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Ubersicht

Die korrekte Simulation von Prozessen hoherer Ordnung ist von grofer
Bedeutung am Elektron-Proton Speicherring HERA. Das von J. Collins
unlangst vorgestellte Regularisierungsschema, das eine konsistente Behand-
lung von Boson-Gluon-Prozessen der Ordnung «a, in einem FEreignis-
Generator ermoglicht, wurde im Rahmen dieser Arbeit erstmals quan-
titativ untersucht. Fs wurde gezeigt, dass dieses neue Schema sowohl
zur Beschreibung tiefinelastischer Streuprozesse bei kleinem z-Bjgrken als
auch zur Beschreibung diffraktiver Ereignissen besonders geeignet ist. Bei-
den Prozessen ist gemein, dass die Gluondichte sehr viel grofler als die
Quarkdichten ist.

Abstract

The correct simulation of higher order processes is of big importance at the
lepton-proton collider HERA. Recently a new regularization scheme was
introduced by J. Collins, which allows a consistent treatment of the boson-
gluon fusion process of order aa,. This scheme is studied quantitatively
for the first time in this thesis. It is demonstrated that the new scheme is
especially important for the description of deep inelastic scattering at low x
and for diffraction, where the gluon density is much larger than the quark
densities.
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Chapter 1

Introduction

Deep inelastic scattering (DIS) at HERA is the scattering of an electron with a quark of
the proton. This scattering process can be described in the Quark-Parton-model(QPM).
The higher the momentum transfer is, the better the structure of the proton can be
resolved. The electron—proton accelerator HERA gives a worldwide unique possibil-
ity to investigate the structure of the proton. DIS is the leading order (L.O) processs
in electron-proton collisions at HERA. Tests of the Standard Model (SM) require a
description of the underlying physical processes with the highest possible accuracy.
Therefore it is necessary to include higher order corrections to the leading order process.
This higher order corrections are calculated in Quantum Chromodynamics (QCD), the
theory of strong interactions. The next to leading order (NLO) corrections are the
QCD-Compton process, where an additional gluon is radiated from the struck quark,
the boson-gluon fusion (BGF) process, where the photon interacts with the gluon by
an intermediate quark and the virtual (loop) corrections. The matrix elements for
these processes diverge individually, however regularization schemes can be applied to
obtain finite results. The NLO corrections are derived by a perturbative expansion of
the LO contribution. Whereas in Quantum Electrodynamics the perturbation series
converges relatively fast due to the small value of the expansion parameter «.,,, this is
not the case for QCD processes, as large a, (corresponding to small () values make
the perturbative series only slowly convergent. For large values of a; the emission rate
is increasing as one approaches the non-perturbative regime, the NLO contributions,
which should be only correction to the LO contribution, become larger than the LO
contribution.

Another approach to reach higher accuracy is given by parton showers (PS’s). By
a resummation of large logarithmic terms in Q2 it is possible to get a reasonable
description also in regions in which «a; assumes large values ([1]). The weak point
of the PS description is the treatment of wide-angle parton emission. In this region
many Feynman diagrams may contribute with comparable strengths, thus the final
cross section may depend on the detailed interference effects between this diagrams
which are not present in PS description.

Neither PS nor perturbation series alone are able to describe the physics in the whole
phase space and it would be ideal to include both descriptions in an event generator. In
[2] Collins describes how it is possible to implement consistently NLO corrections in an
event generator. An important question is the matching between both contributions,
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2 CHAPTER 1. INTRODUCTION

he solves this problem by a so called subtraction method and displays the mandatory
calculations explicitly for the order «; corrections due to Boson—Gluon Fusion (BGF)
processes. One important application of this method will be diffractive physics, as a
gluon dominated object would lead to a dominating contribution of BGF processes to
the cross section, the NLO correction would not be anymore a small contribution to
the total cross section.

In this thesis the theoretical description of the subtraction method has been applied
for the first time and the numerical techniques for evaluating the NLO contribution due
to BGF processes have been developed. This new regularization scheme could thus be
applied to inclusive DIS as well as diffractive DIS at HERA. The outline of this thesis
is as follows: after an introduction to deep inelastic scattering the NLO corrections to
this process are discussed in chapter 3. In chapter 4 the basic concepts of parton shower
evolution in the Altarelli-Parisi approximation are summarized. In chapter 5 we will
then explain the subtraction method and display the obtained numerical results. A
detailed discussion of the necessary integration methods is given in appendix A while in
appendix B we show the regularization of BGF processes in the Massive Gluon scheme,
a standard regularization scheme.



Chapter 2

Deep inelestic scattering

2.1 Kinematics of electron—proton scattering

The standard model describes the scattering of an electron e on a proton p by the
exchange of virtual gauge bosons, i.e. photons for the electromagnetic interaction, Z°
and W# for the eletroweak interaction. Because of the high masses of the electro-weak
gauge bosons Z° and W*, the photon exchange gives the dominant contribution to the
cross section at the center of mass energy of 320 GeV available at HERA®. In order to

p——&  }X

Figure 2.1: e¢-—p-scattering.

describe the kinematics of e — p scattering we introduce the definitions for the relevant
four vectors (E, p) of the scattering process:

k: incoming electron e

k': outgoing lepton [’

P: incoming proton p
The exchanged four momentum ¢ = (v,¢) is given by

q=k—FK =Py —P (2.1)

where Py is the sum of the four momenta of all particles in the hadronic final state.

'HERA is the electron proton collider at DESY (Hamburg).

3



4 CHAPTER 2. DEEP INELESTIC SCATTERING

Furthermore we can define the following (frame independent) Lorentz scalars :

Q* = —¢, (2.2)

s = (k+P)? ~A4EE,, (2.3)
P.q

= — 2.4

Y Pk (2.4)

Q’ Q’
r = = —, 2.5
2P-q y-s (2:5)

where s is the square of the total center of mass energy, and y and z are the
Bjorken scaling variables. These dimensionless variables measure momentum fractions:
The fraction of the electron momentum carried by the photon is given by y, while =
corresponds to the fraction of the proton momentum carried by the struck parton inside
the proton. X includes all particles except the scattered lepton. The hadronic final
state is given by W:

— X

1

W2 = (g4 PP~ —QF +ys = Q2 (2.6)

The = indicates that the masses of the electron and the proton are negligible com-
pared to s.

The variables x, y and ? are not independent of each other, but connected by the
square of the center of mass energy s:

Q* = sxy. (2.7)

Using the above notation we can now define the kinematical requirements for in-
elastic lepton nucleon scattering. Inelastic lepton nucleon scattering ep — €'X is
characterized by W?% > mz, where m,, is the proton mass, deep inelastic scattering DIS
is defined by the additional requirement Q? >> mz.

2.2 The naive parton model

In the naive parton model the constituents of the proton, the quarks, do not intereact
with each other.

In this model DIS is described as the incoherent sum of elastic scattering of the
electrons on the quasifree constituents of the proton[3]. The basic cross section, before
any QCD radiation is taken into account, may generically be written as

do = (boson propagator) x (parton distributions)
x (lepton — boson — parton couplings) x (helicity factors). (2.8)

In DIS the quark masses can be neglected, if the following relations hold:
~¢*=Q*>p! and Q> p, (2.9)

where ¢ is the four momentum of the incoming photon, p; the four momentum of the
incoming quark and p) the four momentum of the outgoing quark.
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Applying the Feynman rules we can calculate the double differential cross section
for elastic electron-proton scattering (see [4])

d*c 4o (y?

where the contributions of the different quarks and antiquarks are summarized in the
structure function Fy(x)

Fy(x) = :I;Zeifa(x). (2.11)

fa() is the density of quarks of flavour « in the proton as a function of the carried
fraction of momentum and e, the corresponding electric charge. The sum in eq. (2.11)
runs over quark and antiquark flavours?.

For later usage we will rewrite eq. (3.1) as a double differential cross section of x
and y. With Q% = zys it follows:

d*o
= KI 2.12
dl‘dy A 2(1‘), ( )
where , ,
dra” [y
K= . 2.1
- (G- 213

and y defined in eq. (2.4).
Eq. (2.12) can also be written as function of y and Q*:

d*c dra? [y?
= —+1- F. . 2.14
dydQ)? Q2y (2 + y) 5(x) ( )

2.3 Quantum Chromodynamics

In the naive quark parton model (QPM) the process of electron proton scattering is
described by the Born term (v*¢ — ¢). The naive parton model completely ignores the
dynamical role of gluons as carriers of the strong interaction associated with coloured
quarks, which is described by Quantum Chromodynamics (QCD). The essential prop-
erties of QCD are [4]:

o besides their electric charge quarks carry an additional quantum number called

“colour”; there are three colours R (Red), G (Green) and B (Blue);
e colour is exchanged by eight bicoloured gluons;

e as gluons themselve carry colour charge they can interact with quarks and other
gluons;

2Eq. (3.1) is the differential cross section given by the exchange of a virtual photon and corresponds
to the dominant contribution to the Neutral Currrent (NC) processes. The full structure of the NC
includes interference terms between the neutral gauge bosons v and Z° and is rather complicated.
Furthermore it does not take into account effects introduced by polarization of initial state.
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e the running coupling constant of QCD in first order of QCD perturbation theory
is a function of the transferred four momentum Q? and is given by

127
(33 — 2ny)log(%)’

a,(Q%) = (2.15)

where n; is the number of active quark flavours at @? and A is the QCD mass
scale.The value of A is not predicted by the theory, it is a free parameter to be
determined from experiment. Its value is in the range of 0.1 to 0.5 GeV.

In order to use QCD perturbation theory, oy must be significantly smaller then 1,
such that the perturbation series converges rapidly with any higher order correc-
tion. Given e.g. Q? = 900 GeV?, then «y is of order 0.1 and QCD perturbation
theory can be applied. As a, decreases with increasing %, we say that the the-
ory is asymptotically free, therefore, probing the structure of the nucleon at high
values of (Q? quarks and gluons behave as free, non interacting particles. On the
other hand o, becomes very big for small Q%: free coloured particles can not exist
anymore, but they are combined colour neutral hadrons (confinement).

o Quark-gluon interactions are computed using the rules of QED with the substi-
tution /o — /a5 at each vertex.

a) b)

§ V\/%L/.—>—q
2 partons

A a

pr— &
proton remnant” —P—éé 3

Figure 2.2: Parton processes in leading order QCD:
(a) QCD-Compton—scaltering,
(b) Boson—Gluon—Fusion (the crossed diagrams are in both cases not shown).

