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Abstract

A precise measurement of the inclusive deep-inelastic e™p scattering cross section is discussed
in the kinematic range 1.5 < Q* < 150GeV?and 3-107° < z < 0.2. The data were recorded
with the H1 detector at HERA in 1996 and 1997, and correspond to an integrated luminosity of
20 pb~—t. The double differential cross section was measured with typically 1% statistical and
3% systematic uncertainties. The cross section data are combined with published H1 measure-
ments at high Q2 for a next-to-leading order DGLAP QCD analysis. The H1 data determine
the gluon momentum distribution in the range 3 - 10~* < z < 0.1 to within an experimental
accuracy of about 3% for Q? = 20GeV?2. A fit of the H1 measurements and the yp data of
the BCDMS collaboration allows the strong coupling constant o, and the gluon distribution to
be simultaneously determined. A value of a,(M2) = 0.1150 4 0.0017(exp) 50508 (model) is
obtained in NLO, with an additional theoretical uncertainty of about +0.005, mainly due to the
uncertainty of the renormalisation scale.

Zusammenfassung

In dieser Arbeit wird eine Prazisionsmessung des inklusiven tief-inelastischen e p Streuquer-
schnitts im kinematischen Bereich 1.5 < @Q? < 150GeV?and 3-107° < z < 0.2 dis-
kutiert. Die Daten wurden mit dem H1 Detektor am Elektron-Proton-Speicherring HERA
mit einer Luminositét von 20 pb~! in den Jahren 1996 und 1997 aufgezeichnet. Der differ-
entielle Wirkungsquerschnitt wurde mit 1% statistischer und 3% systematischer Unsicherheit
bestimmt und zusammen mit bereits von der H1 Kollaboration publizierten Daten im kinema-
tischen Bereich hoher (Q? einer NLO DGLAP Analyse unterworfen. Dabei wurde die Glu-
onenimpulsdichte im Bereich 3 - 107* < 2 < 0.1 mit einer Prazision von 3% bei Q? =
20 GeV? bestimmt. In einem kombinierten Fit von H1 e*p Daten und up Daten der BCDMS
Kollaboration konnte die Kopplungskonstante der starken Wechselwirkung «; zusammen mit
der Gluonenimpulsdichte extrahiert werden. In NLO QCD wurde ein Wert von o, (M%) =
0.1150 £ 0.0017(ezp) 00008 (model) bestimmt. Zusatzliche theoretische Unsicherheiten in der
Grossenordung von +0.005 ergeben sich hauptsachlich aus der Unbestimmtheit der Renormie-
rungsskala.
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| ntroduction

High Energy Physics is concerned with basically two tasks: the identification of the elemen-
tary constituents of matter and the subsequent study of their properties, and with studying the
mechanisms by which these constituents interact with each other.

Experiments to pursue these objectives are nowadays performed by using high energy particle
accelerators, which accelerate particle beams to high energies and collide them with particles in
stationary “fixed” targets, or with particles in another beam. Around the intersection zones large
detectors are installed. These detect particle interactions by means of the energy deposition and
the tracks left by secondary particles scattered into the detector. The architecture of these detec-
tors takes into account the type of accelerator they belong to; correspondingly one distinguishes
fixed target experiments from colliding beam experiments, the latter covering almost the full
solid angle 47 around the interaction zone.

In these high energy physics experiments, particle scattering cross sections, o, are measured
and compared to theoretical predictions. These predictions are calculated as products of matrix
elements squared containing the dynamics of the process under study and the lorentz-invariant
phase space determined from the kinematics, i.e. energy and momentum conservation. The ma-
trix elements in the language of quantum field theory are depicted as Feynman diagrams where
the fundamental constituent fermions exchange virtual bosons which mediate their interaction.
The correct theories describing these interactions are constructed using gauge invariance against
symmetry transformations and are therefore also called gauge theories.

Constituent fermions are grouped in three families of quarks and three families of leptons.
Together with the gauge bosons mediating the interactions, they form the ingredients of the
so called Standard Model of particle physics which since the 1970s is the accepted theoretical
framework of high energy particle interaction phenomena.

The three forces known to dominate subatomic interactions! are mediated by the massless pho-
ton for the electromagnetic force, the three intermediate massive vector bosons Z°, W+ and W~
for the weak and eight massless gluons for the strong force. The electromagnetic interaction
has very successfully been described by Quantum Electrodynamics (QED). Its generalisation to
include weak effects leads to the electroweak gauge field theory. The strong force is described
by Quantum Chromodynamics (QCD), essentially a carbon copy of QED with important differ-
ences concerning the coupling of the gauge bosons. For each interaction, a coupling constant «
enters the theory as a parameter which has to be determined by experiment.

1The fourth interaction, gravitation, is too feeble to play a role in subatomic physics and is not easily incorpo-
rated into the formalism of quantum field theory.



There are two scattering process types distinguished in high energy physics, spacelike and time-
like scattering, see Figure 1. Timelike, or s-channel scattering is characterised by the center of
mass energy squared, s > 0. High center of mass energy can be converted to new and possibly
exotic particles found at higher mass scales. Timelike processes are the standard processes used
by particle factories. A typical timelike process is electron positron annihilation.

Spacelike scattering is characterised by the
four momentum squared ¢t = ¢> < 0 which
is transferred from one incident particle to the
other. The exchanged virtual gauge boson
serves as a probe to survey the structure of the
other particle. By virtue of the Heisenberg
uncertainty relation the negative four momen-

Figure 1. Feynman-Diagrams for production of

2 __ 2
fermion pairs in ete™ collisions. A: timelike tum squared Q =—q¢ > 0, can be related
(s-channel). B: spacelike (t-channel). to the resolution \ attained by such a probe,
A = 1/4/Q?% Thus spacelike processes

serve as microscopes. At HERA?, the electron proton collider at DESY, Hamburg, Germany,
spatial dimensions of the order of 10~!® m can be resolved.

A classic spacelike process is deep inelastic scattering (DIS). In deep inelastic scattering, the
structure of nucleons can be studied by measuring the cross section of leptons scattering off
nucleons, the building blocks of the atomic nucleus. Nucleons are found to consist of quarks
which are bound together by gluons. It is the structure of the proton, the most abundant nucleon,
and the interpretation of this structure in the framework of Quantum Chromodynamics, to which
this thesis is devoted.

This work was performed with the H1 experiment installed in the North Hall of the HERA
electron-proton collider at DESY. In HERA, electrons or positrons with an energy of 27.5 GeV
are brought to collisions with 820 GeV protons® at a center of mass energy of about /s ~
300 GeV at the H1 interaction region and also at the South Hall housing another collider exper-
iment, ZEUS. In Hall West and East, two fixed target experiments are installed, the HERA-B
experiment dedicated to the study of CP-violation, and the HERMES experiment which is de-
voted to the spin structure of the proton.

In this thesis, a measurement of the deep-inelastic electron proton scattering cross section at
low momentum transfers 2 and low Bjorken x with the H1 detector at HERA is presented
and its interpretation performed in terms of Quantum Chromodynamics. After an introduction
to the theoretical framework in chapter 1, the data analysis is briefly presented in chapter 2
concentrating on the precision achieved due to the high luminosity of almost 20 pb—* collected
during data taking in 1996 and 1997.

The measured deep inelastic scattering cross section is then confronted with the prediction of
Quantum Chromodynamics. The analysis uses a new decomposition of the structure functions
into parton distributions which avoids the use of deuteron data. This is described in chapter 3.

2Hadron Elektron Ring Anlage
3the proton energy was raised to 920 GeV since the 1998 running period of HERA



The H1 data extend with high precision into a region where quarks and gluons carry very little
fractions of proton momentum, or Bjorken x. This is demonstrated to accurately determine the
gluon momentum distribution. Results of this analysis are presented in chapter 4.

In a further step, accurate data at large Bjorken = from the muon proton scattering experiment
BCDMS are combined with the H1 data and the strong coupling constant «, is extracted in
next-to-leading order perturbation theory, chapter 5. Since the datasets are largely dominated
by systematic errors, a careful analysis of systematic uncertainties is performed.

The thesis is concluded with a short summary.



Chapter 1

Perturbative QCD and Deep | nelastic
Scattering

1.1 Deep Inelastic Scattering

Deep inelastic electron proton scattering ep — eX is characterised by spacelike virtual gauge
boson exchange, with the virtuality of the exchanged gauge boson being larger than the proton
mass squared, QQ® > Mg. At four-momentum transfers Q? < M2, the Born cross section is
dominated by one-photon exchange, since the competing weak interaction is suppressed by the
mass squared M % of the intermediate vector boson Z° entering the gauge boson propagator.

, The process is described by two independent
/k Lorentz invariant quantities. Let k£ (p) denote

Positron k = < the incoming electron (proton) four momen-
> tum and %’ the four momentum of the scat-
Y tered electron, see figure 1.1. Then,
q
Q*=—(k— k)~ (1.1)
Proton P

A further Lorentz invariant kinematic vari-
x able is the inelasticity y

Figure 1.1: Schematic representation of deep in- _ p(k — k) (1.2)
elastic scattering. pk '

It is dimensionless, bounded to 0 < y < 1 and corresponds in the rest frame of the proton to
the fraction of the incoming lepton energy carried by the exchanged boson.

A third variable, called Bjorken z, is defined as the ratio of the four momentum and the energy
transfer in the proton rest frame

@
T ok — &) (13)
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which is also dimensionless, bounded to 0 < = < 1 and related to y and Q2 and the center of
mass energy squared, s = (k + p)? via the approximate relation

Q* = zys (1.4)

neglecting the proton and the electron masses. In the Quark Parton Model, see below, the
variable z corresponds to the fraction of proton momentum carried by the parton which is
struck by the exchanged gauge boson.

The computation of the cross section ep — eX

0 ~ LogWe? (1.5)

comprises the leptonic tensor L,z describing the lepton-gauge boson vertex which can be com-
pletely calculated in QED, and a hadronic tensor W *# corresponding to the boson proton ver-
tex, which is unknown. However, using Lorentz invariance and current conservation, the un-
known structure of the hadronic initial state can be parameterised by two structure functions
Fy(z, Q% and Fr(x,Q*) which enter the double differential cross section as a function of z
and Q?

d’c y? 2o’
ddeQ =k FZ('CE? 2) - _FL(':E? 2) ) Y+ = 2(1 — y) + y2, R = %Y_A'_ (16)

The longitudinal structure function F is directly proportional to the absorption cross section
of longitudinally polarized virtual photons, whereas in F, both transverse and longitudinal
polarization states enter. « is related to the well known Rutherford scattering formula, 4512,
describing the elastic scattering of two pointlike electric charges.

The double differential cross section scaled by the kinematical factor 1/« is called the reduced
cross section, o,
d*o

1

In most of the kinematic range o, is given by F,(z, Q?).

1.2 Bjorken Scaling

A surprising outcome of measurements of the deep inelastic scattering cross section performed
by a SLAC-MIT collaboration [1] was the observation that the structure function Fy(z, Q?)
showed very little dependence on Q? and only seemed to depend on z, see figure 1.2. This
behaviour was termed scale invariance or scaling. Based on theoretical arguments from current

algebra, it was predicted by Bjorken to hold in the limit Q? — oo, and v — oo with z = 2]?4;
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Figure 1.2: Observation of scaling: Independence of the structure function v1#5 =F, of ¢> = —Q?.

The Bjorken variable x is kept fixed, x = 0.25.

kept fixed, where v is the energy loss of the incoming lepton, v = E'— E’, and M, the rest mass
of the proton.

Scaling, the Q? independence of the structure function F, , suggested the existence of point-
like scattering centers in the proton. That the proton itself was not a pointlike Dirac particle
was already known since the 1930s from the measurements of the anomalous magnetic moment
of the proton [2], and later in the 1950s substantiated by the elastic electron proton scattering
experiments by Hofstadter et al. [3].

The fact that the scattering target particle was not pointlike manifested itself in a suppression of
the elastic electron proton scattering cross section, parameterised by a form factor, or structure
function. This suppression is due to the destructive interference of partial waves scattered off
surface of an extended object, provided that the wavelength A of the incoming particle stream
is of the order of the spatial extension of the object.

1.3 Quark Parton M odel

Feynman proposed a constituent model of the proton to consist of pointlike particles, called
partons [4], which were readily identified with the quarks of the static quark model [5, 6]. In
this model, called the Quark Parton Model, the cross section of deep inelastic ep scattering is
expressed as the incoherent sum of elementary elastic electron-parton scattering processes.
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The incoherence of these elastic scattering processes, i.e. neglecting the parton-parton interac-
tions and treating them as quasi-free, is justified if the calculations are carried out in a frame
where the proton moves with infinite momentum. In this infinite momentum frame, the elec-
tron parton scattering process can be shown to take place on a much shorter time scale as the
parton-parton interactions.

The partons carry a certain fraction of the proton’s momentum which is identified with the
Bjorken scaling variable . The number of partons dn of a certain flavour : encountered between
an interval = and x + dz is parameterised by a parton distribution function f;(x), dn = f(z)dz.
The momentum fraction dp of the protons momentum carried by these partons is then given by
dp = x f;(z)dz.

The deep inelastic scattering cross section o.,_..x, is thus given by convoluting the parton dis-
tribution function with the (calculable) elastic electron parton cross sections o, _..,, Weighted
by the electric charge e; of the parton and summed over all charged parton flavours 4, denoted
here as ¢;:

do do
(rnsz)ep%X — Z/dm e;q;(x) (7@6@2)6%%% : (1.8)

By equating formula 1.8 with 1.6, the Quark-Parton Master equation is obtained:

Fy(x) =) el [gi(x) +7,(x)]. (1.9)

%

The structure function F} is thus seen to be independent of ) and related to the parton distri-
bution functions of the proton.

