HERA PDFs and lessons for EIC?
AM Cooper-Sarkar, Oxford

There were two general purpose detectors H1 and ZEUS

At the end of running there was about 500pb-! of data per experiment split
~equally between e* and e-beams

PDF fits to HERA combined data can be found in ArXivs:0911.0884,
1506.06042, 2112.01120,

These are all published in EPJC, but you may find the arXiV easier to find 1



HERA ran from 1992 to 2000 and again from 2002 to 2007

HERA-I

1992-2000

Ep=820,920 GeV

2003-2007

Ep=920,
460,575 GeV

Registered ~1fb-! of integrated
luminosity of physics data.

Running at Ep = 920, 820, 575, 460 GeV
Vs = 320, 300, 251, 225 GeV
The lower proton beam energies allow a
measurement of F, and thus give more

iInformation on the gluon.

HERA- | combination ~250 pb-! of data

HERA-II gives 4 times as much data in total

B0
550 —
S0 —:
150 -
100
:5]“—-
30—

250

Integrated luminosity for FIT physics [ph I|

200 —
ﬁu-:
1) -]

0 -]
1952

- BN
®cp 575 Gev ]
460 Ge 3 .
® ¢ p - i
HERAI HERAII -
— 4
@ low] 3
¢ =L
4 =
& - s
820 GeV 920 GeV 5 =
g = an
f 251
— 2m
Luminosity 3
upgrade / — 15
B;ukgmund 1 1o
Hlupgrades ./ problems = 50
———= — -IFI "’I T - T T T T I ) T | 7 I
1994 1996 1998 2000 2002 2004 2006 2008



Deep Inelastic Scattering (DIS) is the best tool to probe proton structure
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Gluon from the scaling violations: DGLAP
equations tell us how the partons evolve




The DIS kinematic plane
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So EIC will not access high Q2 so efficiently
but the higher luminosity could compensate?

By contrast the low Q? region does not access

such low-x, so that Q%> ~3 GeV, should not
access low-x effects for a proton target



Both ZEUS and H1 made their own PDF fits starting with HLIPDF2000, ZEUS-S in
2001 and ZEUS-JETS in 2005. The results were not always fully consistent.
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There are many assumptions
which go into a PDF fit. The
most important of these is
data consistency.

Most experimental data used
in PDF fits today have
uncertainties dominated by
their systematics not by the
statistics. For H1 and ZEUS
separate data sets
systematic uncertainties were
~3 times statistical error

The situation with large systematic uncertainties and tensions between data sets only
gets worse when many LHC data sets are added to the HERA data...

But that is not a story for today



This motivated the H1 and ZEUS collaborations to combine their data,
investigating their correlated systematic uncertainties in great detail. Some of these are
also correlated between ZEUS and H1 and some are not.

The resulting combination is much better than expected just from the increased
statistics of combining two experiments.

The expriments cross calibrate each other
The combination of the HERA data yields a very accurate and consistent data
set for 4 different processes: e+p and e-p Neutral and Charged Current

reactions.

The post-combination systematic errors are smaller than the statistical across a
large part of the kinematic plane



Combination procedure

« Swim all points to a common x-Q? grid
 Calculate comnibed values and uncertainties as follows.

This is done by making a x2 fit to the data points of both experiments which simply
assumes that for each process (NC or CC, e+ or e-) and each x, Q2 point (i) there
is only one ‘true’ value of the cross-section- these are the predlct|ons m,
whereas there can be several measurements of this value, from ZEUS and H1
and from different years of running- these are the measurements

ngp(m,b)=2|:m ZJ i ,u] +sz

i

« The chisq accounts for the correlated systematic uncertainties of the data points-
each data point can have several such uncertainties I';, hence sum over | for
each data point i, but these uncertainties are correlated between all data points
for large sub- sets of data. The fit determines the value of the cross-sections m,
and the nuisance parameters b;. It also evaluates their uncertainties.

« Evaluate further uncertainties due to choices in combination procedure,e.g.
Correlations between ZEUS and H1

HERAPDF1.0 averaged 1402 data points to 741 combined data points
x2/ndf =637/656 for this HERA-I combination

HERAPDF2.0 averaged 2927 data points to 1307 combined data points
x2/ndf =1687/1620 for this HERA-II combination



Some examples from HERA-I (just because we gave more detail for HERA-I)
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uncertainties on the shift
parameters Ab, some of these
are much reduced e.g

Hence this is not just statistical improvement from
combination . Each experiment has been
used to calibrate the other since they have

ZEUS yp background uncertainty rather different sources of experimental

Is reduced by a factor of 3 systematics

Before combination the systematic errors are

H1 LAr hadron calorimeter : e
~3 times the statistical for Q%< 100

energy scale uncertainty is
halved After combination systematic errors are <
statistical



Correlated systematic uncertainties, x2 and Ax2

The data combination results in a data set which not only has improved statistical
uncertainty, but also improved systematic uncertainty.

