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Abstract

A measurement of the cross section for production of the charmed D�� meson in

di�ractive deep�inelastic e�p interactions is presented� The measurement was made

using data recorded by the H� experiment at HERA in ���� during collisions between

protons at an energy of 
�� GeV and positrons at ���� GeV� The cross section is

found to be signi�cantly larger than the prediction of a model in which the di�ractive

exchange is a quark�dominated object� and favours a model in which the momentum

of the exchange is carried largely by gluons�

The prospects for more detailed investigation of di�ractive deep�inelastic

charm production� using the detector upgrades and larger integrated luminosities

planned for the future� are discussed� A Monte Carlo simulation is used to explore

the possibility of measuring the di�ractive charm structure function FD���c
� �
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Chapter �

Introduction

Since the end of the ��
�s� deep�inelastic scattering of leptons on stationary

targets has been of great importance in elucidating the structure of the proton

and neutron� The point�like electron or muon serves as a �clean� probe� the �nal

state being easier to interpret than that resulting from a hadron�hadron collision�

Successive generations of accelerators have provided lepton beams at higher and

higher energies� allowing smaller and smaller scales to be probed� but the attainable

energy has been limited by the problem of energy loss through synchrotron radiation�

The ep collider HERA� which began running in ����� sidesteps this di�culty by using

a high�momentum beam of protons instead of a stationary target� The result is a

leap of an order of magnitude in centre�of�mass energy� increasing the accessible Q�

by approximately two orders of magnitude and pushing the lower limit in x down

by a similar factor�

One surprising feature of the HERA data is the existence of a signi�cant

fraction of deep�inelastic events in which there is a large angle between the proton

remnant and the nearest particle � a rapidity gap� These events are termed di�rac�

tive� and seem to be related to similar processes which occur in photoproduction

and have been observed in hadron�hadron interactions for some time� The presence

of a gap indicates that a colourless object is exchanged� so there is no string of

colour �ux linking the two parts of the hadronic �nal state� These exchanges are

successfully described in hadron�hadron interactions by Regge theory� according to

which the dominant e�ect at high energies is exchange of the pomeron � an object

with the quantum numbers of the vacuum� Despite the success of Regge theory� and

its application to total cross sections and hence to the rise of F� at small x� there

is no clear picture of how the pomeron arises from QCD� the fundamental theory
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of strong interactions� Di�ractive deep�inelastic scattering o�ers a way of clarifying

the situation by probing the partonic structure of the exchanged object�

It is interesting to look at the gluon content of the pomeron� especially as

several of the proposed QCD�based models of the pomeron suggest that its structure

is dominated by gluons� and there has already been some support from experimental

results for this idea� One process sensitive to the gluon content is the production

of heavy quarks� such as charm� This is investigated in this thesis by using the

decay chain D�� � D��� � �K������ to tag charm quarks� The limited statistics

available in the data from ���� allow only an accuracy of about ��� on the cross

section for D�� production� but this is su�cient to rule out a pomeron consisting

only of quarks�

In chapter �� an overview is given of the physics processes occurring in

ep collisions at HERA� and of the ways in which proton structure is investigated�

Chapter 	 discusses di�ractive interactions in more detail� Chapter � describes the

H� detector� concentrating on the parts that are particularly relevant to this analysis�

The selection of di�ractive deep�inelastic events is described in chapter �� and the

measurement of the cross section for the production of D�� mesons in such events is

described in chapter 
� Chapter � discusses the prospects for future measurements

of di�ractive deep�inelastic charm production using the large increases in luminosity

expected in the next few years of HERA running as well as the ongoing upgrades of

the H� detector�
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Chapter �

Electron�Proton Scattering at

HERA

The chief purpose of the HERA accelerator is the study of the structure of

the proton� This chapter gives a review of the physics of proton structure and lepton�

nucleon collisions� The discussion of di�ractive interactions is left to chapter 	� For a

more in�depth treatment of the physics discussed in this chapter� see for example ����

Various topics speci�c to HERA are also covered in ����

The idea that hadrons � such as the proton � are composite rather than

elementary particles was originally proposed as a way of making sense of the plethora

of observed hadron species in terms of a simpler substructure� The quark model� in

which hadrons are composed of spin��� constituents �quarks� was proposed in ��
�

by Gell�Mann �	� and� independently� by Zweig� This model developed out of the

approximate SU�	� symmetry �the �eightfold way�� describing the strong interactions

of the baryons and mesons known at the time�

In Gell�Mann�s ��
� model� there were three varieties ��avours� of quark

� up� down and strange �u� d and s�� However� the existence of a fourth �avour �

charm �c� � was predicted by Glashow� Iliopoulos and Maiani� and con�rmed by the

discovery in ���� of the � and �� mesons� The unexpected discovery in ���� of a

�fth � bottom �b� � quark led in turn to the expectation of a sixth � top �t�� the

existence of which was con�rmed in ���� by the CDF and D� collaborations at the

Tevatron p�p collider�

Although quarks were at �rst thought of as �purely mathematical enti�

ties� �	�� experiments on inelastic lepton�nucleon scattering from ��

 onwards pro�
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vided evidence for the existence of point�like physical objects within the proton and

neutron� HERA is the descendant of those early experiments and provides a much

more detailed view of the structure of the proton�

��� Deep�Inelastic Scattering

����� Proton Structure� Structure Functions

The structure of the proton �and neutron� can be investigated using lepton�

nucleon scattering� The leptons are point�like �at least up to the resolution of current

measurements� and provide a useful probe of the structure of an extended object

such as the proton� the �nal state being simpler to interpret than in a proton�proton

collision� where both participating particles are extended objects�

The electron� interacts with the proton or one of the constituents of the

proton by exchange of an electroweak vector boson � a photon or Z� in the neutral�

current process ep� eX� or a W� in the charged�current process ep� �X � Fig�

ure ����a� is a schematic diagram of an ep collision� The inclusive neutral� or charged�

current process can be characterized by three kinematic quantities de�ned as follows�

s � �k � p�� �����

Q� � �q� �����

x �
Q�

�p � q ���	�

These have the following interpretations�

� s is the square of the centre�of�mass energy of the ep system�

� Q� is the virtuality of the exchanged boson� and determines the length scale

� � ��pQ� at which the proton is probed�

� x is a dimensionless variable� its interpretation in the quark�parton model will

be mentioned later�

Other quantities also prove useful� such as

W � � �p� q�� �����

�In this thesis� references to the beam lepton as electrons apply also to positrons� except where
otherwise stated�
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� �
q � p
mp

�����

y �
q � p
k � p ���
�

These variables are interpreted as follows�

� W is the centre�of�mass energy of the boson�proton system�

� � is the energy of the boson in the rest frame of the proton�

� y is the fraction of the electron�s energy carried by the boson in the rest frame

of the proton�

However� only three variables are independent�

The exchange of a vector boson of mass M introduces a propagator of the

form
�

Q� �M�
�����

into the scattering amplitude� Thus the cross section for ep scattering is dominated

by low�Q� photon exchange� The heavier Z� and W� only make a signi�cant con�

tribution when Q� is around M�
W or larger� and charged�current interactions form

only a small part of the total cross section� The rest of this chapter will concen�

trate largely on neutral�current processes� since detailed studies of charged�current

physics will require larger integrated luminosities than have so far been achieved�

When the virtuality Q� of the exchanged boson is large compared to m�
p�

the proton is probed at a small scale� the boson interacts with one of the constituents

of the proton rather than the whole thing� This is deep�inelastic scattering �DIS��

Using the single�photon approximation� in which contributions from multi�

ple photon exchange are neglected� the cross section for the inclusive neutral�current

DIS process �summed over all �nal states� may be expressed as

d�	ep�eX

dxdQ�
�
��
�em
xQ�

h
xy�F��x�Q

�� � �� � y�F��x�Q
��
i

���
�

where F� and F� are known as the structure functions of the proton� For spin���
partons� the contribution from the exchange of longitudinally polarized photons is

zero� and F� and F� are connected by the Callan�Gross relation

�xF� � F�� �����

which is supported fairly well by the data� Because the structure functions describe

the inclusive process� they can be measured even if only the scattered lepton is



Chapter �� Electron�Proton Scattering at HERA ��

detected� and not the hadronic �nal state� Although structure functions say noth�

ing about the nature of the �nal state� they nevertheless provide a lot of useful

information about the structure of the nucleons�

Experiments using lepton beams to measure the nucleon structure func�

tions in DIS were �rst carried out in ��

 at SLAC ��� �� 
� and DESY ���� us�

ing beams of electrons� More recently� a series of experiments � EMC �
� ���

BCDMS ���� ��� and NMC ���� � have used a beam of muons at up to �
� GeV

from the CERN SPS� and a �
� GeV muon beam has been used in the E

� exper�

iment at Fermilab ��	�� In each case� a �xed target of hydrogen� deuterium or other

material has been used� A much larger centre�of�mass energy is made possible by a

colliding�beam experiment� and HERA has been built with the measurement of the

proton structure function F� over an extended range in x and Q� as one of its main

objects�

k’k

p

−

p

e

γq

X

0, Z,  W +

+ +e, ν
k’

p

ke

+

p

γq 0, Z,  W

e, ν−+ +

�a� �b�

Figure ���� A schematic diagram of a deep�inelastic ep interaction �a� in general

and �b� in the quark�parton model� The labelled arrows indicate the four�momenta

of the particles�

The Quark�Parton Model

It is found that the structure function F� is fairly insensitive to the scale

Q� ����� indicating that the photon is scattering from point�like objects� This scale

independence is known as Bjorken scaling ����� The experimental support for the

Callan�Gross relation ����� implies that these partons have a spin of �
�
� In the

quark�parton model �QPM� ��
� ���� proposed by Feynman� they are identi�ed with

the quarks postulated by Gell�Mann and Zweig� When probed by a highly virtual

photon� the quarks behave like free objects� and DIS may be treated as the elastic

scattering of electrons o� quarks� In fact� quarks are never observed in their free
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state� but only as bound states of several quarks� antiquarks or both �qqq� �q�q�q� q�q��

i�e� hadrons� However� the hadronization process� whereby the struck quark and

the proton remnant in a DIS event form the observed hadronic �nal state� takes

place over a longer time and may be considered as independent of the underlying

eq interaction� According to this model� as long as the mass of the quark can be

neglected� the Bjorken variable x may be interpreted as the fraction of the proton�s

momentum carried by the struck quark in a frame in which the proton�s momentum

is in�nite�

The quark�parton model relates the nucleon structure function F� straight�

forwardly to the momentum distribution of the nucleon�s constituent quarks�

F��x� �
X
q

e�qxfq�x� ������

where the sum is over the quark �avours� eq is the charge of the quark �avour q

and fq�x�dx is the expected number of quarks of �avour q carrying a fraction of

the proton�s momentum between x and x � dx� Because the quarks are assumed

to be point�like� ������ has no dependence on the scale Q�� Using ������ and the

experimental results for the structure functions F p
� and F

n
� of the proton and neutron�

and assuming the quark�model uud and udd structure of the proton and neutron

respectively� the average momentum fraction x carried by each quark �avour can be

calculated� It is found that the quarks only account for a total of about half of the

momentum of the proton �see e�g� �
���

X
q

hxi �X
q

Z �

�
xfq�x�dx �

�

�

Z �

�
�F p

� �x� � F n
� �x��dx � ���� ������

Quantum Chromodynamics

If the parton model is to make sense� the rest of the momentum of the

proton must be carried by neutral constituents� which do not couple to the photon

and are therefore invisible to DIS� This puzzle was solved in the ����s by the in�

troduction of quantum chromodynamics �QCD�� the theory of the strong interaction

between quarks� The strong force is carried by gluons � neutral vector bosons that

carry the �missing� half of the momentum of the proton�

Another problem with the simple quark�parton model is the fact that the

scale�invariance of F� is only approximate� at small values of x� F� increases with

Q�� while at large x it decreases� This too is explained by QCD� As Q� increases�

the proton is probed at a smaller scale� and the radiation of gluons by quarks be�
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comes important� as well as the splitting of gluons into quark�antiquark and gluon�

gluon pairs �see �gure ����� This means that at large Q� a large population of

low�momentum �small�x� partons is seen� while the large�x valence quarks lose mo�

mentum by radiating gluons� This shift towards small x explains why F� falls at

large x and grows at small x� The QCD�based DGLAP equations ��
� ��� ��� provide

a successful description of the way F� evolves with increasing Q��

g

q
q

��

q

g

_

q

��
g

g

g

��

�a� �b� �c�

Figure ���� Some processes involved in the evolution of partons to small x in QCD�

The fact that gluons themselves carry colour �the charge associated with

the strong force� and can thus exchange further gluons with one another� leads to

running of the strong coupling parameter 
s in the opposite direction to that of

the electromagnetic coupling 
em� At large momentum transfers �short distances��


s is small and the interaction is relatively weak� This has the consequence that

quarks probed with a high�Q� photon behave as if they are not in�uenced by the

other partons in the proton� This behaviour� asymptotic freedom� is responsible for

the success of the simple quark�parton model� At small momentum transfers �long

distances�� 
s is large� In fact it is so large that the energy required to separate a

quark from the proton remnant is larger than that required to produce a new quark�

antiquark pair� Thus the space between the struck quark and the proton remnant

is populated with hadrons� but an individual� free quark is never produced� This

con�nement is the reason that only colourless states are ever observed�

Where the relevant momentum scale is large enough �larger than about

� GeV�� that 
s is much less than unity� perturbation theory may be used to predict

cross sections from QCD� When no such �hard scale� is present� perturbation theory

is not applicable� and there is no way of making precise predictions� Instead� various

phenomenological methods are used�

The simple quark�parton�model diagram in �gure ����b� is supplemented

in QCD by higher�order processes such as boson�gluon fusion �BGF� and QCD
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Compton radiation �QCDC�� as illustrated in �gure ��	� In these processes� the

system produced by the photon�parton interaction cannot be treated as massless�

and the Bjorken variable x is no longer simply the momentum fraction carried by

the struck quark�
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Figure ��	� Higher�order QCD contributions to ep scattering� �a� Boson�Gluon

Fusion �BGF�� �b� and �c� QCD Compton �QCDC��

Structure�Function Measurements at HERA

The large centre�of�mass energy in ep collisions at HERA extends the range

of Q� accessible for structure�function measurements up to about � � ��� GeV� �see

�gure ����� Precise measurements at such high values of Q� will have to wait for a

much larger integrated luminosity than has so far been obtained� but there is already

some evidence for a signi�cant excess of events over the prediction of the Standard

Model at very high Q�� The accessible range also extends to much smaller values of

x� down to below ���	� than were reached by previous experiments�

The steep rise of F� with decreasing x has been found to continue down

to the smallest values of x that have been reached� This is in agreement with the

prediction of DGLAP evolution� but it is expected that at some stage this rapid

rise will slow down due to �shadowing�� where e�ects such as gluon recombination

gg � g become signi�cant� The value of x where this occurs depends on the model

used� it may be very low if small�x partons are distributed uniformly within the
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target experiments� where the centre�of�mass energy was an order of magnitude

smaller� Contours of constant electron scattering angle ��e �relative to the proton

beam direction� are shown�
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proton� but within the range accessible at HERA if these partons are concentrated

in small regions ��hot spots�� around the valence quarks� In practice� it is di�cult

to tell whether hot�spot e�ects are signi�cant from the behaviour of F� alone� since

predictions at small x are based on evolution from measurements at larger x and

contain signi�cant uncertainties�

The gluon content of the proton can be measured using the scaling vio�

lations observed in F�� At small x� F� is dominated by the contribution from sea

quarks� created by pair production from gluons� The increase of F� with Q� is there�

fore dependent on the gluon distribution xg�x�� A next�to�leading�order QCD �t

has been carried out ����� allowing the parameters describing the valence and sea

quark distributions as well as the gluon distribution to vary�

In charged�current interactions� where the exchanged boson is a W�� the

scattered lepton in the �nal state is a neutrino and is not detected� The signature

of such events is �missing� transverse momentum� some momentum is carried away

by the neutrino� leaving the observed �nal state with an apparently unbalanced

transverse momentum� The charged�current cross section and its dependence on Q�

have been measured and used to obtain a value for the W mass �����

����� The Hadronic Final State

Although structure functions can say a lot about the structure of the pro�

ton and about QCD using only the inclusive DIS cross section� this approach throws

away a lot of information which is contained in the hadronic �nal state� At HERA�

it is possible to measure almost the entire hadronic �nal state� enabling useful mea�

surements of energy �ow� jet production and charm production� along with other

processes�

Jet Production

According to the quark�parton model� the struck quark fragments into a jet

of hadrons with a transverse momentum p� balancing that of the scattered electron�

while the proton remnant� with no signi�cant p�� forms a separate jet� This is known

as a ������jet event �one jet plus the proton remnant�� Higher�order QCD processes

result in some events with several high�momentum partons and hence several jets in

the �nal state� BGF and QCDC processes �see �gure ��	�� which are �rst order in


s� can result in �� � ���jet events �two jets plus the proton remnant�� The ratio of
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numbers of �� � ��� and �� � ���jet events is therefore sensitive to the coupling 
s�

The existence of multi�jet events and the agreement of Monte Carlo predictions with

the observed jet distributions and pro�les provide support for the QCD model� The

ratio of numbers of events with di�erent numbers of jets enables 
s to be measured

and compared with the value found in e�e� scattering�

The rate of BGF events is proportional to the density of gluons in the

proton� and a �t using next�to�leading�order QCD has been used to extract the

gluon distribution xg�x� from the observed ������jet events� This method can be

used at larger values of x than are reached by the �t to F��

The behaviour of the parton densities at small values of x can be investi�

gated ��	� using events in which a large fraction of the proton�s momentum goes into

a jet in the forward direction� while the momentum carried by the struck parton is

very small� Such an event occurs when the proton emits a gluon with a compara�

tively large momentum fraction xj� which then radiates a gluon ladder� culminating

in a quark at small x entering the hard subprocess� This process is sensitive to the

evolution of gluons from large to small x� without depending on the less well known

parton densities in the proton at small x� To reduce the e�ect of �ordinary� DGLAP

gluon radiation� and thus make the measurement sensitive to new e�ects such as

shadowing and hot spots� the transverse momentum of the forward jet is required

to be close to Q��

Energy Flow

In the quark�parton model� the struck quark and the proton remnant frag�

ment independently� the current �struck�quark� jet has the same direction and mo�

mentum as the quark it comes from� The expected result in the detector is therefore

two patches of energy deposition separated by a gap� This situation is modi�ed

in QCD� where the two jets are not completely independent� A string of colour�

�eld �ux joins the struck quark and the proton remnant� this string fragments into

hadrons as it is stretched by the outgoing partons� �lling the gap between the jets

with energy �ow�

The direction of the struck quark can be reconstructed using the direction

and energy of the scattered electron� The amount of energy deposition can then

be plotted against direction relative to the struck quark� as shown in ����� The

resulting histogram shows two peaks� corresponding to the two jets� but the current
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jet is shifted by about ��� units of pseudorapidity� towards the direction of the

proton remnant� and there is a substantial energy �ow covering the interval between

the current jet and the proton remnant� as expected from QCD�

Charm Production

The large mass of the charm quark compared to the lighter �u�d�s� quarks

makes a di�erence to the way it is produced in ep interactions� Because the proton

contains no charm quarks in its valence structure� the largest contribution to charm

production comes from boson�gluon fusion� Thus the rate of production of charm

is sensitive to the density of gluons in the proton� and provides a measurement of

xg�x� independent of that from the inclusive structure function F�� The measured

charm structure function F c
� ���� is close to that expected from the �t to F�� but

slightly larger at small Q� ��� GeV���

Charm events� in which a c�c pair is produced� may be divided into open�

charm and hidden�charm events� In production of open charm� there is a large

momentum di�erence between the quark and antiquark� which fragment indepen�

dently � typically into a D and a �D meson� If the quark and antiquark are close

together in momentum space� they may form a bound state � a J�� or one of its

excited states � which has a net charm of zero� so the charm is �hidden�� The cross

section for elastic production of J�� mesons in leading�order perturbative QCD is

proportional to the square of the gluon density� This provides another way of mea�

suring xg�x�� with the hard scale necessary for perturbative QCD to be applied being

provided by the mass of the J��� Both in DIS and in photoproduction �Q� � ���

this cross section rises steeply with W � consistent with the large gluon density at

small x� This result is inconsistent with the expectation of a model assuming a soft

pomeron �see chapter 	��

��� Photoproduction

Since the di�erential cross section for photon�mediated ep interactions con�

tains a factor ��Q� due to the photon propagator� the total cross section for ep

scattering is dominated by interactions at very low Q�� The Q� � � limit of DIS�

where the exchanged photon is �quasi�real� �nearly on its mass shell� is called pho�

�The pseudorapidity � is de�ned as � ln�tan �

�
�� where � is the polar angle with respect to the

direction of the proton beam�



Chapter �� Electron�Proton Scattering at HERA �	

toproduction� It is possible to treat this process as the emission of a photon by the

electron followed by the independent interaction of the photon with the proton� The

�ux of quasi�real photons from the electron can be calculated using the Weizs�acker�

Williams approximation ��
� ��� and used to extract the 
p cross section from that

for the measured ep process�

A real photon can interact in a direct process� in which it behaves as a

point�like QED photon as in DIS� but it can also �uctuate into a hadronic state by

the process 
 � q�q before interacting with the proton� in which case it is said to

be resolved �see �gure ����� This leads to a large class of events which are in many

ways similar to hadron�hadron collisions� The largest contribution to the hadronic

part of the photon wave function comes from low�mass vector mesons with the same

quantum numbers as the photon � the �� � and �� The vector�meson dominance

model �VDM� ��
� treats the photon as a superposition of the bare photon with

these three mesons contributing with factors depending on their mass and on their

e�ective coupling to the photon� The generalized VDM ���� additionally takes into

account the heavier mesons ���� J���  etc��� and the extended VDM �	�� allows for

a continuum of unbound states as well�
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Figure ���� A leading order diagram for resolved photoproduction�

Photoproduction can also be divided into hard and soft processes� Although

Q� is small� a hard scale is provided in some events by a large transverse momentum

between outgoing partons �showing up as jets after hadronization�� allowing predic�

tions to be made using perturbative QCD� The leading�order diagrams ��gure ��	�

are BGF �which is sensitive to the gluon content of the proton� and QCDC� There
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is no completely unambiguous distinction between next�to�leading�order direct pro�

cesses and leading�order resolved ones� but the hard subprocess provides a convenient

dividing point� Once this distinction has been drawn� resolved processes can be used

to measure the structure function of the photon� which is de�ned in the same way

as the structure function of a hadron� The photon structure function has been mea�

sured for real photons �	�� and preliminary results have been obtained by ZEUS for

photons with small but measurable virtuality ���� GeV� � Q� � ��
 GeV�� �	���

In the majority of photoproduction events� there is no hard scale� this

is soft photoproduction� where perturbative QCD cannot be applied� The only

predictions are those supplied by phenomenological models such as Regge theory�

which is discussed in chapter 	� These soft processes are interesting both in their

own right and because of their in�uence on measurements of the theoretically more

tractable hard processes� Not only do soft interactions form a large background

to deep�inelastic events� but they are important in multiple interactions and in

hadronization� making the interpretation of hard processes more complicated�
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Chapter �

Di�ractive Scattering and the

Pomeron

Events with a large rapidity gap � a region free of hadrons between the

proton remnant and the current region � have been observed both in photoproduc�

tion �		� 	�� 	�� 	
� and in DIS �	�� 	
� at HERA� Such events are explained as

being due to the exchange of a colourless object� so that there is no string of colour

�eld connecting the two parts of the hadronic �nal state and �lling the gap by

hadronization� Similar di�ractive events have been observed for decades in hadron�

hadron collisions� but there is no agreed mechanism for them in terms of QCD�

They are� however� well described by Regge theory � the phenomenological model of

colourless exchanges between hadrons� which predates QCD� DIS at HERA o�ers

a new way of probing the partonic structure of the di�ractive exchange and thus

distinguishing between the various models that have been proposed�

This chapter begins with a discussion of hadron�hadron interactions and

their description in terms of Regge theory� Then the connection with lepton�hadron

interactions is explored� along with the ways in which di�ractive interactions are

investigated at HERA� and some of the models which have been suggested to make

sense of the results�

Regge theory and its application to hadronic interactions are described in

more detail in �	�� ����
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��� Hadron�Hadron Interactions

Cross sections for hadron�hadron scattering contain a large contribution

from elastic processes with a small four�momentum transfer� These are soft inter�

actions� the relevant value of the coupling 
s is too large for perturbative QCD to

be used� The best description of such processes is still provided by pre�QCD phe�

nomenological models based on general considerations such as crossing symmetry

and the analyticity of scattering amplitudes�

At high energies� scattering amplitudes are dominated by exchange terms�

which vary smoothly with energy� free of the resonance structure which dominates at

lower energies� The objects exchanged in elastic interactions �and in all long�range

interactions� due to colour con�nement� are colour singlets� Crossing symmetry is

used to relate the exchange of these states in the t�channel reaction to the forma�

tion of the same state as a resonance in the corresponding s�channel reaction �see

�gure 	���� The scattering amplitude for the t�channel process is obtained by ana�

lytically continuing the amplitude for the s�channel reaction into a di�erent region

of s and t�

A C

DB
_

_

D

A

B

C�a� �b�

Figure 	��� An illustration of the relationship between �a� the t�channel reaction

AB � CD and �b� the corresponding s�channel reaction A �C � �BD�

The simplest approach is to consider only the exchange of the lightest

meson consistent with conservation of the relevant quantum numbers� this is the

one�particle exchange �OPE� model� The exchange brings a propagator of the form

�

m� � t
�	���

into the scattering amplitude� wherem is the on�shell mass of the exchanged particle

and t is the square of the four�momentum transfer� Since t is negative� the largest

contribution comes from the lightest possible exchanged particle� Thus the OPE

model provides a reasonable description in cases where exchange of one particle
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dominates� In ��	� Yukawa used this model� in conjunction with measurements of

the range of the force between nucleons� to predict the existence of the �� meson�

However� for a more accurate and general description of cross sections for hadronic

scattering� it is necessary to take into account all contributing exchanges�

Experiments on the scattering of pion beams by hydrogen targets revealed

patterns in the resonances produced� When the spin of each resonance �or bound

state� is plotted against the square of its mass� resonances with identical quantum

numbers �other than spin� are found to lie approximately on straight lines� called

Regge trajectories �see �gure 	���� This behaviour can be rationalized for mesons

using a simple QCD�inspired model in which a meson consists of a quark and an

antiquark connected by a string of gluons with energy proportional to its length� In

such a system� the angular momentum of the meson is proportional to the square of

the total energy� In general� each trajectory contains particles of either odd or even

spin� but the � and f� trajectories� shown in �gure 	��� are degenerate� and lie on a

single line�
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Figure 	��� The degenerate Regge trajectories containing the �� and f��

Regge theory ���� is used to add up the contributions from all mesons on

a trajectory� The straight line 
�m�� relating the spin 
 of each particle to its mass
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m is relabelled


�t� � 
� � 
�t �	���

where t� the four�momentum squared� is equal to the mass of a meson where t is

positive and 
 is an integer� and to the squared four�momentum transfer in an

exchange where t is negative� The contributions are added up using a method

in which angular momentum is treated as a complex quantity ����� resulting in a

scattering amplitude

A�s� t� � f�t�
�
s

s�

���t�
�	�	�

and a di�erential cross section for the two�body process AB � CD

d	

dt
� F �t�

�
s

s�

����t���
� �	���

The total cross section for AB interactions is related by the optical theorem to the

imaginary part of the forward �t � �� amplitude for elastic AB scattering� Using

the Regge scattering amplitude� it is found to be

	tot�AB� �
�
s

s�

�����
� �	���

All known meson trajectories have intercepts 
� less than ��
� If these

mesons were the only exchanged objects responsible for the behaviour of hadronic

scattering� the elastic and total cross sections would decrease with increasing centre�

of�mass energy
p
s� This is indeed the case at low energy �

p
s � �� GeV�� but at high

energy a slow increase with s is seen� This corresponds to exchange of a trajectory

with an intercept 
� greater than one� matching none of the known mesons� and in

the Regge picture is identi�ed with the exchange of objects carrying even spin and

the quantum numbers of the vacuum� This is the vacuum or Pomeranchuk trajectory�

also known as the pomeron �IP �� Scattering processes involving the exchange of the

quantum numbers of the vacuum are termed di�ractive� because the shape of the

di�erential cross section plotted against the angle of the scattered proton resembles

the di�raction pattern seen when a coherent beam of light is obstructed by a small

obstacle� Di�ractive processes include not only elastic scattering� but also processes

in which one or both of the incoming hadrons are excited into a higher�mass state

and break up� This is di�ractive dissociation�

The positive slope 
� of the Regge trajectories means that the dependence

of the elastic cross section on t becomes steeper as the centre�of�mass energy of

the reaction is increased� In other words� the forward di�ractive peak becomes

narrower� this phenomenon is called shrinkage and has been observed in hadron�

hadron interactions �����
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As the pomeron has the quantum numbers of the vacuum� it is expected

to couple equally to any particle and to its antiparticle� Thus the ratio of the elastic

pp and �pp cross sections should be equal to unity at high enough energies� where

pomeron exchange dominates� and a similar result holds for the total cross sections�

This result is given by the Pomeranchuk theorem ��	� and is borne out by the data�

Donnachie and Landsho� ���� have �tted total cross sections for a variety

of hadronic interactions using the sum of a meson contribution �which dominates at

low energy� and a pomeron contribution �which dominates at high energy�� assuming

a universal pomeron� They �nd good agreement with the experimental results� and

obtain a value of 
� � ���
�
 for the pomeron intercept and 
� � ��� for the meson
intercept� They also note that the cross sections for �p and pp scattering are in

a ratio of about ��	� hinting that the pomeron may obey an additive quark rule�

coupling to individual valence quarks rather than to the hadron as a whole�

Support for the idea of a direct coupling of the pomeron to valence quarks

also comes from studies of di�ractive proton dissociation at the CERN Intersecting

Storage Rings �ISR� ���� �
�� For example� the reaction pp� �"��K��p� where

the "��K� system emerges along the beam direction with almost the energy of the

incoming proton� can be interpreted as the dissociation of one of the protons as it

collides with a pomeron emitted by the other proton� pIP � "��K� ����� A clear

pattern is seen in the �nal state when it is viewed in the zero�momentum frame

of the dissociative system� The "�� which contains two of the valence quarks of

the incoming proton� is peaked in the forward direction� parallel to the direction

of the proton� The K�� which contains one of the valence quarks of the incoming

proton� is peaked in the backward direction� parallel to the incoming pomeron� The

�� with its valence�quark content coming entirely from hadronization� has only a

little momentum and is not peaked in either direction� This behaviour is attributed

to an interaction in which the pomeron couples to a single u valence quark in the

proton� ejecting it and leaving behind a spectator quark pair�

It is still not clear what the pomeron is in terms of QCD� despite its suc�

cess in describing hadron�hadron scattering� The simplest relevant QCD process is

exchange of a pair of gluons� and it has been suggested the Pomeranchuk trajec�

tory is a line linking glueball states� A resonance with the right quantum numbers

�JPC � ����� showing evidence of a signi�cant gluon content� has been seen at a

mass of ���� MeV by the WA�� and WA��� collaborations ���� �
��

Ingelman and Schlein ����� treating the pomeron as an object with a par�

tonic structure� like a hadron� predicted the occurrence of hard scattering between a
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gluon from the pomeron emitted by one hadron and a parton from the other hadron�

resulting in an event with two high�momentum jets� They recommended looking at

this process as a way of gaining insight into the structure of the pomeron� The

existence of these events was con�rmed by UA
 ���� ����

��� Photoproduction

As explained in section ���� the real photon behaves much like a hadron

in its interactions with the proton� Cross sections for photon�hadron interactions

behave much like those for hadron�hadron interactions� but are smaller by a factor

of order 
em� Using the vector�meson dominance model to describe the coupling

of the QED photon to hadronic states� Regge theory can therefore be applied to

photoproduction�

The exclusive �quasi�elastic� photoproduction of vector mesons� 
p� V p�

is closely related to the truly elastic process V p� V p and shows the same energy

dependence� The energy dependence of the cross sections measured for exclusive

photoproduction of light vector mesons ��� �� �� is compatible with that expected

from the Donnachie�Landsho� pomeron intercept� However� elastic photoproduc�

tion of the heavier J�� meson is found to show a signi�cantly steeper energy depen�

dence ���� �	�� corresponding to a larger pomeron intercept� This may be related to

the harder scale introduced by the mass of the charm quark� which makes pertur�

bative e�ects more signi�cant�

The total photoproduction cross section 	�
p� has been measured �		� ���

and these results are also compatible with the energy dependence expected from the

