous fits are the strong coupling a, and the average effective coupling ay.
Missing resummed terms in the fixed order calculations prevented an application
of these fits on differential distributions. Now resummed and matched calculations
are available for the most common 2-jet event shapes. This results in an extension of
the description to the exclusive limit, i.e. to low values of the event shape variables.

In consequence, it appears now promising to fit the event shape spectra. The
motivation being, to check if the concept of power corrections is universal in that
sense, that it holds for mean values as well as for the distributions.

In addition the spectra offer two advantages when it comes to a test of QCD:
Firstly, the shape of the distributions is governed by QCD effects and offers hence
supplementary sensitivity compared to the mean value. Secondly, regions where the
calculations are known to have weaknesses can be excluded from the fit, in order to
focus on the parts which are well under control.

In the following, the tools used for the QCD test are briefly introduced, then the
result of fits to distributions is presented. As a cross check, fits to mean values are
also shown.

5.1 Theory Calculations

Foundations of perturbative and non perturbative calculations of event shape vari-
ables have been introduced in Section 1.2. In [24] and [25], the actual resummation
and matching was presented by M. Dasgupta and G. Salam, and also a first com-
parison to H1 data was made. The results of the calculations are available by means
of two programs, called DISPATCH and DISRESUM.

7
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5.1.1 DISPATCH

DISPATCH calculates spectra of event shape variables in next-to-leading order via
an interface to DISENT 0.1 [17] and DISASTER++ 1.0.1 [18]. The latter are
multi purpose Monte Carlo programs, which include the matrix elements for 1-jet
and 2-jet like quantities in next-to-leading order QCD perturbation theory for DIS.
DISPATCH offers an unified user interface and in addition saves computing time
when several points on a (z,Q?) grid are to be determined.

Input to the program are the points of (x, @?) at which the distributions are to
be calculated as well as the set of parton density functions of the proton to use.
The result is then given in terms of perturbative coefficients ¢; and ¢y, compare
equation 1.7:

RNL()(F) =1+ Cl(F)Q’S + CQ(F)Q?.

It has been shown [67] that some logarithmically enhanced terms are incorrect
in DISENT. Consequently, certain event shape mean values obtained with DISENT
deviate from those obtained with DISASTER++. Even though the effect is much
reduced in the case of distributions [25], the present work uses DISASTER++ for
the main calculations and DISENT only for a cross check.

Three high statistics coefficient sets were calculated for the present work, based
on one billion events each:

e DISASTER++ 1.0.1 with three sets from the proton p.d.f MRST2001 [68]
(as(mz) = 0.117, as(mz) = 0.119, as(mz) = 0.121),

e DISASTER++ 1.0.1 with proton p.d.f CTEQ5M1 [41] (as(mz) = 0.118),

e DISENT 0.1 with three sets from the proton p.d.f MRST2001 (see above).

5.1.2 DISRESUM

In a second step the fixed order result is read by DISRESUM, which applies the
matching of the resummed terms and the power correction. Several options are
available for the matching of the resummed to the fixed order part. Tab. 5.1 lists
the matching schemes used for the fits to follow.

Detailed information on the definition of the schemes can be found in [24]. The
“modified” log R matching assures correct upper limits of the distributions, and is
recommended as the standard scheme. However, it was found in this work that for
three event shape variables a better description in terms of x? is obtained by the
pure log R matching. Consequently, the scheme with the best description is chosen,
together with a supplementary one for the systematic variation. In case of the jet
broadening, the alternative scheme which is used is called Ms and was invented in
[24] within the context of the jet broadening resummation.
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’ Event Shape H nominal matching scheme \ varied matching scheme ‘

Te modified log R log R

T log R modified log R
B log R M,

Po modified log R log R

C log R modified log R

Table 5.1: Matching schemes used for the central fit and the systematic variation.