The longitudinal structure function F';, of equation 1.6 is related to the absorption cross section
o, of longitudinally polarised virtual photons whereas F, receives a transverse contribution o
as well:

2

FQ('Q:? QQ) = 4SZOé (O—T(:Ea QQ) + 0L<xa Q2)> (110)
2

Fe.Q) = 15 on(n.0?) (1)

F, and F7, are related according to:
Fr(z) = 2zFi(x) — Fy(x) (1.12)

where Fi(z) is a structure function similarly related purely to the absorbtion of transversely
polarized virtual photons.

Due to helicity and angular momentum conservation, and in the absence of intrinsic transverse
momentum of the partons in the proton, longitudinally polarized virtual photons cannot be
absorbed by spin 1/2 partons, and thus, for spin 1/2 partons F’;, is predicted to be zero [7]. For
spin O partons, £’ would have been found to be zero. Experiments at SLAC confirmed the spin
1/2 hypothesis [7].
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1.4 Quantum Chromodynamics

Soon after the SLAC experiment, violations of scaling were observed in muon nucleon scatter-
ing [8] and later confirmed by neutrino nucleon scattering experiments [9]. The relation of £y
to F3"° confirmed the hypothesis of fractional quark charges. F» was found to logarithmically
depend on Q?, see figure 1.3 for an overview. It shows the proton structure function F, versus
Q? offset by a suitable constant for graphical representation. Scaling is seen to be violated at
low values of x, see figure 4.2, as well as high values of z, see figure 4.3. It is a fortunate coinci-
dence that the SLAC measurements which established the Quark Parton Model were performed
in the kinematic region of = ~ 0.2 where scaling happens to be exact.

The “naive’ application of the Quark Parton Model was compromised not only by scaling vi-
olations, but also by the fact that the quarks were found to carry only about 50% of the total
momentum of the proton. These two observations were crucial in establishing QCD as the
correct field theory of strong quark-gluon interactions.

1.4.1 TheRunning Coupling Constant

In gauge field theory, the strong interaction is mediated by mediator particles which could, as
uncharged partons, account for the observed missing momentum in the proton. However, the
field theoretical description of deep inelastic scattering was long troubled by the fact that the
Quark Parton Model assumption of quasi-free partons in the proton implied that the coupling
strength of the interaction be weak in the short-distance, high momentum transfer regime. Since
no free quarks have been observed, however, the coupling strength on the other hand must be
rather large in the long distance, low momentum transfer regime, which leads to the confinement
of quarks in hadrons. To account for these changes, the coupling strength seems to be varying
(’running’) with the momentum transfer.

A running coupling constant is expected in

WOM MW%AM quantum field theories. The Q2 dependence

arises from the fact that in higher orders of

Figure 1.4: loop diagrams. the theory, infinities arise for example due to

fermion loop diagrams in the boson propaga-

tor as depicted in figure 1.4, left. These infinities are called ultraviolet divergencies since the
momenta of the fermions in the loops are not fixed by energy conservation. These infinities
are removed by a renormalisation procedure which introduces a renormalisation scale p? at

which the ultraviolet loop divergencies are subtracted off. This leads to a dependence of the
renormalised coupling constant « on the renormalisation scale 2.

However, physical observables R(Q?/u?, «s) when computed up to all orders of perturbation
theory should not depend on the arbitrary renormalisation scale. Any explicit dependence of
R on 2 should therefore be cancelled by the dependence of «, on p2. This is mathematically
expressed by the following equation:

OR 8a5 OR
2 2
" o2 Hr op? Oas

(1.13)
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This is called the renormalisation group equation. If physical quantities are computed to fixed
order, residual dependences of the observables will remain due to missing higher order dia-
grams. This residual scale dependence must be estimated as part of the theoretical uncertainty
on the quantity. However, it is not clear in which range scale uncertainties are best assessed. It
has, quite arbitrarily, become customary to vary scales between 1/4,2 - - - 42

’X\ T T TTTT T T TTTT ‘ T T TTTT ‘ T T TTTT ‘ T T TTTT
~— F .
o | [1 SLAC NMC BCDMS |
., | x=0.000032 |
LL " x=0.00005 o
- / x=0.00008 ® H196-97 preliminary =
i / x=0.00013 (j=p9) T
7 / X=0.0002 B H194-97¢p T
i x=0.00032 1
NLO QCD Fit .

x=0.0005

x=0.0008
x=0.0013 ¢,(x)= 0.6 + (i()-0.4) i

! % x=0.002 |
i . |

/M))M‘/- x=0.0032 .
B //y/_/ = x=0.005 i
i _/My./‘/)./ = x=0.008 ,
L I/'/‘/,/*"‘/WL.»/I. I ]

= w x=0.02 -
: ) L W x=0.032 :
I :___ﬂ_’_,fg._.__u,ﬂw.f-—k X=0.05 .
e bt e e manmmaSsssa B o X008 7
:Dmaaaﬁmaea——— dsedoar i do iy 2o 000 o p mpgpEUpeem e 5 @ o @ Xx=013 :
[ eesssms » _ w . x=018 1
5 o — S A S T .
:DDDMWW = s Sm gSgngn w m 5 5 ® + x=0.40 :
=== e sssnm s = = = = = x=0.65 (=) |
Ll Ll Ll | Ll Ll |
1 10 10° 10° 10° 10°
Q° /GeV?

Figure 1.3: Scaling violations measured in lepton proton scattering experiments.
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In the case of QED, the loop diagrams effectively lead to vacuum polarisation due to virtual
ete™ pairs which screen the bare charge e, of a particle. At large distances or low momentum
transfer, the charge e seen by a probe is smaller than at short distances, or high momentum
transfer. Thus the coupling increases with increasing momentum transfer, a behaviour exactly
opposite to the behaviour observed in the case of the strong interaction.

The solution of this problem was found by observing that the correct gauge theory of strong
interaction is non-Abelian. In QCD, the degree of freedom connected to the interaction is the
colour charge which is carried by quarks and by the mediator particles, the gluons, alike. Thus,
the gluons can couple to each other in contrast to the electrically neutral photons. This intro-
duces additional loop diagrams depicted in figure 1.4, (right), which lead to an anti-screening
effect.

The dependence of the strong coupling constant o, on the renormalisation scale can be com-
puted by observing that the partial derivative 0o, /Op? of equation 1.13 can itself be expressed
in a power series of a,(1?) and so-called 3 functions which are calculable in QCD:

CY3

2
= a,f(as) = = = Bigcts + (1.14)
B = (33—2ns)/3

38
b= 102 Ty

5 0arg
/JJT'a 2
u

where 3, (3, are the first coefficients occurring in the expansion and n; denoting the number
of active flavours, i.e. the quark flavours with masses smaller than ..

In the one-loop approximation, i.e. regarding only the term with (3, the coupling constant «,
can be written in terms of the renormalization scale as

2\ O‘s(“?))
) = T3 ) W) (19

where b = fy/4m = (33 — 2n;)/127 and p? being a suitably chosen reference scale. The
presence of this scale y,. is at the origin of scaling violations, as will be seen below.

The term —2n; /127 is due to the fermion loops and leads to screening effects similar as in
QED. The term 33 /127 gives rise to the antiscreening due to the gluon self-coupling: For less
than 17 quark flavours, this is the dominating contribution and the coupling is seen to be falling
with increasing 1,, see figure 1.5. QCD is asymptotically free for Q> — oo, which is the
reason why partons confined in the proton can be regarded as quasi-free as postulated in the
Quark Parton Model. This property is unique to non-Abelian gauge theories. For Q2 — 0, the
coupling is seen to diverge. This can be viewed as a reason for the confinement of quarks and
gluons inside hadrons. However, confinement is not really yet understood since the increase of
the coupling constant prohibits the use of perturbation theory of the region of Q2 below a few
GeV?.
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Alternatively, the running of o is often expressed as

1
2\
Oés(ﬂ'r) - b- ln(ﬂg/AéCD) ) (116)

(a) 0.03 (b)
| l
" E= : _ Oln-loop]
0.2} 0,(Q) for Ajs=220 MeV: 0.025 “ o Toop]
\\ ----- 1-loop " 1
i ---- 2-loop i —--n=
0.181 | — 3- and 4-loop 0.02 : ----n=2
| | —n=3
\
0.015 \,\
0.16 |
\
0.01 ‘\\
\
0.14 \
0.005 N
0.12 O ==l
-0.005 ¢, i

207760100 140 180

207760 100140180
Q[GeV)] Q [GeV)]

Figure 1.5: The running of a, [10]: shown are the differences in the (* dependence of the strong
coupling constant due to higher orders in perturbation theory, see text.

introducing as a constant of integration a parameter Agcp which is of the order of 100 —
300 MeV. Both equation 1.15 and 1.16 are equivalent, differing only in the specification of
the boundary condition when solving the differential equation 1.15.

However, A is not unambiguously defined beyond leading order and it depends on the number
of active flavours n;, A = A™. Figure 1.5 shows the running of a, when equation 1.13 is
solved to higher orders and A kept fixed; from 1 loop to 2 loops a decrease of almost 15% is
observed. Therefore, it has become customary to specify instead as fundamental parameter the
value of «, at the reference scale of the Z° mass, a,(M2) in the so-called MS renormalisation
and factorisation scheme, see below.

At next-to-leading order, including contributions up to 3, in equation 1.13, the renormalisation
group equation can be solved exactly such that the result is stable with respect to yet higher
order contributions. This is in contrast to using the approximate log log solution
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1 InIn(p? /A2
as(uy) = e -2 n<gr/2QCD) (117)
b-In(u2/Adep) b In(u/Agep)

with b = 3,/473,. This approximation is sufficiently accurate for Q? > m? and used as a
convention adopted by [11]. In this analysis, the exact solution is employed and the difference
to «, obtained with the log log formula is quoted.

1.4.2 Factorisation

In Quantum Chromodynamics, additional infinities arise connected to peculiar behaviour of the
strong coupling constant a; which are absent in Quantum Electrodynamics. These are the so-
called infrared divergencies which arise from gluon radiation off quark lines when the gluon is
almost collinear with the quark. These diagrams give rise to large divergent logarithms in the
perturbation series.

These divergencies are connected to the
’soft’, i.e. long range or low momen-
tum regime of QCD and are thus not
perturbatively tractable. They are renor-
malized in analogy to the ultraviolet di-
vergencies described above, introduc-
ing an additional factorisation scale ufc
into the theory. For momentum trans-
fers Q* > 3, a; is taken to be small
and perturbation theory is applicable;
this is the regime of short range, high
momentum transfer (’hard’) interactions.
Processes belonging to the *soft’ regime,
Q* < u; are absorbed in the renorma-
lised parton distribution functions which
now depend on the factorisation scale,
f(x) — f(z,p3). The separation of
“hard’ and ’soft” scale processes is cal-
led factorisation. This is depicted in
figure 1.6, for the example of deep in-
elastic scattering.

Figure 1.6: Factorisation of hard and soft contributions
to the deep inelastic cross section. The contribution to
the electron proton cross section (¥ < Mfc is absorbed
in the parton distribution function f; ;. The contribution
Q? > Mfc belongs to the hard scattering process charac-

terised by a coefficient function CV, see below.

For the Drell Yan process, the massive di-lepton production in hadron hadron collisions, the
total cross section o 45_.;+;- can be obtained by

OAB—I+I- = /dquxq fq/qu/B : 5qa—>l+l— (1.18)
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It turns out that the collinear logarithmic divergencies connected to real and virtual gluon emis-
sion which arise in Drell Yan di-lepton production are the same as in deep inelastic scattering.
In fact it was proven by the factorisation theorems that this was a general feature of hard scat-
tering processes in QCD [12]. As a consequence, the renormalised parton distribution functions
are universal and depend only on the hadron they belong to. Note that this corresponds to the
assumptions made in the Quark Parton Model.

The differential cross sections for a reaction involving hadrons in the inital state can thus be
obtained by convoluting the parton distribution functions f;,; of the respective hadron with the
hard scattering cross section & on the parton level.

1.4.3 F; and Fin next-to-leading order QCD

For the process of deep inelastic scattering, the Quark Parton Model master equation 1.9 must be
modified by a factorisation scale dependent quark distribution functions. The scale ufc to which
hard and soft processes are compared to is usually taken to be 22 but can also be provided by
e.g. the transverse momentum p7 or energy E7 or by a heavy quark mass m7,.

With ¢;(z) — ¢;(z, 7 = Q*) one thus obtains

Fy(z,Q?) = Ze?x [qi(x, Q%) + q,(z, QQ)} , (1.19)

i.e. I, is now seen to be (Q? dependent and scale invariance is violated, albeit only logarithmi-
cally as will be seen in the next sections.

Equation 1.19 is valid in the so-called leading log approximation, or in the DIS renormalisation
and factorisation scheme to all orders, see below. At higher order, equation 1.19 is modified.
Let us define for convenience

ny
F, = Ze?{%’ + 4}
=1

then F5 is computed in the next-to-leading order of the theory [13] as

3
F5 Qg _ g Fse
2 (1 + —02> ® Fy(ng = 3) + %Oj ® (§ e§>g+ 2 (1.20)

x 2 ¢ T
f=1

Fs* denotes the contribution of charm quarks which needs a separate treatment due to effects of
the heavy charm mass, see chapter 4.3. C,, and C, denote the Wilson coefficients for quarks and
gluons respectively which are known in perturbation theory to leading and next-to-leading order.
Both F;, and F$¢ are computed to order O(a; ?) and the symbol @ stands for the convolution:

fog= [ Z /)
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The coefficient functions in next-to-leading order are dependent on the factorisation and renor-
malisation scheme due to the fact that there is freedom to choose how non-logarithmic long
range and short range contributions are absorbed in parton distributions and coefficient func-
tions. In the DIS scheme, the coefficient functions are chosen such that equation 1.19 is valid
order by order. Another conventional scheme is the MS [14] which follows from the idea of
dimensional regularisation [15]. In both schemes, 1 and u; are often taken to be equal and
fixed to Q2.