Donnachie�Landsho� pomeron intercept �����

A signi�cant proportion of the photoproduction cross section consists of

di�ractive dissociation �see �gure 	�	�� in which the hadronic �nal state consists of

two systems � one arising from the photon and the other from the proton � not

connected by any colour string� Such events are distinguished in the detector by a

rapidity gap � an angular region free of energy deposits between the proton remnant

or elastically scattered proton and the rest of the hadronic �nal state � and have

been studied at H� �	
��

Hard processes in which the �nal state includes two back�to�back jets have

been observed in di�ractive photoproduction �	�� 	��� supporting the idea that the
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Figure 	�	� A schematic diagram of the process leading to formation of a rapidity

gap�

pomeron can be interpreted as a partonic system�

��� Deep�Inelastic Scattering

Deep�inelastic events with a rapidity gap in the forward direction have been

observed by both ZEUS �	�� and H� �	
� �see �gure 	���� These indicate a colour�

singlet exchange between the virtual photon and the proton� which is scattered

elastically or dissociates into a low�mass state and is lost in the beam pipe� It

is natural to assume that the mechanism is related to that responsible for similar

events in photoproduction and is di�ractive in nature�

The scattered proton� which has a very small transverse momentum

p� �
p
t� could not be detected using the H� detector in its ���� con�guration�

Instead� the presence of a rapidity gap extending up to the beam pipe is used as a

signature of di�ractive exchange� This is quanti�ed using the variable �max� de�ned

as the pseudorapidity

� � � ln
�
tan

�

�

�
�	�
�

of the most forward energy deposit of more than ��� MeV� A small �max indicates

a large rapidity gap� The number of events with large rapidity gaps is much greater

than predicted by a �standard DIS� Monte Carlo generator� which produces large
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�a�

�b�

Figure 	��� �a� A �standard� deep�inelastic event with no rapidity gap� as seen in

the H� detector� �b� A deep�inelastic event with a rapidity gap� as seen in the H�

detector�
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rapidity gaps only as rare statistical �uctuations in the hadronization process �see

�gure 	����
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Figure 	��� Distribution of measured �max for DIS events� compared with the ex�

pectation of a �standard DIS� model �LEPTO�� Taken from �	
��

The clear separation of the hadronic �nal state into two systems X and Y �

as labelled in �gure 	�	� allows three further kinematic quantities to be de�ned� in

addition to those used in standard DIS �section �������

t � �p� p��� �	���

� �
Q�

Q� �M�
X

�	�
�

xIP �
Q� �M�

X

Q� �W �
� �	���

The Mandelstam variable t is the squared four�momentum carried by the colour�

singlet exchange �the pomeron in the Regge picture�� The variables � and xIP are

analogous to x and y� Like x for the proton� � is the fraction of the momentum of

the pomeron going into the hard subprocess �interacting with the virtual photon��

In the limit t� �� xIP is the fraction of the momentum of the proton carried away

by the pomeron�
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The contribution of di�ractive events with an elastically scattered proton

can be quanti�ed by de�ning a di�ractive structure function F
D���
� � analogous to the

inclusive proton structure function F��

d�	ep�epX

dxdQ�dxIP dt
�
��
�

xQ�

�
�� y �

y�

��� �RD����x�Q�� xIP � t��

�
F

D���
� �x�Q�� xIP � t��

�	����

In practice� t cannot be measured since the scattered proton is not detected� so the

measured cross section is actually an integral over t up to jtj � � GeV�� This limit is

determined by the requirement that the proton remnant is not detected� The ratio

of the cross sections for di�ractive processes due to longitudinally and transversely

polarized photons� RD���� is not well measured and its value makes only a small

di�erence to FD���
� � so it is set to zero for the measurement made by H� ���� �
� of

the structure function FD���
� � de�ned by

d�	ep�epX

dxdQ�dxIP
�
��
�

xQ�

�
�� y �

y�

�

�
F

D���
� �x�Q�� xIP �� �	����

Some models� such as that of Ingelman and Schlein ����� feature a factor�

izable di�ractive structure function

F
D���
� � F�

IP ���Q�� � fIP�p�xIP � �	����

where F�
IP is the structure function of the pomeron and the �ux factor fIP�p describes

the pomeron content of the proton� This makes sense in a picture where the pomeron

is a hadronic object that is emitted by the proton and then probed by the virtual

photon in a hard interaction� Although initial results ���� were consistent with

factorization� a more recent study using higher statistics ��
� shows that factorization

in this simple form does not hold� This may simply be because there is a contribution

at larger xIP from meson exchange� the results are consistent with the sum of two

individually factorizable components � one from a meson trajectory and one from

pomeron exchange� However� it may be that even the purely di�ractive �pomeron�

exchange� component does not factorize due� for example� to multiple pomeron

exchange� or to a failure of the picture of the pomeron as a particle�like object�

The nearest practically measurable quantity to the pomeron structure func�

tion F IP
� is the integral of the di�ractive structure function FD���

� over the available

range of xIP �
#FD
� ���Q

�� �
Z xIPH

xIPL

F
D���
� ��� xIP � Q

��dxIP � �	��	�

The results obtained by H� ��
� are shown in �gure 	�
� Even if factorization does

not hold to high precision� #FD
� provides a measure of the �average� deep�inelastic
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structure of the di�ractive exchange� If FD���
� is treated as the sum of two factorizable

components� #FD
� may be extracted from the separated pomeron component� or by

using the total FD���
� in a region where xIP is small enough for the meson component

to be small� The two methods give compatible results� The �pomeron structure

function� #FD
� shows a logarithmic rise with Q�� like the proton structure function

F�� consistent with a partonic structure for the pomeron� The fact that this rise with

Q� is present up to fairly large values of � suggests a structure of valence gluons�

hadrons� with their valence quark structure� show a decrease with Q� at high x� due

to the valence quarks losing momentum by radiating gluons�

If the pomeron is treated as a hadronic object� its quark and gluon content

can be obtained using a QCD�based �t to the di�ractive structure function #FD
� ��
��

The result is a structure in which 
�� of the momentum of the pomeron is carried

by gluons� which are strongly peaked near � � � at Q� � ��� GeV�� the starting

scale used for the DGLAP evolution� In other words� at this scale the momentum of

the pomeron is often carried almost entirely by a single gluon� At higher Q�� QCD

evolution spreads the distribution more evenly over the available range in �� The �

distributions at two di�erent values of Q� are shown in �gure 	���

The exclusive production of vector mesons has also been studied in DIS ����

�
�� Because the photon involved is now a long way o� its mass shell� the vector�

meson dominance model is no longer applicable� but the concept of pomeron ex�

change can still be used� The cross section for J�� production grows signi�cantly

faster than the soft pomeron prediction� and is consistent with the harder behaviour

expected from a perturbative QCD calculation� The situation is less clear in the case

of the lighter � meson� ZEUS ���� �nd results compatible with hard� perturbative

behaviour� while H� ��
� �nd a rate of increase intermediate between the soft and

hard predictions� suggesting that this is a region where soft pomeron behaviour is

no longer seen� but perturbative QCD is not yet applicable�

The total cross section for scattering of virtual photons on protons at high

centre�of�mass energy W is another interesting quantity to compare with pomeron�

based and perturbative predictions� The high�W region corresponds to small x in

the more usual way of expressing total DIS cross sections� the structure function

F��x�Q��� If the 
�p cross section follows a power law W ����� then the struc�

ture function should follow a power law F� 	 x���� as x� �� The observed be�

haviour ����� with 
� increasing from � ��� to � ��� as Q� increases from ��� GeV�

to 
�� GeV�� is incompatible with the soft Donnachie�Landsho� pomeron� As in

the case of exclusive production of vector mesons in DIS and exclusive photoproduc�
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Preliminary H1 Data
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Figure 	�
� The structure function #FD
� ���Q

�� as a function of Q� for di�erent values

of � �left� and as a function of � for di�erent values of Q� �right�� Taken from ��
��
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Figure 	��� Gluon and quark distributions in the pomeron� extracted from a QCD�

based �t to FD���
� � �a� at low Q�� showing the large contribution from gluons near

� � �� �b� at higher Q�� after evolution to smaller �� Taken from ��
��

tion of J�� mesons� the steeper energy dependence may be related to perturbative

e�ects�

��� Models of Hard Di�raction

����� Factorizable Models

A lot of work on the phenomenology of di�ractive interactions is based

on the idea of factorization� meaning that the cross section for a hard di�ractive

process �such as jet production in hadron�hadron collisions or DIS at HERA� is

treated as the product of a non�perturbative �soft� factor describing the emission of

a pomeron by the proton� and a perturbative factor describing the hard interaction

of a parton from the pomeron with a virtual photon or a parton from the other

hadron� If this approach is valid� there must be a universal structure function for

the pomeron� F IP
� � which applies in DIS� in hard photoproduction and in hadron�

hadron interactions� The pomeron structure function can be related to a set of

hypothetical quark and gluon distributions in the pomeron in the same way as the

proton structure function F� is related to the quark and gluon content of the proton�

In this picture� the pomeron is treated more or less as a particle� although it is only
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detected as a t�channel exchange� with a negative four�momentum squared�

This approach was suggested by Ingelman and Schlein ����� who used it

to predict the production of jets in di�ractive pp scattering� later con�rmed at

UA
 ���� ���� They used two di�erent pomeron structures� both dominated by gluons

but with a hard distribution xG�x� � 
x��� x� in one case and a soft distribution

xG�x� � 
��� x�	 in the other� Using the particle�like picture of the pomeron� they

imposed a momentum sum rule
R �
� xG�x�dx � � to �x the normalization of the gluon

distribution�

Other theorists use a similar approach � assuming factorization and trying

to predict the pomeron structure function � but do not accept the other assumptions

of the Ingelman�Schlein model� Donnachie and Landsho� argue that the partonic

structure of the pomeron is dominated by quarks� citing as evidence the point�like

coupling of the pomeron to valence quarks observed in soft hadronic interactions �����

In their model the pomeron behaves like a C � �� isoscalar photon and� as in the

case of the photon� its point�like component means that its parton distributions do

not obey a simple momentum sum rule�

Gehrmann and Stirling �
�� investigate the necessity for such a point�like

component to the structure of the pomeron by comparing two parametrizations�

In each case� the pomeron contains valence quarks and gluons with a distribution

xf�x� 	 x��� x�� with the normalization of each determined by a �t to the data�

The DGLAP equations are used to evolve the structure to values of Q� above the

starting scale of � GeV�� In the �rst model� this constitutes the entire structure of the

pomeron� while in the second model there is an additional point�like component from

pomeron�photon fusion via a quark loop� In the �rst case� the overall normalization

is varied to �t the data� following the argument that� as the pomeron is not a

real particle� the normalization of the �ux factor� or equivalently of the structure

function� need not be the same in hard processes as in soft ones� In the second case�

the Donnachie�Landsho� �ux factor is used without rescaling� Both models provide

a reasonable �t to the data available at the time� but the Q� evolution predicted is

signi�cantly di�erent in the two cases� With a direct coupling providing quarks at

large � by splitting �IP � q�q�� there is an increase in the structure function with Q�

at all values of �� Without this contribution� although there is some compensation

from an increased gluon content� the structure function falls with Q� at large ��

The production of charm provides a powerful method of distinguishing

between the two models of Gehrmann and Stirling and thus detecting a possible

point�like component of the pomeron� In the �rst model� charm is produced by
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photon�gluon fusion and takes place mainly at fairly small values of �� In the

second model� in which the ratio of light quarks to gluons in the hadronic part of

the pomeron structure is approximately twice as large� charm is mainly produced

by the direct fusion process IP
� � c�c and occurs at larger values of ��

Kniehl� Kohrs and Kramer �
�� also make predictions both with and with�

out a point�like component to the pomeron� They calculate the angular and trans�

verse�momentum distributions of jets produced in di�ractive photoproduction and

compare their results with data from H� and ZEUS� They claim some support for a

point�like contribution� although more accurate measurements using larger statistics

are necessary to distinguish with more con�dence between the models�

����� QCD Multi�Gluon Exchange

Factorization is not universally accepted to be a valid assumption in mod�

elling di�ractive processes� Some theorists have instead used perturbative QCD to

model the exchange of two or more gluons� forming an overall colour singlet� without

treating the pomeron as an object that is emitted by the proton before being probed

by a hard interaction�

The simplest QCD diagram corresponding to exchange of a pomeron is the

exchange of two gluons� as proposed by Low �
�� and Nussinov �
	�� This has been

extended by Nikolaev and Zakharov �
��� who �nd that while the exchange of two

unconnected gluons leads� perhaps surprisingly� to some features similar to a particle�

like pomeron� this does not extend to all processes� In particular� they �nd that

there is a di�erent e�ective pomeron �ux factor for production of each quark �avour�

with heavy �avours contributing mainly at low xIP � This is incompatible with the

picture of a universal pomeron� The production of each quark �avour is sensitive to

its mass� with di�ractive events making up ������ of u� d and s production� but

only �� of charm production� The yield of charm is signi�cantly smaller in this

calculation than is expected from a model with a particle�like pomeron�

Higher�order QCD contributions to di�ractive exchange are expected to be

dominated by a gluon ladder� illustrated in �gure 	�
� This is the diagram described

by the BFKL equation �
�� 

�� and is known as the BFKL pomeron� In the Regge

picture� it corresponds to a �xed singularity �

��


�t� � � �
��
s ln �

	
� �	����

An experimental signature for BFKL pomeron behaviour is a tail of di�ractive events
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at large momentum transfer t� The BFKL equations describe a hard pomeron� its

intercept is about ���� which is signi�cantly higher than that of the soft Donnachie�

Landsho� pomeron� It therefore predicts a much steeper energy dependence� as is

indeed observed in those processes where a hard scale is present� The rise of F� at

small x requires a pomeron intercept of about this size� although it can equally well

be described by the DGLAP evolution equations� so it does not provide evidence

speci�cally for BFKL dynamics�

q

p p

Figure 	�
� A gluon ladder� corresponding to pomeron exchange in the BFKL treat�

ment�

����� Soft Colour Interactions

Buchm�uller and Hebecker �
�� do not assume the existence of the pomeron

as a colour�singlet object emitted by the proton prior to the hard interaction� In�

stead� both di�ractive and non�di�ractive DIS are considered to be due to scattering

of the electron on small�x gluons in the proton� In this model� the virtual photon

interacts by fusing with a gluon to produce a quark�antiquark pair� which is initially

in a colour�octet state� This quark�antiquark pair then changes colour randomly

by soft interactions with the colour �eld of the proton� It may end up as a colour

singlet� in which case it will fragment independently of the proton remnant� leaving

a rapidity gap in the �nal state� This process� in which almost the entire momentum

of the �pomeron� is carried by a single gluon� �ts in well with the shape � sharply
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peaked near � � � � of the gluon distribution obtained from the QCD �t to #FD
� ��
��

If the quark�antiquark pair changes colour rapidly enough as it passes

through the colour �eld of the proton� the probability that it will end up as a

colour singlet is simply given by the ratio of numbers of singlet and octet colour

states� The ratio of di�ractive and total cross sections at small x is then predicted

to be

RD �
	D
	tot


 �

�
� �	����

This prediction agrees well with the observed ratio of about ���� An approxi�

mate scaling relation linking the di�ractive and inclusive structure functions is also

predicted by this model�

FD
� �x�Q

�� xIP � �� 
 ����

�
F��x � ��Q��� �	��
�

This also agrees reasonably well with the data� This model also predicts a di�ractive

structure function that can be factorized into a part depending on xIP and a part

depending on � and Q�� although these are not interpreted in terms of a particle�like

pomeron�

Similar in spirit to the Buchm�uller�Hebecker model is the soft colour in�

teraction �SCI� mechanism proposed by Edin� Ingelman and Rathsman �

� 
���

Again� the underlying hard interaction is the same in all DIS� and it is subsequent

soft interactions that lead to a colour�singlet current system in some events� Sev�

eral re�nements are added that are not present in the Buchm�uller�Hebecker model�

Rather than just using the leading�order matrix element for the hard interaction�

higher�order corrections are simulated by incorporating parton showers� An ex�

plicit model of the soft colour interactions is introduced� each pair of coloured

partons in the partonic �nal state may interact� exchanging colour but not changing

their momenta� The probability of this occurring cannot be calculated� but is de�

scribed using an adjustable parameter� Hadronization is simulated using the Lund

string model� and the entire SCI model is implemented as a Monte Carlo generator

�LEPTO 
�� ������ enabling detailed comparisons with data� The model provides a

reasonable description not only of rapidity�gap events� but also of energy �ow in the

forward region in non�di�ractive DIS� where other models tend to produce too little

energy�
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����� Charm Production