Even though there are >100 sources of correlated systematic uncertainty on the
data points these uncertainties are small. The total systematic uncertainty is
significantly smaller than the statistical uncertainty across the kinematic region
used in the QCD fits

This very consistent HERA data set was used as sole input to a Parton Distribution
Function fit known as HERAPDF1.0

We set the experimental uncertainties on our PDFs at 68% CL by the conventional
X2 tolerance

Ax2 =1
When there are data inconsistencies, larger tolerances are considered—
as in the PDF fits of CT and MSHT
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Impact of HERA data on the LHC
W and Z rapidity distributions as predicted by PDFs before and after HERA
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WHY? -It's due to the improvement in the low-x gluon

At the LHC the g-gbar which make the boson are mostly sea-sea partons at low-x
And at high scale, Q°~M.? the sea is driven by the gluon by g—q gbar splitting



Now let’s move to the HERA-II +]l combination

arxiv:1506.06042

The HERA-I+1l combination is more ambitious
41 input data files to 7 output files with 169 sources of correlated uncertainty
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The HERAPDF approach uses only HERA data

The combination of the HERA data yields a very accurate and consistent data set for 4
different processes: e*p and ep Neutral and Charged Current reactions and for e*p
Neutral Current at 4 different beam energies

The use of the single consistent data set allows the usage of the conventional x2
tolerance Ax2 = 1 when setting 68%CL experimental errors

NOTE the use of a pure proton target means no need for heavy target/deuterium
corrections.

d-valence is extracted from CC e*p without assuming d in proton= u in neutron
All data are at high W (> 15 GeV), so high-x, higher twist effects are negligible.
These are the only PDFs for which this is true

HERAPDF evaluates model uncertainties and parametrisation uncertainties in addition
to experimental uncertainties

« HERAPDF1.0 was based on the combination of HERA-I data (LO, NLO )
« HERAPDF1.5 included preliminary HERA-II data (LO,NLO,NNLO)

« HERAPDF2.0 is based on the final combination of HERA-I and HERA-II data which
supersedes the HERA-I combination and supersedes all previous HERAPDFs
(LO,NLO and NNLO)

HERAPDF2.0 also has fits including combined HERA charm and beauty data and
including H1 and ZEUS separate jet data (arXiv:2112.01120 for NNLO)



Theoretical framework

Fits are made in the DGLAP formalism —using the xFitter framework with QCDNUM
The Thorne-Roberts optimised massive variable-flavour number scheme is used

The staring scale Q?, (= 1.9 GeV?) is below the charm mass? (mc=1,4 GeV) and charm and
beauty (mb=4.75) are generated dynamically

A minimum QZ2 cut Q2 > 3.5 GeV? is applied to stay within the supposed region of validity
of leading twist pQCD (no data are at low W2

The choices of values in green are varied and the results added as model uncertainties
Parametrisation

We chose to fit the PDFs for:

gluon, u-valence, d-valence and the Sea u and d-type flavours:
Ubar = ubar, Dbar = dbar+sbar (below the charm threshold)

To the functional form  Xf(x,Q %) = AxE(1-x)C(1+Dx+Ex?)

The normalisations of the gluon and valence PDFs are fixed by the momentum and
number sum-rules resp.

Parameters D and E are added until the x2 no longer improves, ‘saturation of x2’
but further D,E parameters which change shape not x2 are used as parametrisation
variations



For the NLO and NNLO fits the resulting central parametrisation at Q4, = 1.9 GeV?is
xg(x) = ApxP(1 =0 = A1 - )%,

v = Au XB”” 1 — Cu 1+ L, ’ ’
xtt,(x) (1 =) ( o ) QCD sum-rules constrain Aj,A,,,,Aqy

xdy(x) = Agx"(1=x)", x5 = fixD  sets the size of the strange
xU(x) = Agx®7(1 = x)“7 (1 + Dgx), PDF and the constraints 85 = Bp. and
xlj(x) = Apx®(1 — x)°o. A = Ap(1 - £) ensure xu — xd as x — 0.