The naive parton model ignores the fact that partons (quarks and gluons) can
radiate gluons. Fig (2.2) shows the corrections in leading order QCD (order ay) to the
Born term yg — ¢'.: a gluon constituent of the target can contribute to deep inelastic
scattering through (y*¢ — ¢q) pair production. This process is called Boson—Gluon
Fusion (BGF).

Moreover, a gluon can be emitted before or after the scattering of the photon on a
quark (v*q¢ — qg), the so called QCD-Compton scattering (QCDC).

In order to calculate the full order oy (O(ay)) corrections to the quark model we
finally have to take into account the virtual corrections: a gluon can be emitted before
or after the scattering of the photon on the quark and be absorbed by the same quark,
furthermore, a gluon can be emitted by the incoming quark and be absorbed by the
outgoing quark (see eq. (2.16)).
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The contributions of the O(ay) corrections (QCDC, BGF and the virtual correc-
tions) to the structure function can be written as

3]
= %%

— FQPM

virtual corrections

F2BGF ‘ 4 ‘ FRePe ‘ + O(a?).
(2.16)

Whereas the Born term is of order o (and zeroth order ) all other terms are of O(avas)(
O(aa) will be abbreviated as O(a,) in the following sections). The contributions from

BGF and QCDC will be discussed more in detail in the following chapter.

2.3.1 QCD improved quark parton model

Whereas in the naive parton model quarks do not interact with each other, in QCD
they interact through the exchange of gluons. The O(ay) corrections to the Born
term lead to a * dependence of the structure function Fy(z,Q?). In the naive parton
model with quarks of spin % and no gluons the nucleon structure functions F; and F}
are related by the Callan-Cross relation

If we consider the existence of gluons, the Callan-Cross relation eq. (2.17) does not
hold anymore and has to be replaced by

FL(vaz) :FZ(vaz)_ZxFl(vaz)v (218)

where Fp is the longitudinal structure function. Neglecting the proton and electron
mass the spin averaged double differential cross section for deep inelastic scattering
can be written as the product of the two nucleon structure functions Fi(z,(?) and
Fy(z,Q?), with the flux of virtual photons coming from the electron [4]

do(ep — ¢X)  4rma?
dyd@*  yQ*

With eq.(2.18), eq.(2.19) can be rewritten in terms of the structure functions F,
and F7,

do(ep — €X)  4Ama? y? T ,
dydQ?  yO? ((1 —yt ?) Fy(x, Q%) — EFL(:L',Q )) . (2.20)

(1= ) Fal, Q%) + v Fi(2,Q%)) - (2.19)
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For all e — p processes the flux of photons can be factorised, so that the cross section
is given as a product of the flux of virtual photons with the v*p cross section:

do(ep — €'X)
dydQ)?

where I'(y, Q*) represents the flux of virtual photons from the electron

N%Q%zyg%((r—y+%)—ngf) (2.22)

and e is the ratio of the flux of longitudinal and transverse photons

=I(y. Q") [or(v'p = X) + ecor(y"p — X)] (2.21)

I —y

-7 2.23
"' (2.23)

€

The cross section for transverse and longitudinal virtual photons is given by:

7117 X) = TR Q) = T (e @) - Fule, Q)5 (229
o(yp — X) = T @ (P, Q%) — 20 F1(2, Q%)) = T g (2,02, (2.25)

Q? Q?
Adding of eqs. (2.24) and (2.25), we can correlate the cross sections of longitudinal
and transverse polarized photons with the proton structure function Fj:

2

Py, Q%) = -2 (or(1%p = X) + o0(y'p = X)). (2.26)

4m0




Chapter 3

Next to leading order processes

The matrix elements of Boson Gluon Fusion (BGF) and QCD Compton scattering
(QCDC) are derived in first order QCD perturbation theory. The contributions of this
next-to-leading (NLO) corrections to the leading order Born Term will be derived in
this chapter.

For both processes we will give first a short overview of the underlying kinematics
and then display separately the matrix elements for transverse and longitutinal polar-
ized photons, from which we derive the cross sections. Problematic is hereby that the
matrix elements for transverse polarized photons of BGF and QCDC show divergences
in the collinear region. We are therefore forced to introduce a cut parameter to obtain
a finite cross section due to transverse polarized photons. As cut parameter we will

min

chose a minimal transverse momentum of the outgoing quark, pf

3.1 General Kinematics

The contribution of the O(ay) corrections introduced by BGF and QCD-Compton
processes to the differential cross section of the light quarks has been calulated by
Peccei and Riickl in [5].

They define an additional scaling variable!

_P-pi
=g

(3.1)

¢

where p; is the four-momentum of an outgoing quark, ¢ is the four-momentum of
the incoming photon and P is the four-momentum of the proton. In the proton rest
frame we have P = (Mp;0,0,0), where Mp is the mass of the proton. With the four-
momentum of the outgoing quark given by p; = (F, pi1, pi2, pi3) ¢; becomes

Ci = —. (32)

In the rest frame of the proton ¢; is the fraction of the photon energy that is carried
by the outgoing particle. Given ¢ as the momentum fraction of the struck parton (a

n [5] this variable is called z;.
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gluon in the case of BGF resp. a quark for QCDC) we can define the variable
x

z = E (3.3)

The meaning of the scaling variable z can be illustrated by the following example (see
fig. (3.1)) suppose there is a branching of the parton « into two partons b and c. If

X=z¢&

&x=(1-29) &

Figure 3.1: Splitting of a parton with momentum ¢ into two partons with
momentum fraction z and (1 — z) respectively.

parton a carries momentum ¢ and parton b carries a fraction z of the momentum of «a,
then the momentum of parton b is x = z£. Momentum conservation requires then that
parton ¢ carries a a momentum & — x = (1 — z)¢.

3.2 Boson — Gluon Fusion

3.2.1 Kinematics

The Lorentz invariant Mandelstam variables are conventionally used to express the
invariant amplitude M of a two body scattering process A B — C' D:

s = (pa+pp)’ = (pc +pp)”,
t=(pa—pc)" = (ps—pp), (3.4)
u=(pa— ]9D)2 = (pB — pc)Za
where p4, pp, pc and pp are the four-momenta of the particles A, B, C' and D.
In order to describe the kinematics of the process v*g — ¢q ( BGF) it is conve-

nient to work in the y*-gluon center-of-mass frame. Neglecting the quark masses the
Mandelstam variables for the process displayed in fig. (3.2) are given by

= (¢+9)° = (p1+p2)’ =—-Q° + 2qy,
= (q—p1)? =(g9—p2)’ = —2gp2,
= (¢—p2)* = (9 —p1)* = —2gp1, (3.5)

where ¢ = £P is the four momentum of the incoming gluon, ¢ is the four momentum
of th e incoming photon and p; and p, are the four momenta of the outgoing quarks.

(3.2(b)):

o~y >

>

5 = (Q‘|‘9)2 = (p2 ‘|'p1)2 = —(Q? + 2qg,
L= (¢g—p2)=(9—m) = —2gp1,
i = (g—p) = (9—p)* = —2gp:. (3.6)
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Y

P.

alA

S § S

(a) (b)

Figure 3.2: Boson — Gluon Fusion:
(a) momentum exchange between virtual photon and gluon in the t-channel,
(b) BGF diagram with momentum exchange in the u-channel.

The invariant variables are denoted §,t,4 to indicate that we are considering a
partonic subprocess. From eq. (3.5) and eq. (3.6) we see that the momentum transfer
between the incoming gluon and photon is for the diagram (a) of fig.(3.2) in the ¢-
channel, while for the crossed diagram (b) the momentum transfer is in the u-channel.

From eq. (3.5) follows that the Mandelstam are related by

~

s+t+a=q"=-Q% (3.7)

For the scaling variable z we obtain

z =

§ g T o

3.2.2 The cross section for transverse polarized photons

According to [5] we will display the results by giving separately the contribution of
transverse and longitudinal polarized photons to the BGF cross section. The amplitude
for transverse polarized photons is given by
Mot =32 L 22 aﬁ_i L300 | 45Q°
= — T e 0z | = ~ A N
g g 1 i at  (84+Q*)?2 )7

(3.9)

where 4/8 is the colour factor and the sum over the polarisation states of the
incoming virtual photon has been already performed. Eq. (3.9) can be derived by
evaluating the corresponding QED process v*e¢ — ve using the Feynman rules of QED,
substituting o® by e’aa, and exchanching u and ¢ because of the different ordering of
the outgoing particles. In eq. (3.9) the term i/t corresponds to the contribution of
diagram (a) in fig. (3.2), and the term #/4 to the contribution of the crossed diagram
(b). The term (—2§9A2) is the interference term between both diagrams. A two body

ut
cross section is generally given by [6]

do 11,

2 2
— = ——~fiom , 1
T~ o sPem M (3.10)
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where ( r

- P1 Pz) — Ty My

Prem © = - (3.11)
is the momentum in the center of mass frame of particles 1 and 2. This formula can
easily applied to the partonic cross section. For BGF the following relations hold:

p1 = ¢ and py = g. If we consider the incoming parton as massless, then eq. (3.11)

becomes (Go? (5402
- 2 a9 5+
cm — ~ = N 5 3.12
h S 45 ( )
Then we get for differential cross section of transverse polarized photons
(3.13)

where we have used eq. (3.8). Now we want to express eq. (3.13) in terms of the
scaling variable ¢;: From eq. (3.5) we have

U = —2§Pp1
t = —2Pp,
54+QF = 2¢EP, (3.14)

where ¢ is the fraction of the proton momentum carried by the gluon.
Inserting egs. (3.14) in eq. (3.1) leads then to