The proton structure function F5 in QCD can thus be expressed as a convolution of coefficient
functions C,* which describe the perturbatively calculable interaction of the incoming lepton
with a parton of flavour : mediated by a gauge boson V' and distributions of partons f;, in the
hadron h which have to be taken from experiment.

Similar expressions can be found for the longitudinal structure function F';, . Note that there is
a theoretical ambiguity as to which order O(«a ) F, and FJ, are consistently calculated since in
the leading order of the theory F';, =0, reproducing the Callan-Gross relation, equation 1.12.

The first non-vanishing order for £, is O(ay ) [16, 17]

Fr, Us I o & Qs 1, 2
!

However, O(a,?) corrections on F are sizable and this analysis employs consequently the
O(a, %) equations

Fy, Qs I 0‘3 L =N S
= (520 + gpChvs) & P
2
s Oy L s
+ (%Cq + (271_)202’5) ®F2

Qg o?
+ (%C; + (%)202%) ® (Z ei) g (1.22)

f

FN9 and FY are functions of so-called non-singlet and singlet quark distribution functions,
respectively, which will be discussed in the next section.

1.5 DGLAP Evolution and (0F,/91n Q?),

Both I3 and F, are measurable quantities and thus should not depend on the choice of factorisa-
tion scale 4. This requirement yields evolution equations for the parton distribution functions
fi(z, ) in which the structure functions decompose:

dIn i}

=y e (1.23)
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This equation, known as the Dokshitzer, Gribov, Lipatov, Altarelli and Parisi (DGLAP [18])
equation, is the analogue of the differential equation 1.15 describing the evolution of o, with
p17. In the following, 17 is taken to be equal to Q* for simplicity.

The functions P;;(x/y) are splitting functions calculable in perturbative QCD as a power series

of a,(Q?):

Qs
Pyj(z,05(@Q%) = 8P (2) + 2 PP(2) + .. (1.24)

They are known up to next-to-leading order, P™). Calculations in next-to-NLO are under-
way [19].

<=

(0) O (0) )
P P = P P =
() V() () ()

Figure 1.7: Leading order splitting functions. P< y ) denotes the probability for parton j with momen-
tum fraction y to split into a parton ¢ with momentum fraction .

The leading order splitting functions P ©) provide an appealing interpretation as the probabil-
ity for finding a parton of type ¢ with momentum fraction x originating from a parton j with
momentum fraction y > =z, see figure 1.7. The interpretation as probabilities implies that the
splitting functions are positive definite for x < 1, and satisfy sum rules

dzPY (x) =0 (1.25)

o

Fdz [PO@) + PO )} —0

L—

fdm[%fp”( )+ POz )} —0

which correspond to quark number and momentum conservation in the splitting of quarks and
gluons, respectively. Thus, the DGLAP equation 1.23 with the leading order splitting functions
provide an intuitive picture as to the origin of the scaling violations of F} .
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Consider the process of quark gluon bremsstrahlung described by the splitting function P,,. If
the resolving power of a photon given by its virtuality Q2 = Q3 is small, any virtual gluon
emission and subsequent absorption process may not be resolved by the photon probe and the
quark gluon pair will be ‘seen’ as a whole object. If the resolution increases, @? > Q32 the
photon can couple to a quark which has radiated off a gluon and thus has lost some momentum
which was carried away by the gluon.

—~ 2 . " As a consequence, fewer quarks will be found
O o118 Q=200 GeV at high momentum fraction = if Q2 is in-
X 16 L& T Q*= 20 GeV’ creased. This is indicated in figure 1.8 which
=t 1.4 - L — Q= 5GeV? shows the momentum distribution of « quarks
X T p in the proton. At high z, the quark number
1.2 1 distribution is seen to decrease with increas-
[ Y ing Q2. On the other hand, gluons can fluc-

0.8 N . 7 tuate into quark antiquark pairs as controlled

0.6 — 2N by the splitting function P,,. These so-called

04 - 0 == sea quarks are preferably produced at low z

02 - and, provided the resolving power of the vir-

D T T tual photon is large enough, it can couple to

0 the sea quarks as well, leading to an increase

-3 -2 —1
10 10 10 10 % of quarks seen with increasing 2 at low z.

Since the structure function F, is given es-

sentially by the charge weighted quark dis-
Figur_e 1.8: U quark momentum distribution with in- tributions, the resolution dependence of the
creasing Q”. quark distributions are reflected in the sca-
ling violations of F .

For the following discussion it turns out to be beneficial to consider linear combinations of
quark distribution functions according to their net flavour content. Quark distribution functions
with net flavour quantum numbers are defined by

Az’j(%QQ) = %(LQQ)—%‘(%QQ) (1.26)
Zz’j(%QQ) = @(«737@2)_61_]‘(%@2) (1.27)

as well as by linear combinations thereof.

Since the gluon distribution does not carry any flavour quantum numbers, it is a flavour singlet.
A quark flavour singlet parton momentum distribution function X can be defined by

S(#,Q%) = > [a, Q) +7(x,Q%)]. (1.28)

q

Writing down the DGLAP evolution equations for the gluon, the quark singlet and the quark
non-singlet distributions one arrives at a set of 2n ; — 1 scalar evolution equations for the non-
singlet

dAi (7, Q%) o (Q?)
dlnQ? 2«

/%Aij(ya QQ)qu(x/y) (1.29)

T



1.5. DGLAP Evolution and (0F,/01n Q?), 17

Figure 1.9: Resolution effects explaining the @* dependence of quark distribution functions. At low
resolution a) quarks and gluons radiated off are seen as one entity; at higher resolution scales b), quark
and radiated gluon can be resolved. Since the gluon takes away some fraction of the quark’s momentum,
fewer quarks at high momentum fractions are detected if the resolution is increased.

and a system of 2 x 2 coupled equations

d¥(z, Q%) _ as(@?) /dy
dln@Q* 2« Yy

T

[ (y Q ) qq(x/y) +g(y Q ) qg(x/y)}

dg(z, Q)  as(Q?)
dlnQ? 2«

/C;y [S(y, Q*) Pyg(z/y) + 9(y, Q%) Pyg(z/y)] | (1.30)

T

for the quark flavour singlets X(z, Q%) and zg(x, @*). These 2n¢+1 coupled integro-differential
equations can be solved when boundary conditions X(x, Q2), zg(z, Q%) and A(z, Q2) are spec-
ified which have to be taken from the data. Once these boundary conditions are specified, the
evolution with Q2 of the parton distribution functions, and as a consequence £, and F7},, are
completely predicted.

Combining the result of the DGLAP equations with equation 1.20, a prediction for the depen-
dence of Fy(z, Q%) on Q? is found to be

2
dFy(z,Q?) :OésQ [ @fp x/szyQ +Z / qgﬂf/yyg(yQ)

dln Q2
(1.31)
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thus explaining the logarithmic scaling violations of F;(x, Q?)observed in figure 1.3 in the
framework of QCD. The reason for the logarithmic dependence of the structure function on Q2
is the running of the coupling constant «.

Note that the DGLAP equations do not give any x dependence of the parton distribution func-
tions. The x dependence has to be entirely specified by the boundary conditions, taken from
outside the theory. This is a consequence of the fact that the DGLAP evolution sums up the
leading contribution which is coming from large logarithms In Q2. In principle, an expansion
has to be performed in powers of

aZ(In Q)" In(1/z)"

In the leading order DGLAP theory, where In (Q? is considered as the dominant contribution,
p=g¢q >r > 0. At NLO, terms for whichp = ¢ +1 > » > 0 are summed as well. At
HERA, x is sufficiently small that the terms proportional to In(1/x) should become important
and DGLAP be bound to fail; however, no such effect has so far been established. A search for
such effects beyond DGLAP in inclusive scattering has been systematically performed in this
analysis.

An important feature of the DGLAP evolution equations is the fact that the convolution integrals
run from z up to 1 rather than from 0 to 1. Thus, the theory provides predictions for the parton
densities at higher momentum fraction y > x, independently of the knowledge of the parton
distributions at momentum fractions smaller than x.

This allows the application of the QCD fit technique: parton distributions are parameterised at
some input scale Q3 , then they are evolved to higher values of Q? and the theoretical prediction
based on the DGLAP evolution is tested against the data.



Chapter 2

An Accurate Cross Section M easur ement
at Low zx

2.1 Extraction of the Cross Section

The deep inelastic cross section (equation 1.6) is measured double differentially in the Lorentz
invariant kinematic variables 2 and Q2. Measuring the cross section requires to basically count
the number of events N originating from DIS occuring in a bin, a certain region of = and 2,
[J, and dividing this number by the luminosity £ provided by the particle accelerator,

cJ=N/L. (2.1)

Of course, events from competing non-DIS processes give rise to a background contribution
NBE in the bin which has to be identified and subtracted, N — N7 — NB¢,

High energy physics experiments basically measure energy depositions in calorimeters and
tracks in the detector’s tracking devices left by secondary particles produced in the hard inter-
action. Thus, the Lorentz invariant variables must be reconstructed from the laboratory frame
measurements of particle energies and scattering angles.

In practice, these measurements suffer from imperfections of the detector: particles can escape
detection through acceptance holes such as cracks in the calorimeters, the geometry of the
detector or the beam pipe hole, due to detector inefficiencies (¢) and the like. Furthermore, the
reconstructed variables z,.. and Q?_ are not to arbitrary precision identical to the true variables
of the hard interaction = and * due to the finite resolution achieved by the detector in measuring
angles and energies (smearing acceptance Acc). Also, radiative corrections (57%¢) can lead to
systematic deviations of the measured from the ’true’ kinematic variables of the interaction at

Born level [20].

These effects lead to event migrations, N # N7, which have to be accounted for in the
extraction of the cross section (unfolding). Also, the effect of determining the cross section
diffentially in dzdQ? by finite-sized bins 0 = Az AQ? adapted to the detector resolution has
to be accounted for (bin-center-correction A%).

19
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Thus, equation 2.1 has to be modified:

o Nree NBG Abc 1
B L eAcc 1+ jrod

g

It is obvious that the precision of the deep inelastic cross section measurement can be maximised
if these effects and their corresponding uncertainties can be well controlled. In particular, high
precision relies on good angular and energy resolution, accurate alignment and precise calibra-
tion of the energy response.

2.2 Kinematic Reconstruction

The H1 detector is a collider experiment which is optimized to measure hard interactions in
electron proton collisions. The interaction region is surrounded by a central tracking system
and a liquid argon calorimeter (LAr) with hadronic and electromagnetic sections. In the back-
ward region, a lead-scintillator fibre calorimeter SPACAL is installed, complemented by a back-
ward drift chamber BDC and a backward silicon tracker BST. Figure 2.1 shows a side view of
the detector with the main components relevant to this analysis marked. The H1 detector has
nearly 47 coverage of the solid angle in calorimetry. This allows a redundant reconstruction of
the scattering kinematics from energy and scattering angle measurements. The details of the
detector setup are described elsewhere [21].

As such are available the energy £’ and scattering angle 6. of the final state electron. The
coordinate system of H1 is defined such that the positive z axis is in the direction of the incident
proton beam. Polar angles ¢ are defined with respect to the proton beam direction.

In practice, Q% and y are experimentally determined and = is computed using equation 1.4.
Using these variables from the scattered electron alone,

E , EZsin?6,
Ye =1— g, om (0e/2), Q: = 1oy (2.2)

are obtained. This is the so-called “electron method”. This was the only kinematic reconstruc-
tion method available to the deep inelastic fixed target experiments at SLAC and CERN.

The reconstruction accuracy in Q?, = and y depends on the energy and the angle precisions
as [22] :

2
_‘532 _ S & tan(2) - 66, (23)
ox
— =y E @) + (5 - 1) cot(5)] - 80, (2.4)
5
?y = (-1 Zg(l-1) cot(d -0, (2.5)

Ldropping indices e on z, y, @2 and ' on E, for simplicity
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Run 195668 Event 22708 Class: 2 34 11 18 20 27 Date 11/11/1997
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Figure 2.1: Side view of the H1 detector. Positrons of F. = 27.5 GeV are colliding with £, = 820 GeV
protons. The main components are a liquid argon calorimeter with electromagnetic and hadronic sections
(LAR), a lead scintillating fibre calorimeter in the backward region SPACAL, a backward drift chamber
(BDC) and a backward silicon tracker (BST). A low @Q? DIS event is shown, with the scattered positron
entering the SPACAL.

where @ denotes the quadratic summation of the terms. While the electron method is accu-
rate at large y, corresponding to low E’, the resolution dy/y rapidly degrades with 1/y as E!
approaches the electron beam energy F..

The inelasticity y can also be determined from hadronic final state particles with energies £;
and scattering angles ;, or, correspondingly, p., = E; - cos §; (neglecting the particle masses).

Ei(Ei - pz,i) by

2F, 2F,’ (2.6)

Yn =

where E; and p, ; are the energy and longitudinal momentum component of a particle 7 in the
hadronic final state. This is the Jacquet-Blondel or “Hadronic Method” [23] . The kinematics
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can also be reconstructed with the “> method” using the variables [24]

Py , FE?sin?0,
= ==, 2.7
Y+ E(1—cosb,)’ @5 27)

Ys

The hadronic variables y;, and ys, are related according to

Yn
= 2.8
Ys T+ un—u. ( )

and can be well measured down to low y ~ 0.004.

The variable ys; is less sensitive to initial state radiation than y; since the initial energy E, in
the denominator in equation 2.6 can be calculated using the total energy reconstructed in the
detector which leads to equation 2.7. The precision of this method depends on the calorimeter
sampling fluctuations which become important at low P, ;, where P, , is the total transverse
momentum of the hadronic final state particles. The resolution oy, /y; degrades o< 1/(1 — ),
limiting the hadron method to low values of y.