« There are 14 free parameters in the central fit determined by saturation of the x2

* dg(M,) = 0.118 for central fits

* PDFs are evolved using the DGLAP equations and convoluted with coefficient
functions to evaluate structure functions and hence measurable cross sections

* An LO fit with ag(M;) = 0.130 is also provided with an alternative gluon (AG)
parametrisation without the negative term

« The form of the x2 accounts for 169 correlated uncertainties, 162 from the input data
sets and 7 from the procedure of combination

-2 y’/ﬂ’S /J 6% M + (Siuncor’)?
Xﬁxp(’n’s) Z [ : +Z‘S +Zl [az‘ 2 ulor- o)
,Ll /77 + 6;1111c01 (/77 ) (61 stat P 6;.1111001')(/1,)-

i 1 st'\t

m, is the theoretical prediction (5, stats (52 .unc Statistical and uncorrelated systematic uncertainty

11; is the measured cross section ’7] correlated systematic uncertainties
bj shifts Voica Radescu| DESY (3%) |DIS - Warsaw | HERAPDF2.0 8



Model: Variation of input assumptions

H1 and ZEUS

Variation of charm mass and beauty mass T T T
parameters is restricted using HERA charm and ’ R
beauty data I e
L [ ] model xu..
| [ parameterisation v
0.6 _ ---------- HERAPDF2.0AG NNLO

f size and shape 0.4 0.5 0.3 ) /\

M. (NLO) GeV  1.43 1.49 1.37 N

M, (NNLO) GeV  1.47 1.53 1.41 ol

M, GeV 4.5 4.25 4.75 : | | 7
Q?in GeV? 3.5 2.5 5.0 F I e R
Q2 (HiQ2) 10.0 7.5 12.5 ’

The value of ag(M,) is not treated as an uncertainty. The central value is ag(M,) = 0.118
But PDFs are supplied for ag(M,) values from 0.110 to 0.130 in steps of 0.001
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HERAPDF2.0: NLO and NNLO fits
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The HERAPDF2.0AG is an alternative gluon parametrisation which is positive
definite for all x and all Q2 > Q?,
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HERAPDF2.0 compared to data

r, NC

H1 and ZEUS

Q' =2 GeV?

13
] ®e,
.
.
- ey

L Q'=6.5GeV?

- QP =15GeV?

! I,HHJ Ll IIHI,I‘ | IIII\‘ L

Q* =45 GeV?

Q> =3.5GeV’

Q' =27GeV? |

Lo | \I\Hl L 1 H—i‘L | H,,I‘ 1

Q' =85GeV’ | Q> =12 GeV’

Q> =10 GeV’

Q'=18GeV? -  Q'=22GeV: -  Q'=27GeV’

_I .HI.Ll ANTTIE-] IH.I.I‘ | .I.Ill\l 11N I \.HH.\' LU 11l | .H..I.‘ 1 H.Hl‘ L \.I..Id | \..HHl 11l _I IILIIII‘ 1ol 1 \H._.I‘ 1 HHL\J L1l
Q> =35GeV? Q*=45GeV’ Q* =60 GeV’ Q> =70 GeV’

7I \Il\l 1 IIHII‘ L IIII\‘ LIl i 1 111 \I\Hl Lo e 7\ 1 I‘ 1l H\‘ L1L I\‘ Ll HHl L1l 7I IHIIII‘ L L I‘ HHH‘ Ll
Q? =90 GeV? Q’ =120 GeV? w o w! U

® HERANCep0.5fh"
Vs =318 GeV

w= HERAPDF2.0 NLO

10"
X

10°

Bj

XBj

+
Oy NC

0.5

0.2

H1 and ZEUS

Q’ =150 GeV’

Q% =200 GeV’ Q% =250 GeV’ Q% =300 GeV’

Q” = 400 GeV*

Q% =500 GeV? Q’ = 650 GeV* Q’ = 800 GeV?

Q? =1000 GeV’

..

Q% = 1500 GeV*

Q% =1200 GeV* Q’ = 2000 GeV*

Q> =3000 GeV® |

Q% =20000 GeV*

w: 10!

Q*=5000GeV’ | Q'=8000GeV’ | Q=12000 GeV’

3 2 10 10! 10?10t
Q" =30000 GeV ) xBj
® HERANC ep 0.5
Vs =318 GeV
i .‘i\u == HERAPDF2.0 NLO
107 10"
XBj

Here is the comparison to the NC e* data for 2 < Q2 < 30000 GeV?