Ppl ﬁ
E = N = 3.15
Cq cpl Pq (§ _I_ QQ) ( )
Ppg tA
Cg = CGGg=—— = —————. 3.16
’ YPe (3+QY) (319
With eq. (3.7) we derive the relation between ¢, and ¢;
1 —¢, = cq, (3.17)
as expected by energy-momentum conversation. From eq. (3.5) it follows that
di )
— =3 3.18
qe, —oTe (3.18)
and thus s | |
T _ |Mo|2. (3.19)

de, 167 §+ Q?
Using eq. (3.15) we can express the dependence of the amplitude on the Mandelstam
variables in terms of the new scaling variables ¢, and z:

a1 s 45Q7 (cg + (1 —cg)*)(z" + (1 — %))
~ —I_ ~ 2 N —I_ N =

tou ut (5+ Q)7 (1= ¢q)eq
From eq. (3.20) we see that the cross section diverges for ¢, — 0 and ¢, — 1 , therefore
we are forced to introduce a cut parameter in order to integrate eq. (3.19). This last

will can be the transverse momentum of the outgoing quark

(3.20)

pr = |p1|sind, (3.21)
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where 6 is the angle between the incoming photon and the outgoing quark with four
momentum p; = (Fq,p1). Making use of eq. (3.5) and eq. (3.3) pr can be expressed
in terms of the Mandelstam variables or ¢,:

, st
TG
Solving this equation for ¢, we find the relation between the pr cut parameter pr .,
and the integration boundaries ¢, i, and ¢, pas

= ¢,(1 —¢,)8. (3.22)

1-p

Cq, min = 5
1
Cq, maz — —IQ_Q =1~ Cq min (323)
with
Ap?
B =1 — PLumin, (3.24)

With these conditions we can now integrate eq. (3.19) in order to obtain the cross
section for transverse photons &p

Cq mazx 2 2
2 2 ¢+ (1—c)
O'T—7T€ oo + (1 —= / 4 de
Q2( ( ))Cqmm (1 _ cq)cq q
1 — min
= 2relaay QQ(ZQ + (1 — 2)?) log (Ciq) — 24 4¢y, min (3.25)
Cq, min

Using eq. (3.23), the cross section for transversal photons eq. (3.25) can be expressed
in terms of (:

144
1-p

b = 2mwe? Q0 (22 + (1 —2)?) (log —0). (3.26)

Q

3.2.3 The cross section for longitudinal polarized photons

According to [7] we find for the amplitude of the longitudinal photons
IMp? = 16n°€elaa,8z2(1 — 2). (3.27)
With eq. 3.13 we find then

d&L 2 2‘2
=Te OzOzS

dt Q*

This cross section does not diverge for i — 0, so the integration could be performed

82(1 — ). (3.28)

over the whole kinematic region. But as we have introduced a minimal pr cut in the
case of the transverse polarized photons we will use the same cut in this case: Using
eq. 3.19 we obtain

& = wezaasé&:(l—z) / d ¢, (3.29)
= W@?@@S%SZ(l — z)p. (3.30)

Q
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The total contribution of BGF processes to the cross section for light quarks is then
obtained by multiplying the sum of eqgs. (3.29) and (3.26) with the gluon density f,(&)
and integrating over ¢

OBGF = /(&L—I-&T) Jo(&)d ¢ (3.31)

where
4pT min

Q2

Beyond the naive QPM the structure function becomes dependent on Q2. In general
the structure function F¥(x, Q?) is related to the total cross section by eq. (2.26). Thus
we get for

a=1+4+—7" (3.32)

2

dmia
With eq. (3.33) we can now display the contribution of BGF processes to Fy:

FyentBSE (0% = opar (3.33)

1

. 1
le ght BGF (l’, Qz,mem) = %ezas(ﬂz) /Z C1light fg(f?/“‘z)d 57 (334)
where
Iu2 — Q2
and

+75
—p

Chight = | (2% + (1 — 2)? )log Lt + B(—1+62(1 — z))] : (3.35)

3.2.4 Boson—Gluon—Fusion for the charm quark

In the previous section we calculated the structure function for light quarks eq. (3.34).
Now we want to compare this result with the structure functions for charm quarks. In
contrast to the light quarks, the mass of the charm quark can not be neglected. The
contribution due to BGF processes to the structure function for the charm quarks is

given by [8]:
charm 1 charm
PP (0, Q2 m ) = S etau(p / CM () €, (3.36)
where:
dm? 2
azl—l—?,u = (2m.)*, B = (3.37)
and

4m 8m?
Charm:[ (1 —2)*+2(1 —32) Q2 22 Q4)

1og£+ﬁ (—1—|—82(1 — ) —z2(1 —2)42;3)]. (3.38)
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In the computation of the structure function for light quarks,eq. (3.35), it was
necessary to introce a cut parameter pr in order to avoid divergences. For charm
quarks the charm mass m. leads to a finit result for all values of pr (see eq.(3.37).

Due to the dependence on the gluon density the calculation of the integrals in eqs.
(3.36) and (3.34) have to be performed numerically?. (Details about the problems
arising by the numerical integration of eqs. (3.36) and (3.34) are discussed in appendix

A.3).

3.2.5 Comparison with experimental results

In this section we want to compare F5™*™ BSF calculated by numerical integration of

eq. (3.36) with the measured values of the ZEUS collaboration published in [10] (see
fig. (3.2.5). In fig. (3.2.5) the data points show the measured values of Fyham the
curve is the calculated FhamBSY We observe a good agreement between the measured
values and eq. (3.36) for all pairs of measured z and Q* values.

3.3 QCD Compton Scattering

3.3.1 Kinematics

In the QCDC Compton scattering process v*¢ — qg a gluon can be emitted from the
incoming quark (see fig. (3.4),(a)) or from the outgoing quark (fig. (3.4),(b)).
In the first case the Mandelstam variables are given by

(p2+9)° = (g+p)* =—-Q%+ 2qpi,
(q—p2)* = (p1 — 9)* = —2pg,
(p1 —p2)* = (¢ —9)° = —2qq, (3.39)

o~ >
|

>
Il

while in the second case by

(g+p1)° =—Q%+ 2qp1,
(¢—9)* = —2qg,
(1 —9)* = —2p1g. (3.40)

o~ >
|

>
Il

The Mandelstam variables corresponding to fig. (3.4,(b)) are obtained by exchanging
the values ¢ and @ corresponding fig. (3.4,(a)).
From eq. (3.39) we obtain:

§+Q% = ¢P,
i = —2¢qP. (3.41)

From eq. (3.1) follows then

2We used the integration routine GADAP from [9] to integrate eq. (3.36).
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Figure 3.3: The measured FS"™ at Q* values between 1.8 and 130 Gev* as a function
of . The inner error bars show the statistic errors, the outer error bars the total error.
The curves correspond to the calculation of F"™ by Ghick, Reya and Vogt in [8].

_ Pps
Cq = Cp1 = P—q
_ Ip

Cqg = Pq

where ¢, and ¢, are related by

A

[

+Q7)

t

G+

cg=1—c¢,.

3.3.2 The cross section

(3.42)

(3.43)

(3.44)

In a similar way as done for BGF processes we can calculate the cross section due to
QCDC for light quarks (see [5]). In this section we will give a short summary of the
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P, P, g

(a) (b)

Figure 3.4: QCD ~Compton scattering:
(a): emission of the gluon from the incoming quark,
(b): emission of the gluon from the outgoing quark.

main results:
For the transverse photons we get the following amplitude:

41 2 2
| M7|* = 64n’aa, = ik
(

32| (1 — (1 —¢,) +2(z ¢ + 1)] . (3.45)

where 4/3 is the colour factor and the factor 1/2 is the average of all possible initial
states of quark spins. With eq. (3.19) we get for the contribution of transverse polarized
photons to the cross section

577 = §mas é ¢? [_ — 210i _iﬁ_fl 40) + (2 +1) (3.46)
Using the amplitude for longitudinal photons
My = 647T2aozse§§(4z ¢,) (3.47)
we can calculate the longitudinal contribution. With eq. (3.19) we obtain
FRePe = §7Tozoz5 2[2¢,0). (3.48)

qu

We now have to integrate the cross sections in the v¢ center-of-mass system over
the parton densities in order to obtain the contribution from QCD Compton processes
to the total cross section. This calculation leads to:

1

F2CDC /(&L+&T> Fa(6,Q%) de

= Sroa, Y [ T 2 CREPC ¢ g (6.0 de, (3.9

where

1 (36 + 2log Z(=* + 1))
z—1

+ 8(z + 1) | + 2¢,0, (3.50)
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where f, (£,Q?) are the parton densities of up, down and strange quarks and « is
defined in eq. (3.32).
Using eq. (3.33) we finally obtain

Flisht QCDC _ Q_ZO_QODO‘ (3.51)

dmia
Due to the dependence on the parton densities, both the integrations of eqs. (3.31)
and (3.49) have to be performed numerically. It is is problematic that both equations
peak for small values of the integrand variable £. In order to get a continous function as
result we used the importance sampling transformation method described in appendix

A2

3.4 The cut off scale py

The cross sections for transverse photons for the O(a;) corrections introduced by BGF
and QCDC processes diverges for ¢, — 0 for BGF and QCDC processes (eqs.(3.25),(3.45),
and for ¢; — 0 for BGF processes (eq.(3.25)). In order to obtain a finit total cross
section we are forced to introduce a cut off scale. A possible choice is the transverse
momentum pr in the v* parton center-of- mass-system, which we have already used in
the previous sections.

A first possibility is to select a miminal py such that the sum of

leightBGF is smaller than the total contribution of leight.

light QCDC
F)® Q and

leight QCDC | leightBGF < leight (3.52)

We computed Fjs B (eq. (3.51)) and it QODC (eq. (3.34) for Q* values 100,
150 and 200 Gev? and pr-cuts between 1 GeV and 1.4 GeV. This structure functions
were calculated with leading order parton densities, which originate from fits to the
measured total cross section[11], [12]. Fy&" calculated with LO parton densities rep-
resents the total contribution of the light quarks to the structure function. The pp-cut
values were chosen such that the NLO corrections give the dominant contribution to the
structure function leight.The result is displayed in fig.(3.4). The following observations
are made:

e The smaller the z-values and the higher the Q? values are, the higher must the
pr-cut be chosen to avoid that the NLO corrections become bigger than the total
structure function thght. Only for a pr-cut of 1.4 GeV the NLO contributions

are smaller than the total cross section for all selected Q? and x-values.

e The BGF contribution dominates the cross section at small z-values. This is
expected due to the high gluon density at low .