Thus, the electron method and the hadronic method complement one another and extend to dif-
ferent regions of phase space. For the data analysis described in the next section, the kinematic
reconstruction by means of the electron method is used for values y > 0.15, and for lower
values the hadronic method is employed.

The redundancy of the kinematic reconstruction allow yet another method to be used based
on angle measurements only. From the hadronic final state particles, an effective hadronic
scattering angle 6;, can be derived which is defined as

On )
R—— 2.
tan 2 = P (2.9)
In the naive quark parton model, 8, defines the direction of the struck quark related to 6, as
eh o Yy 06
tan ? = 1— Y - tan 5 . (210)

This relation, together with the definition of v, (equation 2.2), determines the scattered electron
energy from 6. and ,, in the “double angle method” [25]. This method is essential for calibra-
tion purposes since the energy response of the detector can be compared to the double angle
prediction.

2.3 DataAnalysiswith the H1 Detector

2.3.1 Datasets

In this work, datasets on the deep inelastic neutral current scattering cross section were analysed
taken by the H1 collaboration in 1996 and 1997.

The data were taken in different samples:
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e Sample H1 Main - data taken in the years 1996 and 1997 with luminosities of 4.5 pb—!
and 13.4 pb~1, respectively. These two data sets are combined to provide the cross section
measurement for ) values from 15 GeV?to 150 GeV? and for Q% = 12 GeV? aty >
0.17.

e Sample H1 MB - data taken in the autumn of 1997 during a two week period dedicated
to the lower (? region. The data from this special run with a luminosity of 1.8 pb~! are
used in the ? range from 1.5 GeV? to 8.5 GeV? and for Q? =12GeV? at low y < 0.17.

s :
= H1
© i NMC ]
BCDMS
0%} L .
10 j ]
Y 2 A Y S VI s QAT |
1
107 1

Figure 2.2: Kinematic plane Q* versus = covered by the H1 data taken in 1996 and 1997 as well as
fixed target experiments. The region of SPACAL acceptance used in the data analysis is marked (dashed
lines). The reduced cross section 1.7 is dominated by the structure function £ in the region y < 0.6
which is by far the largest part of the phase space covered. The region y > 0.6 for (F > 10 GeV?is
explored with a dedicated trigger.
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These datasets cover a region in 1.5 < Q% < 150 GeVZand 3- 1075 < x < 0.25 depicted
in figure 2.2. Values of the inelasticity y > 0.8 were achieved for Q? > 12 GeV?in a separate
analysis based on a dedicated trigger sample with luminosities of 2.8 pb~! obtained 1996 and
3.4 pb~1in 1997 [26, 27].

The data analysis of this work was performed on the HL MAIN and H1 MB data samples in
the kinematic region y < 0.8. The results on the extracted double differential cross section
measurement from the H1 MAIN dataset for y < 0.15 (X method) and the results from the H1
MB for y > 0.15 (electron method), limited to y < 0.6 for Q? < 5 GeV?, were published
in [27].

2.3.2 Event Selection Strategy

DIS events at low (? are identified with the final state electrons scattered in the backward
calorimeter SPACAL of the H1 detector, covering scattering angles of (153° < 6, < 177°).
According to equation 2.7, this limits the measurement to Q? < 150 GeV?.

This calorimeter is a lead-fibre spaghetti calorimeter with high energy resolution [28]

E vV E[GeV]
and high transverse granularity. This allows an accurate energy measurement of the scattered
electron as well as the distinction of electromagnetic from hadronic energy deposits by means
of their respective lateral shower profile.

Electromagnetic energy deposits by neutral particles can be removed by requiring a signal in the
track detectors in front of the calorimeter. Tracks of charged final state particles are recorded
in the central track detector which allows to reconstruct the primary vertex of the interaction.
Beam related background can thus be removed [29].

Longitudinal momentum conservation in neutral current DIS events constrains the variable £ —
p., sSummed over the final state particles,

E—p, =Y+ E.(1—cosb,) (2.11)

to be approximately equal to 2F.. In radiative events a photon may carry a significant fraction
of the £ — p. sum. These events can be removed from the data sample by a suitable cut on
E—p..

Figures 2.3 and 2.4 show the distributions for a second analysis [27] of the energy E’ and
polar angle 6. of the scattered electron as well as the inelasticity y, derived from hadronic
variables for selected DIS events belonging to the two datasets H1 Main and H1 MB. The data
are compared to a Monte Carlo Simulation and found to be well described.

These distributions also demonstrate the high statistical precision of the 1996 and 1997 data.
The statistical error is < 1% in the bulk region of phase space. Thus, the experimental un-
certainty on the cross section is dominated by the systematic uncertainties which are briefly
discussed in the following.
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Figure 2.3: Distributions of a) the energy, b) the polar angle of the scattered electron, and c) y, for the
data sample A taken in 1996/97 (solid points). The histograms show the simulation of DIS and the small
photoproduction background (shaded), normalised to the luminosity of the data.
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Figure 2.4: Distributions of a) the energy, b) the polar angle of the scattered electron, and c) y, for the
low @Q? data sample B taken in 1997. The histograms represent the simulation of DIS and the small
photoproduction background (shaded), normalised to the luminosity of the data.
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2.3.3 Electromagnetic Energy Calibration

At low 9 the DIS events exhibit an accumulation at £’ about the electron beam energy which
is called the kinematic peak. This kinematic peculiarity serves as a high quality measure of
the accuracy of the electromagnetic energy scale [30]. By using the energy reference scale
provided by the double angle method, the calibration of the backward detector can be further
improved [31] and resolution effects be understood.

The electromagnetic energy scale is accurate up to about 0.5% at high energies £/ ~ E, and is
known to be less precise ~ 3% at lower energies. This can be determined with QED Compton
events [32, 33, 34].

The calorimeter resolution suffers from energy losses due to showering in the endflanges and
electronics of the tracking devices in front of the backward calorimeter, see figure 2.5 for
an illustration. The energy loss due to showering in the dead material was measured by the
charge deposited in the backward drift chamber in front of the SPACAL and corrected for [34].
However, the impact of a degrading energy resolution on the g, resolution at lower energies,
corresponding to high y, is seen to be damped by a factor (1 — 1/y), see equation 2.5. This
allows a rather uniform precise determination of y or = in the range accessible to the electron
method.

2.3.4 Photoproduction Background

At small energies electron misidentification becomes possible due to photoproduction back-
ground which causes hadrons or showering photons to fake genuine scattered electron signa-
tures in the backward detectors. Apart from the highest y region, where data are used for
background subtraction [31, 26] this background is subtracted on a statistical basis using a sim-
ulation program [35]. The normalisation of this simulation to a control sample taken from the
data is only known to about 20% accuracy, which is the dominant source of uncertainty on the
extracted cross section at high .

2.3.5 Hadronic Energy Scale

The central electromagnetic and hadronic liquid argon calorimeter determines the inelasticity y,,
or the £ —p. of the event by reconstructing the hadronic energy and partially the scattering angle
of hadrons. If tracks are measured in front of an active calorimeter cell by the central tracker,
the calorimeter energy is masked and the momentum measurement of the central tracker is used
instead in order to improve the hadronic final state reconstruction.

The calorimeter response is calibrated using the p, balance between the scattered electron and
the hadronic final state particles. The calibration method used is based on a Lagrangian min-
imisation which determines 128 calibration constants for 8 octants and 8 wheels in the electro-
magnetic and hadronic calorimeter [36].

At small energies corresponding to low y,,, the calorimeter noise contribution becomes sizeable.
The noise is determined from the data and used in the simulation. This limits the measurement
to y;, values larger than 0.002. In this region the hadronic final state disappears to an increasing
extent in the forward direction.
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Figure 2.5: Visualisation of the dead material in front of the backward calorimeter SPACAL. Shown
is the mean charge measured in the backward chamber in arbitrary units. Darker colours indicate high
charge deposits. The most prominent 16 fold structure is due to readout electronics for the central inner
proportional chamber CIP which is part of the central tracker of H1.
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2.4 SystematicErrors

The uncertainties present in the variables E./, 6;,, E}, in the noise and the photoproduction
background subtraction introduce point-to-point correlations between many data points. The
impact of these correlated systematic error sources on the cross section measurement can be
studied and estimated using a Monte-Carlo simulation.

The effect of the electromagnetic and hadronic energy scale uncertainties can be controlled by
using the overconstrained kinematic reconstruction methods. Figure 2.6 shows an extraction
of F; with the X and the electron method extended in the region were the resolutions of both
methods are known to degrade. However, both extractions are seen to agree even in kinematic
regions where one method is precise and the other degraded by resolution effects, respectively.
This demonstrates that the energy scales are well understood.

Table 2.1 summarizes the correlated error sources and their impact on the measured cross sec-
tion as determined by the Monte Carlo simulation. The uncorrelated errors are listed in [27]
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Figure 2.6: Comparison of the dependence of the structure function £ on x extracted with the electron
(solid points) and the 3 method (open points) for different bins of (#. Both methods have been extended
in the region where their resolutions are known to degrade and miscalibrations would become visible.
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source size of uncertainty typical cross section error [%]
scattered positron energy scale | 0.3% at £/ ~ 27.5GeV 1

2.7% at £, = 3GeV 2
scattered positron angle 0.3 mrad 0.5
hadronic energy scale in LAr 2% 2
LAr noise 25% of noise max of 5 at lowest y
photoproduction background 20% of background 3 at large y

Table 2.1: Sources of correlated systematic errors and their typical effect on the cross section measure-
ment accuracy.

Summarising this brief account, the cross section has been measured to within an accuracy of
about 3% which represents an improvement of about 3 times over the 94 data. It is particu-
larly gratifying to see that this data and the previous data agree well, see figure 2.7, because
the backward apparatus of the H1 detector was completely exchanged in 1995. This vigorous
upgrade program leads to an extension of the y range and to much improved precision in the
kinematic reconstruction. The steady increase of the luminosity of HERA could thus be utilised
to produce high precision datasets on the deep inelastic scattering cross section. The physics
information contained in these data sets is explored in the following chapters.
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Chapter 3

QCD Analysis Procedure

The accuracy of the inclusive cross section measurement at low = and Q? reached by the H1
experiment has allowed to perform a first simultaneous determination of the strong coupling
constant o, and of the gluon momentum distribution zgat low z. This requires an extremely
careful QCD analysis to be performed which is the main goal of this work.

The predictions of the QCD evolution equations 1.29 and 1.30 are confronted with the reduced
differential cross section measurements of the H1 low Q? data, discussed in the previous chap-
ter, as well as with recent H1 data at high Q? > 150 GeV? [37] from the same data taking
period.

The guiding principles of the analysis are a use of a minimal number of datasets and fit pa-
rameters alongside a maximal exploitation of experimental knowledge on the uncertainties of
the data with full error propagation to the determined values of o, and x¢g. They therefore are
complementary to the procedure applied in global fits [38, 39, 40] which aim for an almost
complete determination of all parton momentum distribution functions in the nucleon using a
maximum amount of available data. Global analyses have to address questions on the consis-
tency of the various datasets [41] and have to deal with quite challenging error propagation
problems [42, 43].

3.1 AnalysisProcedure

3.1.1 Singlet and Non-Singlet Evolution of F;

The gluon z¢ and quark flavour singlet X distributions are dynamically coupled via the DGLAP
equations 1.30 whereas quark flavour non-singlets evolve independently of x¢ [44]. Solving the
evolution equations thus requires to specify the gluon, singlet and non-singlet parton momentum
distribution functions as boundary conditions at an input scale Q2.

It is instructive to identify the singlet and non-singlet contributions to F'5 in the leading order
QCD formalism with Q2 dependent quark distribution functions. In the quark-parton model, the
proton structure function F3 is given by a sum of quark and anti-quark momentum distribution

31
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functions, see equation 1.19. The flavour singlet parton momentum distribution function X is
given as

S, Q%) = > [alx, Q) +q(z,Q%)] . (3.1)

q

Flavour non-singlet parton momentum distribution functions can be defined as

Aij(xaQZ) = qi($7Q2)_Qj<xaQ2) (32)
Zi](xaQQ) = @(377622)_@7_]'(%’@2) (33)

as well as linear combinations thereof.

For simplicity, consider a four quark flavour model with massless (u, d, s, ¢) quarks, and let
U=u+u+c+ecand D = d+ d + s + 3, where the functional dependence on (z, Q?) is
implied but suppressed for clarity in the following. Then, the quark flavour singlet function
isgivenas X = U + D, while A = U — D defines a flavour non-singlet quark distribution
function, yielding the decompositions

4 1
F, = goU+ gD (3.4)
F, = v+l (3.5)

for the proton structure function F5 . Thus, F5 is determined by two independent combinations
of quark distribution functions which define the singlet and non-singlet sector of the DGLAP
equations.

Traditionally, QCD analyses based on the DGLAP equations make use of both lepton-proton
and lepton-deuteron data [45, 46, 47, 48, 49] in order to separate the non-singlet and singlet
evolution, and also to determine the parton distributions of up and down quarks simultaneously.
This can be illustrated as follows.

Invoking isospin symmetry, the deuteron structure function F, disregarding nuclear correc-
tions, is given as

Fo= 2aniliaan (3.6)

2 18 6 '

with A* = (u +u) — (d + d) defining an additional non-singlet parton momentum distribution
function which is sensitive to the up and down quark distribution functions. Assuming an
isospin symmetric up and down quark sea, one obtains A* = u, — d,, which represents another
constraint on the valence quark distributions. In such fits, the quark counting rules can therefore
separately be enforced on the valence up and down quark distributions.