10 . : . .
Fixed order
Matched resummed -----
81 Pure resummed ----- -
m 6} |
B
3 > Q =36.7 GeV
2
- 4 I
)
2 H,
1
1
0 L L 1 |

Figure 5.1: Comparison of resummed distributions with fixed order (NLO) results.
Non-perturbative hadronisation corrections are not included. The matching scheme

is the modified M matching. Figure taken from [25].
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Fig 5.1 shows the fixed order, the resummed and the matched resummed results
exemplarily for the Jet Broadening. The matched resummed distribution resembles
the pure resummed calculation at low B and, accordingly, the fixed order calculation
at high B.

For any given value of the free parameters as(u,) and ag(pr), DISRESUM cal-
culates the normalised distributions of the event shapes.

The parameter a,(p,) is the renormalised strong coupling constant, which is
invented to absorb ultraviolet divergences occuring in the calculation of self energy
loop Feynman diagrams [6]. One speaks then of the “running coupling”, where the
dependence on p, is determined by the renormalisation group equation:

o 0ag
T

= ﬁ(as)a (51)

where the beta function is perturbatively calculable. There exist different renormal-
isation schemes, where in this work the MS scheme [69] is employed.

The renormalisation scale is set to a characteristic scale of the process under
study, which is for the present work chosen to be the modulus of the four mo-
mentum (). Any dependence of the perturbative predictions on u, is an artifact,
generated because higher orders are neglected. It is common practice to evaluate
the uncertainty due to this missing higher orders of perturbative results by varying
the renormalisation scale u, by factors 2 and 1/2. This is also done in the presented
analysis.

as(py) is fixed by the renormalisation group equation for the whole defined inter-
val if its magnitude is given at only one value of y,, which is by convention chosen to
be the mass of the Z° boson. DISRESUM expects the value of the strong coupling
constant expressed at the renormalisation scale, i.e. a(Q) needs to be given. In this
work, the data are spanning a large interval of the scale Q). In order to combine
determinations of the strong coupling constant at different scales, the individual
results are evolved to the common scale myz with the help of the renormalisation
group equation.

The first moment of the effective coupling, ag, depends explicitly on the infrared
matching scale p;, where the infrared finite coupling coincides with the normal
perturbative one. This scale is chosen to be u;y = 2 GeV and varied by +0.5 GeV to
estimate the theoretical uncertainty due to this arbitrary choice.

Fig. 5.2 compares the measured data to different variants of the theory prediction.
Values of a, and ag are always taken from a fit of the full theory to the data. Certain
constituents of the theory are omitted in three of the diagrams, to show the impact
of the resummation and the power corrections. It is obvious from the upper left plot,
that the next-to-leading order calculation alone is not able to describe the data at
any part of the distribution.

When power corrections are added (upper right diagram), the drop at the left-
most bin is reproduced. This drop can be understood as the broadening of a parton
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Figure 5.2: The jet broadening in a comparison of data and theory. In turn, indi-
vidual building blocks of the full theory are not included, to underline the effect of
power corrections and resummation.
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configuration due to hadronisation, resulting in a shift of the events to higher values
of B. Still, the theory histogram at the lower third of the abscissa is far off the data.
Addition of the resummed terms, shown on the lower left diagram, leads to a
close description of the data, the fit results shown in the box meet expectations.
The effect of resummation appears most prominent at the two leftmost bins.
Finally, the lower right sub-diagram, where the power correction is leaved out
again, proves that the hadronisation is the major effect which needs to be included.
The resummation extends the prediction to low values of the event shape variable.

5.2 Fit Procedure

All fits were performed with the help of the MINUIT [70] package. The MIGRAD
procedure is chosen as the strategy for the fits, which is an implementation of the
Newton Method and involves the calculation of the Hessian matrix.

