HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGE

# Potential H1 or ZEUS analyses in 2022++



#### HERA 4 EIC workshop

Stefan Schmitt

Disclaimer: this talk is not on behalf of H1 or ZEUS, it reflects my personal opinions only. Please apologize for any imbalance between presenting H1 and ZEUS results and/or plans, I simply know the H1 perspective better.

## Outline



- H1 and ZEUS publications over time
- HERA strategy for future analyses: looking back at the HERA symposium 2014
- An (incomplete) selection of possible future analysis topics

## H1 and ZEUS publications - inspire





- Three 500+ papers after excluding self-citations
- Inclusive DIS
  papers are on top
  of the list
- Next in citations:
  - Diffraction F<sub>2</sub><sup>D</sup>
    - J/ψ, DVCS,
      light VM
  - Total cross-sec

3

- Charm
- Jets

HERA 4 EIC workshop 2022

#### HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNG

## H1 publications: topics over time





- 15 years after end of experiment: still having 2 papers per year
- Last years: increasing fraction of analyzers looking at final states (jets, event shapes, charged particles, etc)







## Recap: survey of analyses ideas in 2014

![](_page_4_Picture_2.jpeg)

• Symposium in November 2014 with all three HERA experiments

"Future physics with HERA Data for Current and Planned Experiments" https://indico.desy.de/event/10523/

- Goal: collect analysis ideas for the HERA data-preservation phase
- Talks by the experiments and interested theorists → similar to the present workshop
- Where do we stand 7 years after?

Future Physics with HERA Data for Current and Planned Experiments

| Nov 11 – 13, 2014<br>DESY Hamburg |                                        | Enter you                           | ır search term 🔍 🔍   |
|-----------------------------------|----------------------------------------|-------------------------------------|----------------------|
| Europe/Berlin timezone            |                                        |                                     |                      |
| Overview                          | Timetal                                | ble                                 |                      |
| Timetable                         |                                        |                                     |                      |
| Contribution List                 | Tue 11/11 Wed 12/11 Thu 13/11 All days |                                     | >                    |
| Author List                       |                                        | 📇 Print PDF Full screen 🛛           | Detailed view Filter |
| Registration<br>Participant List  | 16:00                                  | Registration                        | 10:00 10:15          |
|                                   |                                        | Foyer of Auditorium, DESY Hamburg   | 16:00 - 16:15        |
| Support and quantiona             |                                        | Foyer of Auditorium, DESY Hamburg   | 16:15 - 16:30        |
|                                   |                                        | Symposium: Latest results from HERA |                      |
| m.wing@ucl.ac.uk                  |                                        |                                     |                      |
|                                   | 17:00                                  |                                     |                      |
|                                   |                                        |                                     |                      |
|                                   |                                        |                                     |                      |
|                                   | 10.00                                  |                                     |                      |
|                                   | 18:00                                  |                                     |                      |
|                                   |                                        | Auditorium, DESY Hamburg            | 16:30 - 18:30        |
|                                   |                                        | Welcome Reception                   |                      |
| orkshop su                        | mma                                    | arv: [arXiv:1601.01499              |                      |

Future analysis summary: [arXiv:1512.03624]

Foyer of Auditorium, DESY Hamburg

## Ideas in 2014 and resulting publications

![](_page_5_Picture_2.jpeg)

- A quick look at the 2014 slides
- Overall, many of the 2014 open topics were addressed in subsequent papers, so the workshop was a real success
  - $\rightarrow$  Such a workshop can be of great use I am glad we have a similar type of meeting today
- Next slides: an incomplete look at possible future analyses

| Ideas presented in 2014    | Papers, Analyses 2015++     |
|----------------------------|-----------------------------|
| inclusive                  |                             |
| EW fit                     | DESY-16-039 (ZEUS)          |
|                            | DESY-18-080 (H1)            |
| High-x data                | DESY-20-048 (ZEUS)          |
| charm in CC                | DESY-19-054 (ZEUS)          |
| diffraction                |                             |
| DPDF fit                   | H1prelim-19-013 (H1)        |
| Vector mesons              | DESY-15-120 rho+n (H1)      |
|                            | DESY-20-080 rho (H1)        |
|                            | preliminary psi'/psi (ZEUS) |
| Hadronic final states      |                             |
| HERA-II precision jet data | DESY-16-200 (H1)            |
| NNLO jet analysis          | DESY-17-137 (H1)            |
|                            | DESY-21-201 (H1+ZEUS)       |
| prompt photons             | DESY-17-077 (ZEUS)          |
|                            | DESY-17-212 (ZEUS)          |
| event shapes               | H1prelim-21-032 (H1)        |
|                            | H1prelim-22-033 (H1)        |
| pentaquark                 | DESY-16-065 (ZEUS)          |
| heavy flavour              |                             |
| charm in diffraction       | DESY-17-043 (H1)            |

S.Schmitt, H1 and ZEUS analyses 2022++

- $F_{L}$  data combination
  - Could also be used to prepare for extracting F<sub>L</sub> from HERA+EIC
- Extend phase-space of traditional inclusive analyses
  - High-x (ZEUS paper)
  - Profit from improved reconstruction methods (talks by Owen and Alan)
- Revisit radiative corrections
  - HERA method: radiative corrections.
    Best choice for EIC?
    - $\rightarrow$  HERA measurements, where photon radiation is part of the results?