The technique of introducing an artifical pp-cut such that the sum of FQIigthCDC and

leightBGF is smaller than the total contribution of the light quarks to the structure
function is not a satisfactory method of including the O(ay) corrections, especially for
diffractive DIS: In diffractive DIS the photon interacts with a parton from a gluon
dominated object. The quark densities used to calculate the LO contribution are in
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Figure 3.5: Calculated curves for FllgthCDC leightBGF

thght. The distributions are plotted for pr values from pr = 1.1 to pr = 1.4

GeV.

, the relative sum and

this case approximately zero, whereas the large gluon density leads to a dominate
contribution of BGF processes to the total cross section even at high a-values (see also
fig. (5.10) We are therefore forced to introduce large pr-cuts cutting away large parts
of the available phase: jet analysis of the hadronic final state typically start at jet
transverse momenta of 3 GeV.

This method of regulating the contributions of NLO corrections by a fixed pr-cut is
inconsistent, as it introduces a critical dependency on the pt-cut itself: a change in the
cut paramater pr does not imply a change in the corresponding L.LO parton densities. A
consistent way to include the NLO contribution due to BGF into existing Monte-Carlo
generator RAPGAP [9] will be described in the next chapter.






Chapter 4

QCD parton shower evolution

In this chapter we will introduc the main aspects of the QCD parton shower evolution
used in standard Monte-Carlo generators. We will see that an inclusive summation
over all inital states is equivalent to using ()? evolved parton structure functions, this
(Q? evolution is based on the Altarelli-Parisi- equations.

4.1 The Altarelli-Parisi evolution equation

The partons inside a hadron may be viewed as undergoing a continous process of
branchings and recombinations. At each moment an individual parton ¢ can initiate a
cascade, branching into a number of partons. Fach generic branching ¢ — ab implies
some relative transverse momentum between the daughter partons a and b. Energy-
momentum conservation requires that at least one of the daughter partons has space-
like virtuality m? < 0. Since the partons are virtual, the cascade lives only a finite
time before reassembling, with the most off-shell partons living the shortest time. A
hard scattering will probe the hadron at a given instant[13]. The probe, i.e the virtual
photon, is able to resolve fluctuations in the hadron up to the momentum transfer
scale (which for simplicity is taken to *) of the hard scattering [14]. Thus probes at
different Q* will seem to see different parton compositions in the hadron. The larger the
momentum transfer scale in a hard scattering is, the smaller are the distances probed
in the hadron and the softer is the observed parton composition. The change of the
parton composition with Q* is given by the Altarelli-Parisi (AP) evolution equations[15]

dfaE;,t) _ ozgfrt)zc:/;dg_ﬁ c(§,t)PC_>ab(§), (4.1)

where

e ¢ is a shorthand for the evolution parameter

_ d@*

t =1n(Q?) = dt = din(Q*) = o

(4.2)

o fi(&,1) is the parton density for flavour ¢ expressing the probability of finding a
parton ¢ carrying a fraction £ of the total momentum of the hadron, if the hadron

21
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is probed at virtuality Q*. The absolute form of the partonic structure functions
cannot be predicted by perturbative QCD, but has to be parametrized at some
scale Q. Given the parton structure function f;(&,¢) at some reference point
to = In Q3, the structure function can then be computed for any Q? by the AP-
equations.

o P.,.1(z) are the AP splitting functions. A parton with momentum fraction x
could have come from a quark with larger momentum fraction & > x. The
probability that parton a derives from quark ¢ with ¢ > x is proportional to
asP._yqp. The splitting function for the process ¢ — g, which will be of further
interest in the following chapters, is given by

Pyrsag = 5(22 (1= =), (4.3)

The AP-equations express that, during a small increase dt there is a probability
that a parton ¢ with momentum fraction £ branches into two partons a and b, such that
parton a has a fraction z = /¢ and parton b has a fraction (1 — z) of the momentum
of parton c.

Correspondingly, during a decrease dt a parton @ may be “unresolved” into a parton
c. The probability that a parton b disappears from x during a small decrease of the
virtuality dt is then given by [16]

dfa(x,t)
falz,t)
_ |dt|a5 2/1 dff Pus (%) (4.5)

7

dP, (4.4)

Summing up the cumulative effect of many small changes dt, the probability for no
radiation exponentiates. Thus we can define the Sudakov Form factor

S, b £) = exp{— /t " 0‘5 Z / ey (—) JJ: f g?)} (4.6)

which gives the probability that a parton a remains at « from ¢,,4, to t < t,,4.-

The t value at which the branching P._,,; takes place , i.e . the virtuality of a, can
be calculated by putting the Sudakov factor S,(x,t,q.;t) equal to a random number
between 0 and 1 and solving the equation for ¢. If the random number is smaller than
So(2, tmar; to) the parton existed at ¢g = ()3 and there is no further branching. With
eq.(4.2) and z = /€ eq. (4.6) can be written as

Qhax dQ"? o, (Q" 1dz x/z,Q"”
5.0 Qe @) = exp { = [ LT 5 [N G 0
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Figure 4.1: Schematic picture of spacelike shower evolution, with hard scat-
tering partons 1 and 2 and emitted timelike partons 4,6 and 8.

4.2 QCD parton shower evolution

A fast hadron can be viewed as a cloud of quasi real partons [16]. Suppose there
is a hard scattering process between two incoming hadrons (or an incoming hadron
and an electron, as at HERA), then two partons can be scattered to high pr such
that the partons in the related cascades are provided with the necessary energy to live
indefinitely. In principle this energy transfer can be calculated by the corresponding
2 — N hard scatttering matrix elements, where 2 stands for the iniators of the cascades
and N for the final parton multiplicity. In practice, it is only possible to calculate the
matrix elements for a small number of N.

An alternative approach to include higher order corrections are parton showers
(PS’s). In the Altarelli-Parisi [15] approximation the partons on the two branches
which leads from the two initiators to the hard scattering (7 — 3 — 1) in fig. (4.1)
have increasing spacelike virtuality (Q% < Q3 < (%), adjusted such that all other
parton branches ( 8, 4, 6 in fig. (4.1)) are on mass shell( M? > 0)*.

The daughter partons (3 and 1) will thus receive transverse momenta greater then
that of the initiator 7. The partons on mass shell are called timelike, the partons with
M? < 0 are called spacelike. After the QCD cascade the partons participating in the
hard interaction have transverse momenta in contrast to the non parton shower case.
The momentum transfer given by the central hard scattering is enough to ensure that
all partons may end up on mass shell.

Essentially the partons, except for the two hard scatterers, continue along the di-
rection of the initial parton, but occasionally they can have large transverse momenta
giving rise to separately visible jets of their own. In standard Monte Carlo generators is
the starting point of the shower evolution the hard scattering subprocess, the evolution
is then done backwards from the hard scattering process to the initiators.

Given a parton a one has to find out which branching ¢ — ab gave rise to it,
alternatively the parton a was already present at the cut-off scale Q3. This can be
done by using AP equations eq. (4.1).

For final state parton showers a forward evolution scheme is used and no parton
densities enter the evolution. Details can be found in [17].

!The virtuality is only one possible ordering criteria of a parton shower, others are e.g. the
transversal momentum of the partons, their mass or the angle between the partons.
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4.3 Kinematics of the off-shell struck quark

In matrix element calculations all external legs are on mass-shell. The situation is quite
the opposite in parton shower algorithms, where the generation of spacelike or timelike
masses is a central ingredient. Due to this difference the comined use of matrix element
calculations and parton showers is difficult in event generators. In DIS this difference
leads to complications in the definition of the variable Bjgrken x [14]: on the one hand
Bjorken x is defined as @ = */2Pq from the kinematics of the lepton vertex, on the
other hand Bengtsson and Sjostrand define in [14] a new variable

_ g

=5 (4.8)

L1
where pi(Fy,p1) is the four momentum of the struck quark. In the Breit frame, i.e.
in the frame where the photon four vector is ¢ = (0;0,0,Q), 1 is the fraction of the
longitudinal momentum of the proton (moving in z-direction) carried by the parton.
The standard definition of Bjgrken’s # and x; coincide for massless incoming and
outgoing partons, since then

0 = p?=(p+9q)°
= pi+2pq+¢* = 212Pq— Q7 (4.9)

which implies
0?
If the incoming parton has spacelike virtuality p} = @7 and/or the outgoing parton a

timelike virtuality p? = m/?, we obtain

z. (4.10)

€1

m? = pf =(p+9q)°

= PP+ 2pq+ P =212Pg — Q* = —Q? + 212Pq — @7, (4.11)

which implies
2 2

o =g (1 + mlT_le) (4.13)
in contrast to the standard definition of the parton model z; = . Here m? = p}?
and Q7 = —p? is the virtuality of the exchanged quark. This new definition becomes
necessary for the following reason: in the parton model deep inelastic scattering is
described by assuming that the incoming and outgoing quarks have small virtualites
Q? and Q7 = —p/? compared to the virtuality of the photon Q2. This approximation
is correct for inclusive cross sections, since the hadronic final state is integrated over.
Making exclusive calculations this approximation is no longer valid and leads to incon-
sistent kinematics. The exact choice of energy and momentum combination matters
if partons are off mass-shell. On the one hand the usual definition of the structure
function f,(&, @?) is such that it gives the probability to find a parton with flavour «
taking a fraction £ of the hadron energy or momentum, if the hadron is probed at the
scale )* (see section 4.1), so if we deal with structure functions we have to change from
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Bjorken x to the new variable x; to treat the kinematics correctly. On the other hand,
structure functions are measured experimentally by detecting the scattered lepton,the
lepton vertex will then define Bjorken x. In order to reproduce the correct differential
cross section eq. (3.1) one is therefore forced to use the Bjgrken a definition, i.e. that
the lepton vertex must be unaffected of the evolution of the parton showers.

