Azimuthal correlations in photoproduction and deep inelastic *ep* scattering at HERA

Dhevan Gangadharan

University of Houston

HERA 4 EIC, 9 June 2022

イロト 不得 トイヨト イヨト

Subject of this analysis

The study of multibody QCD interactions under extreme conditions

Confinement in QCD "hides" the details of such interactions We can collide **heavy nuclei** to open them up in the laboratory

Central Question:

Is a similar kind of multibody environment created in much smaller *ep* systems produced at HERA?

(日)

A pillar of heavy-ion measurements: Elliptic Anisotropy

• The spatial configuration of the initial scattering typically has a large elliptic component.

イロン 不良 とくほとう

- 32

3/41

HERA 4 EIC. 9 June 2022

Dhevan Gangadharan (University of Houston)

A pillar of heavy-ion measurements: Elliptic Anisotropy

- The spatial configuration of the initial scattering typically has a large elliptic component.
- **Rescattering** between the produced partons converts this spatial eccentricity into an asymmetry in momentum space.

・ロト ・ 同ト ・ ヨト ・ ヨト

A pillar of heavy-ion measurements: Elliptic Anisotropy

- The spatial configuration of the **initial scattering** typically has a large elliptic component.
- **Rescattering** between the produced partons converts this spatial eccentricity into an asymmetry in momentum space.
- The elliptic asymmetry is clearly evident in two-particle correlations: collectivity.

Double ridge in two-particle correlations

- Two particle correlations in heavy-ion collisions show a clear **double ridge**, which is interpreted as a sign of fluid-like behaviour in QCD—The QGP.
- C(Δη, Δφ) = S(Δη, Δφ)/B(Δη, Δφ),
 S and B are formed from pairs from the same- and mixed-events, respectively.

イロト 不得 トイヨト イヨト 二日

Double ridge in two-particle correlations

- Two particle correlations in heavy-ion collisions show a clear **double ridge**, which is interpreted as a sign of fluid-like behaviour (QGP).
- C(Δη, Δφ) = S(Δη, Δφ)/B(Δη, Δφ),
 S and B are formed from pairs from the same- and mixed-events, respectively.
- The start of the LHC revealed that high-multiplicity p + p collisions also have a double-ridge!
- Such collisions were thought to be too small to produce a thermally equilibrated QGP.

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ─ ○

Motivation for the analysis

- Two particle correlations in heavy-ion collisions show a clear **double ridge**, which is interpreted as a sign of fluid-like behaviour (QGP).
- C(Δη, Δφ) = S(Δη, Δφ)/B(Δη, Δφ),
 S and B are formed from pairs from the same- and mixed-events, respectively.
- The start of the LHC revealed that high-multiplicity p + p collisions also have a double-ridge!
- Such collisions were thought to be too small to produce a thermally equilibrated QGP.
- What about even more fundamental *ep* scattering at HERA??

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

The HERA collider and experiments

- Location: DESY, Hamburg, Germany
- Data taking: 1992 2007
- 27.5 GeV electrons/positrons 920 GeV protons $\rightarrow \sqrt{s} = 318 \text{ GeV}$
- HERA I+II: 500 pb⁻¹ per experiment

イロト 不得 トイヨト イヨト 二日

Deep inelastic scattering (DIS)

- DIS is defined by large virtualities: $Q^2 \gg \Lambda^2_{\rm OCD}$
- Transverse radius (R_t) and longitudinal length (L) of the probed region are given by:

$$egin{aligned} R_t &\sim rac{1}{Q} \ L &\sim rac{1}{m_{ ext{proton}\, imes}} \end{aligned}$$

PRD 95 114008

• Neutral current (NC) DIS involves the exchange of photon or Z boson.

イロト イポト イヨト イヨト

Photoproduction (PhP)

- Photoproduction (γp) is defined by small virtualities: Q² ≪ Λ²_{OCD}.
- Exchanged photon may fluctuate into quarks and gluons.
- Larger interaction regions are probed.
- Multiparton Interactions are possible.

• Scattering is hadron-like.

ep photoproduction: subsequent rescattering phase possible

- The initial scattering is shown here with 3 MPIs (black dots)
- Unlike in DIS, the spatial extent of this "initial state" is finite with an irregular shape, in general.
- Subsequently, a phase of **rescattering may occur**, whereby a local thermal equilibrium might form.