How well the data is described by the theory for a set of fit parameters is ex-
pressed in the quantity 2, which is hence minimised by MINUIT. In this analysis,
the x2 for one event shape in one @ bin is defined as

X2 = Aﬂ/;;lAj, A =m; — tz‘(OleZO): (5-2)

with V' the covariance matrix, m the measured data points and ¢(as, ag) the theory
prediction, which depends on the free parameters. Following a proposal in [71], the
covariance matrix V' which holds absolute uncertainties, is determined as
m; +t; m; +t;
Vii= —W,, —~L—2L,
K 2 ! 2
where W is the covariance matrix with respect to the relative uncertainties. W is
build as a sum of the individual covariances matrices from sources of uncertainty,
which were presented in chapter 4, corresponding to the errors added in quadrature:

(5.3)

W= Wstat + Welm.escale + Wha.d.escale + We.track + I/Vmodel + Wunfolda (54)

where the model and unfolding uncertainties are treated uncorrelated, i.e. these
covariance matrices are diagonal.

For a combined fit of several @ bins, the individual x? are simply added. In
consequence, correlations between these bins are ignored, which is correct concerning
the statistical error (the data are disjoint w.r.t. the @ bins). However, possible
correlations due to systematic uncertainties are neglected at this stage, which leaves
room for improvement.

When it comes to fits of the spectra, the interval of the distributions has to
be determined. The upper bounds are more or less unambiguously given in [25],
motivated by properties of the calculations. As an example, the LO prediction for
the C-parameter vanishes for values greater than 3/4, rendering the NLO calculation
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effectively only at LLO precision in this region. Therefore the fits in this work are
restricted to C' < 0.7.

It is not so clear how to choose the lower bounds of the fit intervals. The power
corrections are expected to limit the reliability of the prediction, depending on Q.
In [25] the bin center of the lower limit was chosen to scale with 1/Q. The present
analysis tries to extend the fit interval to low values.

In a scan, bins were successively included, starting at high values of the event
shape variable, unless the total x? of the fit increased not dramatically (a Ax? of
less than four was required). As can be seen from Fig. 4.18-4.19, in most of the
cases even the lowest bin could be included. This may appear ambitious, but one
has to keep in mind that this way the distribution is not probed down to zero, which
would be unsafe. Instead, with the lowest bin one tests the distribution integrated
up to the upper bin boundary, which is potentially acceptable [25]. The effect of the
leftmost bins included or not is evaluated in a systematic study and included in the
theoretical uncertainty.

The inclusion of whole @ bins to the fit of each event shape was determined
in a similar way, starting with the highest scales and adding lower bins until the
description, evaluated by Ax?, gets worse.

5.3 Fits to Distributions

The results for ag and a, in the form of 1o contours are given in Fig. 5.3. For
comparison a determination of the average value and error of ay [5] is shown as a
band. A negative correlation coefficient between a, and ag is found for all variables.
The universal non-perturbative parameter oy is consistent to 0.5 within 10%. The
1o contours correspond to the statistical and experimental systematic uncertainties
added in quadrature.

In order to estimate the magnitude of the theoretical error, the following varia-
tions are applied:

e Usage of 2Q and /2 as the renormalisation scale p,!.
e The infrared matching scale is set to pu; = 1.5GeV and p; = 2.5 GeV.

e The leftmost bins, which include the the value of zero for the event shape, are
omitted from the fit intervals.

e The value of the strong coupling constant used in the MRST2001 proton p.d.f.
is varied from 0.119 to 0.117 and 0.121.

e The proton p.d.f. is taken from CTEQ5M1 (as(myz) = 0.118).

!This variation is often quoted as u?2 -4 and p?2/4.
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Figure 5.3: 1-0 contours in the (as, ap) plane from fits to the 2-jet event shape
differential distributions. The a4 band is taken from [5].
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Figure 5.4: 1-0 contours in the (as, ap) plane from fits to the 2-jet event shape
differential distributions. Comparison between DISENT and DISASTER++.

e An alternative matching scheme is chosen (compare section 5.1).