Charm quarks are predominantly produced by the BGF process� so the

rate of charm production in di�ractive DIS is sensitive to the gluon content of the

exchange involved� a gluon�dominated pomeron would result in a greater yield of

charm than a quark�dominated one� The distribution of these events in � and Q� is

sensitive to the details of the pomeron structure� with a larger contribution expected

at large � if there is a point�like component present� as explained in section 	�����

The distribution in xIP provides a way of testing some models based on perturbative

QCD �see section 	������ which predict a breaking of Ingelman�Schlein factorization�

with charm events more strongly peaked at small xIP than light�quark production�

��� Summary

Regge theory provides a very successful description of soft di�ractive pro�

cesses� A simple parametrization� corresponding to exchange of a soft pomeron�

�ts total cross sections as well as cross sections for forward elastic scattering in a

wide range of hadron�hadron interactions and in photoproduction� However� this

parametrization fails to describe interactions in which a hard scale is involved� such

as deep�inelastic scattering and the exclusive photoproduction of the J�� meson�

The cross sections for these reactions show a signi�cantly steeper rise with energy

than the soft pomeron would lead one to expect�

There is evidence� such as the production of high�momentum jets in di�rac�

tive photoproduction� for a partonic structure to the pomeron� Several di�erent

models have been proposed� In some� the pomeron is similar to an ordinary hadron�

In others� pomeron exchange is equivalent to a set of Feynman diagrams contain�

ing gluon ladders� and its behaviour can be predicted by perturbative QCD when

there is a hard scale present� It may even be that deep�inelastic di�raction can be

explained as standard DIS followed by soft interactions in which the struck partonic

system evolves into a colour singlet�

While there are indications in various processes for a pomeron that has a

point�like character� and may comprise a leading gluon accompanied by one or more

soft gluons to make up the colour balance� there is a need for further investigation

to resolve the issue� Charm production is one process with an important role to

play in this area� The goal is an explanation� in terms of QCD� of both soft and
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hard di�ractive interactions�
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Chapter �

The H� Detector at HERA

��� The HERA Electron�Proton Collider

HERA �the Hadron�Electron Ring Accelerator� is the �rst� and to date

the only ep collider to be built� Construction was authorized in April ��
� and

completed in November ����� The two general�purpose detectors H� and ZEUS

were then installed and the �rst ep collisions were recorded in late �����

By using a high�momentum beam of protons instead of a stationary hy�

drogen target� a much larger centre�of�mass energy is achieved� The beam energies

used in ���� � ���� GeV for the electrons and 
�� GeV for the protons � corre�

spond to a centre�of�mass energy of 	�� GeV� compared to about 	� GeV for the

previous generation of �xed�target experiments� The accessible kinematic range in

deep�inelastic scattering is extended upward by about two orders of magnitude in

Q� to approximately �� ��� GeV� and downward by a similar factor in x to below

���	 �see �gure �����

The large asymmetry in the beam energies is made necessary by the limit on

the electron beam energy imposed by energy losses through synchrotron radiation�

The result is that the ep centre of mass is boosted in the proton direction with a

Lorentz factor 
 of ��
 in the laboratory frame� This makes an asymmetric detector

design necessary� with detector components concentrated in the forward �proton�

direction� where the outgoing particle multiplicity is greatest� The angle of the

scattered electron is ampli�ed by the boost� so that the electron enters the main

part of the detector for moderate values of Q�� from � � GeV� to � ��� GeV�� as

well as for high�Q� events� above ��� GeV��
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The HERA ring ��gure ���� has a circumference of 
�	 km and comprises

two separate accelerators for the two beams� Protons are accelerated in a linear

accelerator� then in DESY 	 and PETRA �� reaching �� GeV before injection into

HERA� They are then accelerated to their �nal energy of 
�� GeV before electrons

are injected� Electrons are accelerated in a separate linear accelerator� then in

DESY � and PETRA �� reaching an energy of �� GeV before being injected into

HERA and accelerated to ���� GeV �the design energy is 	� GeV�� Once the beams

have reached their �nal energies� collimators are moved in close to the beam� and

the beam orbits are adjusted to bring the beams into collision at the interaction

points in the North and South Experiment Halls� The North and South Halls are

occupied respectively by the H� and ZEUS experiments�

Figure ���� The HERA ring and its pre�accelerators�

The other two experiment halls on the HERA ring are used for �xed�target

experiments� The East Hall houses the HERMES experiment� built to measure the

spin�dependent nucleon structure functions ����� HERMES uses the HERA electron

beam� which is naturally polarized through the Sokolov�Turnov e�ect� as a probe

of a polarized gas target� HERMES started taking data in the summer of ���� and

has made a preliminary measurement of the neutron spin structure function� The

HERA�B experiment� under construction in the West Hall� uses the HERA proton

beam on a wire target to produce B hadrons for the study of CP violation�

The beams are not continuous� but consist of bunches spaced �
 ns apart�

In ����� ��	 electron and proton bunches were �lled and brought into collision in

the H� and ZEUS detectors� A smaller number of unpaired pilot bunches were used
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for studies of beam�induced background�

Since July ����� positrons have been used in place of electrons� The main

advantage of this is the reduced rate of beam�gas interactions� a positively charged

beam repels positive ions from the path of the beam� while a negatively charged beam

attracts them� The beam lifetime at high currents is longer than it was for electrons�

The cross section for neutral�current interactions� in which the intermediate boson

is a photon or Z�� is unchanged� However� the cross section for charged�current

interactions is halved due to the di�erent numbers of u and d quarks in the proton�

which can couple to an incoming W� or W� respectively�

��� Overview of the H� Detector

A major consideration in the design of the H� detector was the identi�ca�

tion and energy measurement of electrons for the study of neutral�current interac�

tions� It is also important to be able to measure tracks and energy �ow� particularly

in jets� where the local track multiplicity is high� Therefore a jet chamber and a

highly segmented calorimeter are used� The calorimeter� as well as the jet chamber�

is positioned inside the solenoid to minimize the amount of dead material in front of

it� The calorimeter is made as nearly hermetic as possible for measurements of en�

ergy �ow and of missing energy� as found in charged�current events� The asymmetry

in the beam energies requires an asymmetric detector� and the high bunch�crossing

and background rates mean that a sophisticated triggering system is necessary�

The H� detector is described in detail in ���� �	�� The description given

here is a summary� concentrating on the parts of the detector that are particularly

relevant to this analysis� The main parts of the detector ��gures ��� and ��	� are�

in order of increasing distance from the interaction point�

� the tracking system� which detects charged particles leaving the interaction
point and measures their momenta�

� the calorimetry system� which measures the energy of charged and neutral
particles�

� the solenoid� which provides a ���� T magnetic �eld� enabling the momentum
of particles to be measured from the curvature of their tracks�

� the muon�detection system� which identi�es penetrating particles travelling



Chapter �� The H� Detector at HERA ��

through the tracking and calorimetry systems without giving up a large frac�

tion of their energy�

Positions within the H� detector are given using a right�handed Cartesian

coordinate system �illustrated in �gure ���� with the origin at the nominal interaction

point� the z axis in the direction of motion of the proton beam� the x axis horizontal

and the y axis vertically upwards� Alternatively� the polar and azimuthal angles �

and � can be used� where � � � is the direction of motion of the proton beam �also

known as the forward direction�� and � � � is on the x axis and � � �
� on the y

axis�

��� Tracking

The H� tracking system ��gure ���� is divided into two independent detec�

tors� the central and forward tracking detectors �CTD and FTD�� Each is optimized

for the angular region that it covers� The tracking detectors lie within the solenoid�

in a region with an approximately uniform magnetic �eld of ���� T parallel to the

beam axis� By accurately reconstructing tracks in the r� plane� the transverse

momentum p� of charged particles can be measured� Drift chambers are used for

track reconstruction� proportional chambers� with their faster response� are used for

triggering of events with charged tracks originating near the event vertex�

The Central Tracker

The central tracker � � ��gure ���� covers the region ��� � � � �
���

Track reconstruction in this region is based on two concentric drift chambers� the

central jet chambers CJC� �inner� and CJC� �outer�� Each is divided azimuthally

into a number of drift cells �	� in CJC�� 
� in CJC�� with anode and �eld�shaping

wires parallel to the beam axis� The cells are angled at about 	�� to the radial

direction so that the ionization electrons� in�uenced by the magnetic �eld of the

solenoid as well as the electric �eld in the cell� drift approximately perpendicular

to high�momentum tracks� This gives the best drift�time resolution� The tilt also

means that mirror tracks� resulting from the left�right ambiguity in a drift cell� do

not point to the vertex or to the corresponding track segments in other cells� and

are thus more easily distinguished from genuine tracks�

�Numbers in boxes refer to the labels in �gure ����
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Figure ���� Cut�away view of the H� detector�
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Figure ��	� Longitudinal section of the H� detector�
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Figure ���� Longitudinal section of the H� tracking system�

The sense wires �anodes� alternate with pairs of wires at ground potential�

These potential wires largely decouple the �eld around the sense wires from the

drift �eld� so that the voltages of the drift and sense wires can be optimized almost

independently� The potential wires also reduce cross�talk between anodes�

A measurement of the z coordinate of a hit is obtained from the CJC using

charge division� with a resolution of about �� mm �� �� of the wire length�� To

give a more accurate measurement of z �with a resolution of about 	�� �m�� and

hence of �� additional drift chambers are located before and after CJC�� the central

inner and outer z chambers �CIZ and COZ�� These have wires arranged azimuthally

around the beam pipe� so that z is the drift coordinate and � is determined with

coarser resolution by charge division� The cross sections of the CIZ and COZ are

respectively �
� and ���sided regular polygons� Each is divided in z into drift cells

��� and �� in the CIZ and COZ respectively�� each containing four sense wires�

Immediately before the CIZ and after the COZ are located respectively

the central inner and outer proportional chambers �CIP and COP�� These give a

signal very quickly after the bunch crossing and are used by the �rst level trigger

�see section ��
� to recognize events with tracks originating from a vertex in the

interaction region� The CIP and COP each consist of three concentric cylinders

separating two layers of anode wires parallel to the beam axis� Signals are read out
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Figure ���� Transverse section of the central tracking system�
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from the segmented outer cathode of each layer�

The Forward Tracker

The forward tracker 	 covers the region �� � � � ���� The shallow angle

of forward tracks means that they are best measured using several planes of detectors

perpendicular to the beam axis� spaced out in z� The forward tracker consists of

three similar supermodules �see �gure ����� each ��� mm long in z� with the �rst

starting at z � ���� mm� Each supermodule consists of� in order of increasing z�

� three layers of planar drift chambers with di�erent orientations for track re�
construction�

� a forward proportional chamber �FPC� for triggering�

� a passive transition radiator�

� a radial drift chamber� which in addition to tracking information provides some
particle identi�cation by detecting transition radiation as well as ionization

from the charged particle itself�

Each layer of planar chambers consists of 	� parallel cells� each �� mm

wide in the drift direction and 	� mm thick in z� containing four sense wires spaced


 mm apart in z� The sense wires alternate with pairs of potential wires� as in the

CJC� The three layers of planar chambers within a supermodule are oriented at 
��

to one another in �� providing uniform resolution in x and y�

Each FPC layer consists of two planes of vertical anode wires� sandwiched

between three cathode planes� The signals are read out using azimuthal strips in

the cathode planes� giving the best resolution in the radial coordinate and hence

in �� The cathode plane is divided radially into �� strips� with widths increasing

geometrically from �
 mm for the innermost to 	� mm for the outermost strip� The

outer four cathode rings are divided into sectors each covering ����� in �� while the

rest of the rings are divided into sectors covering ��� each� To improve the spatial

resolution� the cathode strips in the second plane are displaced by half a strip width

radially and by half a strip length azimuthally with respect to those in the �rst

plane�

Each layer of radial chambers consists of �
 drift cells� each covering ����

in � and containing �� sense wires radiating out from the beam pipe� spaced �� mm
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apart in z� alternating with potential wires� The potential wires lie in a plane

bisecting the cell� while the sense wires are staggered alternately �
� �m to each side

of this plane� Several cathode strips are arranged on the walls of the cell to provide

a uniform drift �eld� The gas used was changed after ���� to one containing xenon�

which has a large photoionization cross section� making it suitable for detecting the

X�rays produced in the transition radiators� The transition radiators themselves

comprise layers of polypropylene alternating with a mixture of helium and ethane

gas� A thin mylar window separates the gas volumes of the transition radiator and

the radial chamber� while allowing X�rays to pass through�

The Backward Proportional Chamber

The backward proportional chamber �BPC� is situated immediately in

front of the BEMC �see section ����� It is the only tracker covering the backward

region and is particularly important for detecting the scattered electron in low�Q�

DIS events� It provides a good measurement of the point of entry of the electron

into the BEMC and enables electrons to be distinguished from photons �which give

a similar shower in the BEMC� but no hit in the BPC��

The BPC consists of four planes of anode wires alternating with �ve cath�

ode planes� The wires are horizontal� vertical and at ���� in the four layers� The
cathodes are not segmented� signals are read out from the anode wires�

��� Calorimetry

The calorimeters in H� are situated inside the solenoid in order to minimize

the amount of dead material in front of them� which would otherwise degrade the

energy measurement� Several di�erent calorimeters are used to provide a good

angular coverage and e�cient identi�cation of the scattered electron�

The Liquid Argon Calorimeter

The main system for measuring energy �ow in H� is the liquid argon

calorimeter �LAr�� which covers the range �� � � � ��	�� The liquid argon technique

was chosen for its stability� homogeneity and ease of calibration� and because the

calorimeter can be �nely segmented� enabling the separation of e� and ��initiated
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showers� It is divided radially into two parts� the electromagnetic section � and

the hadronic section 
 � Each section consists of alternate layers of liquid argon and

metal absorbing plates� The metal plates are connected to the high�voltage supply�

generating a �eld of 
�� V!mm in the liquid argon gaps� which causes electrons

released in ionization of the argon to be collected on the positive plates� produc�

ing a pulse which is ampli�ed and read out by an analogue electronic system� The

absorbing plates in the electromagnetic section are lead sheets ��� mm thick� sand�

wiched between sheets of �breglass for mechanical support� For the much larger

plates in the hadronic section� stainless steel is used because of its greater rigidity�

the total thickness of the steel in each sampling layer is �� mm� The total thick�

ness of material traversed by a particle in the LAr depends on its direction� but is

in the range ���	� radiation lengths �X�� in the electromagnetic section and ��


interaction lengths ��� in total�

The LAr is non�compensating� its response is about 	�� smaller for had�

ronic showers than for electromagnetic ones� However� its �ne granularity makes

it possible to di�erentiate between the two types of shower and apply a correction

factor to compensate for this di�erence� The energy resolution has been measured in

electron and pion test beams and the results found to be consistent with the observed

behaviour in H�� The resolution for electrons was found to be �E
E
� ��
p

E
� �	


E
� ��

and for pions �E
E
� ��
p

E
� ��


E
� 	�� where E is in GeV�

The Backward Electromagnetic Calorimeter

The Backward Electromagnetic Calorimeter �BEMC� ���� �� ��gure ��
�

detects electrons scattered at angles of ������ thus covering the region of low�Q�

DIS � approximately � GeV� � Q� � ��� GeV�� The BEMC is a segmented lead�

scintillator calorimeter� It is divided into 

 stacks� each comprising �� pairs of

alternate layers of plastic scintillator and lead� Read�out is via wavelength shifters

�WLS� extending along the sides of the stacks and feeding into photodiodes at the

rear of the detector� Two opposite sides of each square or trapezial stack are covered

by long WLS� extending the full length of the stack� The last �� layers are also read

out using shorter WLS on the remaining two sides� the division of the signal between

the layers provides a measure of the longitudinal pro�le of the energy deposition�

The thickness of the BEMC is ���� radiation lengths� which is only about

one interaction length� A hadron typically leaves only ��� of its energy in the

BEMC� but the BEMC output can be combined with the tail�catcher behind it to

give a hadronic energy resolution of �E
E
� 
�


E
� The resolution for electromagnetic
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Figure ��
� The BEMC� �a� Transverse view of the BEMC barrel� showing the

division into stacks� The orientation of the long WLS in each stack is shown� �b�

Longitudinal section of a stack� �c� Longitudinal section of a stack in a plane

perpendicular to �b��

energy is found by analysing the kinematic peak of the scattered electrons to be
�E
E
� ��
p