(I) < ((i) <

Observables for this analysis

To search for collective behavoiur and MPI in ep scattering, we measured the following:

- \bullet Charged hadron multiplicity distribution: $\textit{dN}/\textit{dN}_{\rm ch}$
- Transverse momentum distribution: dN/dp_{T}
- Pseudorapidity distribution: $dN/d\eta$
- Two-particle azimuthal correlation functions: $c_n\{2\}$ and $\mathcal{C}(\Delta\eta,\Delta\varphi)$
- Four-particle cumulant azimuthal correlations: **c**_n{4}

I'll present recently published measurements of azimuthal correlations in neutral current DIS and photoproduction with the ZEUS detector: JHEP 102 2021

Additional detailed measurements in DIS alone can be found in our previous paper JHEP 04 (2020) 070.

Two- and four-particle correlation functions

Two-particle azimuthal correlations are measured:

 $c_n\{2\} = \langle \langle \cos n(\phi_i - \phi_i) \rangle \rangle$

 φ_i is the azimuthal angle of particle *i*

n is the harmonic (n=1, 2 studied here) Four-particle cumulant correlations are also measured:

$$C_n\{4\} = \langle \langle \cos n(\phi_i + \phi_j - \phi_k - \phi_l) \rangle \rangle$$

$$c_n\{4\}(p_{T,1}) = C_n\{4\}(p_{T,1}) - 2 c_n\{2\}(p_{T,1}) c_n\{2\}$$

Not shown here, see our JHEP publication.

4 **D b** 4 **A b** 4

F 4 3 5 F

ZEUS detector

Charged particles are tracked in the central tracking detector (CTD) and micro vertex detector (MVD) in a 1.43 T magnetic field.

Depleted uranium calorimeters.

The barrel and rear ones are used to help identify the scattered electron.

A fully contained event is characterized by $\sum_{i} (E_i - P_{z,i}) = 55 \text{ GeV}$ due to energy and momentum conservation.

Track selection

Track selection for correlation analysis

- Reject scattered electron (if detected)
- $-1.5 < \eta < 2.0$
- $0.1 < p_T < 5.0 \text{ GeV}$
- ${\small \bullet}~\geq 1$ MVD hit
- DCA_{XY,Z} < 2 cm
- $\Delta R > 0.4$ (cone around electron)

$$N_{
m ch} = \sum_{i}^{N_{
m rec}} w_i^{(1)}$$

イロト (目) (ヨト (ヨト) ヨー のくで)

HERA 4 EIC, 9 June 2022 16 / 41

Results: Ridge plots

-

17 / 41

HERA 4 EIC. 9 June 2022

A near-side peak and away-side ridge are clearly visible. Photoproduction correlations are dimished wrt those in DIS. **No visible double-ridge.**

Results: Q^2 evolution of $c_2\{2\}$

Photoproduction correlation strengths ($Q^2 = 0$) are clearly diminished wrt those in DIS.

= 900

イロト イポト イヨト イヨト

Multiparton Interactions

Study of MPI in *ep* photoproduction

Dhevan Gangadharan (University of Houston)

HERA 4 EIC, 9 June 2022 19 / 41

Results: $dN/dN_{\rm ch}$

The level of MPI and IR divergencies are controled by the p_{T0} parameter in PYTHIA 8.

It is used to regularize the interaction cross section in PYTHIA 8.

$$rac{d\sigma}{dp_{
m T}^2} \propto rac{lpha_s^2 (p_{
m T0}^2 + p_{
m T}^2)}{(p_{
m T0}^2 + p_{
m T}^2)^2}$$

The energy dependence of this parameter is given by $p_{\rm T0} = p_{\rm T0}^{\rm ref} (W/7 \,{\rm TeV})^{0.215}$, where W is the $\gamma p \sqrt{s}$.

More MPI \rightarrow lower p_{T0}^{ref}

Colour Reconnection (CR) is PYTHIA's modeling of rescattering between partons from different MPIs

(日)

Results: $dN/dp_{\rm T}$ and $dN/d\eta$

• The scenarios of no MPI and very many MPI are disfavored.