Furthermore, since A™ = A — (¢ +¢) + (s +5), it can be seen that ¢ is an almost pure singlet
function apart from a small charm and strange quark sea contribution. By adding deuteron
and proton structure function data in the fit, the singlet and non-singlet dynamics can thus be
separated.
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Since precise data over a wide (Q?,z) range are now available, however, which represent a
strong constraint on the evolution of X, A and z¢, a QCD analysis without using deuteron data
is attempted here. This will not lead to flavour separated parton distribution, but it will be shown
to be adequate to the goal of measuring o, and z¢g . A notable advantage of such an approach
is its independence of corrections for nuclear binding effects in the deuteron (shadowing, target
mass and Fermi motion). These corrections imply an additional uncertainty to the fit results due
to the use of nuclear models [50, 51]. Furthermore, the constraint of the present data on the u
and d quark distributions is still limited in the valence region, see figure 3.1.

1
i Q* = 10 GeV*
0.8 |- “4 QCD fit
% CTEQ4M
I o e CTEQ4M (modified)
06 |- e e CTEQSM
0.4
0.2 |
0 fitted range =]
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 X

Figure 3.1: The ratio of the up and down quark distribution and its uncertainty. At high z, d/u is
essentially still undetermined [47].
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3.2 Flavour Decomposition

In this analysis, an attempt is made to use proton target data only. Thus the up and down
valence quark distributions cannot be disentangled, but the valence quark counting rules may
still be applied to an effective valence quark distribution. This requires a suitably chosen flavour
decomposition of F3 in singlet and non-singlet quark distributions.

3.21 Simplified Ansatz

In the present analysis, the sum in equation 1.19 extends only over up, down and strange
(u, d, s)quarks. The charm and beauty contributions are treated differently due to heavy quark
mass effects, see chapter 4. At low z, about 20% of the inclusive cross section is due to charm
production, dominated by the photon-gluon fusion process, whereas the beauty contribution is
less then 1 %. These heavy flavour contributions are added using NLO QCD calculations [52]
in the on-mass shell renormalisation scheme using m. = 1.4GeV and m;, = 4.5 GeV.

For the three light flavours, F, then decomposes in singlet and non-singlet quark distributions
as

2 1

with A = (2U — D) /3 defining a non-singlet distribution.

Now a suitable projection of £} into two independent quark distribution functions V and A which
allow the use of the valence quark counting rule is found according to

1 11

Assuming for simplicity s + 5 = %(ﬂ + d), the functions V and Aare related to the uptype

U = u + wand downtype D = d + d + s + 5 quark distributions as

2
U=3V+24 (3.9)
and
D— %v 434, (3.10)

The inverse relations defining V and A are

3.9 _ a—d 3
V=200 ~2D) = Ju, — 5dy + 51— 3(d +53) = (Bu,—2d,)  (311)
and
— _ ]._ 1 1 u=d _ 1
A=-(2D-U) = +s—§u—1uv+§dv — u—Z(uv—de). (3.12)
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Assuming roughly u, = 2d, for illustration one finds V ~ %uv and A ~ 7, i.e. V defines
a valence type distribution while A is dominated by the sea quarks and determines the low x
behaviour of I .

An advantage of this decomposition is that V is constrained by the relation

1
/ Vdr = 3, (3.13)
0

i.e. although only proton target data are used the quark counting rule can be employed. Another
constraint is provided by the momentum sum rule

/1 (xg+X) de = 1. (3.14)

This ansatz is generalised in the following section to account for the observed small deviations
of the strange [53] and antiquark [54] distributions from the conventional assumptions about
the sea.

3.2.2 Generalised Flavour Decomposition of F5

Recent measurements of Drell-Yan muon pair production at the Tevatron [54] have established
a difference between the @ and d distributions which was first observed in [55]. Charged current
neutrino-nucleon experiments determined the relative amount of strange quarks in the nucleon
sea to be
1 _

s+§:(§+6)-(ﬂ+d), (3.15)
with a recent value of ¢ = —0.08 [56]. The evolution of s + 5 in DGLAP QCD is found to
yield a linear dependence of € on In Q% which is used to extrapolate the NuTeV result obtained
at 16 GeV?, to Q% = Q2. Both results have been accounted for by modifying equation 3.10
according to

1
D= gv + kA, (3.16)
which, using equation 3.9, results in
V= 3 L(k:U —2D) (3.17)
2 k-1 '

and ¥ =V + A-(2+k). Choosing k& = 3+ 2¢ can be shown to remove the strange contribution
to the function V" yielding
3 1

V=1 7B+ 20uy —2dv + (54 20(@ - d)], (3.18)
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which coincides with equation 3.11 for ¢ = 0 and @ = d. Because the integral § = [(u — d)dx
is finite 1, this choice of % allows the counting rule constraint (equation 3.13) to be maintained
as

3 5+ 2
4 1+4c¢€

1
/ Vder =349 - = (e, 0). (3.19)
0
If this constraint is released in a fit to the H1 data, a value of [ Vdz = 2.24 + 0.13(exp) is
obtained instead of about 2.5 following from equation 3.19. The modified expression for the A
function in terms of quark distributions becomes
1 1 — _

For the naive assumptions ¢ = 0 and @ = d this yields the approximate relations on the right
side of equations 3.11 and 3.12 and A ~ @ at low = < 0.1. In the analysis these generalised
expressions are used for V, its integral and A.

3.3 Parameterisation

The DGLAP equations do not predict the xz-dependence of the parton distribution functions.
Therefore, the z-dependence has to be parameterised at a given input scale Q32 with an a priori
unknown functional form. On parameterising the parton momentum distribution functions, a
compromise has to be found between the flexibility of the parameterisation and the stability
of the fit. If too few parameters or a wrong functional dependence are used, the fit result will
necessarily be biased. Such a bias will be most pronounced at low Q2 close to the input scale
and will be "washed out’ by the DGLAP evolution at a higher Q2. This is demonstrated in
figure 3.2.

If too many parameters are given, unconstrained parameters will degenerate and destabilize the
fit. Unfortunately, in the absence of unlimited computer power and the mathematical means to
explore the full functional space, the ansatz of the parameterisations remains a heuristic, non-
rigorous procedure. Our choice is guided by reasonable physics assumptions and it is shown
that the number of parameters can be limited by studying the behaviour of the 2 function with
respect to adding or removing individual parameters.

3.3.1 Parameterisation Ansatz

Arguments from outside the DGLAP formalism [58] suggest that terms like
rq = a,a" (1 — x)% (3.21)

should be present in all parton momentum distribution functions.

1The most accurate measurement of f01 (@ — d)dx has been performed by the E866/NuSea Collaboration [54]
which obtained a value of —0.118 & 0.011 at (Q?) = 54 GeV?.
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Figure 3.2: gluon distribution shown at different scales (* from QCD fits based on different input
parameterisations. Due to evolution effects, the differences between the parameterisations diminish with
higher scales.

The a parameter is fixed by the counting rules, the parameters b and ¢ can be guessed from the
expected behaviour of the parton distributions in the limits x — 0 and x — 1 and are associated
with the small-z Regge behaviour and large-x valence counting rules, respectively [57, 58].

With increased precision and coverage of the x-range, it is obvious that this three parameter
ansatz needs to be extended to model the observed z-dependence of F3 .

In this analysis, parameterisations are based on the MRST ansatz ? where xq, equation 3.21, is
multiplied by a term (1+d+/z+ex). While this ansatz provides enough flexibility for the parton
momentum distribution functions themselves, this does not necessarily hold for linear combina-
tions of parton momentum distribution functions like the A and V' distribution described above.
An extension of the MRST-type parameterisation was therefore suggested and higher powers of

A similar test described below was performed based on the CTEQ parameterisation ansatz, using a term
14dx* to be multiplied on equation 3.21. This ansatz has the benefit of intrinsic positivity of the parton momentum
distribution functions but is discounted on the basis of much worse x 2 for the given datasets in this analysis. It is
thus not considered any further.
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\/x are included. The most general ansatz considered in this analysis is

2q = a,2" (1 — )1 + dyV/x + egr + hya®* + f,a?] (3.22)

Using these parameterisations, a functional space is spanned as input for the DGLAP evolution
with the input scale Q2 being an additional parameter. A change in the input scale in general
produces a different functional space, i.e. generally affects the solution of the DGLAP evolu-
tion.

3.3.2 Choice of Parameterisations

The functions A, V are linear combinations of quark distribution functions. Thus a systematic
study including the gluon distribution is performed to identify an optimum parameterisation for
A, Vand zg . This regards the functional shape and the number of parameters in equation 3.22,
but the optimal parameterisation is also dependent on the data sets under study since the degree
of precision of data, e.g. in the high x region, determines how detailed the high = shape of F’, has
to be parameterised. Yet, in order to allow for up to .e.g. 7 parameters per input distribution
function, 4096 different parameterisation combinations would have to be considered which is
computationally prohibitive. Therefore, only parameterisations are considered which are flex-
ible enough to accommodate the global fit results which provide individual parton momentum
distribution functions. The CTEQ, MRST and GRV parton momentum distribution function
sets are then used to construct the A and V distributions at Q7 =4 GeV2. These distributions are
then re-fit with parameterisations of increasing flexibility using an arbitrarily chosen error band.
This provides initial information how V" and A may be parameterised. The final choice is then
derived from fits to data, see below.

V distribution

Fig. 3.3 shows a comparison of different parameterisations with the V distribution based on
MRST parton momentum distribution functions. Only parameterisations with more than one
high = parameter can successfully describe the V distribution, while adding more than two
parameters does not significantly improve the description. Similar results are found using the
CTEQ and GRYV parton momentum distribution function sets, i.e. a parameterisation

2V = aya®™ (1 — 2)V[1 + dy vz + epa] (3.23)

is chosen for all fits presented in this analysis.

Adistribution

Fig. 3.4 displays a similar study for the A distribution. The best description is obtained using
two or more high = parameters. With two or less parameters, details of the high « behaviour
of Aare not correctly described. However, the small negative bump at = > 0.2 has its origin in
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the difference of the valence quark distributions , see equation 3.12 with u,, > 2d, at = ~ 0.3.
Such a behaviour requires the presence of three additional parameters d,e and i or f in order to
be reproduced correctly. At the present level of accuracy, the data do not require the presence
of more than d and e, see below. So parameterisations with a flat behaviour at = > 0.2 have to
be taken further into account as well.

xg distribution

The gluon distribution is of particular interest because it dominates particle production cross
sections at low x. In NLO QCD the “twist-2” gluon distribution has a valence like shape near
Q? ~ 1GeV?and thus vanishes at low z as is demonstrated in figure 3.5 a). This behaviour of
the gluon at low scales has been observed previously [38, 59, 60].

In figure 3.5 b) one finds that the singlet distribution for Q2 ~ 1GeV?rises. In this Q2 range
in NLO QCD the observed rise of F; at low x is not due to x¢g but rather due to the sea quarks.
With rising ()? this behaviour changes, i.e. the gluon contribution to the evolution equations
dominates over the sea quark contribution.

At low z, the proton structure in the DIS region is thus determined by the QCD vacuum. For
x = 0.07 the gluon distribution is nearly independent of () which likely is a reflection of the
interplay of the gluon-singlet dynamics in the region of scaling where (0F%(z, Q?)/01n Q?%), is
about zero. For the singlet distribution this is seen at x = 0.1.

6
N N
O e Q*n=5.0 GeV*  Q%=1.0 GeV? Y | Q%=5.06eV’  Q%=1.0 GeV*
B3 Fit (H1) Q°= 1.0 GeV? X B3 Fit(H1) Q°= 1.0 GeV?
- 2.0 GeV? o0 2.0 GeV’
3.06 « 3.06
4.0G 4.0G
500 500

T

Figure 3.5: Evolution of the (a) gluon distribution 2 ¢ and the (b) singlet distribution X.

The validity of extracting a parton distribution at scales as low as Q? ~ 1 GeV? is however a
matter of debate since the perturbative expansion parameter o, at Q% ~ 1 GeV? is about 0.4. Re-
sults can be sensitive of whether the evolution is technically performed *forward” (Q% <@?,,,,)

or "backward’ (Q2 >Q?.. ) as described in figure 3.6 and in the latter case zg can even become

min
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negative, clearly in contradiction to the probability distribution interpretation of the parton mo-
mentum distribution functions. Because of these problems, fits were extended to data with (2
~ 1 GeV? for technical applications like the reweighting of simulated events to the experimen-
tal cross section, but the physics conclusions were obtained from fits starting at larger Q2 >
3.5GeV?.

8
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Figure 3.6: a) Gluon Distribution shown at a scale of (* =2GeV? for forward (solid) and backward
(dashed) evolution. b) At low scales (> ~ 1 GeV?, the gluon behaves valence like and in the case of
backward evolution can even become negative.

It is interesting to recall that the dynamical parton procedure suggested in [62] parameterises
the input parton distributions at even lower scales of Q3 ~ 0.4 GeV?. Thus the region of
applicability of perturbative QCD, Q? > 1 GeV? is far away from the chosen starting point of
the evolution. This ansatz leads to a rather successful prediction of the rise of F', towards low
x, prior to the first measurements at HERA.

As perturbative QCD fits are technically successful down to such low scales it is desirable for
the x¢ parameterisation to be flexible enough in order to account for the strong variation from a
valence like shape at around Q% ~ 1 GeV? up to a nearly monotonous rising shape around Q? ~
4 GeV2. Figure 3.7 shows that the 3 parameter ansatz of equation 3.21 can accomodate this
variation, but as will be shown in the next section, at the expense of a rather strong dependence
on the input scale Q2 and an unfavourable x? of the fit.

3.3.3 Input Scale Dependence and 2 Saturation
Table 3.1 summarises the eight combinations of parameterisations for the g and A distributions

considered for the following analyses.