NLO and NNLO fits look very similar

20




HERAPDF2.0:

NLO
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Compare HERAPDF2.0 to HERAPDF1.0 at NLO
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Much more high-x data
Substantial reductions in high-x
uncertainty

Some change in valence shape
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« HERAPDF1.0 (and 1.5) had rather hard
high-x sea, harder than the gluon (within
large uncertainties).This is no longer the
case and uncertainties are much reduced

« HERAPDF1.0 and 1.5 had a soft high-x
gluon this moves to the top of its previous
error band- but is still soft (at NLO)
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Compare HERAPDF2.0 to HERAPDF1.5 at NNLO

H1 and ZEUS H1 and ZEUS
T | o 1—— e

S
5 2 4
U2 =10 GeV
f

M2 =10 GeV?

0.8

= HERAPDF2.0 NNLO

HERAPDF1.5 NNLO

X X

The HERAPDF1.5 gluon was not soft

low-x and high-x. compared to global PDFs. However it
A lot of this reduction is because the had a large error band.

model variation due to variation of Q2
cut is not as dramatic now that we

This uncertainty on the gluon decreases
and the central value moves to the lower

have more data. end of its previous error band
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Compare HERAPDF2.0 to other PDFs at NNLO

H1 and ZEUS CQuark-Antiquark, luminosity
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Gluon-Gluon, luminosity
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High-x valence shapes somewhat different — | £ os5,
new high- x data and use of proton target
only. Gluon and Sea are both broadly
compatible with other PDFs

Comparison of g-gbar and glu-glu luminosity 08 ok
at 13 TeV show consequences for LHC 10° 1y, Gev] 10°

Generaied with APFEL 24.0 Web




You will note that we do not know PDFs well at high-x. One reason that the HERA
kinematic region did not allow us to measure well at high-x is that jets fall into the

beal
—_

\“ 27.5 GeV electron
Jet

(Falls into beampipe at high-x)
Can EIC do better than HERA at high-x?

There are several advantages:

« Much higher luminosity (2 to 3 orders of magnitude)

* Run deuterons (measure neutrons)—get d_valence

« Access to lower angle jets (large crossing angle for the beams)
« Better flavor tagging.

Also at least one disadvantage:
* Lower energies mean lower energy jets—worse calorimetric resolution.

(at high-x, Q%~10 GeV?Z: essentially x is measured by jet energy)

Jets could be important for improving the gluon PDF and measuring ag(M,)
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Adding more data to HERAPDF2.0: heavy flavour data
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There is a new heavy flavour
data combination from HERA

arxXiv:2018.01019. i

This has been used for the

latest HERAPDf2.0JetsNNLO
fits arXiv:2112.01120 !

The PDFs do not change
significantly due to input of
heavy flavour data.

"Hhe main effect is to RN

o1

determine the optimal charm
and beauty mass parameters
and their variation variation 2
as already done with an

earlier heavy flavour
combination in the standard
HERAPDF2.0.

H1 and ZEUS

1 E
> 15F

® NNLO

]

LH 1% Li o 1s

M, /GeV

SR

of

H1 and ZEUS

e NNLO

I S VA ¥

M, /GeV
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Adding more data to HERAPDF2.0: jet data (EPJC75(2015)2)

N - N % /I
It is well known that jet data give a direct handle on the gluon PDF and can be used to
measure ag(M,)

Seven data sets on inclusive jet, dijet, trijet production at low and high Q2, from
ZEUS and H1 were added to the HERAPDF2.0 fit at NLO

NNLO predictions became available only much more recently. This is why
arXiv:1506.06042 is now supplemented by arXiv: 2112.01120

At NNLO somewhat different jet data sets were added since trijet predictions are not

availale at NNLO and a new set of measurements of inclusive and dijet production
became available from H1.
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HERAPDF2.0Jets NLO s based on inclusive + charm + jet data

Fits are made with fixed and free ag(M,)

These PDFs are very similar since the fitted value is in agreement with the chosen fixed
value. The uncertainties of gluon are not much larger when ag(M,) is free since ag(M,) is
well determined. Scale uncertainties are not illustrated on the PDFs
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e 2 2 b M r 2 _ 2
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0.0037 -
ag(M) = 0.1183 + 0.0009 ;) + 0.0005ogerparam £ 0-0012ae) 00030 (SCLE)

Scale variations assumed % correlated  »g
and ¥z uncorrelated



HERAPDF2.0Jets NNLO is based on inclusive + jet data
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The PDFs HERAPDf2.0NNLO and JetsNNLO agree
very well if the same value of ag(M,) is used. However
at NNLO the data prefer a lower value

o,(M3) = 0.1156 +0.0011 (exp) *o0% (model + parameterisation
+0.0022 scale

Scale variations assumed Y2 correlated
and 14 1incorrelated



HERAPDF specifications: minimum value of Q?

