International Conference on Elastic and Diffractive Scattering Protvino, June 28–July 2, 1999

<u>Hadronic Final States in</u> Diffractive Scattering at HERA

Armen Bunyatyan

Max-Planck-Institut für Kernphysik, Heidelberg and Yerevan Physics Institute

Representing the H1 and ZEUS Collaborations

Outline:

- Introduction
- Event Shapes
- Energy Flow
- Hadron Production
- Dijet Production
- Open Charm Production
- Rapidity Gap Between Jets
- Summary

Introduction

- Hard scattering in diffractive processes have been observed in $p\bar{p}$ (UA8, Tevatron) and ep (H1, ZEUS) collisions.
- The contribution of diffractive processes to the ep interaction cross-section has been measured in terms of a diffractive structure function $F_2^{D(3)}(x_{I\!\!P},\beta,Q^2)$.
- These measurements were successfully interpreted in terms of resolved Pomeron (*IP*) model with diffractive parton densities which are dominated by gluons at the starting scale and evolved with DGLAP.

A Pomeron model with only quarks at starting scale is not able to describe the measurements.

• The many hadronic final state observables are sensitive to the QCD structure of diffraction and provide independent tests of the pomeron structure extracted from $F_2^{D(3)}$.

Kinematics of Diffractive ep scattering

 $M_X, (M_Y)$ $\beta = \frac{Q^2}{2q \cdot (p-Y)}$ $x_{\mathbb{P}} = \frac{q \cdot (p - Y)}{q \cdot p}$

photon virtuality Bjorken scaling variable $W^2 \stackrel{^{2q}\cdot p}{=} (p+q)^2 \quad \gamma^* p \text{ CM energy squared}$

 $t = (p - p_Y)^2$ 4-momentum transfer squared Inv. mass of system X(Y)fraction of *IP* momentum carried by struck quark fraction of p momentum transferred to IP $x_{I\!\!P} \simeq 1 - E_Y / E_p$

 $x_{I\!\!P}\beta = x$

 $M_X \ll W$, small M_Y ($\simeq m_p$), small |t| ($\lesssim 1~GeV^2$)

- $Q^2 oldsymbollpha$ 0, |t| oldsymbollpha 0: similar to soft hadron-hadron interactions
- $Q^2 \gg 0$: γ^* probes $I\!\!P$ structure
- large |t|: search for perturbative $I\!\!P$

Selection of diffractive events

Selection: Leading Proton Tag

- Leding Proton is measured in very forward detectors
- Proton with $z \simeq E'_p / E_p \gtrsim 0.97 \ (x_I\!\!P \lesssim 0.03)$ $\implies M_Y = M_p \ (\text{pure single diffraction})$

Selection: Large Rapidity Gap Events

No colour field between hadronic subsystems X and Y \Rightarrow no hadronic activity in the forward part of detector \Rightarrow Large Rapidity Gap $\Delta \eta \simeq ln(W^2/M_X^2)$ (pseudorapidity $\eta = -ln \tan \theta/2$)

- Proton is not directly measured
- **x**_{**P**}≲0.05

Models for diffractive hard scattering

factorizable models:

- Monte-Carlo programs: RAPGAP (Jung), POMPYT (Bruni,Ingelman)
- also Alvero, Collins, Terron, Whitmore;
 Kunzst, Stirling;...
- flux of spacelike *IP* from proton
- γ^* couples to parton from $I\!\!P$

 $F_2^{D(3)}(x_{I\!\!P},\beta,Q^2) \propto f_{I\!\!P/p}(x_{I\!\!P}) \times F_2^{I\!\!P}(\beta,Q^2)$

- parton densities in $I\!\!P$ can be taken from the QCD fits to $F_2^{D(3)}$ data:
 - * "leading gluon" distribution (fits 2 and 3)
 - * "quark-based" distribution (fit 1)
 - → test universality of parton distributions

• 2-gluon exchange models:

- Monte-Carlo programs:
 RIDI (Ryskin, Solano), RAPGAP
- Nikolaev, Zakharov, Genovese, Ryskin, Diehl, Bartels, Ellis, Kowalski, Wüsthoff, Lotter, Bialas, Peschanski,...
- $q\bar{q}$, $q\bar{q}g$ production vias gg-exchange/BFKL ladder