The fit procedure was individually repeated for any of these variations. It has been
shown in [25] that the effect of a modification of the factorisation scale by a factor
of 2 can be safely neglected for the phase space under study, hence this variation
was not done in the present analysis. Many more systematic studies were performed
in [25], where it has been found that the total systematic uncertainty is mainly
determined by the renormalisation scale.

All fit results are given in numerical form in Tab. 5.2. As in many QCD analyses,
the theoretical error is the dominant contribution to the total uncertainty. The
goodness of the fit is expressed in terms of x? per degree of freedom. It tends to be
greater than one, with 7. being the worst case, which indicates imperfections of the
theoretical assumption or underestimated experimental errors.

Fig. 5.4 shows the fit results obtained with DISENT together with the central
result. The deviations are only small when compared to the theoretical and system-
atical errors.

Results from a recent analysis of ete™ data by the DELPHI collaboration are
shown in Fig. 5.5. Three of the event shape variables may be compared to the work
on hand: Thrust 1 —T (7. in DIS), C' Parameter and jet mass M2,/ EZ, (po in DIS).
Contrary to the presented analysis, the LEP data are statistically limited at low
scales, because most of the data were taken at energies matching the Z° mass or
higher.

While a direct one-to-one comparison may be problematic, it is interesting to note
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strong coupling constant a,(my)

event shape variable \ Te \ T \ B \ £0 \ C
central value 0.1150 | 0.1165 | 0.1161 | 0.1158 | 0.1141
uncertainties:

total +0.0061 +0.0057 +0.0053 +0.0066 +0.0053
—0.0047 —0.0042 —0.0036 —0.0058 —0.0057

total experimental | +0.0021 | +0.0016 | +0.0024 | +0.0031 | +0.0014

statistical exp. | +£0.0009 | +0.0007 | 40.0010 | £0.0016 | =0.0005

systematical exp. | +0.0019 | £0.0014 | +0.0021 | +0.0027 | +0.0013

— T0.0057 | F0.0054 | F0.0047 | F0.0058 | F0.0051
total theoretical | Tyao1s | Zo'0039 | ~0.0027 | —0.0048 | —0.0055

T0.0057 | F0.0054 | F0.0044 | F0.0058 | F0.0051
p dependence | Toood1 | To'003s | 00027 | —0.0044 | ~0.0032

—, | F0.0001 —, [ F0.0001 | 0.0001
i dependence | <10 —0.0001 | <10 —0.0001 | —0.0003

fit interval | +0.0002 +0.0005 +0.0007 +0.0004 +0.0005

: : 00002 | F0.0006 | <0.0006 | F0.0003 | F0.0002
parton density functions | T50007 | Z0.0006 | ~0.0006 | —0.0003 | ~0.0002

matching scheme | —0.0013 | +0.0003 | 40.0016 | —0.0020 | —0.0016

NP effective coupling ag(pr)

event shape variable ‘ Te ‘ T ‘ B ‘ 20 ‘ C
central value 0.5290 | 0.5355 | 0.5252 | 0.5142 | 0.5212
uncertainties:

total | TOU33C | FU02IZ [ FO05G3 | F0.0380 | F0.0243
otal | _po370 | —0.0272 | —0.0334 | —0.0397 | —0.0442

total experimental | +0.0216 | +0.0156 | +0.0304 | +0.0285 | +0.0066

statistical exp. | £0.0074 | +0.0068 | +0.0123 | £0.0131 | +0.0021

systematical exp. | £0.0202 | £0.0141 | £0.0277 | +0.0253 | +0.0062

: T0.0258 | T0.0144 | F0.0474 | 100251 | 10.0234
total theoretical | T30 | Tol0223 | “0.0140 | 00276 | -0.0437