E
� ��


E
� ���

The Plug Calorimeter

The plug calorimeter �	 �lls the gap in acceptance between the edge of

the LAr at � � 	��� and the beam pipe at � � ��
�� It is used to reduce the

amount of transverse momentum lost through particles escaping undetected close

to the direction of the beam pipe� and to aid in identifying di�ractive events by

detecting energy �ow in the very forward direction� near the di�racted proton or

proton remnant�

The plug contains eight layers of silicon detectors� alternating with layers

of copper� Its design energy resolution of about �����
p
E is limited by energy

leakage and by the relatively high amount of dead material separating it from the

interaction point� The actual resolution is worse than this and has been degraded

by radiation damage of the silicon detectors�
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The Tail�Catcher

The pad electrodes attached to eleven of the sixteen layers of limited

streamer tubes in the instrumented iron return yoke �see section ���� are also used as

a tail�catcher for the calorimeter system� This provides a measure of the amount of

energy leaking out of the other calorimeters due to late�developing hadronic showers�

��� Muon Detection

Muons can be identi�ed by the fact that they travel long distances in

matter without showering� This is because they are heavier than electrons� which

means that they do not lose as much energy by bremsstrahlung� Thus a particle

which leaves a trail of ionization in detectors placed outside the calorimeters� having

traversed many radiation lengths of material� is likely to be a muon�

The Instrumented Iron

The iron yoke which carries the returning magnetic �ux from the solenoid is

instrumented with limited streamer tubes �LSTs�� which make up the central muon

system� covering the range 
� � � � ����� The iron is segmented into ten layers�

interleaved with layers of LSTs� Additional LSTs are located before and after the

iron to give a total of sixteen LST layers�

The LSTs are oriented in the z direction in the barrel and in the x direction

in the end�caps� They have a cross section of �� � �� mm and give a resolution of

	�� mm in the coordinate perpendicular to the wires� Five of the layers are also

equipped with cathode strips perpendicular to the wires� giving a resolution of ���

�� mm in the second coordinate� The remaining eleven layers have cathode pads�

giving a two�dimensional point with a resolution of about �� cm� The wires and

strips are read out by a digital system� while the pads are read out by the same ana�

logue system as the LAr calorimeter� The signals from the pads are used to provide

a measurement of the tails of hadronic showers leaking out of the LAr calorimeter

and BEMC �see section ����� as well as forming part of the muon system� Track

reconstruction in the forward muon system starts with the wires� then information

from the strips is added to form a track in three dimensions� The pads are used if

necessary to resolve ambiguities�
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The Forward Muon Detector

The instrumented iron is supplemented in the forward direction by the

Forward Muon Detector �FMD� ��gure ����� which measures the momentum of high�

energy muons in the range 	� � � � ���� The kinematics of HERA events mean that

there are many high�energy muons in this region� as well as a large background from

other high�energy particles and secondary scattering from the beam pipe� magnets

and associated material� The FMD can only detect muons with a momentum above

about � GeV� since a signi�cant amount of energy �typically 	 GeV� is lost by a

muon in the material between the interaction point and the FMD�

�a� �b�

Figure ���� The Forward Muon Detector� �a� Schematic view� showing the orien�

tation of the drift cells in each plane� �b� Cross section of a double layer of drift

cells�

The FMD comprises six planes of drift chambers � three on each side of a

toroidal magnet� Each plane consists of a double layer of ���cm�wide cells� staggered

by half a cell width to enable left�right ambiguities to be resolved �as shown in

�gure ����b��� Four of the planes � numbers �� 	� � and 
 � are arranged with cells

oriented azimuthally around the beam pipe in order to measure � accurately� The
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other planes � numbers � and � � are arranged with cells pointing out radially from

the beam pipe in order to measure � accurately� In each case� charge division is

used to obtain a less precise measurement of the other coordinate�

Tracks are formed in several stages� Firstly� hits in the two layers of a

plane are combined to form pairs� provided that the hits in a pair point roughly

towards the interaction point� The drift�coordinate ambiguity is resolved at this

stage� Secondly� hit pairs are combined to form segments in the pre� and post�toroid

layers separately� �Unpaired hits may also be used at this stage�� A pre�toroid

and a post�toroid segment are then combined to form a track� The di�erence in

direction between the pre� and post�toroid segments� due to bending in the toroid�

is a measure of the momentum of the muon� This momentum determination works

up to about ��� GeV� where the track is too straight for the direction of the bending�

and hence the charge of the muon� to be determined�

The FMD has also proved to be sensitive to secondary particles produced

by scattering of the proton remnant on the beam pipe and surrounding material�

This makes it useful in recognizing di�ractive events in which the proton scatters

elastically or nearly elastically�

��	 Luminosity Measurement

The luminosity of the colliding beams� which must be known in order to

make any measurement of the cross section for a process� is measured at H� using the

Bethe�Heitler process ep� ep
� the cross section for which is known very accurately�

The photon and the scattered electron in the �nal state are detected using detectors

designed speci�cally for this purpose� The positions of the electron tagger �ET� and

the photon detector �PD� are shown in �gure ��
�

The electron tagger is situated at z � �		�� m� the scattered electron
leaves the beam pipe through a window at z � ����	 m after being de�ected from

the beam axis by a bending magnet� The photon passes through a window at

z � ����	 m� where the proton beam pipe bends upwards� and hits the photon

detector at z � ������ m� The photon detector is preceded by a layer of lead to
protect it from synchrotron radiation� and a veto counter to reject events in which

a photon has converted in the lead�

The electron tagger and photon detector are two similar calorimeters� each
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Figure ��
� The luminosity system� showing the position of the electron tagger �ET�

and photon detector �PD��

consisting of an array of crystal Cherenkov counters� They are calibrated continu�

ously during data�taking using the fact that the sum of the energies of the photon

and the scattered electron is equal to the energy of the electron beam� The veto

counter is a water Cherenkov detector�

The largest background to the Bethe�Heitler process is bremsstrahlung

from residual gas in the beam pipe� eA� eA
� This e�ect is measured using the

unpaired electron pilot bunches� which are subject to scattering on gas molecules�

but not on the proton beam� The formula used is

L � Rtot � �Itot�I��R�

	vis
�����

where L is the luminosity� Rtot and R� are respectively the total rate of tagged

events and the rate from pilot bunches� and Itot and I� are respectively the total

current of the electron beam and the current carried by the pilot bunches� The

visible cross section 	vis includes factors from the acceptance and e�ciency of the

luminosity system� The acceptance depends sensitively on the beam crossing angle�

which varies slightly from run to run� A correction is made for this e�ect in the

on�line measurement� and more accurately in the o��line measurement�

The luminosity can be measured using two di�erent methods� For the

on�line luminosity measurement� which must be available in real time for beam

monitoring and for tuning to optimize luminosity� the most important consideration

is a rapid measurement with a small statistical error� For this� a coincidence method

is used� the photon and electron must both be detected� For the o��line measure�

ment� where it is important to reduce the systematic error due to the dependence

of the acceptance on the beam crossing angle� only the photon detector is used� but

a higher energy threshold is applied�
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Apart from measuring the luminosity� the luminosity system is also used in

studying photoproduction� An electron scattered at a small angle �Q� � ���� GeV��

may be detected by the electron tagger� the photon detector and veto counter are

used to reject events where a photon is also found� The measurement of the electron

energy by the tagger allows kinematic reconstruction of the event�

��
 Scintillators

The Time�of�Flight Counters and Veto Walls

The time�of��ight �ToF� counters and veto walls are sheets of scintillator

which� with their �ne time resolution� provide a way of distinguishing between ep

events and beam�induced background� and are used by the L� trigger� The backward

ToF �BToF� counter consists of two planes at z � ����� m and z � ����� m� each
covering about ��� � ��� cm in the xy plane� The forward ToF �FToF� ���� counter
is a similar� but smaller arrangement at z � � m� There are two veto walls� an in�
ner wall of ��� � �� cm at z � �
�� m and an outer wall of �� � m at z � �
�� m�
Particles associated with background induced upstream of the detector by the pro�

ton beam hit the BToF at the same time as the proton beam passes� Particles

associated with an ep interaction pass at the same time as the electron beam� �	 ns

later� The time resolution of a few nanoseconds provided by the scintillators is

su�cient to distinguish between the two� The purpose of the veto wall is to detect

penetrating charged particles �mainly muons� associated with the proton beam� The

FToF functions in a similar way to the BToF� allowing separation of ep events from

background induced by the electron beam�

The Proton�Remnant Tagger

The proton�remnant tagger �PRT� ��gure ���� consists of seven scintillators

arranged around and between the electron and proton beam pipes at a position

z � �� m� downstream from the centre of H�� A proton that dissociates at the

interaction point to form a low�mass state will produce several remnant particles at

small angles to the incident proton direction� The PRT is designed to detect this

proton remnant and so distinguish such events from those in which the proton is

scattered elastically�

Each scintillator ���
� in �gure ��� actually consists of two parallel sheets
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Figure ���� Schematic diagram of the proton remnant�tagger �PRT�� looking towards

the interaction point�
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of plastic scintillator with separate photomultipliers and pulse�height discriminators�

The signals from such a pair of channels are fed into a coincidence detector� which

only registers a signal if both produce a pulse within �� ns of each other and a gate

signal is received� indicating that the signal is within the time window expected for

a proton remnant from an ep interaction in the detector�

��� Triggering and Read�out

The task of the trigger is particularly demanding for a detector at HERA�

where the bunch�crossing rate is extremely high at ���� MHz� That means that

bunches of electrons and protons intersect in the centre of the H� detector once

every �
 ns� and a decision must be made each time on whether to read out the

detector�

The process of reading out the detector takes about � ms� which means

that once the decision has been made to read out an event� the detector will miss any

further events taking place in the next ��� bunch crossings� It is therefore important

to have a trigger that will make a fast decision� rejecting a large proportion of bunch

crossings before reading out begins�

Detector output related to a given bunch crossing does not become available

until several bunch crossings later� The maximum drift time in some drift chambers

is about � �s� the integration time for preampli�ers ranges up to ��� �s� and even

the time taken by a signal to propagate along a cable from one end of the detector

to the other is not negligible in comparison with the bunch�crossing interval�

These restrictions mean that a pipelined read�out system must be used in

order to preserve all subdetector information until the �rst�level trigger reaches a

decision� The decision signal� L�KEEP� is available �� bunch crossings after the

corresponding ep interaction� Some additional time is required for this signal to

reach the subsystems� so pipelines range from �� to 	� bunch crossings in length�

Figure ���� illustrates the �ow of data in the trigger and read�out system�

The �rst�level �L�� trigger is based on a number of di�erent trigger systems�

each based on one subdetector or a set of subdetectors �e�g� the central and forward

proportional chambers�� Each trigger system produces a set of trigger elements�

based on the pattern of signals from the subdetectors� indicating for example a

vertex reconstructed by the proportional chambers� a charged track in the CTD�
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Figure ����� Data �ow in the H� trigger and read�out system�

or a muon in the instrumented iron or FMD� The BEMC trigger elements� which

recognize the scattered electron in low�Q� DIS and are particularly important in this

analysis� are described in more detail in section ���� The central trigger logic �CTL�

combines several trigger elements to produce each of ��
 subtriggers� tailored to

particular physics channels� Some subtriggers �re so frequently that the dead time

of the read�out would become too high if the event were read out every time� so they

are prescaled� only every Nth trigger� where N can be adjusted� is allowed to pass�

This introduces a large but precisely known correction factor into the e�ciency for

the subtrigger in question�

Some subtriggers are not designed for physics analysis� but are monitor

triggers� They are used to study the e�ciency of the physics triggers � those used

directly for analysis� There is also a random trigger� which does not depend on any

other trigger elements� and is used for studies of detector noise�

Once a positive L�KEEP signal has been received� the subdetector pipelines

are stopped and the process of reading out the data from them begins� This takes ��

� ms� although the next two levels of trigger electronics � L� and L	 � will in future

be able to reject an event within this time� aborting the read�out after ���
�� �s

and thus further reducing the dead time�

The fourth�level trigger � the L� �lter �farm� � consists of software running

on a set of up to 	� MIPS R	��� processors� It has the data from all subdetectors

available to make its decision and can reconstruct tracks� calorimeter clusters etc�

using some of the subroutines of the o��line event�reconstruction package H�REC�
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The L� farm applies cuts to reject beam�gas� beam�wall and cosmic�ray events� It

also rejects events triggered by noise in the subdetector triggers� using reconstructed

quantities to verify the L� trigger decisions� The algorithm used in ���� is described

in ��
�� Approximately ��� of events accepted by L� � mainly beam�gas interactions

and events with a vertex outside the central region � are rejected by the L� farm�

��� Event Reconstruction

Event reconstruction involves combining the raw data from the subdetec�

tors� i�e� individual hits in wire chambers and calorimeter cells� to form tracks and

clusters of deposited energy� Reconstruction is performed by an �
�processor SGI

Challenge computer in a �quasi�online� way� the process runs continuously� but is

typically a few hours or days behind the data acquisition during luminosity running�

An event takes on average ��� s to reconstruct on one processor� so the computer can

match the nominal data�logging rate of �� Hz� The reconstructed data is written

to magnetic tape� and a subset of the data� in a reduced data summary tape �DST�

format� is written to disk� where it is easily accessible for o��line analysis�

���
 Simulation

It is important when analysing data from a particle physics experiment

such as H� to be able to model and understand the behaviour of the detector� The

e�ciency for detecting and reconstructing a particular particle or type of event must

be known in order to measure the cross section� and it is estimated using a computer

simulation� Such a simulation takes as its input a list of particles produced at the

interaction point in a Monte Carlo generated event� together with the direction and

momentum of each one� The output should be as close as possible to the data that

would be read out should such an event actually take place in the detector�

The H� detector simulation program� H�SIM� consists of three stages� The

�rst stage uses the GEANT package ���� to model the processes by which particles

produced in an ep interaction interact with the detector as they travel out from

the interaction point� The output of this stage is a list of detector components

crossed� with the coordinates of the entry and exit points and the amount of energy

deposited� This is the most time�consuming part of the simulation� taking typically

��� s for a low�Q� DIS event�
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The next stage� DIGI� takes the output of the GEANT step and converts

it into hits in the same data format as is used for data from the real detector� This

can then be used as input for the event reconstruction package H�REC to produce

reconstructed Monte Carlo events� which can be processed by the same analysis

software as is used for data� The separation of the GEANT and DIGI stages means

that the simulation can be repeated for di�erent detector conditions by steering

DIGI appropriately� without repeating the time�consuming GEANT step�

The third stage� TRIG� simulates the response of the H� trigger system�

using input from the previous stages of H�SIM� The output of this stage is a list of

trigger elements which would �re if such an event occurred in the H� detector�




	

Chapter �

Event Selection

��� The Data Sample

The data used in this analysis were recorded during the ���� running period

when HERA was colliding positrons at ���� GeV with protons at 
�� GeV� Only

events recorded during periods when the high�voltage and read�out systems of all

necessary subdetectors were working are used� This means the central tracker� the

liquid argon calorimeter� the BEMC� the BPC� the plug calorimeter� the forward

muon detector� the proton�remnant tagger� the time�of��ight scintillators and the

luminosity system� The integrated luminosity remaining after these restrictions have

been applied is ���	 pb���

��� Triggering of DIS Events

The events used in this analysis were triggered by the low�Q� DIS sub�

triggers� based on the backward electromagnetic calorimeter �BEMC� described in

section ����� Most events were triggered by the standard BEMC DIS subtrigger� s��

which depends on the BEMC single�electron trigger �BSET� and the time�of��ight

systems� and is described below�
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����� The BEMC Single�Electron Trigger

The analogue signals from the long wavelength shifters in each BEMC stack

are added together to give a signal for the whole stack� This gives a rather coarser

granularity than is achieved at a later stage in the cluster reconstruction� but it is

su�cient for triggering� The stacks do not all have the same response� since the

various stack shapes have di�erent optical properties� so they are equalized to the

same energy scale by applying an adjustable gain to each one� Adjustable delays

are used to synchronize the signals�

The signal from each stack is compared with two di�erent thresholds� The

higher threshold� HT � ��	 GeV� rejects fake hits generated by noise and selects
stacks with a signi�cant deposit of energy to act as �seeds�� Each seed stack is

combined with those neighbouring stacks with signals above the lower threshold�

LT � ��	 GeV� to form a cluster�

There are three trigger elements based on the energy of these clusters�

if the total energy of the clusters in an event exceeds one of the three thresholds

