

Measurement of 1-Jettiness in the Breit Frame at High Q²

Henry Klest for the H1 Collaboration

Lepton-Photon 2021

Jan. 12, 2022

Henry.klest@stonybrook.edu

Neutral-Current DIS

- Electron-Proton Scattering
 - Kinematic variables:
 - Exchanged boson virtuality Q²
 - Inelasticity y
 - Bjorken x x_{Bj.}

- Breit Frame
 - Defined as the frame where $2x_{Bi}P + q = 0$
 - Event is divided into two hemispheres: "beam" or "remnant" or "target" hemisphere and "current" hemisphere
 - Exchanged boson collides with struck parton and reverses the parton's momentum

Beam Hemisphere: Proton remnant continues at $\eta = \infty$ Current Hemisphere: Struck parton continues at $n = -\infty$

1-Jettiness Event Shape

 Sum of four-vector dot product of final state particles with struck-parton axis or beam axis

$$\tau_1 \equiv \frac{2}{Q^2} \sum_{i \in X} \min\{q_B \cdot p_i, q_J \cdot p_i\}$$

- IR-safe and free from non-global logarithms
- Sensitive to α_s and PDFs

 Equivalent definition follows from momentum conservation

$$au_Q = 1 - rac{2}{Q} \sum_{i \in \mathcal{H}_{\mathcal{C}}} P^{\textit{Breit}}_{z,i}$$

• Only particles in current hemisphere contribute – experimentally favorable

H1 at HERA

• HERA

• World's only high energy electron-proton collider

 $E_e = 27.6 \,\, ext{GeV}, E_p = 920 \,\, ext{GeV} \
ightarrow \sqrt{s} = 319 \,\, ext{GeV}$

• H1 Experiment

- Hermetic detector with asymmetric design
 - Drift chamber + silicon tracking
 - High-resolution LAr calorimeter
 - Particles reconstructed with particle flow algorithm
- Trigger on high-energy hadronic or EM LAr cluster
 - > 99% efficient for y < 0.7

H1 LAr Calorimeter Specifications

Electromagnetic part	Hadronic part
$10 \text{ to } 100 \text{ cm}^2$	50 to 2000 $\rm cm^2$
20 to 30 X_0 (30784)	4.7 to 7 λ_{abs} (13568)
$\approx 11\%/\sqrt{E_e} \oplus 1\%$	$\approx 50\%/\sqrt{E_h} \oplus 2\%$

1-jettiness

$$\tau_1^b = \frac{2}{Q^2} \sum_{i \in X} \min\{xP \cdot p_i, (q + xP) \cdot p_i\}$$

Visualisation of the 1-jettiness with event displays

- DIS 1-jet configuration
- Most HFS particles collinear to scattered parton
 - \rightarrow Small au_1^b

- Dijet event
- More and larger contributions to the sum over the HFS \rightarrow Large τ_1^b

Inclusive DIS

- HERA-II data
 - $Q^2 > 150 \text{ GeV}^2$, 0.2 < y < 0.7
 - 351.7 pb⁻¹ collected
- Rapgap (ME+PS) and Djangoh (CDM) used as "signal" generators
 - Both are full DIS generators
- Small backgrounds
 - Photoproduction, Low-Q NC DIS are largest sources
- DIS kinematics reconstructed with IS method
 - Independent of QED ISR

$$y = y_{\Sigma} = \frac{\Sigma}{\Sigma + E_{e'}(1 - \cos \vartheta_{e'})}$$

- Fully inclusive observable all events contribute
 - All particles in current hemisphere contribute to sum \rightarrow
 - Normalized contributions to τ_Q spectrum
 - 0 Degrees \rightarrow proton-going direction, 180 degrees \rightarrow electron-going direction

- Central, high momentum particles dominate the contribution
 - These are well-measured by the H1 detector

Fully inclusive observable – all events contribute
 All particles in current hemisphere contribute to sum
 Normalized contributions to τ_ρ spectrum

 Current hemisphere longitudinal momentum is well modelled by H1 detector-level simulation

τ_Q Measurement

- $\tau_Q \rightarrow 0 = \text{DIS 1-jet event (Born-level)}$
- $\tau_Q \rightarrow 1 = \text{DIS dijet event}$
- $\tau_Q \rightarrow 1 = \text{Dijet event with both jets in beam hemisphere}$
- Simulation provides reasonable description of data over full range of τ_Q
 - Observable can clearly resolve differences
 in MC models

Single Differential Cross-Section

Corrected for detector and QED effects bin-by-bin

$$\sigma = \frac{N_{\text{data}} - N_{\text{Bkg}}}{L \cdot \Delta_{\tau}} \cdot c_{\text{unfold}} \cdot c_{\text{QED}}$$

- L = Luminosity Δ_{τ} = Bin width
- Peak (resummation) region $\tau_Q \rightarrow 0$ poorly described by all models
 - Rapgap/Djangoh underestimate, Pythia+Dire overestimates
- Tail (fixed-order) region $\tau_Q \rightarrow 1$
 - Rapgap and Djangoh do well, Pythia+Dire underestimates

- Parton shower model comparison
 - Peak region highly sensitive to different showering
 - No fully satisfactory description

- $e + p \rightarrow 2 Jets + X$ Prediction from NNLOJET
 - NP corrections from Pythia8.3
 - NP corrections large at low τ_1^b
 - NNLO provides good description of tail region, improves over NLO

- With increasing Q:
 - Total cross-section decreases
 - Tail region decreases
 - Peak moves to lower $\boldsymbol{\tau}$
 - At higher momentum transfer, jets are more collimated
- With increasing y:
 - $\tau = 1$ is enhanced

- Ratios to data
- Stat. uncertainties range from a few % to a few 10s of %
- Sys. uncertainties around 5%
- Djangoh and Rapgap perform reasonably well over full phase space
- Pythia+Dire too large in peak region

- Further model comparison
 - Pythia+Default shower
 - Pythia+Vincia
 - Herwig 7.2
- Herwig underestimates DIS cross-section
 - Bump structure visible at mid τ

<708

<447

<282

<200

- NNLO QCD prediction for $ep \rightarrow 2 Jets + X$
 - Reasonable description over full phase space
 - Scale uncertainties relatively small
 - NNLO improves over NLO
- NP corrections are sizable

Conclusion + Outlook

- First measurement of 1-Jettiness event shape in NC DIS
- Agrees reasonably well with pQCD predictions
 - Comparison with N³LL and NNLO+PS pending
- Observable is highly sensitive to model parameters
 - No MC uniformly describes the data
 - Useful for improving DIS MC generators Electron-Ion Collider coming soon!
- Sensitivity to α_s and PDFs to be explored in more detail, combined extraction should be possible
 - Promising measurement for EIC and other future e+p colliders

Any further questions? Email me at Henry.klest@stonybrook.edu

Backup

NLO ($ep \rightarrow e+2jets+X$) α_s variations (± 5%)

18

Pythia+Vincia α_s variations (± 5%)

19

- Plot shows Pythia 8.3 + Vincia prediction for τ_1^b on PARTICLE LEVEL
- Vary value of α_s in the simulation to test sensitivity
- High sensitivity in tail region
- No sensitivity in peak region (Born level kinematics)