HERA 4 EIC workshop 2022

## Future analysis ideas - inclusive

![](_page_6_Picture_12.jpeg)

![](_page_6_Picture_13.jpeg)

## Future analysis ideas - PDF

![](_page_7_Picture_2.jpeg)

- Photon in the proton (from µ+µpair production?)
- Photon structure from photoproduction of jets or charged particles → HERA-II sample
- Strange sea
  - ZEUS paper. H1 could try charm in CC (thesis exists)

![](_page_7_Figure_8.jpeg)

✓ H1 thesis T. Zimmermann (2008), using muons

 $F_c = 9.5 \pm 8.9 \pm 3.0 \%$  for  $e^+ p$  and

 $F_c = 4.4 \pm 6.9 \pm 2.6 \%$  for  $e^-p$ . Compatible with zero

Lifetime analysis was not successful at the time (T.Zimmermann). Could possibly try with trackbased electron finder.

![](_page_8_Picture_1.jpeg)

Future analysis ideas - polarisation

- HERA lepton beam was polarized, but has not been used much by H1 and ZEUS
- Electroweak effects have been measured only in:
  - Charged current
  - gamma/Z interference
- Analysis ideas: beam polarization also should be visible in DVCS and diffractive DIS vector-mesons

![](_page_8_Figure_8.jpeg)

![](_page_8_Figure_9.jpeg)

![](_page_8_Figure_10.jpeg)

Could also measure polarization asymmetry. For H1, high y region 0.3<y<0.7 looks most promising.

![](_page_9_Picture_1.jpeg)

## Future analysis ideas – jets and event shapes

- Theory advances have triggered new analysis → stay tuned
- Recent examples and ideas
  - Lepton-jet decorrelation  $\rightarrow$  TMD
  - Triple-differential event shapes  $\rightarrow$  PDF and  $\alpha_s$  (talk by Daniel)
  - Groomed event shapes: transition between fragmentation and hard QCD (talk by Henry)

![](_page_9_Figure_8.jpeg)

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNG

## Future analysis ideas – hadronic final states

![](_page_10_Picture_2.jpeg)

11

- Examples:
  - Underlying event
  - Particle azimuthal correlations (talks by p Chuan and Dhevan)
  - Jet substructure (talks by Vinicius and Mriganka)
  - Semi-inclusive DIS: leading hadrons, multidifferential
  - Multiplicities/entanglement (Zhoudunming)
- HERA data  $\rightarrow$  tune MC for EIC and LHC
- Make sure our results are in RIVET

HERA 4 EIC workshop 2022

![](_page_10_Figure_13.jpeg)

## Future analysis ideas – heavy flavour

- Joint H1+ZEUS paper on inclusive charm and beauty → is there more to come?
- Ideas from 2014 (Achim's slides):
  - Look at forward muons (intrinsic charm?)
    - H1: use Fwd/Bwd Silicon?
  - Multi-differential analyses
  - Improved charm fragmentation (HERA-II DIS data analysis?)

![](_page_11_Figure_10.jpeg)

![](_page_11_Picture_11.jpeg)

#### 13

### Future analysis ideas - diffraction

z Σ(z,μ<sup>2</sup>)

Sinalet

- H1+ZEUS data combination F<sub>2</sub><sup>D</sup>?
- New DPDF (H1 preliminary result) •
- Further analyses with forward neutron (e.g. HERA-II - high Q<sup>2</sup>)
- Vector mesons in DIS (HERA-II), • multi-differential J/psi?
- Odderon searches HERA-II •
- Talks by Mark, Alessia, Bjoern, Sergey

![](_page_12_Figure_10.jpeg)

Gluor

![](_page_12_Picture_11.jpeg)

## Summary

![](_page_13_Picture_2.jpeg)

- 30 years after the start of HERA and 15 years after end of data taking, we are still discussing exciting analysis opportunities
  - $\rightarrow\,$  data preservation at DESY and MPI really paid off
- In view of the EIC HERA data can be used to
  - Explore areas of physics which have been neglected in the past
  - Answer specific questions in corners of the accessible phase space
  - Help to establish the better possible MC models for ep and eA
  - Provide "real" data analyses for studenst while ramping up the EIC
- Looking forward to have an exciting workshop with detailed discussions of analysis opportunities