The parameterisation for the central fit to the H1 data is selected using the optimum 2 of the fit
requiring stability of the fit towards a variation of the input scale Q2 and of the lowest (>

mzn
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Figure 3.7: Fit of a three parameter ansatz according to equation 3.21 to the gluon distribution z¢ based
on the CTEQ parton momentum distribution function set at (a) > = 1 GeV? and (b) Q? = 4 GeV2.

data points entering the fit. In order to achieve this goal parameters are added in the x¢g and
Adistribution until addition of a further parameter achieves saturation, i.e. the x?2improves
by just about one unit when adding an additional degree of freedom. For each parameter set,
x* was studied as a function of Q3 ,Q? ,,, and for part of the analysis also of a,(M32).

min

type gluon A

CP1 1+ex 1+ex

CP2 | 1+dyx+ex 1+ex

CP3 1+ex 1+dyz+ex
CP4 | 1+dyx+ex 1+dyx +ex
CP5 1+ex 1+ex+ fa?
CP6 | 1+dyr+ex 1+ ex + fa?
CP7 1+ex 1+dyz +ex+ fa?
CP8 | 1+dyz+ex | 1+dyxr+ex+ fo?

Table 3.1: Types of parameterisations of the xg and A distributions at the initial scale ¢§. The fit to H1

data only uses the parameterisation CP3, while the fit to H1 and BCDMS data uses CP4, see text.

Figure 3.8 illustrates this procedure. The three parameter fit based on a three parameter gluon
distribution (equation 3.21) clearly results in a strong dependence of x2 on the input scale. The
‘correct’ value of the input scale is not predicted by theory, but this dependence indicates that
the parameterisation is not flexible enough and any non-optimal choice of the input scale will
likely cause a bias in the resulting gluon distribution at higher scales.
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Figure 3.10 a)-c) illustrates this dependence of the fit result at a scale of Q? = 5 GeV? for fits
with gluon parameterisations with 3 up to 5 parameters. Figure 3.10 d) compares the gluon

xg =ax"(1=x)% A =a+x"(1—x)%

2
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Figure 3.8: Dependence of x? on the input scale Q2 for different parameterisations of the parton distri-
butions zg and A in the NLO QCD fit to the H1 data for 2., > 3.5 GeV?. The V parameterisation is
given by equation 3.23.
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distribution at 20 GeV? for 3,4 and 5 parameters determined at Q3 values which lead to the best
x?. These distributions agree rather well.

A parameterisation of the gluon distribution with 3 parameters and an input scale Q3 =7 GeV? as
was used in [63] is therefore not appropriate. Instead the three parameter gluon distribution
ansatz prefers an input scale Q2 ~ 1 GeV2. Recent analyses [64, 92] prefer values around Q*
~ 4 GeV?, i.e. above the charm quark mass squared. In this analysis stability towards the input
fit parameters was required at scales in excess of 2 GeV? .

It is instructive to observe that the additional high = parameters d and/or e required by the fits
mostly affect the region between 0.01 and 0.1 while the low = behaviour is governed by the
parameter b. This is demonstrated for the gluon distribution in figure 3.9. This region in x is
particularly important, since gluons in this = region give the major contribution to the proton
momentum as is demonstrated in figure 3.11.

N
£ xg MRS 0=100 | ‘G 10 27 xg MRS o520
| — xg=a=x"(1—x)(1+dvx) c=662 | X | — xg=a=x"(1—x)"(1+exx) c=9.61
---------- xq with d & [3...6] =238 | o | xgwith e £ [-5...20] e=10.44
x 2
8 >
6
4
2
0
L Q2:4 Ge\/2 fit between x=1e—4 up to x=1. (x7parofit) : Q2=4 Ge\/2 fit between x=1e—4 up to x=1. (x8parafit)
107* 1073 1072 107 107* 107° 1072 107"

X

Figure 3.9: Effect of additional high 2 parameters in the gluon distribution. At a scale of (} = 4 GeV?,
the gluon taken from the MRST parton momentum distribution functions is re-fit using an additional
(1 + dy/z) (a) or (1 + ex) (b) term multipled on equation 3.21. The parameters d and e are then
arbitrarily varied, keeping the integral of x¢fixed. The variation marks the region of largest sensitivity
of zg to the values of d (left) and e (right).
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- xg=ax"(1=x)%(1) c xg=a=x"(1=x)%(14+exx)

X
E xg(x,Q,’=4 GeV¥)=a-x"(1—x)%(1+e=x)
**** xg(x,Qy’=4 GeV?)=ax"(1—x)*(1+dvx+ex)
""" xg(x,Qy’=1 GeV?)=a=x"(1—x)*(1)
X

Figure 3.10: a)-c) Stability of the QCD fit to H1 data with respect to the variation of the input scale
1 < Q3 <10 GeV? for different parameterisations. Data points with * > Q2 . =3.5 GeV?are included
in the fit. The gluon distribution is shown at (* =5 GeV?. d) Gluon distributions shown at a scale
of Q* = 20 GeV? for different parameterisations from fits with the input scale (& which corresponds
to the best x2as determined from figure 3.8. Thus for an optimal choice of (%, the resulting gluon
distributions depend only weakly on the chosen parameterisation for ¢} > Q% . The error band represents

the experimental uncertainty of the central fit.
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Figure 3.12: Stability of fits to the H1 data for a) 2., =5 GeV?and b) Q2 . = 6.5 GeV? with respect
to varying the input scale (3.
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Figure 3.13: Stability of fits to the HL+BCDMS data for @? ., = 3.5 GeV? with respect to varying the
input scale Q3.
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3.3.4 Gluon Momentum Fraction

Figure 3.8 shows that the 2 -saturation criterion selects the fits with an A ansatz with the max-
imal number of parameters considered. However, the gain in x?is about one unit only, and
the V distribution in these fits become distorted and significantly deviate from the majority of
fits, see figure 3.14. This behaviour may result from too many unconstrained parameters in the
Adistribution.

Q’=4 GeV?

1.2

[ %
,
0.2 N

e,

PR AR _ C . T . M
0.2 0.2

Figure 3.14: Comparison of the V' (a) and A (b) distributions for the parameterisations of table 3.1.

A cross check for the stability of the fit was provided by determining the momentum fraction
of the proton carried by gluons, see figure 3.15. The deviating fits also determine a gluon
momentum fraction which is incompatible with other measurements even at low scales Q2.
They are therefore excluded from further analysis. The gluon momentum fraction in addition
was used to verify the flavour decomposition ansatz in A,V and xg distributions to fit proton
target data only as described above. The standard QCD analyses use proton and deuteron data
to control the singlet, non-singlet and gluon distributions, allowing the conventional « ., d,, and
xg distributions to be used as described in e.g. [20]. Figure 3.16 demonstrates that the resulting
gluon momentum fractions for both the conventional and the proton only ansatz are in very good
agreement. The momentum fraction carried by the gluons is determined to be 0.43+0.02 (ezp)
at Q% = 4 GeV? where the error is due to the measurement uncertainties. The results also agree
with previous determinations at Q2 = 7 GeV? [45, 65]. The fit to proton only data is also
repeated without imposing the constraint given by the momentum sum rule. This fit determines
the integral fol z(X + g)dx to be 1.016 £ 0.017(exp), where X is the singlet parton distribution
function, equation 1.28. This value is found to be nearly independent of the minimum @ ? value
of the data included in the analysis. Thus the momentum sum rule is confirmed with good
accuracy. Imposing it fixes one normalisation parameter.

Based on these observations the central fit to the H1 data was performed with the CP3 pa-
rameterisation of table 3.1. For the H1+BCDMS analysis the parameterisation CP3 and CP4
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were found to be adequate by the same procedure for the central fit of Q2 , =3.5 GeV?. Since,
however, parameterisation CP3 proved slightly more vulnerable to variations of 2, than CP4,

parameterisation CP4 was selected for the central H1+BCDMS fit. This allowed for more flex-
ibility at high z as required by the more accurate high z data in the fit.

In all subsequent studies however were also performed with the alternative ansatz CP1-CP2,
and CP4-5 and CP8 which yielded the correct momentum fraction to cross check the results.
As is demonstrated in figure 3.12, the parameterisation ansatz CP3 also proved adequate under
variation of ()2

min *
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Figure 3.15: The fraction of the proton momentum carried by gluons as a function of ¢, obtained
in different NLO DGLAP fits. Solid curve: fit to H1 data alone; dashed curve: fit to H1 and BCDMS
proton data; dotted curve: fitto H1 ep and BCDMS up and u.d data. The shaded error band represents the
experimental uncertainty in the analysis of the H1 data alone. The solid point is due to a QCD analysis
by the NMC collaboration [45]. Also shown are results of global analyses [38, 39, 66].



3.3. Parameterisation 53

5 * QCD Fits
L H1) exp. uncertainty
o YR H1+BCDMS p)
< H1+BCDMS p+d)
~—
o ® NMC QCD Fit
— 0.5 -
0.45
i c
/ S
0.4 - # o
2
: 5
O
T
0055 ““H‘ ““H‘ ‘\\\\\‘
1 10 107 ?

10
Q* /GeV’

Figure 3.16: The fraction of the proton momentum carried by gluons as a function of (¥, obtained
in different NLO DGLAP fits. Solid curve: fit to H1 data alone; dashed curve: fit to H1 and BCDMS
proton data; dotted curve: fitto H1 ep and BCDMS up and .d data. The shaded error band represents the
experimental uncertainty in the analysis of the H1 data alone. The solid point is due to a QCD analysis
by the NMC collaboration [45].
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3.4 Definition of Minimization Procedure

3.4.1 Déefinition of 2

The fit parameters are determined by finding the least square deviations between the theoreti-
cal prediction of the reduced cross section ¢,'" and the measured reduced cross section o,.**?
minimizing

emp 2\ _ ~th 2
X EZ x”LaQ )+§-2 ("EHQ )] ) (324)

z ,unc 1,stat

The sum over ¢ runs over all data points of all datasets involved. The theoretical neutral cur-
rent double differential cross section is computed in its reduced form using equation 1.7. The
structure functions F; and F7, are calculated using equations 1.20 and 1.22, respectively.

3.4.2 Correlated Systematic Error Treatment

The experimental systematic errors introduce point-to-point correlations which are not properly
taken into account by equation 3.24. Treatment of these correlations is provided following a
method proposed by [66].

In principle, the evaluation of correlated systematic errors and their propagation (see below) can
be incorporated in a standard Hessian matrix approach, see [67, 42]. However, the many more
parameters in the fit in practice require the inversion of matrices of large dimensions which
is numerically unstable if the eigenvalues of the Hessian matrix span a large range of values.
Therefore, in this analysis a different method is used by which the correlated uncertainties are
parameterized by a set of fit parameters s, where \ indicates the systematic error source as
described in table 2.1. It has been shown [43] that this method is equivalent to the standard
Hessian matrix approach.

Therefore, the model prediction o7"(p) corresponding to a set of model fit parameters p and
systematics parameters s, at a given point (z;, Q?) is modified according to

olli(p) = olly(p, s) = ol (1+ Z 530571 (3.25)

where 677* is the relative systematic error of data point i due to source \. For the further statis-
tically correct treatment of the correlated systematic errors and their propagation it is assumed
that the s, are uncorrelated and gaussian distributed with zero mean and unit variance®. A value
of s, = +1 therefore indicates a deviation of the measurement of one standard deviation away
from the central value.

3This also implies averaging the effect of asymmetric error sources. Note that these assumption can be violated
with certain error sources, i.e. noise treatment.
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Further systematic error sources are the relative normalizations of the data sets which are mainly
determined by the luminosity measurements and global trigger and reconstruction efficiencies.
Accordingly, further correlated systematic parameters v, are introduced which estimate the
number of standard deviations of the normalization uncertainty 6;°" of experimental data set
k.

For the parameters s, and v, related to systematics counter (penalty) terms are introduced into
the 2 definition to control their variation in =1 limits. The full y2 definition therefore reads
for a fit to n.,, datasets with relative normalization uncertainties §;°"™, n,(k) data points and
ns(k) correlated systematic error sources s, which give rise to a relative correlated systematic
error 034*" on the cross section, as

exp Tp( Ur L Urz (]_ — Uy 5no7"m - ZZS( )8/\,k5i5/?\JS )]

62 .+ 62

i,sta 2, UNC
" ZWZZ oy, (3.26)

Note that the systematics parameters s, are not counted as free parameters since they are con-
strained by the penalty terms in the x? definition. The QCD fit program used determines the
free parameters using the MINUIT minimization program [68] and the systematics are fitted in
each MINUIT iteration using a least square minimization procedure exploiting the linear depen-
dence of the 2 on the systematics parameters sy, saving computer time [69]. Furthermore, the
derivatives of the 2 with respect to the systematics parameters are determined which is needed
for the error propagation.

3.4.3 Error Propagation

In order to propagate the statistical and systematic uncertainties of the cross section on the
parton momentum distribution functions, two Hessian matrices M and C are computed at the
minimum x2,,,,

1 92y2 1 0%y2
My — = S 3.27
AT OpOp,,” AT Opr0s,,’ (3.27)
The statistical and systematic covariance matrices are then given by [66]
VRt — MLyt — MTICCTM Y (3.28)

For any function G which depends on the model parameters p, G = G(p). The error AG is then
obtained using

ZZ 0p,\ Vau ap (3.29)

where the matrix V), corresponds to Vst V¥st or both added in quadrature for the statistical,
systematic and the total error.
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In order to define envelopes for a function G(p) which is minimal for a set of model parameters
py, the variation of these parameters p — p can be found by

oG
Z,U, VA# E

— (3.30)

(p—prh==+
These envelopes are the error bands shown in all subsequent figures. They are defining the 68%
probability for a given point G(p) (which can be thought of e.g. the gluon distribution at a fixed
x and ?) to stay in the envelope under variation around the minimum of a fit parameter p by
its uncertainty.

Note that this statistical interpretation relies on simplifying assumptions which in practice are
often not precisely met, e.g. gaussian fluctuating systematic errors. Furthermore, especially at
high z, the estimation can be biased by the parameterisation as well.