FO.0177 [ F0.0133 | F0.0137 | F0.0186 | F0.0233
pr dependence | Tyos00 | To00206 | —0.0135 | ~0.0275 | —0.0261

fit interval | +0.0032 | +0.0053 | +0.0452 | +0.0017 | 40.0003

= ———F00009 | F0.0027 | 00035 | F0.0020 [ F0.0007
parton density functions | o008 | T0.0027 | ~0.0032 | 00020 | —0.0007

matching scheme | +0.0188 | —0.0078 | —0.0023 | +0.0168 | —0.0351

correlation coefficient ag,09 | —0.86 | —0.75 | —0.85 | —0.93 | —0.54

x? / No. d.o.f. (exp. errors) | 2.03 | 0.88 | 1.42 | 1.27 | 1.47

Table 5.2: Results of fits for event shape distributions.
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Figure 5.5: 1-0 contours in the (ay, ag) plane from fits to the 2-jet event shape differ-
ential distributions by the DELPHI collaboration. The fits are based on LEP ete™
data of center of mass energies from 45 GeV to 202 GeV. The contours correspond
to statistical and experimental systematical errors added in quadrature.
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similarities between the presented analysis and that by the DELPHI collaboration:
for the three mentioned event shape variables the value of a is somewhat below the
world mean, and «aq lies in the interval from 0.5 to 0.6.

As a cross check of the fit results shown in Fig. 5.3, fits of the distributions for
individual @ bins are performed. Still, a common value of aq is required, which e.g.
for the C-parameter results in a fit of eight free parameters. Again, no correlations
between the @ bins are included in the y? definition. On the other hand, the mutual
correlation of all a4(Q) to the common «q introduces also a correlation between the
as(Q) (typically around 10%).

Fig. 5.6 shows the result of this fit. The points denote the value of o, against the
scale (), together with the total experimental error. The running of the renormalised
strong coupling is well demonstrated

For comparison, the results of the combined fit (compare Fig. 5.3) are shown
as bands, determined with the renormalisation group equation. The outer band
denotes the total error, the inner band corresponds to the experimental error. For
all event shapes a consistent picture is maintained.

It appears tempting to quote an overall average of a,(myz) from all five event
shape variables. This is not without difficulties, because the observables are highly
correlated to each other, which has to be taken into account, in order not to under-
estimate the total error.

A rather simplified treatment of the correlations is used in this work. Firstly
the sample correlation coefficients between all pairs of event shapes F; and I3 are
determined [58]

FE-FF

P12 = —F— — =
VE-FAE-F

where the mean values are build for the RAPGAP sample on hadron level. These
coefficients are displayed in Fig. 5.7. It is obvious from the figure, that there are
two classes of highly correlated observables: on the one hand the variables which
make explicit use of the virtual boson axis (7 and B), and on the other hand the
variables which do not (7., po and the C-parameter).

Now the assumption is made, that the correlations between the fitted values of
as are not too different from those of the event shapes themselves (which neglects
that the theory calculations may have different properties).

In consequence, the correlation coefficients from Fig. 5.7 are used for a combined
fit of all five event shape variables, the outcome is depicted in Fig. 5.8. Shown
are the individual fit results for as(mz) and the mean result, which does not lie in
between. This is a feature known from highly correlated observables. In fact it can
be shown (58], that any correlated weighted average from two measurements does
not lie between the individual measurements, if

(5.5)

p12 > min (2, @) . (5.6)

02 01
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Figure 5.6: The running coupling a, (@) obtained from fits to the event shape vari-
ables at single values of (). For each event shape, a common value of ay was fitted.
The combined fit result is given as a band, the inner area denoting the experimental
error, the outer area represents the total error.
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Figure 5.8: The fitted values of as(mz). The inner error bar denotes the experi-
mental uncertainty. The total uncertainty is given by the outer error bar.
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The presented average is affected by this, e.g. for thrust 7 and jet broadening B:
0.94 > 0.0016/0.0024. Because of this, one should not read too much in the combined
result of Fig. 5.8.