イロト 不得 トイヨト イヨト

Results: $c_1\{2\}$ and $c_2\{2\}$ versus $\Delta\eta$

HERA 4 EIC. 9 June 2022

22 / 41

- Correlation strengths are diluted by MPI.
- The scenarios of no MPI and very many MPI are disfavored.

Illustration of MPI growth

- Rough illustration of how nMPI grows from DIS to heavy-ions
- N_{coll}: number of binary nucleon-nucleon collsions
- N^{partonic}: number of parton scatterings per binary nucleon-nucleon collision
- Estimates for N_{coll} taken from - Ann. Rev. Nucl. Part. Sci. 57, 205 (2007)
 - PRC 97 024905 (2018).
- Estimates for N_{nn}^{partonic} taken from PYTHIA 8

イロト (個) (日) (日) (日) (日) (の)

Azimuthal correlations at the EIC

Collective behaviour in eA collisions?

- At the EIC, collective behaviour may emerge in *eA* nuclear DIS or photoproduction.
- The nucleus (e.g. Pb) is a much larger system than a proton and is a strongly correlated system.

Azimuthal correlations to search for gluon saturation

- Broadening or even a disapearance of away-side jets is expected from a quantum evolution inside a saturated system.
- To focus on low x, $1 < Q^2 < 2$ GeV² and 0.6 < y < 0.8 are selected ($Q^2 = sxy$).
- Left figure taken from Fig. 7.63 of EIC Yellow Report

24/41

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Summary of measurements

- Measurements of charged-particle azimuthal correlations at high multiplicity have been presented using ZEUS data in *ep* photoproduction (γp) and NC DIS at $\sqrt{s} = 318$ GeV.
- There is no clear indication of a double ridge from $C(\Delta \eta, \Delta \varphi)$ in either γp or DIS.
- Two-particle correlation strengths are markedly diminished in γp wrt DIS.
- The observations in both regimes **do not** reveal significant collective behaviour like that seen in heavy-ions or high-multiplicity hadronic collisions.
- While there is no consistent value of p_{T0}^{ref} in PYTHIA 8 that describes all the γp data, the "no MPI" scenario is strongly disfavored.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ○ Q ○ 25/41

Backup

Dhevan Gangadharan (University of Houston)

< □ ▷ < @ ▷ < 볼 ▷ < 볼 ▷ 볼 · ♡ < ♡ 26/41

Responses to the motivating questions

DIS probes very small length scales in the proton ($\ll 1$ fm). Photoproduction probes much larger scales, which can be as large as the proton itself.

The observations in both regimes **do not** reveal significant collective behaviour like that seen in heavy-ions or high-multiplicity hadronic collisions.

The concept of multiparton interactions provides a useful tool to help understand the emergence of collective behaviour.

It sets the stage for a potential rescattering phase.

	nMPI	Collectivity
ep photoproduction	~ 3	No
pp high-multiplicity	~ 20	Yes

The initial states in both systems may be similar in spatial extent but completely different in the number of MPI.

HERA 4 EIC. 9 June 2022

27 / 41

Dhevan Gangadharan (University of Houston)

Evolution of a heavy-ion collision

- The initial scattering takes place over an extended region.
- A subsequent stage of rescattering produces a thermally equilibrated system.
- This fluid of QCD matter is called the quark-gluon plasma (QGP).
- Relativistic hydrodynamics describes the evolution of the QGP.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

DIS event selection

DIS Event selection (0.2 M)

- $N_{
 m ch} \geq 20$
- DIS triggers
- electron probability > 90%

•
$$Q^2 = -(k - k')^2 > 5 \text{ GeV}^2$$

- $k'_0 > 10 \text{ GeV}$
- *r* > 15 cm
- $\theta_e > 1 \text{ rad}$
- $47 < \sum (E_i P_{z,i}) < 69 \text{ GeV}$
- $|V_z| < 30 \text{ cm}$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ● ■ • • ○ Q ○ 29/41

Photoproduction event selection

Photoproduction event selection (5 M)

- $N_{
 m ch} \geq 20$
- PhP oriented triggers
- electron probability < 90%

イロト (四) (三) (三) (三) (0) (0)

- $k'_0 < 15 \text{ GeV}$
- $\sum (E_i P_{z,i}) < 55 \text{ GeV}$
- $|V_z| < 30 \text{ cm}$

30/41

Results: Q^2 evolution of $c_1\{2\}$

Photoproduction correlation strengths ($Q^2 = 0$) are clearly diminished wrt those in DIS.