Chapter 4

Extraction of the Gluon Distribution

This chapter presents the results for the extraction of the gluon distribution from the inclusive
cross section data in NLO QCD. Two central fits are performed, one to H1 data alone, the other
with H1 data in combination with BCDMS proton target data. Both central fits employ data
above a minimum Q2. > 3.5 GeV?. A cut Q* < 3000 GeV? is applied to eliminate the region

where electroweak interference effects are important, which involve the structure function = Fj.

For the fit to H1 data alone, the H1 low x data, presented in chapter 2, are used as well as
recent data of the H1 collaboration [37] from the same data taking period, which cover the
high = range at high Q? > 150GeV?. This fit assumes a fixed o (/%) =0.115 and uses the
parameterisation CP3 of table 3.1 discussed in the previous chapter.

In the fit to H1 and BCDMS data, « is left as a free parameter. For reasons linked to correlated
systematic errors, a cut of y, > 0.3 is imposed on the BCDMS data as will be justified in the
following chapter, where the results on o are presented as well. The parameterisation used is
CP4 of table 3.1.

4.1 Quality of the Fits

4.1.1 Comparison with the Data

The measured double differential reduced cross section o,. is compared with the QCD fit to the
high and low = H1 data, see figure 4.1. The data are compared to published data of the fixed
target muon-proton scattering experiments BCDMS and NMC. These are well described by the
fits to H1 (H1+BCDMS) data with a total 2 per degree of freedom of 0.8 (0.87), see table 4.1.3.
In the high = region, the fit to H1 data is only constrained by the H1 high Q% data describing
nevertheless the high = data of the fixed target experiments NMC and BCDMS rather well.

At lowest x, the cross section receives significant contributions from the longitudinal structure
function F,, leading to a turnover at the kinematic edge of y ~ 0.5. The highest y values in the
97 data analysis were reached for Q2 > 12 GeV?2. The turning cross section behaviour is well
reproduced by the NLO QCD calculation, as is illustrated in figure 4.26.

57
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The structure function Fy(x, Q?) is extracted from the reduced cross section data using the pre-
diction of the fit for the longitudinal structure function F',(z, Q?) . This extraction was limited
to y < 0.6 since at higher values of y, the uncertainties of £, due to uncertainties in F';, become
appreciable. The result is shown in figures 4.2 and 4.3.

&+ ,
O 2_ 2 c(Q¥) =212
S Q=150 Gev
© 120 GeV?
o | 90 GeV’
60 GeV?
102 45 GeV?
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i 25 GeV?
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. (=0 |98
e H196-97 i
, NMC —QCD Fit (H1) =
O BCDMS extrapolated Fit 3
10 i T
10° 10° 10* 107 10°* 10! )

Figure4.1: Measurement of the reduced DIS scattering cross section (closed points). Triangles (squares)
represent data from the NMC (BCDMS) muon-proton scattering experiments. The solid curves illus-
trate the cross section obtained in the central NLO DGLAP QCD fit to the present data at low z, with
Q2. = 3.5 GeVZ, and to the H1 data at high @*. The dotted curves show the extrapolation of this fit
towards lower Q2. The curves are labelled with the * value the data points belong to and scale factors
are conveniently chosen to separate the measurements.
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Figure 4.2: Measurements of the proton structure function 1 (z, @Q?) by the H1 and the NMC experi-
ments. Solid curves: NLO DGLAP QCD fit to the H1 cross section data. Overlayed as dashed curves
are the results of the QCD fit to the H1 ep and BCDMS pp data, for 3, > 0.3, which are indistinguish-
able from those of the pure H1 fit. Dotted curves: fit extrapolations at fixed x into the region below
Q? = 3.5 GeV2.

At low z, F, rises with Q2. From approximate calculations it can be seen that at low = < 0.01
the quark contribution to the derivative (0F,/01n Q?), in the DGLAP equations is negligible.
Furthermore, the splitting function P,,, can be expanded and an approximate relation is obtained
in leading order, for Q? > 3 GeV? [70]

Has(Q?)

OF:/0mQ?), = = - g0, %) (4.1)

Thus the observed increase of the rise of F;, vs In ()2, see figure 4.4, with decreasing x implies
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Figure 4.3: Measurements of the proton structure function 53 (z,Q?) by the H1 experiment and by
fixed target muon-proton scattering experiments. The error on the data points is the total measurement
uncertainty. The inner error bars represent the statistical error. Solid curves: fit to the H1 cross section
data. Dashed curves: fit to the H1 ep and BCDMS pip data, for 3, > 0.3. Dotted curves: extrapolations
to data not used in the fit.

that the gluon distribution zg rises towards low x . This rise at a certain value of x has to be
damped since unitarity of the total cross section imposes a limit on the gluon distribution in a
given sphere of the proton radius.

In figures 4.2 and 4.3, the solid lines give the result of the QCD fit with Q2,,, = 3.5 GeV?to the
H1 data. This fit also describes the fixed target data in the non-overlapping regions rather well,
except for the data points at z = 0.65 where the fit curve is below the BCDMS data. The H1
data at this value of x [37] have a correlated systematic uncertainty of 12%, due to the energy

scale error for the scattered positron, which accomodates the observed difference. Note that a
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Figure 4.4: Measurement of the partial derivative (0F3/91n Q?), taken at fixed = and plotted as func-
tions of Q2. The error bars represent the quadratic sum of statistical and systematic errors. The straight
solid lines are given by the function b(z) + 2c(z) In @* determined in fits to F(z, Q?) at fixed z. The
dashed lines represent the derivatives as calculated with the QCD fit to the H1 data. The error bands are
due to the experimental and model uncertainties in the QCD fit which includes data in the QCD fit for
Q? > 3.5GeV?.
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new, preliminary H1 measurement [71] of Fy(z, Q%) at high Q? and z results in a consistent
but larger F values for = = 0.65 which may resolve the difference between the BCDMS and
H1 high = data observed here.

4.1.2 Pull Distributions

Table 4.1.3 summarises the fit results for the H1 and H1+BCDMS fits. The 2 per degree of
freedom is slightly below 1 indicating an overestimation of the uncorrelated errors. Figure 4.5
shows the pull distribution for the individual datasets in the fit to H1 data alone, 4.6 in the fit to
H1 and BCDMS data. The pulls are defined as

Data — cgys * Theory

pull =
uncorr.error

where ¢, reflects the effect of the correlated error sources.

4.1.3 QCD Model Parameters

Table 4.2 presents the extracted QCD parameters of the fits to the H1 data alone in the full
kinematic range and for y < 0.35 (see below) and to the H1 and BCDMS data. The result
for the parameter ¢, comes out to be rather large as compared to the dimensional counting rule
expectation [72]. A fit with d, = e, = 0 to H1 and BCDMS data, however, yields ¢, = 6.5 for
the fit to H1 and BCDMS data, not far from dimensional counting rule expectations [72], yet
with a deteriorated x?. Note that the gluon normalisation a, and the low = parameter b, are
observed to be strongly correlated, explaining the different values obtained from the analysis
of H1 data without and with a cut in y. The resulting gluon distributions, however, agree very
well, see below.
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Figure 4.5: left: Pull distribution for the fit to H1 data alone. right: Pulls versus = and (. No
systematic trend is observed in these distributions pointing to a good description of the measurement in
the full kinematic range, including the region of lowest x.
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(a) H1 (b) HI+BCDMS (c) H1 (y < 0.35)
# parameters 12 13 +1 (a) 12
total \? 180 394 151
partial > stat/syst/#pts  stat/syst/#pts stat/syst/#pts
H1MB 32/2.4/45 32/2.5/45 28/1.1/37
H1 Main 67/2.5/80 68/2.4/80 53/1.3/65
H1 highQ? 74/2.5/111 78/2.8/111 64/2.6/90
BCDMS-100 - 51/0.5/58 -
BCDMS-120 - 38/0.5/62 -
BCDMS-200 - 64/0.5/56 -
BCDMS-280 - 53/1.0/52 -
x2/d.o.f 0.80 0.87 0.84

Table 4.1: x? characterisation of the central fit results using the H1 alone (a) , the H1+BCDMS data (b)

and of a fit to the H1 data with a cut in y < 0.35 (c) for the F7, extrapolation method, see section 4.5.

(@ H1 a b c d e
gluon | 0.477 | -0.341 | 15.7 -| 83.0
\/ 178. 1.62 | 5.70 | -2.87 | 2.86
A 0.193 | -0.149 | 18.2 | -2.76 | 25.8
(b) H1 (y < 0.35) a b c d e
gluon | 0.277 | -0.419 | 15.5 - 1 118.0
\% 162. 157 | 571 |-292 | 3.00
A 0.167 | -0.166 | 16.1 | -1.9 | 21.2
(c) H1+BCDMS a b c d e
gluon | 1.10 | -0.247 | 175 | -4.83 | 68.2
\% 86.3 147 | 448 | -2.12 | 1.60
A 0.229 | -0.130 | 19.7 | -3.82 | 29.8

Table4.2: Parameters of the input distributions zq(z) = a,xb(1 —z)%[1 +d,\/ + e 2] for zg(z, Q?),
V(z,Q?) and A(z, Q?) at the initial scale Q% = 4 GeV? for fits to data above Q? > 3.5 GeV? using H1
data (a), H1 data with a cut on y < 0.35(b) and H1 and BCDMS (c) data with a cut y, > 0.3 on the
BCDMS data, see chapter 5.
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4.1.4 Dataset Normalisation

In the fits, the datasets are allowed to float within their quoted normalisation uncertainties. The
normalisations imposed by the fit as well as their quoted uncertainties are listed in table 4.3.
In the case of the BCDMS data, the datasets taken at different beam energies share an absolute
cross section normalisation uncertainty of 3%, but in addition are allowed to float 1% relative
to each other. Fixing all normalisations increases 2 by 26 units in the case of the HL+BCDMS
fits and about 10 units in the fits to H1 data alone.

(@ H1Fit  abs | (b) H1 Fit abs | (b) H1+ abs  rel | quote
% | (y < 0.35) % | BCDMS Fit % % %
H1 MB 1.36 1.32 1.34 1.7
H1 MAIN -0.32 -0.32 -0.49 1.7
H1 high Q2 -1.18 -1.11 -1.25 1.7
BCDMS-all -1.79 3
H1 MB 0.87 0.91 0.89 1.7
H1 MAIN
+high Q? -1.1 -1.08 -1.25 1.7
BCDMS-all -1.91 3
BCDMS-100 +0.5 1
BCDMS-120 +0.4 1
BCDMS-200 -0.4 1
BCDMS-280 -0.8 1

Table 4.3: Normalisation shifts applied to the datasets in the fits to H1 data only (a), H1 data only with
acutiny < 0.35 (b) and H1+BCDMS data (c). Absolute normalisations are given in per cent. The H1
MAIN dataset normalisation was fixed to the H1 high (* normalisation since both datasets are largely
taken in a common luminosity period. In addition, results are shown if all normalisations are left free.
For the BCDMS dataset, the relative normalisations of various datasets taken at different beam energies
are also given. These are observed to be unaffected by fixing or not fixing the H1 dataset normalisations.
The last column represents the quoted uncertainties for the datasets.

4.1.5 Correlated Systematic Errors

As explained in chapter 3 the fit treats the effect of point-to-point correlations due to systematic
uncertainties by introducing scale parameters s, and corresponding penalty terms in the 2.
Figure 4.7 shows these parameters exhibiting their correlation with o, . As can be seen, all but
two parameters are within their quoted uncertainties.

In the case of the uncertainties introduced by the photoproduction background subtraction vp, a
direct correlation of s, 7 to the longitudinal structure function F(z, Q?) exists since both their



4.1. Quality of the Fits 67

» +E - - E, - noise | yp -
2 @ Fit(H1) - - @ Fit (H1)]
F.O(e?) | i | . FO(a)

Oj B j""""j..ooooooj.......L,
777777777777777 ,,,..,..;.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,:'Ti,.,‘,.,‘,

L L L or L 00009
_2 7\ [ ‘ I | 7\ L1 ‘ | !_\N\/Ii\ “\Q\W\ Q\ 7\ [ ‘ I 7\ [ ‘ [ \7
- E - 0 - E, - noise - yp .
2 - - - @ Fit (H1)]

20 < Hlfhigh Qf =

61 ©o0.11v 0.1 0117 0.1 0.1 0.1 0.11 0.7 0.11 0.12
Xs

Figure 4.7: Dependence of the correlated error scale parameters s, as determined by a fit to H1 data
(black points), H1 data with y < 0.35 and Fy, computed to O(a; ?) (red points), compared to a fit to the
same data fit 7, computed to O(as ) (blue points). The yellow bands indicate the 1 o estimated region.

effects become important in the relatively small kinematic region at high y. The large negative
scale parameter means that the fit prefers F to be somewhat larger than calculated. A larger
Fp in QCD could, for example, be calculated if F';, was expressed to O(«y ): in figure 4.8 the
effect of changing the F theory from O(a, %) to O(a, ) is displayed. As a result, F;, becomes
bigger and x? improves slightly in the fit, see figure 5.18 in chapter 5.

This correlation of a physics effect with a systematic error source parameter is at first sight a
weakness of the approach, since a possible mismatch of data to theory may capture a systematic
scale parameter which happens to be correlated with such an effect. However, claiming a data-
to-theory mismatch which is still accounted for by a 1o shift in the correlated systematics
is not warranted either. The usage of the scale parameter method allows to track a possible
deviation by observing the behaviour of the suspicious scale parameter with respect to other
parameters in the fit. In this particular case, the effect on the ~p background subtraction can be
completely removed by applying a cut y < 0.35. Using this cut, the extracted physics quantities
as and zg can be studied and an almost negligible effect on the result is found, as is described
in section 4.5.