- Soft Colour Interactions:
 - Monte-Carlo programs: LEPTO (Edin, Ingelman, Rathsman)
 - Alternative model without *IP* concept
 - Start from standard DIS (dominantly BGF at low x)
 - Colour rearrangement on the hadronic final states
 - Attempt of unifying standard DIS and diffraction

Expectations for hadronic final states Quark-dominated IP

Lowest order $\mathcal{O}(\alpha_{em})$

- Aligned-jet (AJM) configuration
- Triplet-antitriplet system with low p_T
- Small p_T from intrinsic k_T of quarks
- Some p_T from hadronization and particle decays

Higher order $\mathcal{O}(\alpha_{\rm em}\alpha_{\rm s})$ — QCD-C

- Three-parton topology
- Significant p_T

Gluon-dominated IP

Lowest order $\mathcal{O}(\alpha_{em}\alpha_s)$ — BGF

- BGF: q and \bar{q} not aligned along $\gamma^* I\!\!P$ axis \rightarrow large p_T
- Higher parton multiplicity in final state
- Additional octet-octet colour field

Global Event Shapes: Definition of variables

• Thrust

$$T = \max \frac{\sum_{i} |\mathbf{n} \cdot \mathbf{p}_{i}|}{\sum_{i} |\mathbf{p}_{i}|}$$

• Sphericity

$$S^{\alpha\beta} = \frac{\sum_{i} p_{i}^{\alpha} p_{i}^{\beta}}{\sum_{i} |\mathbf{p}_{i}|^{2}} \quad \alpha, \beta \in x, y, z$$

eigenvalues of $S^{\alpha\beta}$: $\lambda_1 \ge \lambda_2 \ge \lambda_3$

$$S = \frac{3}{2}(\lambda_2 + \lambda_3)$$

- $\langle T \rangle$ increases with $M_X \implies$ increasing of back-to-back correlations, dominant two jet topology of the final state
- For fixed M_X average thrust is lower for larger P_t (w.r.t. incoming proton direction) $\implies \geq 3$ parton configuration
- $\langle T \rangle_{LRG} < \langle T \rangle_{ee} \implies q\bar{q}$ states with limited p_T hadronization are not sufficient: higher parton multiplicities are more important in DIS LRG events than in e^+e^-
- <u>RAPGAP</u>-factorizable Pomeron model, with gluon dominated *IP* parton densities from H1 fits to $F_2^{D(3)}$ data, gives good description of $\langle T \rangle$.

- ZEUS measurement consistent with e⁺e⁻
- H1 sees less collimated events than ZEUS (need more gluons)
 ⇒ discrepancy between experiments !
 (might be due to different event selection/kinematics: H1-Large rapidity gap, ZEUS- leading proton)
- RIDI fails at low M_X , but closer to H1
- RAPGAP (Ariadne) gives best description. Difference between ARIADNE and MEPS => Fragmentation mechanism is important

Global Event Shape $Q^2, x_{I\!\!P}$ and W dependence

- no dependence on Q^2
- no dependence on $x_{I\!\!P}$
- no influence from low W contribution
- (same holds for Sphericity)

Energy flow in $\gamma^* I\!\!P$ CMS- $1/N \; dE/d\eta^*$

- General agreement between H1 and ZEUS-leading proton data
- "Two jet" structure develops at higher M_X
- Slight enhancement of energy in the current hemisphere
- Well described by RAPGAP (gluon), but not by RAPGAP (quark)
 Iarge contribution from gluons !

Transverse Energy Flow $1/N~dE_T/d\eta^*$

- "Two jet" structure is visible at higher M_X
- Enhancement of transverse energy in the current hemisphere $(\gamma^* ext{-side})$

- In central region particle density is larger than in μN interactions at $W^2 pprox M_X^2$
- Symmetrical about y = 0
- RAPGAP with a quark based $I\!\!P$ predicts the rapidity spectra close to e^+e^- and $\mu N \Longrightarrow q\bar{q} +$ gluon radiation is not sufficient
- RAPGAP with hard gluon dominated $I\!\!P$ and LEPTO describe the rapidity spectra (but deviations in the lowest M_X bin).