In the calculation of the Sudakov form factor eq. (4.7) we assumed that the frac-
tional momentum of the struck quark x; equals Bjgrken x, but this assumption is only
valid in the limit that masses and virtualities are negligible compared to Q. If m} and
/ or Q? = —p? can not be neglected anymore, one has to use the correct value of the
fractional momentum p;. The definition of z; leads to a change of the Sudakov form
factor in eq. (4.7). Bengston and Sjostrand write in [14] a modified Sudakov form
factor:

Qhnax dQ'? ozs L dz x1/z, 12
S(gBS)(x7 lenaw Qz) = eXp {_/ Q Z/ c—>ab M} .

2 le I fa(xh Q/Q)
(4.14)

4.4 Bengtsson and Sjostrand algorithm

In the parton shower scheme of Bengtsson and Sjostrand [14] the four momenta ¢ of
incoming photon, ps of the incoming gluon, p; of the intermediate quark and p} and
py of the outgoing quarks obey the following requirements?:

e The proton is to be moving in the —z direction.

o The masses of the outgoing quarks® as well as the incoming gluon are discarded.

Thus:

(m+9° = p=0
(p3 - p1)2 = p% =0
p; = 0.

Virtuality Q7 and four momentum p; of the intermediate quark are related by

= Q. (4.15)

Bengtsson and Sjostrand define the scaling variable

L opmta) (4.16)
ps- (ps+q)
It can be shown (see[2]) that the scattering angle obeys
cost = Pt 1 — 22101 /Q2 (4.17)

pi+q° 1-Qi/Q>
2This prescription is implemented in RAPGAP and used by Collins in [2].
3For light quarks the masses of the quarks are small compared to Q2 and can be neglected.
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Figure 4.2: A Feynman diagram of the BGF process

The fractional momentum of the gluon is defined to be

o wzi(l_@) 18
’ P-q % Q*)’ (4.18)

it equals the variable ¢ introduced in chapter 3.

The variable z is then (see eq. (3.3))
= (4.19)

Neglecting the mass of the outgoing quarks eq. (4.13) can be written as

@
1 = (1 QQ)
= x— %:1:3(1 — cosb), (4.20)

where we have used eq. (4.18). Using the new scheme one has now to deal with a
dependence of z; on the scattering angle 6.

4.5 Parton shower versus matrix elements

In chapter 3 and this chapter we introduced two possible approaches to include next-
to-leading order proceesses (NLO), i.e. corrections one order higher than the leading
order (LO) Born term in an event generator: by higher order matrix elements (ME’s)
derived by a perturbative expansion of «y, and/or by parton showers.

The matrix elements of BGF and QCDC in chapter 3, are derived in first order
perturbation series of the running coupling constant a;. Problematic is hereby that
the contributions of BGF and QCDC processes to the total cross sections diverge in the
collinear region. In order to obtain finite results we are therefore forced to introduce a
minimal transvers momentum as cut parameter.?

“In regularization schemes like the Massive Gluon scheme or the MS scheme finit total cross sections
are only obtained by a cancellation between large positive real and large negative virtual contributions.
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Furthermore small Q*-values lead to big values of the evolution parameter a, of the
QCD perturbation series, making such the perturbation series only slowly divergent in
this kinematic region.

Parton showers have complementary strengths: By the resummation of large loga-
rithmic terms in e.g. Sudakov factors, it is possible to obtain a reasonable description
also in regions of large a; values [1]. The disadvantage of the parton shower approach
is the crude treatment of wide angle emission, the Feynmman diagrams of QCDC and
BGF may contribute with comparable strengts, and the final cross section may depend
on the interference terms between the Feynman diagrams.






Chapter 5

Subtraction method for
Boson-Gluon-Fusion

Collins proposes in [2] a method to incorporate BGF processes in a Monte Carlo gen-
erator like RAPGAP [9] in a consistent manner. In this chapter we will describe the
main aspects of this method!.

In a Monte Carlo simulator events can either be generated by showering the lowest-
order parton model process or the O(a;) hard scattering matrix elements (for BGF and
QCDC). The first case is suitable to describe the total DIS cross section, neglecting the
NLO subprocesses, since they represent only order a; corrections to the basic process.
The second case is e.g. suitable to calculate the production of two-jet events.

Ideally one wants to include in the generation process the LO as well as the NLO
contribution. In order to properly describe the phenomenology of diffractive physics
it 1s mandatory to include the gluon induced NLO subprocess. Collins’ subtraction
method involves the generation of the following two classes of events:

o class 1: events derived in the LO parton model by showering the initial and final
state quarks (exactly as at present),

o class 2: events derived by starting with a BGF process and proceeding with the
showering?.

Between these two classes of events there is no physical distinction, they populate
the same regions of phase space, and the events differ only in how the program generates
them [2]. The crucial point of Collins’ method is that these two classes of events
are separated by equipping the cross section for the photon—gluon fusion subprocess
with a subtraction that correctly compensates the double counting: the subtraction
removes that part of the photon—gluon fusion term that is included in the LO parton
model plus showering calculation. The separation is performed by intoducing a cut-off
function, which depends on the virtuality of the exchanged quarks. This method does
the subtractions point by point in the integrand, cancelling out the divergences in the
collinear region.

!The inclusion of QCDC processes is technically more complicated, as in addition to the QCDC
compton Feynman graphes the contribution of the virtual corrections have to be taken into account.

2This division of the kinematic regions is very similar to the division obtained in the Massive Gluon
scheme, a standard regularization scheme described in appendix B.

29
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In the first section of this chapter we will summarize the basic algorithm used in
the event generation at leading order. We will derive the first order contribution to the
cross section in the Monte Carlo, from which in section 2 the subtracted gluon-fusion
cross section will be computed. This subtracted gluon-fusion can directly implemented
in an event generator. The usage of the subtraction method makes mandatory to
use appropriate parton densities for this new scheme. In section 3 we will show how
this parton densities can be related to MS parton densities and show the LO cross
section computed in the scheme appropriate for the subtraction method. Finally we
will display the proportion of the LLO processes and the contribution of BGF processes
in the subtraction method for proton and diffractive parton densities.

5.1 The LO contribution

5.1.1 Basic Monte Carlo algorithm

The basic steps performed by the algorithm used in Monte Carlo generators such as
RAPGAP [9] to derive the LO contribution to the cross section are:

1. generate values of z and y (and hence Q* = szy) from the LO cross section for

DIS eq. (3.1);

2. generate a virtuality Q% for the incoming quark, a longitudinal momentum frac-
tion z; for the first branching, and an azimuthal angle ¢ for this branching. The
distributions arise from the Sudakov form factor of eq.(4.14) with Q* = Q3:

Qe dQ™ 0,(Q tdz 21/, Q"
(5.1)

The Sudakov form factor is the probability that the virtuality of the struck quark
2

is less than Q7;
3. iterate the branching for all initial-state and final-state partons until no further
branchings are possible;

4. generate 4-vectors for the momenta of all the generated partons.?

5.1.2 First-order term

The first-order a; term (the “shower contribution”) is obtained by multiplying the
lowest order cross section in eq. (3.1) by the first order term in the expansion of
the Sudakov form factor eq. (5.1) in powers of )?. This is made differential in the
momenta of the particles involved. As in this work we are interested only in the NLO
contribution due to BGF processes, the gluon induced term is selected:

30nly the first two steps of this algorithm will be of further interest in the later sections.
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do.shower (Q2) fa(x)
dx dde2 dz do =K Zazea4 2@2 C(Q ) ( ) fg( Q )fa(xl), (5.2)
where vy = 2(1 — Q1)/Q*. The splitting kernel P is for ¢ — quark + antiquark
1
P(21) = Poag(21) = 5 (1 = 221 + 247). (5.3)

In eq. (5.2) an additional factor C'(Q7) has been introduced: this cut-off function
C(Q1) gives the maximum value of Q7 for which the shower contribution will be sub-
tracted from the cross section due to BGF processes. It reproduces the upper limit on
the Q"? integral in the Sudakov form factor (eq. (5.1)) and is set to

CQ1) = 0(Q*—Q7)
= 1,ifQ* > Q?
= 0, ifQ? < Q? (5.4)

n (5.2).

One might worry that a full Sudakov form factor (without the cut-function) should
appear in eq. (5.2) to represent the actual physical suppression of the shower contri-
bution at low Q?. In fact, the Sudakov form factor should not be used in this formula,
since the raison d’étre of (5.2) is to be a subtraction term for the NLO contribution to
the cross section. The unsubtracted NLO contribution —eq. (5.9) below— has the same
singularity and lacks a Sudakov factor. The subtraction will cancel the singularity —see
eq. (5.16)— to leave an NLO term that is dominantly in the region of large Q7 [2].
Thus a strict expansion to lowest order in ay(Q?) is appropriate, and a resummation
of higher-order terms, such as is represented by the Sudakov form factor, is not needed
[2].

For later usage we will need the shower contribution in terms of the variables Q%
and cos . From eqgs. (4.17) and (4.18) we get

Q= (1-cost)QS, (5.5)
2y = %—%(1—0050). (5.6)

Then the Jacobian of the transformation is given by

O(x3,cos ) 2x

= - 5.7
z,QF)  =1Q? (5.1
From eq. (5.2) we get then
dofon a ful2)
shower — [ 2 S a
d dy dis deos 0 do ' Zaje cle@n fg( @ AT
1 x 1
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5.2 Boson-gluon fusion with subtraction

From the matrix elements of BGF for transversal and longitudinal photons in eqs. (3.9)
and (3.27) we can derive a fivefold differential cross section due to BGF ([7], [2]). Later
on, this differential cross section will be called “unsubtracted”, as we will subtract from
this cross section the contribution due to the shower algorithms eq. (5.8).

do—unsubtracted(FQ Paft) ~ 2 OéS(QQ) X 2
dx dy dxs dcos 0 do * Z ¢ fols, Q%) (5.9)

4?2 g4

quarks a

1 1 1
{P(Z) [1—6080 +1—|—cos@ _§+3Z(1_Z)}'

This unsubtracted photon—gluon fusion differential cross section diverges as |cosf| —
1, thus the integration can not be performed over the full kinematic range. This di-
vergences are illustrated in fig. (5.1), where the differential cross section due to BGF
eq.(5.9) is plotted with simplified quark and gluon densities f,(z) = (1 —)°/x against
cos ) at fixed z, 3 and ()? values.
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Figure 5.1: The differential cross section due to BGF eq. (5.9) plotted with
simplified parton densities for fived values of x = 0.001, 23 = 10z, Q* = 10
Ger*.