CL�� CL� or CL	� the corresponding trigger element is set� There are also trigger

elements based on the number of clusters �exactly one cluster or more than one�

and the total energy of all stacks above the noise threshold LT� The total energy of

the clusters and the energy of all stacks above LT are also digitized and sent to the

central trigger logic for use by other calorimeter�based subtriggers�

One major source of background in these trigger elements is the nuclear

counter e�ect � the process whereby an ionizing particle enters one of the photo�

diodes and gives rise to a signal directly� rather than by showering in the lead�

scintillator stack� A major cause of this is synchrotron radiation� Nuclear�counter

events can be recognized by the fact that there tends to be a large signal from one

photodiode in a stack� but no signi�cant signal from the other photodiodes� The

majority of this background comes from the innermost �
 stacks� nearest the beam�

which are hit by the most synchrotron radiation� These are equipped with dedicated

electronics to detect such single�diode events� The smaller number of single�diode

events in the outer stacks are rejected by the L� farm�
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����� The Time�of�Flight Triggers

The ToF IA �interaction� and ToF BG �background� trigger elements depend

on the timing of signals from the backward time�of��ight system �BToF� described

in section ����� A coincidence detector combines signals from the two scintillator

planes� and the resulting signal can cause one of the two trigger elements to �re�

depending on its timing� The background time window starts �
 ns before the peak

of the background distribution and lasts for �� ns� the interaction time window starts

� ns after the end of the background window and lasts for �	 ns� The background

peak comes mainly from beam�gas and beam�wall interactions� while the peak in

the interaction window is mainly due to synchrotron radiation�

Figure ���� Time distribution of hits in the BToF� Taken from ��	��

The forward time�of��ight �FToF� trigger elements work in a similar way�

The interaction time window covers the period from �� ns before to �� ns after the

centre of the proton peak� when particles associated with the proton beam pass
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through the FToF� The background time window is 	� ns in length� starting as the

interaction window ends and extending to the beginning of the electron peak�

����� Combining the Trigger Elements

Subtrigger s� is formed from a combination of six trigger elements as fol�

lows�

BSET CL� and �not �BSET EQ�IN and BSET SDE�� and

�not ToF BG� and �FToF IA or �not FToF BG���

To be selected by this subtrigger� an event must cause the trigger element

BSET CL� to �re� meaning that the total energy of all clusters in the BEMC exceeds

the threshold CL�� which is approximately � GeV �value at ��� e�ciency�� The

trigger element BSET EQ�IN selects events with exactly one cluster in the inner six�

teen stacks� while BSET SDE selects events in which a single�diode signal is detected

in at least one of these stacks� The requirement not �BSET EQ�IN and BSET SDE�

thus rejects events where there is only one cluster in the inner part of the BEMC

and this cluster is �agged as background from the nuclear counter e�ect�

Subtrigger s� also require that there is no signal from the BToF in the

background time window� and it rejects an event if there is a signal in the FToF

background window but none in the interaction window�

For events in the kinematic range used in this analysis and having a scat�

tered positron of energy greater than �� GeV� the e�ciency of this subtrigger has

been determined using data to be greater than ��� ����� Thus no correction needs

to be made for trigger ine�ciency� and the systematic error from this source is

negligible in comparison with the dominant errors detailed in chapter 
�

During a small fraction of the ���� running period� a prescale was applied

to subtrigger s�� this being equivalent to a reduced e�ciency for these periods� How�

ever� since events triggered by other subtriggers are also accepted for this analysis�

the actual drop in the overall trigger e�ciency is small� especially when averaged

over the entire running period�
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��� Selection of DIS Events

����� The Event Vertex

Detectors at HERA su�er from a high rate of background events from

interactions of the proton beam with gas molecules and with the walls of the beam

pipe upstream of the detector� These events produce large numbers of tracks that

do not point to a vertex in the centre of the detector� To reduce this background�

events without a reconstructed vertex in the central region are rejected� The cut

used is

jz � �zj � 	� cm� �����

where �z � � cm is the mean vertex position�

����� The Positron Candidate

Positron candidates are identi�ed in H� using the BEMC for low�Q� DIS

�about � GeV� � Q� � ��� GeV�� and the liquid argon calorimeter �LAr� for higher

Q�� A pion can sometimes produce an energy cluster which looks like the signature

of a positron� so various cuts are applied to reject such events� The candidate with

the highest energy is taken to be the best� since the background from pions peaks

at low cluster energy� For the purposes of this analysis� an event is only accepted if

the best positron candidate is in the BEMC and passes the following cuts�

� Energy of the cluster�
The reconstructed energy of the positron candidate� E�

e� must be greater than

�� GeV�

� Position of the cluster in the BEMC�
Clusters that are very close to the inner edge of the BEMC� with the risk

that some of the energy of the shower may be missed� are rejected by the cut

jxBPCj � jyBPCj � �
 cm� where xBPC and yBPC are the coordinates of the

BEMC positron candidate when projected into the plane of the BPC� Clusters

in the central region of the BEMC� which su�ers from high background� are

rejected by the cut rBPC � �
 cm� where rBPC �
p
�x�BPC � y�BPC��

� Size of the cluster�
The lateral pro�le of a cluster in the BEMC can be used to discriminate against
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pion�induced background� Positrons produce localized showers� concentrated

in one or two stacks� while hadronic showers tend to be broader� The cut used

is RC � 	 cm� where RC is the energy�weighted cluster radius�

RC �
�

EC

nX
i��

Ei � jri � rcj �����

where EC and rc are respectively the energy and centre of gravity of the

cluster� and Ei and ri are respectively the energy and centre of gravity of the

deposit in the ith of the n stacks forming the cluster�

� Hit in the BPC�
There must be a hit in the BPC within 	 cm of the centre of gravity of the

BEMC cluster� This reduces the background from photons� which produce an

electromagnetic shower in the BEMC without leaving a signal in the BPC�

� Angle of the scattered positron�
The reconstructed polar angle of the scattered positron from the event vertex

must lie in the range ���� � � � ��	��

����� Kinematic Reconstruction

The kinematic range within which the event acceptance is high enough for

a cross�section measurement to be made is determined by the available range in

the energy and scattering angle of the positron� This range is determined by the

cuts described above� The acceptance of these cuts is shown as a function of the

kinematic parameters Q� and y in �gures ��� and ��	 respectively� Two additional

cuts are applied to the reconstructed kinematic variables in order to restrict events

to the region where the acceptance is reasonably high�

�� GeV� � Q� � ��� GeV� ���	�

���
 � y � ��
� �����

The range in Q� is determined by the acceptance and behaviour of the BEMC�

Above Q� � ��� GeV�� the scattered positron misses the BEMC� hitting the liquid

argon calorimeter instead� Below Q� � �� GeV�� genuine positrons in the BEMC

begin to be diluted by increasing numbers of �fake� positrons � largely pions from the

many photoproduction events� The upper limit on y is set by the cut on the energy

E�
e of the scattered positron� For y larger than about ��
� this energy is typically less

than �� GeV� The lower limit on y is not determined by the acceptance of the DIS

event selection� but by the requirement that there be a D�� in the central region of
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the detector �see chapter 
�� The smaller the value of y� the more the hadronic �nal

state is boosted along the proton direction and the less likely it is that any D��

produced will lie within the acceptance of the central tracker�

The kinematic quantities Q� and y are reconstructed using the $ method

��
�� which works accurately over a large range� The formulae used are as follows�

$ �
X
h

�Eh � pz�h� �����

y� �
$

$ � E��� cos ��e�
���
�

Q�
� �

E� sin� ��e
� � y�

�����

x� �
Q�
�

sy�
���
�

Figure ��� illustrates the resolution achieved using the $ method on Monte

Carlo events generated by RAPGAP with hadronization simulated using the colour�

dipole model �CDM�� The RMS resolution is ��� in y and ��� in Q��

��� Selection of Di�ractive Events

The signature of a di�ractive event is a �rapidity gap� � a region of pseudo�

rapidity between the proton�remnant system and the rest of the �nal state in which

no hadrons are produced� as explained in chapter 	� In this analysis� the aim is to

select di�ractive events in which the proton is elastically scattered or forms only a

low�mass state� In such events� the rapidity gap extends a long way in the forward

direction � almost up to the proton beam direction� There are several detectors in

this region� which are used to detect energy �ow and thus veto non�di�ractive or

proton�dissociation events� The choice of the various thresholds for activity in these

detectors is discussed in more detail in �
���

����� The Forward Detectors

The Liquid Argon Calorimeter 
LAr�

The quantity �max is de�ned as the pseudorapidity of the most forward

calorimeter cluster of at least ��� MeV� this threshold being chosen as a compromise
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Figure ���� The resolution of the $ method for events generated by the RAPGAP

Monte Carlo ����� reconstructed divided by generated values� �a� Resolution in y

for events in the range �� GeV� � Q� � ��� GeV�� xIP � ���� and jtj � � GeV�� �b�

Resolution in Q� for events in the range ���
 � y � ��
� xIP � ���� and jtj � � GeV��

between e�ciency and noise rejection� Clusters can be detected up to �max � 	���

at the forward edge of the LAr� The cut used is

�max � 	��� �����

The Proton�Remnant Tagger 
PRT�

The PRT was designed speci�cally in order to veto proton�dissociation

events by detecting particles in the very forward direction� Due to readout problems�

only the �rst three channels are used in this analysis� If a hit is present in any of

these three channels� the event is rejected�

The Plug Calorimeter

The plug calorimeter extends the acceptance of the calorimetry system

in the forward region beyond the end of the liquid argon calorimeter� Although

its energy resolution is not as good as that of the liquid argon calorimeter� it is

still useful as a veto on events with signi�cant amounts of energy in this region�

A threshold of ��� GeV is chosen as a compromise between e�ciency and noise

rejection� If more than this amount of energy is detected in the plug� the event is

rejected�
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The Forward Muon Detector 
FMD�

The FMD is designed to detect and measure high�energy muons in the

forward direction� However� it has also proved to be sensitive to particles from the

proton remnant that scatter from the beam pipe and surrounding material� If more

than one pair of associated hits is detected in the pre�toroid part of the FMD� the

event is rejected�

����� Kinematic Reconstruction

The fraction of the proton�s momentum carried by the colourless exchange�

xIP � �Q��M�
X���Q

��W ��� is reconstructed with a slightly better resolution using

the alternative form

xIP �

P
X�e��E � pz�

�Ep
� ������

where the sum is over the scattered positron and the hadronic �nal state� excluding

the di�racted proton� The resolution achieved is illustrated in �gure ���� The

hadronic �nal state is reconstructed using a combination of tracks and calorimeter

information� The rapidity of the hadronic systemX is largely dependent on the value

of xIP � so there is a strong correlation between xIP and �max� The cut �max � 	��

restricts the accessible range of xIP to approximately xIP � ����� so a cut of xIP � ����

is applied and the cross section is quoted for this range� The requirement of a small

xIP and a clear rapidity gap ensures that the measurement covers the kinematic

region where di�raction dominates� and any contribution from meson exchange is

expected to be small�
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Chapter 	

Measurement of the D�� Cross

Section

	�� Reconstruction of D
� Decays

The D�� meson� is reconstructed in this analysis using the decay chain

D�� � D���slow � �K������slow� �
���

The fact that the �nal state consists entirely of charged particles makes reconstruc�

tion using the tracking detectors relatively simple� and the low multiplicity � only

three tracks � means that the ine�ciency of the trackers introduces only a small

correction to the cross section� and that the corresponding systematic error is also

small�

The di�erence of ����� MeV between theD�� and D� masses is only slightly

larger than the �� mass� Thus the �� from the D�� decay has only a small mo�

mentum ��� MeV� in the D�� rest frame� and it is labelled ��slow in this thesis� Its

momentum in the laboratory frame is therefore strongly correlated with the mo�

mentum of the D��� but smaller by a factor of approximately M���MD�� � �����

This tight kinematic constraint means that there is a strong correlation between the

reconstructed invariant masses of the D�� and the D�� so the mass di�erence

%M �M�K�����slow��M�K���� �
���

is better resolved than the individual masses �
��� The combinatorial background

� fake D�� candidates made up from unrelated tracks � increases with %M � so it

�Charge conjugate states are implicitly included in the rest of this chapter�
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is suppressed by the smallness of the mass di�erence� The peak in %M therefore

provides a clear signal for charm production and is used to estimate the number of

D�� mesons produced�

Only the central tracker is used for the reconstruction of tracks in this

analysis� Tracks are only used if they fall within the � and p� range where the CJC

is e�cient� all three tracks must lie in the range

��� � � � ����� �
�	�

A requirement

p� � ��� MeV �
���

is applied to the candidates for the K� and �� from the D� decay� This is well into

the plateau of the curve of e�ciency against p� for the CJC� and is high enough to

reject a certain amount of combinatorial background from low�momentum tracks�

In choosing the cut on the p� of the slow pion ��slow� it is still important

to keep to the e�cient region� However� this cut determines the threshold in p�
below which a D�� can not be detected� and thus has a signi�cant e�ect on the

number of D�� mesons counted and hence on the statistical error in the cross�section

measurement� Because of this� a looser cut of

p� � ��� MeV �
���

is applied to the ��slow candidate�

In order to protect against badly reconstructed tracks� it is also required

that each track starts in the inner part of the tracker �CJC�� and has a radial length

in the r� projection of

Rtrack � �� cm� �
�
�

This has the e�ect of rejecting �broken� tracks� where a single charged particle has

been reconstructed as two separate tracks � typically one in CJC� and another in

CJC��

Those accepted tracks passing the higher p� cut 
�� are combined to form

all possible oppositely charged pairs� No particle identi�cation is used� each track

is taken to be a K and a � in turn� If a pair has a reconstructed invariant mass

within 
� MeV of the D� mass� it is counted as aD� candidate� EachD� candidate is

combined in turn with all remaining accepted tracks passing the lower p� cut 
�� and

having the appropriate charge to form D�� candidates� After cuts on the direction
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and transverse momentum of the reconstructed D��

j�j � ���� �
���

p� � � GeV �
�
�

the mass di�erence %M is plotted as a histogram ��gure 
���� The equivalent plot

for �wrong�sign� combinations �where the K and � have the same charge and the

�slow the opposite charge� is also shown� The right�sign data shows a peak around

the expected position at %M � ��� MeV� as expected� there is no evidence for a

peak in this region in the wrong�sign histogram� The K� mass distribution for D��

candidates falling within � MeV of the nominal value of %M is shown in �gure 
�	�

A clear peak is seen in the region of the D� mass of ��

� GeV� An example of an

event containing a D�� candidate within the region of the %M peak is shown in

�gure 
���

The distribution of �max for D�� candidates is shown in �gure 
��� A cut

j%M �%M�j � � MeV� �
���

where %M� �MD�� �MD� � ����� MeV� is applied in order to select events in the

region of the peak� as well as all the selection cuts described in chapter � �apart

from that on �max�� The histogram clearly shows the low�� plateau characteristic of

di�ractive events �cf� �gure 	���� The contribution expected from non�di�ractive DIS

has been calculated using the heavy��avour Monte Carlo generator AROMA �
�� and

is also shown� Even without the cut on �max used in the cross�section measurement�

most of the AROMA events are rejected by the cuts on activity in the forward

detectors�

	�� Calculation of the Cross Section

The cross section is de�ned as

	 �
dND

Ldt �
����

where dND
dt is the mean rate of production of D

�� mesons in a given kinematic region

and L is the instantaneous luminosity� Of the D�� mesons produced� only a small

fraction are reconstructed� This is due to the small branching fraction for the decay

chain used� and to the imperfect acceptance of the detector and of the criteria used

to select di�ractive deep�inelastic events and D�� candidates� The cross section is
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Figure 
��� A di�ractive DIS event containing a D�� candidate� �a� rz projection�

�b� xy projection of the central tracker�
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Figure 
��� Distribution of the mass di�erence %M �M�K����M�K��� The

points with error bars show the right�sign combinations �K������slow� and the shaded

histogram shows the wrong�sign combinations �K������slow� The curve is a �t of

the form a�%M �M���
b �Gaussian to the right�sign data� A peak is seen in the

right�sign data at the expected position� %M � ��� MeV�
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Figure 
�	� Distribution of the invariant mass of D� candidates from the signal

region of the %M distribution� j%M �%M�j � � MeV� The points with error bars
show the right�sign combinations� and the shaded histogram shows the wrong�sign

combinations� A peak is seen around the D� mass� ��

� GeV�
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Figure 
��� Distribution of �max for di�ractive D�� candidates in the region

j%M �%M�j � ��� MeV� with the expectation from the non�di�ractive Monte

Carlo generator AROMA�

estimated using the formula

	 �
Nobs��� ��

ATP��BLint
�
����

where

� Nobs � number of entries in %M peak�

� � � fraction of events in peak that are due to background�

� A � smeared acceptance calculated using Monte Carlo simulation�

� T � ratio of data and Monte Carlo e�ciencies for detection of all three tracks�

� P � correction for the e�ect of proton dissociation�

� � � trigger e�ciency�

� � � correction for e�ect of noise in forward detectors on event selection�

� B � branching fraction for decay channel used�

� Lint � integrated luminosity
R L dt�
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These factors are discussed individually in the following sections�

	���� Nobs 
 Observed Number of D�� Mesons

The number of D�� mesons observed� i�e� the number of entries in the %M

peak� is estimated by �tting the histogram ��gure 
��� with the sum of a Gaussian

� modelling the signal � and a background function

a�%M �m���
b� �
����

The �tting package MINUIT �
	� is used to perform the �t using a maximum�

likelihood method� The area� position and width of the Gaussian and the parameters

a and b of the background curve are allowed to vary� The area of the Gaussian peak

is found to be Nobs � ���

����
�����

Statistical Error

The statistical error� taken to be the total error calculated by MINUIT� is

somewhat larger then
p
Nobs� This is because all parameters describing the shape�

as well as the normalization� of the �tted curve are determined by the �t to the

%M histogram� Thus the error contains a contribution from the uncertainty in the

background shape and in the position and width of the peak� as well as from the

number of events in the peak and in the underlying background�

	���� A 
 Smeared Monte Carlo Acceptance

Monte Carlo simulation

The H� detector�simulation program H�SIM �see section ����� is used to

estimate the smeared acceptance � the fraction of D�� mesons produced in the

given kinematic range that are reconstructed and pass all cuts on the reconstructed

kinematic variables� This method takes into account most geometrical and detector

e�ects�

� the fraction of D�� mesons with all decay products within the required ranges

of � and p��
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� the fraction of events in which the scattered positron satis�es the requirements
on its direction and energy�

� the fraction of events that satisfy the requirements on activity in the forward
direction�

� the energy� momentum and position resolution of the various components of

the detector �smearing��

Some e�ects� however� are not simulated� the e�ect of proton dissociation on the

acceptance is estimated separately �see section 
������ The e�ect of detector and

readout noise is also estimated separately �see section 
���
�� and a correction is

made for the tracking e�ciency� which is not accurately simulated at low p� �see

section 
���	��

The Monte Carlo generator RAPGAP ���� �see also section 
��� was used

to generate ����� di�ractive events in which charm quarks were produced� All D��

mesons produced were constrained to decay via the channel D��� � �K�������

The ���� events containing D�� mesons were then passed through the H� detector

simulation package H�SIM and the reconstruction package H�REC� The same pro�

gram used for �nding D�� mesons in the data was run on these simulated events

and the number of entries in the %M peak was counted�

Reweighting the p� Spectrum

In order to reproduce better the p� spectrum of D�� candidates observed

in the data� the Monte Carlo events are weighted with a function �p���� where p�
is the generated transverse momentum of the D�� and 
 is a constant� The p�
spectrum of the D�� mesons produced has a signi�cant e�ect on the acceptance

because of its correlation with the p� of the slow pion� The spectrum may depend

on the mechanism for charm production in di�ractive DIS� so if the cross section is

to be measured without making unnecessary assumptions about the mechanism� the

spectrum must be determined from the data� although the low statistics available

limit the precision with which this can be achieved� The Monte Carlo generator

predicts a �harder� spectrum � one peaked at larger p� � than is observed� so a

negative value of the constant 
 is used to make the spectrum softer�

To simulate the e�ect of background� a contribution at low p� is added to

the reconstructed spectrum after reweighting� The shape of this background distri�

bution is taken from the RAPGAP Monte Carlo generator� and the normalization
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is calculated using the signal�to�background ratio from the �t to the %M histogram

from the data� The reconstructed p� spectrum including background is then com�

pared to the spectrum from the data� The central value chosen for the reweighting

parameter� 
 � ����� is that giving the maximum likelihood for the comparison�

The generated p� spectrum after reweighting is shown in �gure 
��� Figure 
�


shows the Monte Carlo spectrum after reconstruction and addition of background�

as well as the spectrum for the data�

The Acceptance

The smeared acceptance A is de�ned as Nrec�Ngen� where Ngen is the num�

ber of D�� mesons in the Monte Carlo sample satisfying all relevant cuts at the

generator level

�� GeV� � Q� � ��� GeV� �
��	�

���
 � y � ��
 �
����

xIP � ���� �
����

jtj � � GeV� �
��
�

j��D��j � ���� �
����

p��D�� � � GeV �
��
�

and Nrec is the number of reconstructed D�� mesons �entries in the %M peak�

satisfying all the cuts applied to the reconstructed event and D�� quantities in the

data� regardless of the generated values� Thus both losses �where a D�� is not

reconstructed or the event is rejected� and migrations �where a D�� is generated

outside the required kinematic region but because of smearing is reconstructed inside

this region� are taken into account�

Figures 
�� and 
�
 show the variation of the acceptance with the transverse

momentum and direction of the D��� The acceptance is very nearly zero below

p� � � GeV and is low for j�j � ����� so no measurement is made in these regions�
the cross section is quoted for the range p� � � GeV and j�j � ����� In principle�

an extrapolation could be made to obtain the total cross section for production of

D�� mesons and hence of charm� However� the result would be sensitive to the

distributions assumed for p� and �� and would therefore be dependent on the model

used to describe di�ractive deep�inelastic charm production�
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Figure 
��� The generated p� spectrum after reweighting to match the data� The

central value and one�standard�deviation limits of 
 are taken from a maximum�

likelihood �t of the reconstructed spectrum to that from the data�
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Figure 
�
� The p� spectrum from the data compared with the reweighted Monte

Carlo� The Monte Carlo histograms show the p� after reconstruction and addition

of background� The range of 
 illustrated corresponds to the central value and

one�standard�deviation limits from a binned maximum�likelihood �t�
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Figure 
��� The acceptance for D�� mesons in the range �� GeV� � Q� � ��� GeV��
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�
� The acceptance for D�� mesons in the range �� GeV� � Q� � ��� GeV��

���
 � y � ��
� xIP � ����� jtj � � GeV� and p��D�� � � GeV� plotted against

��D���
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Errors

The largest source of uncertainty in the acceptance comes from the re�

weighting of the p� spectrum� Because of the small number of D�� candidates in

the data� the shape of the spectrum is not very well constrained �see �gure 
����

The upper and lower limits on the reweighting parameter 
 are taken to be the

values where � ln�L� is ��� above its minimum value� where L is the likelihood for
the comparison between data and Monte Carlo� The di�erence of ��� corresponds

to errors of one standard deviation in the Gaussian case� The allowed range is then

���� � 
 � ����� This gives an error of ������� on the acceptance� and hence ���
����

on the cross section�

Another source of uncertainty is the � distribution of the Monte Carlo

generated events� which depends on the structure function assumed for the pomeron�

The Monte Carlo events used in calculating the acceptance were generated using a

pomeron structure that is dominated by gluons and is �at in � at the starting scale

for QCD evolution� whereas experimental results � such as the di�ractive structure

function FD���
� ��
� � support a structure with a greater contribution at larger values

of �� The acceptance is recalculated after reweighting the � distribution to match

the distribution in each of two di�erent samples of Monte Carlo events� generated

using di�erent hard gluon�dominated pomeron structure functions� The acceptance

changes by ��
����

The other important source of uncertainty is the statistical error due to

the �nite number of Monte Carlo events used to estimate the acceptance� The error

from this source is �	��

The acceptance A� with combined errors� is therefore ����
����������
��

	���� T 
 Tracking E�ciency

The e�ciency for detecting high�p� tracks in the CJC has been estimated

using cosmic rays �
��� The e�ciency at low p� has been studied �
�� using K�
s

decays into ����� the fact that these decays occur isotropically in theK�
s rest frame�

together with the observed p� spectrum of reconstructed K�
s mesons producing

at least one comparatively fast pion �p� � ��� MeV�� is used to �nd the shape

of the graph of e�ciency against p�� The e�ciency is found to rise from zero

to its maximum value between �� and ��� MeV and remain constant above this�
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The Monte Carlo detector simulation does not accurately reproduce this behaviour�

remaining high down to lower values of p� �

�� For tracks at � � ���� the simulated

e�ciency is still above ��� for p� as low as 
� MeV�

The mean e�ciency for detecting the slow pion ��slow is estimated using the

approximation

�avg � �lowF � �high��� F � �
����

where

� �low is the e�ciency for detecting tracks in the range ��� MeV � p� �

��� MeV�

� �high is the e�ciency for detecting tracks with p� � ��� MeV

� F is the fraction

No� of �slow with ��� MeV � p� � ��� MeV

No� of �slow with p� � ��� MeV
�

The value of F is estimated using Monte Carlo events to be ���
 � ����� The e��
ciencies �low and �high are taken to be ��
� � ���� and ���
 � ���� respectively� based
on the results of �
�� 
��� The mean e�ciency for detection of the slow pion is thus

���� � ���	� and for each of the other two tracks it is ���
 � �����

Each reconstructed track must also be linked to the primary vertex of

the event� The e�ciency for this linking is known to be at least ���� �
��� and is

therefore taken to be ��������������� Taking both tracking and vertex��tting e�ciencies

into account� the correction factor is T � ���������������

The fraction F depends on the reweighting parameter 
 used to calculate

A� so there is a correlation between A and T � which must be taken into account�

The e�ect on the product AT of varying 
 and F simultaneously� with F increasing

as 
 decreases� is used to estimate the uncertainty from this source� When this is

done� and combined with the other �uncorrelated� sources of error described above�

the result is AT � ��	�
�����	����
��

	���� P 
 Correction for Proton Dissociation

The Monte Carlo events used to calculate the acceptance A are purely

proton�elastic� The acceptance calculated in this way does not take into account
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the loss of those low�mass �MY � ��
 GeV� dissociative events that cause activity in

the forward detectors �particularly the proton�remnant tagger� and are thus rejected�

or the opposing e�ect of higher�mass dissociative events passing the cuts on forward

activity� The correction factor for these e�ects has been estimated separately �
��

by using the Monte Carlo generator DIFFVM �

� to generate proton�dissociative

events with a range of values of MY � and passing these events through the detector

simulation program� The result is P � ���
� � ����� � ������ where the �rst error
is that due to the dependence of the result on the model used to describe proton

dissociation� and the second is that due to the uncertainty in the e�ciency of the

forward detectors�

	���� � 
 Trigger E�ciency

The e�ciency of the low�Q� DIS subtrigger has been found using data

to be more than ���� ���� for events lying in the kinematic range studied here

and having a scattered positron with energy E�
e � �� GeV� When the prescaling

mentioned in section ����	 is taken into account� the mean e�ciency falls slightly to

� � ���
 � �����

	���	 � 
 Correction for Noise in Forward Detectors

The amount of activity in the forward detectors is used to distinguish

di�ractive events from non�di�ractive ones� However� even if the event has a rapidity

gap� there is some chance that noise in the forward detectors will lead to energy being

�detected� where none really exists and the event will be rejected by the forward

cuts� Noise is not added to events in the detector simulation� so this e�ect leads

to a reduction in the acceptance relative to that calculated using the Monte Carlo�

The size of the resulting change has been estimated �
�� using events selected by the

random trigger� Most of these have no real activity in the detector� so the fraction

of them that fail the forward cuts is a measure of the e�ect of noise� The fraction of

events lost in this way is found to be ��� 	��� where the error is estimated from the
variation of the number over the period when the data was taken� The correction

factor is thus � � ���	 � ���	�
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	���� � 
 Background Correction

The signi�cant sources of background in this analysis are re�ections �i�e�

contributions from D� decay modes other thanK����� non�di�ractive DIS �meaning

events with xIP � ������ and high�t events �those with jtj � � GeV��� There is also

a small amount of contamination from photoproduction events in which a scattered

positron is faked�

The contribution from re�ections is estimated using RAPGAP� Generated

events containing D�� mesons decaying via channels other than the one used for

the cross�section measurement are passed through the detector simulation and the

analysis program� The size of the resulting peak in %M is used to estimate the

fraction of the data peak that is due to such background �see �gures 
�� and 
�����

This fraction is estimated to be ��� � ����� with the error being dominated by the
limited Monte Carlo statistics available to estimate this correction�

Non�di�ractive DIS background is simulated using RAPGAP to generate

events in the range ���� � xIP � ���� and the heavy��avour generator AROMA �
��

to generate events in the range� xIP � ���� The relative normalization of the

AROMA sample is calculated from the measured cross section for production of

D�� mesons in DIS ����� The error is conservatively estimated to be equal to ����

of the size of the correction� This source of background is estimated to contribute

�� � ��� to the signal�

The background from high�t events is estimated by using RAPGAP to

generate events with a t distribution extending out to �� GeV�� where the acceptance

is low and the number of events is small� Of those events passing the selection cuts

applied to the reconstructed events� �� have a generated value jtj � � GeV�� The

error is taken to be ���� of the size of the correction� so this source of background

is estimated to contribute ��� ��� to the observed signal�

The background from photoproduction is investigated by using RAPGAP

to generate di�ractive photoproduction events and PHOJET ���� to generate inclu�

sive photoproduction events� These events are passed through the detector simula�

tion and the same cuts used on the data to select di�ractive deep�inelastic events

are applied� An upper limit of 	� can be placed on contamination from this source�

These four contributions are combined to give a total background fraction

�xIP is de�ned for both di�ractive and non
di�ractive Monte Carlo generated events by taking
the di�racted hadronic state Y to be the stable �nal
state particle with the largest momentum
component pz in the direction of the proton beam�
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Figure 
��� Distribution of the mass di�erence %M for Monte Carlo events� The

points show the signal when all Monte Carlo events are used� The shaded area

shows the signal for all background events� i�e� those without a D�� decaying via

the required chain�
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Figure 
���� Distribution of the mass di�erence %M for Monte Carlo events with a

generated D�� decaying via a chain other than that assumed in the reconstruction�
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of � � ���� � �����

	���
 B 
 Branching Fraction

The branching fractions for the processes D�� � D��� and D� � K����

and the corresponding errors� are taken from ���� and combined to �nd the overall

fraction of D�� mesons that decay via this chain� B � ����
� � �������

	���� Lint 
 Integrated Luminosity

The time�integrated luminosity corresponding to the data used is calculated

using information from the luminosity system� A correction is made for the time

during which any of the detector components necessary for this analysis were not

operational� Further corrections are made for the fraction of luminosity due to

satellite bunches and to interactions which occur outside the region ��� cm � z �

	� cm� The result is Lint � ���	 pb���

The systematic error on the luminosity estimate for ���� nominal�vertex

data is estimated in ���� to be ������

Acceptance and e�ciency� p� spectrum ��	
����

� spectrum ��
���

Monte Carlo statistics �	�
Proton dissociation ���
Trigger e�ciency ���
Noise correction �	�
Branching fraction ���
Tracking e�ciency ��

���
Vertex �tting ���

�� �
Background subtraction� Re�ections ����

Non�di�ractive DIS ���
High�t ��

�
�
Photoproduction ��

���
Luminosity �����
Total systematic error ��	

��
�
Statistical error ���

����

Total error �	�
����

Table 
��� Sources of error in the calculated cross section�
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	�� Result

The cross section calculated for the region

� �� GeV� � Q� � ��� GeV��

� ���
 � y � ��
�

� xIP � �����

� jtj � � GeV��

� MY � ��
 GeV�

� j��D��j � ����� and

� p��D�� � ��� GeV�

where � and p� are measured in the H� laboratory frame� is

	�e�p� e�D��XY � � ������������
��	�
����� pb �
����

where the errors quoted are the statistical and systematic uncertainties respectively�

	�� Monte Carlo Prediction

A prediction for the cross section can be obtained using the Monte Carlo

generator RAPGAP ����� in which di�ractive events are modelled as the collision

of a virtual photon with a partonic pomeron� emitted from the proton according

to a �ux factor fIP�p � x�nIP � The structure function of the pomeron is an input to

the generator� so predictions can be made using various hypotheses for the pomeron

structure�

Predictions have been made using two di�erent pomeron structure func�

tions� One structure function was obtained from a QCD analysis of the di�ractive

structure function F
D���
� ��
� and is dominated by a hard gluon structure� at low Q�

�� ��� GeV�� there is a large peak at � � �� which evolves to lower � with increasing
Q� �see section 	�	 and �gure 	���� The other structure function consists entirely of

quarks at low Q�� and is also evolved in Q��
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Using the hard gluon structure function for the pomeron� �
���� events

were produced� corresponding to an integrated luminosity of ��
� pb��� After ap�

plication of the cuts �� GeV� � Q� � ��� GeV�� ���
 � y � ��
� xIP � ���� and

jtj � � GeV� on the generated events and the cuts j�j � ���� and p� � � GeV on the

generated D�� mesons� the number of D�� mesons remaining is ��
�� This leads to

a prediction for the cross section measured above of

	�e�p� e�D��XY � � �
	 pb� �
����

Using the quark�based structure function for the pomeron� a similar calcu�

lation ���� gives�

	�e�p� e�D��XY � � � pb� �
����

The prediction of the model with the hard gluon structure function for

the pomeron is larger by a factor of about 	� than that of the model with the

quark�dominated pomeron� The hard�gluon prediction is signi�cantly closer to the

measured cross section� although it still falls short by about ��� standard deviations�

neglecting any uncertainty in the RAPGAP prediction�

Of the �
���� events generated using the hard gluon pomeron� ����� were

produced using the colour�dipole model �CDM� to model the hadronization of the

�nal state� while parton showering �MEPS� was used for the remaining ������ When

a histogram of %M is produced from the simulated data� using the same technique

as was used for the data� there is a clear di�erence between the results from the two

hadronization models� The number of events in the peak is approximately equal �i�e�

the acceptance is una�ected�� but there is much less combinatorial background in

the MEPS histogram than in the CDM one� The CDM results conform more closely

to the data� and are shown in �gure 
��� superimposed on the data histogram�

	�� Conclusions

The cross section for production of the charmed meson D�� in deep�

inelastic proton di�raction has been measured for the �rst time� The result clearly

favours a model of di�raction in which the pomeron is a gluon�dominated object

over one in which it is quark�dominated� This conclusion is consistent with mea�

surements made in inclusive deep�inelastic di�raction� including F
D���
� and energy

�ow in the hadronic �nal state�



Chapter �� Measurement of the D�� Cross Section 



H1 Preliminary 1994
H1 Data
Fit to data
RAPGAP + CDM

0

2

4

6

8

10

12

0.13 0.14 0.15 0.16 0.17 0.18

E
ve
n
ts
p
er
M
eV

%M ! GeV

Figure 
���� Distribution of the mass di�erence %M �M�K�����slow��M�K�����

with a �tted curve of the form a�%M �M���
b � Gaussian and a prediction from

RAPGAP with the hard�gluon pomeron structure extracted from F
D���
� �
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More detailed investigations of di�ractive charm production� and hence of

the gluon content of the di�ractive exchange� will become possible in the future with

increased luminosity and detector upgrades� This is the subject of chapter ��



��

Chapter 


Future Measurements

The luminosity achieved by HERA will increase greatly over the next few

years� enabling much more precise measurements of di�ractive deep�inelastic charm

production� It will become practicable to measure the cross section in several bins

of Q�� xIP and �� and thus to �nd the contribution F
D���c
� of charm production

to the di�ractive proton structure function FD���
� � This is a powerful technique for

discriminating between rival models of di�ractive processes� which di�er signi�cantly

not only in the overall contribution of charm to the di�ractive cross section� but also

in its distribution in Q�� xIP and �� Models in which the pomeron is a gluon�rich

object predict a large charm cross section� with a strong contribution at large Q�

and � if there is a leading�gluon or point�like component to the pomeron �
��� This

contrasts with some perturbative QCD�based models� such as that of Genovese�

Nikolaev and Zakharov ��	�� which predict much less charm production� but with a

strong rise at low xIP � breaking Regge factorization� Several predictions for F
D���c
� �

as well as other di�ractive structure functions� are compared in ����� The prospects

for future measurements of di�ractive structure functions at HERA are discussed

in �����

In this chapter� the relevant changes to the future operation of H� and

HERA are summarized� Then a Monte Carlo method is used to investigate the

precision that can be achieved in measuring the di�erential cross section for charm

production using the method of chapter 
� and other methods of tagging charm in

the upgraded H� detector are considered�
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�� The Future Operation of H� and HERA

����� H� Detector Upgrades

A number of changes have been made to the H� detector since the data

used in chapter 
 was taken in ����� and more are planned� The most important of

these for charm physics is the installation of the central silicon tracker �CST� ��
��

which is now in place� though not yet fully operational� The CST will enable weakly

decaying charmed �and bottom� hadrons to be tagged by reconstructing their decay

vertices� increasing the overall e�ciency for detection of charm quarks by up to an

order of magnitude �see section ��	�� It will be capable of reconstructing secondary

vertices down to about �� �m from the primary interaction point�

The BEMC was replaced at the end of ���� by the SpaCal �spaghetti

calorimeter� ����� and the BPC by a backward drift chamber �BDC�� This extends

the angular coverage for detection of the scattered lepton up to � � ������� so the
accessible range in Q� and x is extended downwards� Events at even lower Q� will

be covered by the very�low�Q� calorimeter �VLQ�� to be installed in ���
������

The forward proton spectrometer �FPS� �

�� housed in a series of �Roman

pots� along the proton beam pipe in the forward direction� enables the scattered

proton in di�ractive events to be detected directly� This is essential for obtain�

ing a sample of truly proton�elastic events uncontaminated by proton dissociation�

and with su�cient luminosity it will enable the measurement of the fully di�eren�

tial di�ractive structure function F
D���
� �x�Q�� xIP � t�� The contribution of charge�

exchange interactions ep� enX to rapidity�gap events will be measured using the

forward neutron counter �FNC��

����� HERA Luminosity

The integrated luminosity delivered by HERA in ���� was � pb��� In ���


the �gure was �� pb��� and this is expected to continue to rise towards the design

�gure of ����� pb�� per year as the operational e�ciency is improved and the beam

currents increase towards their design values�

Even greater integrated luminosities are desirable in order to make precise

measurements of rare processes� such as charged�current scattering and neutral�

current scattering at Q� close to the kinematic limit� This can be achieved by
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changing the beam optics so as to focus the beams to a smaller area at the interaction

point �IP��

To do this� the �nal focussing quadrupole magnets for the proton beam

must be brought closer to the IP� The proximity of these magnets to the IP is limited

by the requirement that the beams are well separated where they pass through the

quadrupoles� By positioning dipole magnets within the H� and ZEUS detectors�

the beams can be separated earlier and new quadrupoles can be installed only �� m

from the IP ��
�� compared to �� m in the current arrangement� In this way� the

luminosity can be increased by a factor of 	��� It is proposed to carry out this

upgrade during a shutdown of at least six months in the year �����

The disadvantages of the proposed upgrade� apart from the luminosity

lost during the long shutdown and subsequent tuning of the accelerator �which

will be made up in the ensuing high�luminosity running� are an increased level of

synchrotron radiation from the electron beam and a loss of detector acceptance close

to the beam direction� The detector can be screened adequately from synchrotron

radiation by a suitable arrangement of collimators and absorbers� However� the

loss of acceptance in the extreme forward and backward regions will make some

measurements impossible� in particular those involving low�Q� processes and studies

of the proton remnant� It has therefore been proposed to accumulate an integrated

luminosity of at least ��� pb�� before the upgrade takes place �����


�� Monte Carlo Simulation

The potential for future high�luminosity measurements of charm produc�

tion in di�ractive deep�inelastic interactions is investigated here using Monte Carlo

events� As in the measurement described in chapter 
� charm quarks are tagged

using the decay channel

D�� � D���slow � �K������slow�

The Monte Carlo generator RAPGAP ��� ����� with a pomeron structure

function based on a QCD �t to FD���
� �dominated by a hard gluon component�� was

used to generate 	���� di�ractive charm events in the range Q� � �� GeV� and

���� � y � ����� corresponding to an integrated luminosity of ���	� pb��� All D��

mesons produced were forced to decay by the decay chain of interest� so the number

of D�� mesons in this channel is that expected in �
� pb���
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The acceptance of the detector is simulated by applying cuts on the gener�

ated direction ��� and transverse momentum �p�� of the decay products and on the

energy �E�
e� and angle ��

�
e� of the scattered lepton� This method enables the inves�

tigation of variations in acceptance as the tracking region and range of E�
e covered

are changed� while avoiding the computation�intensive task of passing the events

through a full detector simulation�

The p� threshold is �xed at ��� MeV � where the track e�ciency is already

quite high � for the slow pion� and at ��� MeV for the other two decay products� The

tracker is initially assumed to cover the angular range ��� � � � ����� corresponding

to the coverage of the H� central tracker� The e�ect of extending this coverage in the

forward region �down to � � 
�� approximately the limit of the H� forward tracker�

and in the backward region �up to � � ����� a region covered only by the BDC and

SpaCal� is then investigated�

The acceptance region for scattered leptons is taken to extend up to

� � ��	�� No lower limit is placed on ��e� since at high Q� the lepton will be de�

tected in the liquid argon calorimeter rather than the SpaCal� The E�
e threshold is

initially taken to be �� GeV� giving a high detection e�ciency and a low level of

photoproduction background� This corresponds to an upper limit on y of ��
 with

the present HERA beam energies� The e�ect of reducing this threshold to � GeV

�y � ��
� is investigated�

Figure ��� shows the expected number of reconstructed D�� mesons � as�

suming that only the central tracker is used and a cut E�
e � �� GeV is applied �

binned in Q�� � and xIP � The bins are chosen to be similar in size to those used

in the �rst measurement by H� of the di�ractive structure function FD���
� ����� with

four bins per decade in xIP and four bins in total in each of the variables Q
� and

�� The number of entries per bin is su�cient for a measurement of the di�ractive

charm structure function F
D���c
� with a statistical precision similar to that of the

inclusive measurement in �����

Figures ����a� and ����b� show the dependence on xIP of the acceptance

for D�� mesons in the low�Q� ������ GeV�� and high�Q� ������� GeV�� regions

respectively� The e�ects of extending tracking coverage into the forward region and

of lowering the cut on E�
e are shown� The acceptance is calculated for generated D

��

mesons with p� � � GeV� but no restriction is placed on �� y or �� thus the e�ect

of the �xed cut on track p� is minimized� while the e�ects of changing the tracking

coverage and the energy threshold for the scattered lepton can be seen clearly� The

use of forward tracking has a signi�cant e�ect at comparatively large values of xIP �
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grated luminosity of �
� pb��� The larger points mark bins containing at least ��

entries� giving a statistical error of about ��� or less�
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but makes very little di�erence in the more interesting small�xIP region �below about

������ Lowering the E�
e cut has little e�ect at any value of xIP �

Figures ��	�a� and ��	�b� show the same quantity as the previous two

�gures� but now with extended tracking in the backward region� This clearly has a

much greater e�ect in the small�xIP region� and this e�ect is enhanced by lowering

the E�
e cut� Figures ����a� and ����b� show the expected number of D

�� mesons

reconstructed using the same cuts �apart from that on the p� of the generated

D���� divided into ten bins per decade of xIP in the low�Q� region and �ve bins per

decade in the high�Q� region� The combination of backward tracking and a lower

E�
e cut pushes down the lowest attainable value of xIP by a factor of about two�

Useful �though less detailed� studies can be made with much less than

�
� pb�� by using larger bins� With ��� pb��� without any improvement on the

current acceptance� ��� reconstructedD�� mesons are expected in the low�xIP region

xIP � ����� and �� in the high�Q�� high�� region Q� � �� GeV� and � � ����

The �expected numbers� quoted here are predictions of only one model� but

one that predicts a value slightly smaller than the measured D�� cross section and

describes other aspects of deep�inelastic di�raction well� If the observed numbers

are much smaller than these predictions� this too is of course a signi�cant result in

its own right�


�� Using the Central Silicon Tracker

����� Background Reduction

When the central silicon tracker �CST�� which has already partly been

installed� is fully operational� it will be possible to reconstruct the secondary vertex

produced by the decay of theD�� TheD� cannot decay to a lighter charmed particle�

so it decays via the weak interaction and has a decay length c� � ��� �m which

is long enough to be tagged� A Monte Carlo study ����� using the decay chain

D�� � D���slow � �K������slow has shown that� by requiring a �� probability of

less than ���� for a �t of the D� decay product candidates to the primary vertex�

the light�quark background can be removed almost completely while keeping about

��� of the signal�
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Figure ���� The acceptance for D�� mesons in the regions �a� �� GeV� � Q� �

�� GeV� and �b� �� GeV� � Q� � ��� GeV�� plotted as a function of xIP � The

continuous line shows the results with central tracking only and a requirement E�
e �

�� GeV� The other lines show the e�ect of extending tracking coverage in the forward

direction and including E�
e down to � GeV�
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continuous line shows the results with central tracking only and a requirement E�
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�� GeV� The other lines show the e�ect of extending tracking coverage in the

backward direction and including E�
e down to � GeV�
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Figure ���� The expected number of reconstructed D�� mesons in bins of xIP in
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The continuous line shows the results with central tracking only and a requirement
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e � �� GeV� The other lines show the e�ect of extending tracking coverage in the

backward direction and including E�
e down to � GeV�
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����� Other Decay Channels

The D�� decay to D���slow has a branching fraction of nearly ��� and is

the only decay mode giving a charged track in addition to the D� decay products�

However� the D� decay to K��� has a branching fraction of only �	�
	� ������� so
there is clearly room for a large improvement in statistics if other D� decay channels

can be used�

The decay

D� � �K����� � K�
s�

��� � ����������

can be tagged in the central tracker using the secondary vertex given by the K�
s

decay� and the �nal state includes only charged particles� allowing complete recon�

struction of the D�� However� the branching fraction is approximately half that of

the decay chain used earlier� Compared to the method described above� this also

has the disadvantage that the larger number of �nal�state particles ��ve instead of

three� results in a smaller acceptance and a larger combinatorial background� This

channel has� however� been used to measure the D�� production cross section in

inclusive photoproduction ������ where the statistics are much greater�

There are many other D� decay channels with branching fractions of a

few percent� but they are all signi�cantly more di�cult to use as tags of charm

production with the current detector con�guration� In the decay to K��������

which has a branching fraction of ���� � ������ the �nal state again contains only
charged particles and can be completely reconstructed� However� the large multi�

plicity� without the helpful secondary vertex of the K�
s channel as a signature� leads

to a larger combinatorial background� The other signi�cant hadronic decay modes

are even harder to reconstruct� having �� mesons in the �nal state in addition to

the charged pion and kaon tracks� About ��� of D� decays are semileptonic� with

a neutrino in the �nal state� and therefore cannot be fully reconstructed�

A measurement of inclusive D� production has been made in DIS ����� The

results show that only about ��� of D� mesons produced come from D�� decays�

so an increase of a factor of four in statistics is possible in principle if one can

dispense with the D�� tagging method� However� without the kinematic constraint

provided by the D�� decay� there is a much larger background� and this method is

not practical in di�ractive DIS with the existing data�

This situation will be greatly improved by the arrival of the CST� By re�

constructing the secondary vertex given by the D� decay� the CST will dramatically
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reduce the background for the processes which are currently too di�cult to use�

making many more decay modes available� The CST allows the decay D� � K���

to be tagged with an e�ciency of about ��� ������ If a similar e�ciency can be

attained for all other decay modes in which at least two charged tracks originate

from the D� decay vertex� the expected number of tagged D�� mesons will increase

from about 
�� to around 
���� It may additionally be possible to measure inclusive

production of the D� meson as well as the easier D��� resulting in a further gain in

statistics�


�� Conclusions

Using the technique described in chapter 
� it will be possible with an inte�

grated luminosity of � �
� pb�� to measure the di�ractive charm structure function
F

D���c
� with reasonable precision� The new silicon vertex detector is expected to

extend the range of usable decay channels� thus increasing the acceptance for charm

events by an order of magnitude� This will enable detailed investigation of di�ractive

deep�inelastic charm production using a signi�cantly smaller integrated luminosity

� around ��� pb���



��


Chapter �

Summary

A measurement has been made of the cross section for production of

the charmed D�� meson in di�ractive deep�inelastic interactions� using the decay

D�� � D��� � �K������� The result for the kinematic region �� GeV� � Q� �

��� GeV�� ���
 � y � ��
� xIP � ����� jtj � � GeV�� MY � ��
 GeV� j��D��j � ����
and p��D�� � � GeV is

	�e�p� e�D��XY � � ������������
��	�
����� pb�

This result is signi�cantly greater than the prediction of a model in which the

pomeron is an object with a quark�based structure� and favours a signi�cant gluon

content in the pomeron� This conclusion is consistent with the results of other

analyses� both of inclusive deep�inelastic di�raction and of other properties of the

hadronic �nal state�

A Monte Carlo method has been used to demonstrate the feasibility of

making more detailed studies of di�ractive deep�inelastic charm production with

the increased luminosity expected from HERA in the future� With an integrated

luminosity of several hundred pb��� it will be possible to measure the di�ractive

charm structure function FD���c
� � The addition of a silicon vertex detector to H�� al�

ready under way� will greatly increase the acceptance for tagging charm production�

enabling a measurement of FD���c
� with an integrated luminosity of around ��� pb���
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