Charged particle multiplicity

- Average multiplicity $\langle n
 angle$ rises with M_X (W, \sqrt{s})
- At low masses $(M_X < 10 \; GeV)$ similar to e^+e^- and meson diffraction \Longrightarrow

hadronisation of single string between the quark and antiquark

• At higher masses $(M_X > 10 \ GeV) \langle n \rangle$ rises faster than in e^+e^- and meson diffraction \Longrightarrow

contribution from more complex $(q\bar{q}g)$ parton configuration

• Forward-backward symmetry (unlike the μp data)

⟨p_T^{*2}⟩ is higher in diffractive data than in γ^{*}p
 ⇒ Larger contribution from scattering from gluons, increasing role of BGF processes

Symmetry between target and current hemispheres ⇒
 in non-diffractive γ^{*}p the high p_T radiation is suppressed from extended p remnant
 in diffractive γ^{*}p- more point-like partonic system in the target

fragmentation region

- Good agreement between H1 and ZEUS
- Well described by RAPGAP (gluonic IP), LEPTO and RIDI
- Predictions of RAPGAP (quark based $I\!\!P$) are too low for all x_F

Charm and high p_T Jet production

- Ideal test of underlying dynamics of diffaction:
 - Cross-sections are calculable.
 - Production mechanism sensitive to the gluon content.

- 2-Jets are reconstructed in the central detectors.
- Jets are identified as a collimated energy deposited in $\eta \phi$ space, within the cone of $R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 1$.
- p_T^{jet} is defined relative to γ^* axis in the rest frame of X.
- Measurements are made both in photoproduction $Q^2 \simeq 0$ and in DIS regimes
- In photoproduction regime distinguish between the 'direct' $(x_{\gamma} = 1)$ and 'resolved' $(x_{\gamma} < 1)$ processes: $(x_{\gamma}$ - fraction of γ momenta involved in the hard interaction).

 p_T^{jet} -spectra

 $\frac{x_{\gamma}^{jets}, z_{I\!\!P}^{jets}}{system}$: fraction of γ , $I\!\!P$ momentum transfered to the

ullet Both Direct $(m{x}_{\gamma}~=~1)$ and Resolved $(m{x}_{\gamma}~<~1)$ photon contributions observed

• Gluon dominated *IP* gives good descrpition of ZEUS data

H1: Large rapidity gap: $x_{I\!\!P} < 0.05$, $p_T^{jet} > 5~GeV$

- MC predicts too high cross-section for H1
- H1 and ZEUS- different kinematic ranges (H1: lower p_T , higher $x_{I\!P} \implies$ lower x_{γ} , more resolved photon contribution)
- In diffractive resolved photoproduction additional interactions between the extended beam remnants would be expected to destroy rapidity gaps => breaking of diffractive factorization.

$$d\sigma^{D}_{true}(ep \rightarrow epX) < d\sigma^{D}(ep \rightarrow epX)$$

 $d\sigma^D_{true} = \langle S
angle \cdot d\sigma^D$, where $\langle S
angle$ - rapidity gap survival probability, $\langle S
angle \leq 1$

- To estimate: apply a constant weight $\langle S \rangle$ to the MC events with $x_{\gamma} < 0.8$.
- $\langle S \rangle$ at the order of 0.4–0.8 gives reasonable description of data (~ 0.1 at Tevatron !).

- Gluon dominated *IP* gives good description
- In 2 gluon exchange model the $q\bar{q}$ state alone cannot describe data $\implies q\bar{q}g$ states are required
- No evidence for a large 'super-hard $I\!\!P$ ' contribution ($z_{I\!\!P} = 1$)

Open Charm Production

• Ratio of diffractive to total D^* production is consistent with ratio of diffractive to inclusive DIS ($\sim 10\%$)

• no significant $oldsymbol{Q}^2$ or $oldsymbol{W}$ dependence

ZEUS: good agreement between different decay channels !