To avoid double counting between events generated by starting with the BGF ma-
trix elements eq. (5.9) and events derived by showering the LO contribution (the
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(g@ g (%%
g g
quark term antiquark term

Figure 5.2: Feynman graphes of BGF processes: the momentum exchange
between incoming gluon and photon is for the quark term in the t-channel, for
the antiquark in the u-channel.

“shower terms”) eq. (5.8) we must now subtract the shower contribution from the
boson gluon contribution. The shower contribution eq. (5.8) can be be divided into
contributions from quarks and antiquarks by treating the antiquark as a quark term
with 0 replaced by © — 6.

For the quark term the momentum exchange between the incoming virtual photon
and the scattered quark is in the t-channel (see eq. (5.5) and fig. (5.2)), thus we get
from eq. (5.5)

pl=t=—-Q} = —Q*1 — cosh)z3/2 (5.10)
leading to
A0 b, quark a,(Q?) v fal®)
shower, quarks _ [,, 28 )= 2 a
dx dy dxs dcos 0 do * qugkzs . €a 472 ¢l ):Jligfg(:]%7 © )fa(:liu) 8
1 T 1
- P ——-=(1—- 0 5.11
><1 — cos ¥ (:1;3 2( o8 )) ’ ( )

where x1; is the value of the scaling variable 1 (eq. 4.20) for the quark term,

t

The subscript “quarks a” indicates that we sum only over the quark flavours. For
the antiquark term is the momentum exchange between the incoming virtual photon
and the scattered quark in the u-channel (see fig.(5.2)), thus

pi=u=—Qi = —Q*1 + cosl)xs/2z (5.13)

From eq. (4.20) follows then for the scaling variable x; in the case of antiquarks

Tiy = T (1 + @) (5.14)
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Figure 5.3: The differential cross section due to the shower algorithm (5.8)
plotted with simplified parton densities for fized values of x = 0.001, 3 = 10z
and Q* =10 Ge V2.

leading to
doaer, ant 0,(Q%) v f
shower, antiquarks - 248 2 a(x)
= A C(—u)—
dx dy dxs dcos 0 do * qugkzs aea 472 (=) xng(:lig,Q )fa(:liw) 8
1 T 1

— P ——=(1 0 ) 5.15

><1—|—COS(9 (:1;3 2( tcosd) ). ( )

where we have used €2 = e2. We have to take into account that in eqs. (5.11) and

(5.15) the sum is only over the quarks, not the antiquarks flavours.

The shower contribution shows the same divergences as the BGF matrix element
for |cos ] — 1. This is shown in fig. (5.3) where we plotted the sum of eq. (5.11) and
eq. (5.15) against cos # with the same parameters as in fig. (5.1).

The shower terms eqs. (5.11) and (5.15) must be subtracted from eq. (5.9) in
order to avoid double counting between the two classes of events — on one hand events

generated by the shower terms, on the other hand events deriving from the BGF matrix
elements:
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00\t (F2 part)

Koy et o

dz dy s deos 0 d W T
{Jm [P(Z) — (=) ff(zz) P (z— %(1 —cose))]
+ Hﬁ [P(z) ~ O ff(z)) P (z 1+ cose))]
—%-I—i’)z(l —z)}. (5.16)

By subtracting the shower contribution from the unsubtracted differential cross
sections the divergence for |cos 8] — 1 has been cancelled out. This is explained more
detailed for the quark term: if cos §# — 1 then x = xy,;, and for —¢ > Q? (that is the
kinematic range for which we want to calculate the NLO correction) the square bracket
becomes 0. Similar argumentation holds for cos § — —1 for the antiquark term. In
fig. (5.4) we show that by subtraction of the shower term from the boson gluon cross
section the divergences cancel.

The purpose of introducing a cut-off function is to obtain the correct cross section
when Q3 < (?, that is the region where the cross section is dominated by the shower
algorithm. The cut-off function creates two kinematic regions (see fig. (5.5)):

e ()* > Q7: the dominant contribution to the cross section (and F3) derives from the
shower algorithm. The shower contribution eq.(5.8) will be subtracted from the
BGF NLO contribution reflecting the physical supression of NLO contributions
in this kinematic region;

e ()? < Q% in this kinematic region NLO corrections give the dominant contribu-
tion, the shower contribution is 0.

There is some freedom in choosing the cut-off function, as any change in the cut-off
function is compensated by the corresponding changes in the subtraction terms, up
to errors of yet higher order in as(Q?). In order to do useful calculations the cut-off
function should be chosen such that higher-order corrections, like eq. (5.16), are not
excessively large. In this work the standard case C'(Q7) = 0(Q? — @Q7) was implemented
in the programs which calculate the 29", For the implementation in a Monte Carlo
generator like RAPGAP [18] this choice is very convenient, as the standard Sudakov
Factor (eq. (4.14)) can be used.

FBGF, hard

5.2.1 Computing of F,

With Collins’ subtraction method the contribution of the O(ea;) correction of BGF
processes to the structure function FP is divided in a part generated by the shower
algorithm F5h"*" and the hard contribution obtained by subtracting the shower con-
tribution from the full matrix element contribution [F}ard

F2]3GF _ Fzshower_l_ thal“d‘ (517)



36 CHAPTER 5. SUBTRACTION METHOD FOR BOSON-GLUON-FUSION

£ x10
O] L
[%2]
S 06 x=0.001
'Um u
x
E L
S 051 X5=10 X
o L
5 2 2
b‘ H Q=10 GeV
s 04
0.3
0.2
0.1
07
0.1+
Hm”mH\H‘\H‘\H‘\H‘\H‘\H‘\\/T"

-1 -08 -06 -04 -02 O 02 04 06 038 1
cos ©

Figure 5.4: The differential hard cross section eq. (5.16) plotted with simpli-
fied parton densities f, = (1 — x)°/x for fived values of v = 0.001, x5 = 10z
and Q* =10 Ge V2.
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The division between both contributions is made by the dynamic cut parameter

2. which sets the shower contribution F§ho¥er to 0, if Q% > Q%. The cut parameter

(Q? depends on the kinematics of each single event. This is an important difference to

the fixed cut parameter pr introduced in chapter 3. Fig. (5.5) illustrates the role of
()% as cut parameter.

BGF, hard
F2 — F286F _ Fzshower

if Q7> Q°

BGF
— FZ
Figure 5.5: Terms contributing to ppar hard . pp Q? < Q* pBEhard 4o pen.
erated by subtracting the shower terms from the matriv elements, if Q1 > Q*
then FPCOFhard 4o generated only by the matriz element contribution.

By integrating eqs.(5.9), (5.8) and (5.16) over a3, cos and ¢ we can now compute
FBOY . pehower and Fhard. The connection between do/dzdy and F, is given by eq.
(2.12). Whereas the integration over ¢ leads to a factor 2w, both the integrations
over z3 and cos @ have to be performed numerically: the integration over z3 due to
the depence on the gluon densitiy f,(x3), the cos @ integrations due to the dependence
on r; = T — %:1;3(1 — cos ) of the structure function f,(z1) (see section 4.4).% Tt
should be stressed that in the hard contribution eq. (5.16) the divergence in cos# is
cancelled out, therefore no cut in cos@ has to be made in order to calculate the
hard contribution of BGF, it can be calculated over the whole phase space. The
integration over ¢ is numerically demanding, as the integrands in eqs. (5.9), (5.8)
and (5.16) are proportional to 1/£, thus the integrand peaks for small £ values. This
behaviour of the integrands makes a numeric integration very difficult. In order to

4From egs. (5.9), (5.11) and (5.15) wee see that the differential cross section of the unsubstracted
BGF as well as the shower terms diverge for | cos 8] — 1. We were therefore forced to introduce a cut
in cos # for the calculation of the cross section of the shower terms resp. the unsubstracted BGF, we
accepted only cosd values with |cos 6] < 0.999999. This minimal cut in cos § cuts only a few events
and 1t has no significant effects on the obtained results. This cut in cos# has no effect on the later
implementation in the Monte Carlo, as only the hard contribution will be included in the generation.
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get a continuous result for the physical cross section we used for the £-integration the
importance sampling method described in appendix A.2. This transformation method
was also used for the cos @ integration of the unsubtracted contribution and the shower
terms®. We integrated egs. (5.9), (5.8) and (5.16) over ¢ (leading to a general factor 27
), x3 and cos § and calculated the cross section as function of Bjgrken x and Q*. The
Bjgrken x-values were chosen between 107* and 107!, while the )?-values were chosen
between 5 and 100 GeV?. The result of the integration of the unsubtracted BGF cross
section, the shower term, and the hard contribution (the difference of both terms) is
plotted in figure (5.6).

It can be seen that for all Q* values the hard cross section is only a small percentage
(about 10 %) of the total contribution of BGF to the structure function, the rest of
the contribution of BGF to the total cross section is derived by showering the LO
Born term (see the following section 5.3). That means that in most cases the shower
contribution is subtracted from the unsubtracted cross section in order to compute
FQBGF’ hard, as for most cases ()7 is smaller than Q*. From fig. (5.6) we see that the
cross sections can not be calculated for all Q? over the whole a-range: the higher the
(Q? values are the smaller the higher is the first  value for which the cross section can
be calculated. This can be explained by the fact that the scaling variable

y = Q%as, (5.18)

where s is the square of the available center of mass energy, must be smaller than 1 for
each event (see eq. (2.4)). We have chosen /s = 320 GeV, this is the center of mass
energy available at HERA.

5.2.2 Diffractive DIS

In diffractive DIS processes the photon interacts with a parton which carries a fraction
3 of the momentum of the pomeron®. The subtraction method can easily be applied to
diffractive DIS. To do this the parton densities in the above formula have to be replaced
by diffractive parton densities and Bjgrken x has to be replaced by 3. We used the
diffractive parton densites parametrized in [20]. This diffractive parton densities are
only available in the following kinematic range:

B =0.01..1, Q*=3..100 GeV™. (5.19)

From figure (5.7) we can see that also in the diffractive case the hard contribution is
only a small part (about 10 %) of the the full contribution of BGF to the structure
function. This is not astonishing, as in both cases the same cut-function C'(Q%) was
used in order to separate the shower contribution from the matrix element contribution.