5.4 Fits to Mean Values

The mean values which are presented in Fig. 4.21 are used for a fit as well. For
this application it is not reasonable to use the resummed calculation, because of
difficulties at high values of the event shape variable, which are related to subleading
logarithms and the matching procedure [64]. These regions can be excluded from
the fit of spectra, but are always present in the mean values.

Fig. 5.9 shows the event shape mean values as a function of the scale @), together
with the fitted prediction from DISASTER++.

Also shown is the calculation without power corrections. The size of the correc-
tion depends significantly on the observable, the variables with explicit reference to
the virtual boson axis 7 and B exhibit rather small hadronisation corrections.

Since the preceding mean value analysis by the H1 collaboration [14] employed
DISENT for the fixed order calculation, this program was only used as an alternative
for the present work. The results are compared in the upper left diagram of Fig. 5.10.
The obtained values of g and ag are not consistent within experimental errors.
Rather they appear to be shifted to lower values of a, and ag, while maintaining
the relative alignment to each other. This is puzzling, because the data points in
Fig. 4.21 are compatible within errors, hence there needs to be a discrepancy in the
calculation, most probably in the application of the power corrections.

Another possibility is, that the different detector calibrations lead to a systematic
shift of the mean values at all @ bins. Such a correlated shift could be compensated
by the power correction, compare Fig. 5.9. Since in both analyses the ) bins are
treated uncorrelated, it may be that the error of o is underestimated, and in con-
sequence the contours shown in Fig. 5.10 are too small.

No contours for 7 and B can be given in the diagram, because both variables
showed correlations between o, and ag of more than 99%, rendering a stable fit im-
possible. However, if alternately one of the two fit parameters was fixed, reasonable
results were obtained

High correlation for this variables were also found in [14], but to a lesser extend,
probably because also data at lower values of () had been included. Since the
present, analysis is optimised for the study of spectra, this low ) phase space is not
considered here.

The upper right diagram of Fig. 5.10 shows the fit results obtained with DIS-
ASTER++, together with contours from the ZEUS collaboration. The difference
between DISENT and DISASTERA++ is larger compared to the difference seen with
the spectra, which is expected. The contours for the ZEUS analysis had to be de-
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termined from numbers (central values, errors, and the correlation coefficient) given
in a table in [66], since contours were only presented for the statistical error alone.

Consistency is found for the results of the presented analysis and the analysis
from the ZEUS collaboration.

Fig. 5.10 presents on the lower plot results from the DELPHI collaboration, which
include also data from several past ete™ experiments, e.g. at PETRA [28]. Again,
the variables which may be compared are thrust 1 — 7', C-parameter and jet mass
M?2,/E2,. Just as the spectra, the mean values exhibit roughly the same properties
in ete™ annihilation and in DIS: the strong coupling constant being somewhat higher
than the world mean, and oy between 0.4 and 0.5 in both cases.

5.5 Conclusion

Power correction fits to the spectra of 2-jet event shapes have been successfully per-
formed in the context of this work. The average effective non-perturbative coupling
ag is found to be 0.5 within 10%, being in good agreement with expectations from
theorists side. The results are consistent with each other and with the world mean
of ag. This is an impotant achievement compared to fits of the mean values.

Spectra could be used for the QCD fits only because resummed calculations
have become available, which compared to the fixed order terms alone extend the
description to low values of event shapes, corresponding to pencil like configurations.
More or less surprisingly, it is even possible to extend the fit interval down to the
bin containing F' = 0.

Together with recent results from the ZEUS and DELPHI? collaborations, a
consistent picture of event shapes variables evolves. Power corrections have to be
considered as an alternative for the description of hadronisation of event shapes
variables, with respect to conventional hadronisation models.

With the theory calculations used in the work at hand, the dependence on the
renormalisation scale has been reduced a lot: While for a variation of 2 by a factor
of 4, a change of more than 10% for a;, was found in the former mean value analysis
[57], this effect is now at the 5% level.