Another deviation is seen in the noise treatment of the high Q? data set which is the dominant
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Figure 4.9: Total shift applied to the data points due to the correlated systematic errors in the fit to (a)
H1+BCDMS and (b) H1 data. Aty < 0.05, the points are moved to the edge of their estimated correlated
error.
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man

correlated error source at low . Here, the effect can be traced to 20 points in the high Q? data
set which are moved to the edge of their estimated systematic uncertainty. Figure 4.9 shows
the correlation of the shift to the data with y attributed due to the correlated systematics errors.
These points can be removed from the fit by a cut y > 0.03 applied to the high Q2 data. These
points have no effect on the extracted gluon distribution and their impact on the extraction of
as Will be covered in the following chapter.

4.2 Effect of theQ?  Cut

min

An extension of the analysis to low values of Q* and z is of interest to study possible deviations
from NLO DGLAP evolution. The effect of including data at low values of Q? is twofold.
On the one hand, the DGLAP evolution from the input scale to these points is performed into
the region were «, becomes large and the convergence of the perturbation series thus becomes
worse. Also, in the low Q? region higher twist effects, especially at higher z, become important
proportional to 1 + h(z)/Q? where h(z) is a suitably chosen polynomial parameterising the z
dependence.

On the other hand, the measurement of the slope (0F,/01n Q?), requires at least two data
points with different Q? above Q2 . for fixed . Thus the minimum value z,,;, at which this

slope can be measured depends on Q2. . Again, in the region of low x departures from the

DGLAP prediction are expected since terms proportional to log(1/x) become important which
are neglected in the DGLAP equations.

Thus the dependence of the fit result on the chosen @2, is studied systematically. Figure 4.10
shows the H1 F}, data for < 8 - 10~* together with the fit curves for different values of Q?

min'

The fit with Q2. = 1.5 GeV? describes all the data very well. If Q2 . is raised, the fit curves

extrapolated below Q? = @2, tend to undershoot the data excluded from the fit. The gluon
distributions at 2 = 5 GeV? obtained from these fits are shown in figure 4.11 in the low z range
where the gluon distribution is constrained. They are consistent within the estimated uncertainty
in the overlapping regions. According to equation 4.1 the derivative (0F,/d1n Q?), determines
the gluon distribution at a value of approximately 2. The gluon distributions in figure 4.11 are

therefore shown only down to = ~ 2x,,;,.

Figure 4.12 shows the resulting pull distributions on varying Q2. . The pulls are centered and
no local deviations are observed. Extension of this study into the region of Q2 ~ 1GeV?is
of interest. It requires precision data in a large range of x [73]. For such ()? values the gluon
distribution zg(x, Q?), in leading twist NLO QCD, is observed to approximately vanish at low
x acquiring a valence-like shape. This behaviour may be largely influenced by still higher order

corrections [74].



70 Chapter 4. Extraction of the Gluon Distribution

c(x)=2%" x=(?%060)005 ® H196-97/

e
i x=0.00008

10

FZ*CKX)

x=0.0008
(i=0)

s (H1)
5 GeV-

o
@)
0
<

H1 Collaboration

Figure 4.10: Effect of the Q2. cut on the structure function £ in the DGLAP QCD fit to the
H1 data (points). The curves represent fits with different minimum ¢ values. The central fit uses
Q2%,, =3.5GeV2.
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Figure 4.11: Effect of the Q2 . cut, applied in the DGLAP QCD fit to the H1 data, on the gluon

min
distribution at Q? = 5 GeV?2. The distributions are shown down to = values corresponding to twice the
minimum z values of the data which allow a * slope to be measured.
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4.3 Results

The gluon distribution from the fit to the H1 and the BCDMS proton cross section data is shown
in figure 4.15 for Q* = 5, 20 and 200 GeV? with error bands illustrating the uncertainty of the
analysis. As qualitatively discussed above, the DGLAP evolution leads to a gluon distribution
which rises dramatically towards small = and increasing with Q2.

The inner error band represents the experimental uncertainty of the determination of xg for
a fixed. This fit, however, simultaneously determines zg(z, Q%) and «a,, with the results for
the latter being discussed in the following chapter. The error band for both the experimental
as well as the «, uncertainty is illustrated by the middle error band. Due to partial cancellation
of errors in the combined fit, this error band is smaller as compared to the more traditional
analysis where « is being fixed to its central value, taken for example from the world average,
and the lower and upper bounds obtained by repeating such a fit with «, being fixed to the upper
(a5 0y ) and the lower («, -da, ) value given by the uncertainty o« , see figure 4.13

The full error band includes in addition the

The inner solid line illustrates the behaviour

tainti ted with the fit o 02f

same uncertainties connected wi e fit an- = - &, uncertainty
satz, listed in table 5.3, as for the determi-  ~\0.15 Fit (H1+BCDMS) xg+

R . R @)) C I XgT &g
nat!on of Qs _descrlbed in chapter 5. T_he S 0.1 F = Fit (H1+BCDMS) xq
main contributions to these model uncertain- O :
ties are depicted in figure 4.14. For the low 0.05
x behaviour of zg these are dominated by the R R
choice of Q2 . , as discussed in section 4.2. i

of x¢, as determined with the H1 data alone, —0.1 — Qiz S GeV:
which is seen to be in very good agreement —0.15 — Qf 20 GeV

with the fit to the H1 and BCDMS data. This o T E=a000e

is expected since the H1 data fix the gluon '0%0—4 1073 1072 107"
distribution at low z and the BCDMS data X

only contribute for z > 0.07. Figure 4.16
compares the experimental uncertainties of the
gluon distribution for fits to the H1, HI+NMC
and the H1+BCDMS proton target data with
a, fixed. At low z, the experimental accu-
racy is determined entirely by the H1 data,
see insert of figure 4.16. The gluon distribu-
tion as determined by the fit to the HI+NMC
data is found to be somewhat lower at low z,

Figure 4.13: Relative error on the gluon distribu-
tion at Q> = 5, 20 and 200 GeV?. Compared
is the uncertainty due to o, from the combined fit
(boxes) with a fit where « is fixed to 0.1150 for the
central value, and the upper and lower bounds for
the gluon distribution are obtained by fixing o to
as +da, (lines).  The upper (das =+0.0019) and
lower (6cs =-0.0018) uncertainty as are obtained by
the o analysis described in chapter 5.

but this behaviour is caused by the NMC data below a Q? < 8 GeV?as can be seen in fig-
ure 4.17. If these NMC data points are removed, the gluon distributions obtained from H1 and
fixed proton target data agree very well with each other and to a gluon distribution extracted
from a fit to HI+BCDMS proton and deuteron target data.

Figure 4.18 shows the gluon distribution determined from H1+BCDMS data by this analysis to a
preliminary result by the ZEUS collaboration [63]. In that analysis, a rather global fit using the
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most recent ZEUS data, fixed target and neutrino nucleon data from the CCFR collaboration
with a standard flavour decomposition is performed. The model assumptions used are very
different concerning the parameterisation, the value of «,, and the correlated systematic error
and heavy flavour treatment. If, in a technical study, the same model assumptions are employed
forcing «, to o, =0.118 and adopting a 3 parameter gluon distribution, which is disfavoured by
an increase of 20 units in the total 2 in this analysis, see figure 5.25, the central values are
found to agree very well, see figure 4.19. The treatment of systematic errors is not the same in
both analyses to which partly the difference in accuracy has to be attributed.
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Figure 4.14: Relative uncertainty of the gluon distribution due to the most important error sources as
obtained from a fit to H1+BCDMS data. Shown in coloured boxes are the relative errors for the
values 5,20,200 GeV2. The corresponding total error is plotted in solid, dashed and dotted lines. For
xg , the dominating uncertainty source apart from the experimental error are seen to be o, and Q2

man *
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These analyses determine x¢g from the scaling violations of F, . It is more accurate but con-
sistent with determinations of the gluon distribution by the H1 experiment in open charm [75]
production, to be discussed in the next section, and deep-inelastic dijet [76] production, shown
in figures 4.22 and 5.21, respectively.

Note that the different ways of measuring gluon related quantities provide an important cross
check to the theory. It is conceivable that deviations to the DGLAP formalism are present in the
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Figure4.15: Gluon distribution resulting from the NLO DGLAP QCD fitto H1 ep and BCDMS up cross
section data in the massive heavy flavour scheme. The innermost error bands represent the experimental
error for fixed a5 (M%) =0.1150. The middle error bands include in addition the contribution due to the
simultaneous fit of ;. The outer error bands also include the uncertainties related to the QCD model
and data range. The solid lines inside the error band represent the gluon distribution obtained in the fit to
the H1 data alone. This distribution is obtained at % = 4 GeV?, and the results at larger ) are obtained
by the evolution prescribed by DGLAP QCD.
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data but are absorbed by the flexibility provided by the QCD model parameters in the inclusive
fits. A possible deviation from the DGLAP formalism may manifest itself in a contradiction to
another gluon dependent quantity, measured i.e. in jet or heavy quark production and its pre-
diction based on the inclusive gluon distribution. Such gluon dependent quantities are £5 and
F7,, discussed in the following sections.
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Figure 4.16: Comparisons of the gluon distributions at (* =5 GeV? obtained in fits to H1, HI+BCDMS
and H1+NMC proton target data. The error bands show the experimental uncertainty. In the fits to H1
and H1+BCDMS data, the low « behaviour is dominated by the H1 data since the x range of the BCDMS
data is limited to > 0.07. The insert shows the relative errors of all the determinations. It is visible
that the uncertainty of the gluon distribution at low « is determined by the H1 data alone.
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Figure 4.17: Comparisons of the gluon distributions at (* =5 GeV? obtained in fits to HI+BCDMS
proton and deuteron target data, to H1+NMC proton target data and H1+NMC proton target with a cut
in Q% > 7.5GeV?in the NMC data. The error bands show the experimental uncertainty. The gluon
distribution from fits to HLI+BCDMS proton and deuteron target data are seen to agree very well when a
cut Q? >7.5GeV?is applied in the NMC data.
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Figure 4.18: Comparison of the gluon distributions at (? =5,20,200 GeV? for the fits by the H1 and
ZEUS collaborations. The model assumptions differ, see text.
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Figure 4.19: Comparison of the gluon distribution results at ¢(* =5,20,200 GeV? for the fits by the H1
and ZEUS collaborations using the same model assumptions. Only experimental errors are shown. The
treatment of correlated systematic errors differs, which accounts for part of the observed difference in
accuracy. At %, the impact of the different heavy quark mass treatments is visible. The Roberts-Thorne
variable flavour number scheme [77] used in the ZEUS analysis approaches the massless heavy quark
scheme at high Q? which is systematically lower, compare figure 4.25 and see section 4.4.
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4.4 Comparison to Heavy Quark Production Results

In QCD quarks are considered ’heavy’ or ’light’ depending on the relation of the heavy quark
mass to the Ao p parameter. Thus ¢, b, ¢ are heavy quarks as mgg > Agep = 250 MeV.

Heavy Excitation Heavy Creation NLO Heavy Excitation ~ Heavy Fragmentation

Vil
96666 c g

Figure 4.20: Basic processes for DIS heavy quark production.

For momentum transfers Q? > m%{Q, the heavy quark mass effects can be neglected and heavy
quarks can be treated as massless partons. The dominant heavy quark excitation diagram is
depicted in figure 4.20 a). For momentum transfers Q* ~ m7,, however, mass effects suppress
the heavy excitation term and the O(«) diagrams (figure 4.20 b-d) become important. Heavy
quarks are then predominantly produced via photon-gluon fusion (Figure 4.20 b), a process
which has early been considered as an ideal test of non-Abelian gauge field theories [78, 79, 61].

44.1 Resultsfor F5¢inthe NLO DGLAP Fits

Within the Photon Gluon Fusion approximation the charm structure function F5¢ is given as the
convolution of the heavy quark coefficient function with the gluon density, i.e. Fi5¢(z, Q%,m?) =
e? - f, ® H,,. Since the gluon density is large and the charge of the charm quark is 2/3, F5¢ is
thus expected to be sizeable at low x.

Measurements by H1 [80] and ZEUS [81] have determined the contribution of F5¢ to about
20%, see figure 4.21. For this analysis it is important to note that the gluon density appears
here in a different way than in the DGLAP evolution equations. Therefore charm production
is an important process for checking the consistency of the determination of the gluon density
in the proton. This can be done either by reconstructing the gluon kinematics from the tagged
charmed meson, see figure 4.22, or by measuring F5¢ as the contribution of events with charmed
mesons to the total cross section. Figure 4.23 compares a recent measurement of F5¢ [80] with
the calculation within the fits to H1I+BCDMS data described below. One observes a trend in
the data to exceed the calculation, yet there is no discrepancy outside the single or twice the
experimental error.

The main model uncertainties of F° determined by the fits to HLI+BCDMS data are depicted in
4.24. The overall dominating uncertainty is the dependence of the charm mass which is taken
to be m,. = 1.4 GeV and varied by dm,. = 0.1 GeV.
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Figure 4.21: The ratio of FX¢ over F; as derived from inclusive D** production as a function of = for
different bins in Q2. The error bars refer to the statistical ( inner) and the total error (outer), respectively.
The shaded bands represent the predictions of the NLO DGLAP evolution obtained from this analysis
determined by the uncertainty of the charm quark mass of about + 100 MeV.



82 Chapter 4. Extraction of the Gluon Distribution
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Figure 4.22: Comparison of the gluon distribution from scaling violations at (¥ =20 GeV? with results
from open charm production in DIS and photoproduction [82, 83, 84]. These analyses were based on
1995 data.
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Figure 4.23: The charm contribution F5° to the proton structure function £5 [80]. The error bars refer to
the statistical (inner) and the total error (outer). The shaded inner (outer) band reflects the experimental
(total) uncertainty on F; as determined by the NLO DGLAP fits of this analysis. The total uncertainty is
dominated by the charm mass uncertainty, see figure 4.24.
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Figure 4.24: Relative errors on F3¢ by different model uncertainties. The sources of uncertainty are the
same as given for the gluon distribution uncertainty, see figure 4.14. The uncertainty is dominated by the
assumed 100 M