®Details of the zz-transformation can be found in appendix A.2.1, of the cos @ -integration in
appendix A.2.2.

5The pomeron is a colour neutral object which is emitted by the proton. A detailed description of
the kinematics of diffractive processes can be found in [19].
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Figure 5.6: FPSY calculated by the full matriz element , F52°% due to the
shower algorithm and FQBGF’ hard caleulated by Collins’ subtraction method. The
MS parton densities have been used to calculate the structure functions.

5.3 Comparison with MS scheme

In order to implement the above algorithm in an event generator, it is mandatory to
find out which parton densities are required to calculate eq. (5.16). The usage of the
correct parton densities is an important question, as the numerical value of the parton
densities can be changed at order a; and beyond by a change of scheme. The aim is to
find a process-independent relation between parton densities in the scheme appropriate
for the subtraction method the Bengston and Sjgstrand (BS) scheme and a standard
regularization scheme. Standard fits to parton densities are typically made in the MS
(Minimal Subtraction) scheme. Therefore it is necessary to find a relation between the
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B

Figure 5.7: [PCF | [BGIhard op g pshower 4 diffraction. The structure func-
tions are calculated with diffractive parton densities and plotted against the
diffractive scaling variabel 3.

MS scheme to the scheme used in the event generator.

This relation can be found by integrating the BS-scheme cross section over the
hadronic final state and requiring that the obtained result is the same as in the standard
factorization approach with MS parton densities. From the above calculation for the
structure we obtain

Fi(a, Q%) = > ael [P (2, Q%)
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n Oés(QQ) Z /xl dxs /_11 dcos Qxifg(BS)(SI?Sy QQ) X

2T quarksa
(s [0 = o0 Figt L (s =50 -

1 —cosf

1 3
+ O(as) quark terms + O(a?)
= 04 FPOTrrd L O(al), (5.20)

The first term in eq. (5.20) is the LO contribution (see eq. (2.12)), the summation
has to be performed over quark and antiquark flavours. The superscripts on the quark
densities indicate that they are in the scheme appropriate for the Bengtsson-Sjostrand
algorithm. The second term is FQBGF’ hard “the “hard contribution”, derived by the
subtraction method. In the “O(ay) quark terms” are the remaining O(ay) corrections,
QCDC and the virtual corrections, included. We are looking for a process-independent
relation between parton densities, and we want a result for each quark flavour and not
just the combination that appears in the usual electromagnetic F;. It is convenient to
replace the actual structure function eq.(5.20) by one in which the photon couples only
to one flavor of quark, with unit coupling. This leads to

Fi(2,Q%) = «f®(x,Q%)
+ aif )L dwsf_ldcoseﬁf;“(xg,@?) X

Ry = )

1 3
+ O(as) quark terms + (’)(oz?). (5.21)

Comparing eqs. (5.21) and (5.20) we see that in eq. (5.21) the last two terms in
the curly brackets are only one half of the last two terms in eq.(5.20). In eq. (5.20)
the contribution of quarks and antiquarks for each flavour was calculated, while in
eq. (5.21) we want to calculate a hypothetical F with unit coupling to one flavour of
quark, not regarding the corresponding antiquark contribution.

Next we take the formula for the structure function with MS parton densities [3].
Again we display the actual cross section by the one in which the photon couples to
only one flavour of quark with unit coupling

Fi(2,Q%) = «f™(z,u?)
QU-z) (12_ 2 % +4z(1 — z)

as(W) [+ T 5w
+?/x dfl?3x—3fg( )(1’37/12) P(z)log R

+ O(as) quark terms + (’)(oz?). (5.22)
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Eq. (5.22) equals eq. (5.20), as the physical cross section must be scheme indepen-
dent.

In order to calculate the connection between the parton densities in both schemes
we must take into account the following relations for the parton densities in the BS
scheme and the MG scheme:

P, Q%) = M(2,Q%) + O(ay) (5.23)
IB(,Q%) = (2,0 + O(ay), (5.24)

where we have set Q* = p?. In eqgs. (5.22) and (5.20) there is a factor ay in the
O(as) contributions, thus the error we make by the approximation ffs(:p,Qz) =
fys(x,Qz) and ffs(:p,Qz) = f;VIS(:I;,Qz) is of order a?. Therefore it is justified to
use in both schemes the MS parton densities for the terms originating from order o
corrections. This approximation can not be made for the contribution from the lowest
order Feynman graph v*¢ — ¢ in eq. (5.20), as this term is of zeroth order a;. In
order to calculate [y we are therefore forced to find the connection between the par-
ton densities in the MS scheme and the BS scheme. As the cross section is scheme
independent, we obtain

efP2, QY = of™) (e, p?)

B 2 1 &€ MS
‘|‘¥/ dfl?:a—féMS)(:l?Sa/«LQ)
r T3

X {P(Z) log w +z(1—2)

iz
[ e - een FEy e (- ju -0 §
+ O(as) quark terms + O(oz?). (5.25)

The connection between the parton densities in the MS scheme and the BS scheme is a
quite unpleasant formula and two additional numeric integrations have to be performed
to find the relation between these schemes . In fig. (5.8) we show the leading order
contribution

RO = Y e ful2, Q%) (5.26)

calculated with parton densities in the MS and the BS scheme for % values between
5 and 100 GeV? 7.

Whereas for z-values greater than 0.11 there is no significant difference between the
LO contributions FX© in the MS and BS scheme, there is a clear difference between
both schemes for smaller z-values. FL? calculated in the BS-scheme is up to 20%
bigger than the corresponding [-© in the MS scheme.

Fig. (5.8) demonstrates thus that the implementation of the subtraction method
in an event generator makes mandatory to use the parton densities appropriate for the

BS scheme.

"For the ¢-integration we used again the transformation method describe in section A.2.1.
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Figure 5.8: Leading order contribution to Fy calculated with parton densities
in the MS scheme and the BS scheme.

In eq. (5.20) we calculated F3 in the new BS scheme. The LO contribution as
well as the hard contribution FPYY to F, are plotted in figure (5.9)%. The higher the
z-values are, the lower are the gluon densities. This explains that FPSY becomes bigger
with increasing z-values.

Furthermore we see that the percentage of the LO contribution FPSY to the sum
of LO and hard contribution becomes smaller with decreasing Q?. For the lowest
plotted Q? value of 5 GeV? FBGIhard hecomes even smaller than the hard contribution

SFZLO

BGF
FZ

is calculated with the parton densities in the BS scheme, with parton densities in the

MS scheme.
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Figure 5.9: 19 and FPCYPad gnd the sum of both for Q* values of 5, 20,
50 and 100 GeV 2.

FPGFhard " Thig is just a consequence of the decreasing available phase space for the LO

contribution with decreasing Q%. A particular motivation for the treatment of the BGF
process in the subtraction method is to describe properly diffractive DIS processes, since
in diffractive scattering the gluon dominates the quark scattering. This is demonstrate
in fig. (5.10), where we plot the LO contribution as well as the hard contribution of
BGF in diffraction. In order to compute the LO contribution in diffraction, we have to
calculate the diffractive parton densities in the BS-scheme. This can be simply done
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by replacing the parton densities with the diffractive parton densities in eq. (5.25)%.
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Figure 5.10: ngg)iﬂ and F;g‘{gBGF in diffraction at QQ* values of 5, 20, 50 and
100 GeV* .

Fig. (5.10) shows that for all Q* values the hard contribution due to BGF is the
dominant contribution, in diffraction the gluon introduced contributions are no longer
small corrections of the leading order contribution, quite contrary to standard DIS
events. Noteworthy are the negative leading order contributions at Q* = 5 GeV? and
Q? = 20 GeV?. They can be explained by the fact that the diffractive parton densities

9The diffractive parton densities given in [20] are regularized in the MS scheme, thus the usage of
eq. (5.25) is justified.
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given in [20] are 0 for small Q? and z-values. In this case it is not reasonable to calculate
the connection between the diffractive parton densities by eq. (5.25), for later usage
the LO contribution should be set to 0, if the diffractive parton densities in the MS

scheme are 0.



Chapter 6

Conclusion

The correct inclusion of next to leading order corrections in the event generation is of
big importance at the lepton-proton collider HERA. The implementation of the NLO
corrections in an event generator is problematic, as the corresponding matrix elements
diverge in the collinear regions. The standard method to avoid this divergences is
to introduce a minimal transverse momentum py as cut parameter. This method is
inconsistent, it introduces a critical depency on the pr-cut itself. In this work, a new
regularization scheme. the subtraction scheme, was studied quantitatively for the first
time. It allows a consistent inclusion of the NLO contribution due to BGF processes.

The subtraction scheme uses the virtuality of the intermediate quark in a BGF
process as a dynamic cut parameter. It allows a consistent inclusion of the NLO
corrections, as the total structure function derived in this scheme is independent from
the specific form of the cut-off function being chosen, a change in the cut-off functions
changes the LO as well as the NLO contribution. We calculated the LO contribution
and the contribution of BGF processes to the cross section for DIS and diffraction. It
could be seen that the subtraction method describes very well the expected behaviour:
In DIS the contribution of BGF processes to the cross section increases with decreasing
x , but remains generally smaller than the LO contribution, whereas in diffraction the
contribution due to BGF events dominates the total cross section .

The next step should be the implementation of the existing programs in the event
generator RAPGAP [9]. This should be straightforward, since event generation in the
subtraction scheme and in the existing Monte Carlo RAPGAP is based on the same
algorithm. This should allow for the first time to study the hadronic final state in
diffraction avoiding the critical cut at high pr-values.