Differential cross section $d\sigma/dz_{I\!P}^{obs}$ (H1)

- The large fraction of charm production at low $m{z}_{I\!\!P}^{obs}$ (resolved $I\!\!P$)
- The 2-gluons model with only c̄c configuration is disfavoured
 → higher order contributions (e.g. gluons) are required

- Models:
 - ACTW (Alvero, Collins, Terron, Whitmore) gluon dominated resolved *IP* model
 - BHM (Buchmüller, Hebecker, McDermott) Semi-classical model
 - **RIDI** (Ryskin) pQCD model with higher order corrections
- Agreement in normalization $\implies I\!P$ is gluon dominated object
- Similar conclusions are for differential cross-sections for $D^* \rightarrow K\pi\pi$ ZEUS measurement

Differential cross sections: $D^* \to K\pi\pi$ (H1)

• Shape of distributions agree well with resolved *IP* model.

- 2-gluon model $(q\bar{q})$ fails in high p_T , high $x_{I\!P}$ (M_X) range \longrightarrow need $q\bar{q}g$ states !
- Resolved *IP* and SCI models fail in normalization (factor 2-3 !)
- Parton densities from $F_2^{D(3)}$ do not describe open charm \implies in contrast to other H1 measurements !
- Disagreement between H1 and ZEUS results !
- large uncertainties of *g* densities in *IP* ? breaking of factorization ?

Rapidity gap between jets in photoproduction

- Phase space is restricted to the region where QCD is applicable (square of the four momentum transfer |t| is large)
- Elastic parton-parton scattering is calculated with LLA of BFKL (Mueller & Tang)

$$rac{d\hat{\sigma}}{dt} = (oldsymbol{lpha}_s C_F)^4 rac{2\pi^3}{t^2} rac{e^{2w_0 Y}}{(7oldsymbol{lpha}_s N_c oldsymbol{\zeta}(3) Y)^3}, \quad oldsymbol{w}_0 = N_c \; 4 \; oldsymbol{ln} \; 2rac{oldsymbol{lpha}_s}{\pi}$$

- 'Gap fraction'- $\underline{f}(\Delta \eta)$ proportion of events containing high P_t jets for which there is a gap in rapidity between the jets as a function of the jet-jet separation $\Delta \eta$.
- ullet For colour non-singlet exchange: exponential fall-off with increasing $\Delta\eta$

 \implies At sufficienly large $\Delta \eta$, a colour singlet exchange will dominate.

- Di-jet photoproduction events contain an excess of events with rapidity gap between two jets over the expectations of colour exchange processes at the level of $f(\Delta \eta) = 0.11 \pm 0.02^{+0.01}_{-0.02}$.
- In $p\bar{p}$ collisions at Tevatron $f(\Delta \eta) \simeq 0.01$ \implies difference in rapidity gap survival probability at γp and $p\bar{p}$.
- Disadvantage of the "rapidity gap between jet" method: the accessible gap size is limited by detector acceptance

A new approach: study inclusive $\gamma p \rightarrow XY$ double dissociative process at high |t|.

• Good agreement between data and Monte-Carlo (γp + BFKL LLA) in shape and normalization for value of parameter $w_0 = 0.45$.

Summary

The different hadronic final state observables have been studied in diffractive ep interactions at HERA.

• Measurements of event shape evolution with M_X , the energy flow, charged particle multiplicities are in general consistently described by resolved $I\!\!P$ model with gluon dominated parton densities evolving with DGLAP.

 \longrightarrow Same model gives consistent description of hadronic final state and inclusive $F_2^D(3)$ measurements.

- Several 2-gluon models exist, free parameters can be tuned to describe H1 and ZEUS data. \longrightarrow need $q\bar{q} + q\bar{q}g$ states !
- The 'rapidity gap survival probability' for resolved γp interactions at HERA is larger that for $p\bar{p}$ interactions at Tevatron.
- For production of D^* , the shapes of distributions are well reproduced by models, but

 \longrightarrow H1 sees discrepancy to results of other hadronic final states and to ZEUS results:

breaking of factorization ? \longrightarrow need understanding.

Luminosty upgrade at HERA will allow precise measurement of open charm in diffractive DIS.

- An excess of events with a large rapidity gap between jets is observed over the expectations of colour exchange processes.
- The double dissociation photoproduction cross-section is measured at large |t| and is in agreement with the model based on the exchange of a strongly interacting colour singlet object.