![](_page_14_Picture_0.jpeg)

### **Backup slides**

HERA 4 EIC workshop 2022

## The HERA collider

nin

200

10

![](_page_15_Picture_1.jpeg)

![](_page_15_Figure_2.jpeg)

- Circumference 6.3 km
- Electrons or positrons colliding with protons
- Proton: 460-920 GeV, Leptons 27.6 GeV
- Peak luminosity ~7×10<sup>31</sup> cm<sup>-2</sup>s<sup>-1</sup>
- Lepton beam polarisation up to 40-60% (Sokolov-Ternov effect, rise-time ~30 minutes)

![](_page_15_Picture_8.jpeg)

Curved section

S.Schmitt, H1 and ZEUS analyses 2022++

![](_page_15_Figure_11.jpeg)

HERA 4 EIC workshop 2022

## HERA compared to other colliders

• HERA at construction time: energy frontier ( $E_p$ ~Tevatron,  $E_e$ ~ ½ LEP)

Detectors were designed for discoveries, not so much for precision

- EIC compared to HERA:
  - Reduced center-of-mass energy ×0.3
  - Much higher luminosity ×100
  - Better lepton polarisation
  - Target polarisation
  - Heavy targets
  - Much improved detectors: tracking, acceptance, particle identification, forward detectors, ...

![](_page_16_Figure_13.jpeg)

![](_page_16_Picture_14.jpeg)

## Processes studied at the HERA collider

![](_page_17_Picture_2.jpeg)

- Neutral Current DIS (Deep Inelastic Scattering)
  - electron in main detector
- Charged current DIS
  - neutrino with high transverse momentum (escapes detection)
- Photoproduction
  - Electron scattered at very low angle (dedicated low-angle detector or not detected)

![](_page_17_Figure_9.jpeg)

Large electron scattering angle (rare event)

![](_page_17_Figure_11.jpeg)

HERA 4 EIC workshop 2022

## Processes studied at the HERA collider

![](_page_18_Picture_2.jpeg)

- Neutral Current DIS
  - electron in main detector
- Charged current DIS
  - neutrino with high transverse momentum (escapes detection)
- Photoproduction
  - Electron scattered at very low angle (dedicated low-angle detector or not detected)

![](_page_18_Figure_9.jpeg)

![](_page_18_Figure_10.jpeg)

## Processes studied at the HERA collider

S.Schmitt, H1 and ZEUS analyses 2022++

- Neutral Current DIS •
  - electron in main detector
- Charged current DIS ٠
  - neutrino with high transverse momentum (escapes detection)
- Photoproduction

HERA 4 EIC workshop 2022

Electron scattered at very low angle (not detected or scattered into dedicated low-angle tagger)

![](_page_19_Figure_11.jpeg)

![](_page_19_Figure_12.jpeg)

![](_page_19_Picture_13.jpeg)

![](_page_19_Figure_14.jpeg)

Photoproduction and DIS

Neutral current (NC) event

- Main kinematic variable: negative four-momentum squared Q<sup>2</sup>= -(e-e')<sup>2</sup>
- Q<sup>2</sup> provides a natural hard scale for perturbative calculations
- Deep-inelastic scattering (**DIS**):  $Q^2 \gg 0$ 
  - Perturbative QCD applicable
- **Photoproduction**:  $Q^2 \sim 0$ 
  - Perturbative QCD works only if there is another hard scale (jet, if heavy quark, etc)

![](_page_20_Picture_10.jpeg)

![](_page_20_Figure_11.jpeg)

#### HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUN

- Kinematic variables: Q<sup>2</sup>, x, y, Q<sup>2</sup>=sxy
- Determine from 4-vectors of beam particles e, p, scattered electron e' and hadronic final state X

![](_page_21_Figure_6.jpeg)

- "Electron" method: y=y<sub>e</sub> and p<sub>T</sub>=p<sub>T,e</sub>
- At low y, the electron method is limited by energy resolution, initial and final state radiation
  - $\rightarrow$  use y=y<sub>h</sub> (sigma method)
- Other methods also in use: double-angle, etc

![](_page_21_Figure_11.jpeg)

![](_page_21_Picture_12.jpeg)

# Neutral current DIS kinematics at HERA

![](_page_22_Figure_3.jpeg)

• Determine from 4-vectors of beam particles e, p, scattered electron e' and hadronic final state X

![](_page_22_Figure_5.jpeg)

- "Electron" method:  $y=y_e$  and  $p_T=p_{T,e}$
- At low y, use  $y=y_h$  (sigma method)  $\rightarrow$  hadrons contributing to  $y_h$  have to be within detector acceptance  $\rightarrow$  low y / high x is not accessible

HERA is "low-x" because of acceptance limitations in the forward (proton) direction

![](_page_22_Figure_9.jpeg)