w o HlandZEUS A minimum value of Q2for data allowed in the
N§ 13 [ o RTOPTLO 1 fitis imposed to ensure that pQCD is
=R -\ A RTOPT NLO 1 applicable. For HERAPDF the usual value is
N\ rorTee | Q2>3.5GeV2 but consider the variation of x2
128, e o With this cut
- ‘"""""'"""‘"‘"‘-'-*iii%’:::::::':;;;;;;,,::ﬁ:i:,::,:,:i.;:,,g;;;;;:::::-v:::r:::::éZ *The X2 decreases with increase of Q2
11 L 1 minimum until Q%,~ 10 -15 GeV?
' ] *The same effect was observed in HERA-1
_ data
r 1 *This is independent of heavy flavour scheme
i \\\ A RTOPT NLO HERA | 1 *NLO is obviously better than LO but NNLO is
09 | . 1 not significantly better than NLO, for RT
SN

2|57510125 15 17.5 20 22525
Qﬁ,ianeVZ

Fits for two Q? cuts were presented: HERAPDF2.0: Q2> 3.5 and

HERAPDF2.0HiIQ2: Q% >10 GeV?

HERA kinematics is such that cutting out low Q2 also cuts the lowest x values, thus

HERAPDF2.0HIQ?2 is used to assess possible bias in HERAPDF2.0 from including a

kinematic region which might require treatment of: non-perturbative effects; In(1/x)

resummation; saturation etc.



Compare HERAPDF2.0 with Q2>10GeV? to the standard fit at NNLO
H1 and ZEUS H1 and ZEUS

l T T T TT T T T L TT T T TTT h l T ‘I T
| ] > i
u2 =10 Gev? ] I Uz =10000 GeV*
f f

xf
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—| HERAPDF2.0HiQ2 NNLO | | —— HERAPDF2.0HiQ2 NNLO

)

107! 1

X

Fits are VERY compatible at high-x,Q? ---

So there is no bias from including the lower QZ?, lower x data in the fits if we move to LHC scales
---for the ATLAS,CMS kinematic regimes.

BUT the difference in shape for low-x gluon becomes pronounced- fits are no longer compatible
However at very low-x and moderate Q2 --as in LHCb --the NNLOfit for Q2,,=10 cannot be used---
the gluon becomes negative and so does the longitudinal cross section
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Compare HERAPDF2.0 with Q2>10GeV? to the standard fit at NNLO
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The difference in shape for low-x Sea and gluon— has now become pronounced.

At very low-x and moderate Q? --as in LHCb --the NNLOfit for Q?,,=10 gives a negative gluon and
a negative longitudinal cross section, and thus is not fit for purpose.

Can use the HERAPDF2.0HIQ2AG— alternative gluon shape—xg(x) = Ay x89 (1-x)<9 (1+DyX), which
cannot be negative at any x for Q2 > Q?,, but fit x2 is larger by Ax2~+30

Does this indicate a breakdown of DGLAP at low x?



One approach: (arXiv:1604.02299) consider adding higher twist terms at low-x

(a) (b)
v 7 e l

Their origin COULD be connected with recombination of gluon ladders- a non-linear
evolution effect.
Bartels, Golec-Biernat, Kowalski suggest that such higher twist terms would cancel
between o, and o; in F,, but remain strong in F_
Try the simplest of possible modification to the structure functions
F, and F, as calculated from HERAPDF2.0 formalism
Fo =FoL (L+A,, 7T/Q%)
Such a modification of F| is favoured, whereas for F, it is not.
If A_\FTis added A FT =5.5 £ 0.6 GeV?and Ax2 =-47
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An alternative picture: In(1/x) resummation at low-x to NLLx (arXiV:1804.00064)
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Scans of x2 vs Q2
to delineate the region where fits become
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These low-x, low Q2 studies are suggestive but perhaps not definitive in
suggesting that physics beyond DGLAP, is needed.

EIC could help here especially with heavy ion data
But even with proton data perhaps an interesting measurement of F, could be made

* High luminosity at all proton beam energies— HERA failed to do that

« Well spread energies- maximize range in y°>— You can do better than HERA

* Ability to measure LOW energy electrons (sub-GeV if possible)

« High resolution electron calorimetry

« Control the background

- mostly photo-production- taggers down the rear be

- distinguish right and wrong sign electron candidates even at low angles
and low energies

- needs excellent tracking and minimum inactive material
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Summary

Lessons from HERA for the EIC
What can EIC do that HERA could not— even using just protons?
Measurement of PDFs up to high-x

Measurement of F at lower x, Q?
Maybe consider combining HERA and EIC data for PDF fits
Do not spend your time chasing ‘new physics’

Concentrate on ‘new QCD’
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