From the theoretical viewpoint it would be interesting to include the contribution
of QCDC processes and virtual corrections in the subtraction scheme.
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Appendix A

Integration methods

A.1 Linear integration method

In order to create an interface between the integration routines and the different inte-
grands we can simply change the boundaries of the integrals of the type

1
| fa) da. (A1)
where a can be a arbitrary function of x, to an integral of the form
1
/0 9(y) dy. (A.2)

This can be obtained by the substitution

r —a

yzl_a = dr=dy(l—a). (A.3)

It follows that

[ r@yde= [ s —aydy = [ gly) dy (A)

where

gly) = (1 — a)f (). (A.5)

A.2 Importance sampling method

A common situation is the one in which the integrand function f(z) is non—negative
in the allowed x range @, < @ < Zpae: f(2) could be a differential cross section,
a fragmentation function, etc. We now want to find a transformation of the function
f(z) such that the number of x-values taken by the integration routine in order to
calculate the root F(x) is proportional to f(x). For example, if the function has a
local maximum or a singularity for some value z, then the integration routine performs
a higher number of samplings near to & than far away from it.
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If it is possible to find a root function F'(x), which has a known inverse function
F~'(z), x can be calculated by

| f@de=r [ e de = w= PP () + RO @ — Flami) ]

- - (A.6)

In the first term we ask a fraction R of the total area under f(x) to be on the left
of f(x)[13]. Unfortunately the functions which we want to integrate are rarely so well
behaved that it is possible to find the function F(x) with its known inverse function.
Therefore we have to find a more sofisticated way to compute a number of samplings
proportional to the value of the integrand f(x). Let us now assume that the function
f(x) can be approximated by a function g(x) which can be integrated analytically, thus
having a known root and inverse function. We could calculate the x-samplings using
the simpler function g(x) and the method explained in eq. (A.6). The integral of f(x)
is then given by

]:/f(:zj)dx:/

Because of the choice f(x) ~ g(x), the ratio f(x)/g(x) is more or less constant and
independent of x. In the following sections we will show two examples to clarify the
application of this integration method to our cases.

gsx)g(x)dx ~ 3 f) /g(:z;)d:z;. (A7)

. — 1
A.2.1 Example #1: g(z) = -
As a first example, we assume that the function f(x) can be approximated by the
analytically integrable function g(x) = 1/x, with the root G/(z) = log x and the inverse

function G™(z) = exp(z). With eq. (A.6) we then find

R
A (‘”m) . (A8)

Lmin
Solving eq. (A.8) for R we obtain

log x — log ©,in

= A.
K log #mazr — 108 T pin (4.9)
Using eq. (A.7) the integral is then given by
Fmaz LTmas
/f(:z;)d:z; ~ Z J}Zf(l'z)/ | g(x)dx = Z z; f(x;)log -~ (A.10)

In the calculation of opgr the eqs. (3.31), (5.9) and (3.36) as well as the shower
contribution of eq. (5.2) are all proportional to 1/£. In order to get a stable result
of the the integrands can be approximated by ¢(§) = 1/¢ and this example can be
applied.
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A.2.2 Example #2: f(x) Tts %

= lix
g(z) = —L5. The root of g(x) is G(x) = arctanh (x), and its inverse function G~!(x) =

1—22°

tanh(x). If 250, = —2pmin from eq. (A.6) we obtain

A more complicated function f(x)

+ & can be approximated by a function

o T¥mas + tanh(2R arctanh (Xmax))‘ (A11)
1 — &pmar tanh (2R arctanh (Xmax))

It follows h( N )
arctan _XTXmax
14X Xmax
= . A12
1 2 arctanh (Xmax) ( )

The integral is then given by

Tmax

/f(:z;)d:z; ~ Z(l—xi)Qf(xi)/ g(z)dx

- T
7 max

= Z(l — ;)2 f(x;)2 arctanh (Xmax)- (A.13)

7

This example is used to transform the integration in the unsubtracted cross section
of eq. (5.9) as well as the shower contribution of eq. (5.8). In these special cases we
have to deal with integrands of the form

a N b
14+ cosf 1 —cosb

flcos ) = (A.14)
and cos(@p4z) = — co8(0pmin), In order to avoid divergences of the integrands of eqs.

(5.9) and eq. (5.8) we have chosen in this work cos(6,,4,) = 0.999999.

A.3 Calculation of Fyam

A.3.1 Results of the numeric integration

In order to calculate the cross section due to BGF processes for charm quarks as
discussed in Chapter 2, several integration routines were used to perform the integra-
tion over the variable & DGAUSS and RADAPT from the CERNLIB [21] together
with GADAP and DGAUSSKEPS from [9]. The result of these numeric integra-
tions are shown in fig. (A.3.1): big discrepancies between the routines DGAUSS and
DGAUSSKEPS and between GADAP and RADAPT can be seen. Furthermore the

Fgharm curve calculated by all integration routines shows discontinuities.

Both observations gives us a strong hint that the integrand contains local maxima
making the numeric integration very unstable. In order to verify this assumption
we plot in fig. (A.3.1) the integrand of eq. (3.36) with a simplified gluon density
g(&) = 3(1 — §)?/&: the integrand shows a maximum for £ ~ 0.15. This can bring
the numerical integration routines into difficulties, as these programs usually calculate
the integral only for few ¢-values. If the integrand shows big fluctuations in relatively
small ranges of £, we obtain only a very poor estimation of the integral.
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Figure A.1: Computation of FM™™ with the integration routines DGAUSS,
DGAUSSKEPS, GADAP and RADAPT without any transformation.
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Figure A.2: Integrand of eq. (3.36) with a simplified gluon density.

A.3.2 Fham with the importance sampling method

In section (A.2) we have introduced a transformation method which ensures that the
number of ¢-values taken by the different integration routine are proportional to the
value of the integrand. This guaranties that in proximity of a maximum the integration
routines take a bigger number of {-samples to compute the integral. As done in the
example in (A.2) we can approximate the integrand of eq. (3.36) by a simpler function,

ie. g(&) =1/¢ From eqgs. (A.10) and (3.36) it follows that

1

1
cmharm, BGF(J;7 Q27 mCZ) — %ezas(ﬂz) / CcharmZ fg(fa /lz)df

= [ f(Qde~ X f(&)6 s - (A1

Using this trick, usually called logarithmic transformation, the integrand of eq. (3.36)
becomes smoother, since it is multiplied with a weighting factor ; log ﬁ

In figure A.3 we finally show F§"*™ calculated with the different routines, always
using eq. (A.15). Using the logarithmic transformation we obtain a continuous curve
for £ ™ BEE and reduced discrepancies between the different integration routines.
Further investigations showed that using the integration routine GADAP we obtain
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Figure A.3: Fyherm BO yptegrated with the logarithmic transformation.

results which are competitive with a direct numeric integration of eq. (3.36) and
an integration using the importance sampling transformation method. Moreover the
result of the integration routine did only slightly change as a function of the required
precision.



Appendix B

Regularization of BGF in the
Massive—Gluon scheme

The Massive-Gluon (MG) scheme offers the possibility to treat the order o corrections
for BGF in a consistent manner: the divergences in the BGF matrix element can be
regulated by taking the incoming gluon slightly off-shell and space like, ¢* = —m? [7].

g
In this case for the differential cross section is given by

déd, 22 ot _5Q? Jd+a+m?) L, /1 1 4
7 Weq@ozozs —I_E_Q ” + 2m? T_Qm <a2+£—2‘|‘$) )
(B.1)

where z is defined in eq.(3.3) and g indicates that MG is the chosen regulating scheme.
The subscript ¥ indicates that we have summed over all virtual photon polarization
states by the replacement

Zeﬂei()\) — —Guv- (B.2)

This differential cross section is a combination of the transverse and longitudinal dif-
ferential cross sections. For the total cross section helds

Oy = 20‘T—0'L. (Bg)
Without the gluon mass the integration limits for the partonic cross section were
o= (54 Q%) = —Q*z, iy =0 (B.4)

leading to divergences for ¢ = 0. By introducing the gluon mass we obtain new inte-
gration limits:

tO = ﬁmax = _(<§ + QQ) = _Q2/27 (B5)

th = Upmin = —mjz. (B.6)

Integrating eq. (B.1) over { we obtain

. Q?
U?QWG,E = 72 eq@aa 2( + (1 - ) log g —21. (B.7)
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The differential cross section for the scattering of longitudinal photons is (see [7])

dod 2 422
= ma;\;%@@m — 2). (B.8)

Equation (B.8) contains no divergent terms and can easily be integrated over i, giving

4 2
o] = WaasezizZ(l — z). (B.9)

Q

The partonic cross sections in eqs. (B.8) and (B.7) have to be weighted with the
gluon density f,(£) and then be integrated over ¢ to get the total cross sections

os(7N) = [ osriee (B.10)
Ny = [ eufede (B.11)

where oy, and oy, are connected to o by eq. (B.3). With (3.31 and (3.33) we finally
get for the gluon contribution to F

1d O 2
P Q) =206t [ 06 (52l Nos L a5 0)) B

where:

o f,(£) is the probability to find a gluon with momentum g = £ P, where P is the
proton four momentum;

o the term

Prrsaa(2) = 5(2 4 (1= 2)) (B.13)

is one of the so called Altarelli — Parisi splitting functions. It indicates the
probability that a gluon annihilates into a quark — antiquark pair is such that
the quarks have a fraction z of the gluon’s momentum. The splitting functions
are independent of the chosen regularization scheme .

e The expansion of the last term is
o ]%/’[gls(z) = ozs[—(z2 + (1 - 2)2) log(z)— 143z — 322]. (B.14)
This last is scheme dependent, it is usually called little f function.

In the MG scheme Fj splits into two terms representing two different kinematical
regions

qu(l’, QQ) — Fiq,shower + Fzg,hard (B15)

where

shower ! df s Q2
ry " - 2:1;63/90 ?fg(f)gpg—mdz) 10gm—§ (B.16)
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represents that part of F3 arising from processes with
Q* > Q1 > m., (B.17)

where Q% is the virtuality of the intermediate quark in BGF processes . The second
term in eq. (B.15)

1d
Fprt =t [F 00 ) (B.13)

represents the contribution to F5 due to processe which satisfy the condition
m’ > Q> (B.19)

Despite the dynamic cut parameter )7 in the subtraction scheme, we have a fixed
cut parameter m, in the Massive Gluon scheme.
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