Still, this uncertainty due to missing higher orders is the largest single contribu-
tion to the total error. For a competitive a; determination also more investigations
of the various correlations are needed, both between the bins of () and between the
event shape variables. It should be possible to profit from similar ongoing endeav-
ours of the LEP QCD working group [72].

Attempts to fit the spectra of jet rates after applying conventional hadronisation
corrections remained fruitless. While the reason of this is not exactly clear, it is con-
spicuous that the NLO calculations produced now and then negative cross sections

2The LEP collaborations ALEPH, L3 and OPAL offer results as well, which are not discussed
here for sake of brevity.
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at low values of the jet rates. This is an evidence of bad convergence of the perturba-
tive series in this region of phase space, which may be solved when resummed terms
are included. Therefore the completion of the generalised resummation program,
which is currently underway [23], is eagerly awaited for.

Also it would be interesting to have a reliable NLO calculation at hand, which
includes electroweak contributions, as the Z° exchange. The statistical precision in
the data of the high @ region is already good enough to study possible differences
for etp and e p scattering.
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Chapter 6

Summary and Outlook

In this thesis an analysis of event shape variables in DIS is presented. The data
measurement is based on the whole H1 data set taken at HERA I from 1995 to 2000
and covers scales from 14 GeV to 200 GeV, divided in seven bins.

The present work extends former analyses [8, 14] of mean values to the whole
differential distributions. Also new variables are included: out-of-event plane mo-
mentum, azimuthal correlation as well as the three- and four-jet rate, hence in total
679 data points have been determined. A refined experimental treatment of the
hadronic final state and a better hadronic calibration result in an improved mea-
surement.

Event samples at two center of mass energies and two lepton beam polarities
are separately corrected for detector effects. Differences in the results between the
etp and e p subsamples are observed, which could partly be canceled for the final
result by building the cross section weighted averages. Correlations between the bins
of the differential event shape distributions are generated by the limited detector
resolution and experimental systematic uncertainties. These have been accounted
for and are represented by the full covariance matrices. A strong dependence of the
event shape distributions on the scale ) demonstrates their sensitivity to QCD.

It has been shown earlier [14] that power corrections are applicable in the de-
scription of the non-perturbative hadronisation of event shape mean values in DIS.
In the present work this conclusion is extended to the spectra of event shapes in DIS.
Resummed terms turn out to be indispensable for the description of the lower part
of the spectra. If these contributions are included, large parts of the investigated
phase space are well described, in particular for scales larger than 30 GeV.

Fits of the free parameters of these calculations, ag and ag, lead to consistent
results, with a considerably reduced spread in the fitted value of ag(myz) compared
to the mean value analysis. The theoretical uncertainty makes up the largest con-
tribution to the total uncertainty on the as(myz) determinations. The event shape
variables which are defined with respect to the virtual boson axis (7 and B) are
found to be highly correlated. This statement also holds for the remaining vari-
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ables, which do not employ this axis. However, the correlation between these two
classes of observables is only moderate. The results of the fit are in good agreement
with findings in eTe annihilation, represented here by an analysis of the DELPHI
collaboration.

The results obtained in this thesis received the “preliminary” status by the H1
collaboration and are being prepared for publication.

In the future the present work could be extended in several ways: The completion
of the generalised resummation program, which is currently underway [23], will allow
a QCD analysis for the spectra of ys, y3, Koy and x. Unfortunately there is no NLO
calculation available yet which is suitable for event shapes variables and includes
electro weak contributions.

The assesment of the theoretical errors could be refined, e.g. if the uncertainty
band method, which was recently proposed [73], will be used.

In order to extract a common value of a(mz) from event shapes in DIS it
is necessary to account for the correlations: both between the determinations at
different values of @ as well as between the variables.
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Figure 6.1: Measured distributions of thrust w.r.t. the thrust axis at the non-
radiative hadron level for three data subsets.
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