イロト イポト イヨト イヨト

Results: c_1 {2} and c_2 {2} versus $\langle p_{\mathrm{T}} angle$

• $c_1\{2\}$ versus $\langle p_T \rangle$ not sensitive to MPI and not described well by PYTHIA 8.

• More extreme levels of MPI are favored by $c_2\{2\}$ versus $\langle p_T \rangle$.

Results: c_1 {4} and c_2 {4} versus $p_{T,1}$

- Four-particle cumulant is positive, which is in contrast to the negative values seen in non-central heavy-ion collisions.
- The scenarios of no MPI and very many MPI are disfavored.

Multiparton Interactions (MPI)

- MPI occur when there's more than one 2 → 2 partonic scattering between the beam particles in a given event.
- If the scatterings are sufficiently hard $(p_T \gtrsim 1 \text{ GeV})$, they can be modeled in an event generator like PYTHIA 8.
- Established feature in high-multiplicity hadronic collisions. Not conclusively observed in *ep* scattering so far.

Tracking efficiency corrections

The efficiency correction weights for 1-, 2-, and 4-particle distributions are defined as:

$$w^{(n)} = \frac{N_{gen}^n(\vec{x})}{N_{rec}^n(\vec{x})}$$

They are computed differentially in Monte Carlo simulations of the ZEUS detector:

dimension of \vec{x}	One-particle $(n=1)$	Two-particle $(n=2)$	Four-particle (n=4)
x_1	φ	$\varphi_1 - \varphi_2$	$\varphi_1 + \varphi_2 - \varphi_3 - \varphi_4$
x_2	η	$\langle \eta_i - \langle \eta angle angle$	$\langle \eta_i - \langle \eta \rangle angle$
x_3	p_{T}	$\langle p_{T,i} - \langle p_T \rangle \rangle$	$\langle p_{T,i} - \langle p_T \rangle \rangle$
x_4 (charge)	q	$ q_1 + q_2 $	$ q_1 + q_2 + q_3 + q_4 /2$
	-	$N_{ m rec}$	$N_{ m rec}$

Condensed view of PYTHIA 8 comparisons

Dhevan Gangadharan (University of Houston)

3 HERA 4 EIC, 9 June 2022 36 / 41

36/41

イロト イポト イヨト イヨト

W distribution

÷. HERA 4 EIC, 9 June 2022 37 / 41

37/41

Direct and Resolved event distributions

æ . HERA 4 EIC, 9 June 2022 38 / 41

38/41

nMPI in high-multiplicity p + p PYTHIA 8 at LHC energies

PYTHIA 8 p + p events at $\sqrt{s} = 13$ TeV were generated.

 $\it N_{ch}$ was counted according to the ATLAS acceptance used in PRL 116 172301. $-2.5 < \eta < 2.5, \, 0.4 < \it p_T < 50~GeV$

• • • • • • • • •

Results: Q^2 evolution of $c_1\{2\}$

 γp direct: photon couples directly to a quark in the proton.

 γp resolved: photon splits into quarks and gluons which then scatter with the proton (MPI possible).

-

HERA 4 EIC. 9 June 2022

40/41

40 / 41

Photoproduction correlation strengths ($Q^2 = 0$) are clearly diminished wrt those in DIS.

The LEPTO model of DIS gives a rough qualitative description of the data.

PYTHIA 8 with only the direct component of γp predicts much stronger correlations than the full calculation (direct + resolved).

Results: Q^2 evolution of $c_2\{2\}$

 $\gamma \pmb{p}$ direct: photon couples directly to a quark in the proton.

 γp resolved: photon splits into quarks and gluons which then scatter with the proton (MPI possible).

イロト イポト イヨト イヨト

-

HERA 4 EIC. 9 June 2022

41/41

41/41

Photoproduction correlation strengths ($Q^2 = 0$) are clearly diminished wrt those in DIS.

The LEPTO model of DIS gives a rough qualitative description of the data.

PYTHIA 8 with only the direct component of γp predicts much stronger correlations than the full calculation (direct + resolved).