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x → 1



Inclusive	DIS	measurements
Limited	information	used	in	global	PDF	fits	for	x → 1

BCDMS	has	measured	F2	up	to	x=0.75	

Combined	H1,	ZEUS	measurements	of	F2	up	
to	x=0.65	

ZEUS	has	measured	up	to	x=1,	but	these	
data	are	not	(yet)	included	in	PDF	fits.	

Expectation:	valence	distribution	behaves	as	
	according	to	quark	counting	rules,	

but	would	be	good	to	test	with	more	data.
(1 − x)K
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Sizable	differences	in	expectations	(much	bigger	than	quoted	uncertainties)	despite	the	fact	
that	fits	typically	use	similar	parametrization		 .		Is	it	possible	to	improve	this	
situation	?	(from	I.	Abt	et	al.,	ZEUS	Collaboration,	Phys.	Rev.	D	101	112009).

∝ (1 − x)K

Comparisons	of	Parametrizations
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Finer	bins

Standard	Binning	-		
ZEUS	data
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Integrated	bins

finer	binning

These	data	
have	not	been	
used	in	PDF	
extractions



ZEUS	high-x	analysis

•	At	high	Q2,	scattered	electron	seen	with	≈100%	acceptance	

•	For	not	too	high	x,	measure	x	from	hadronic	system	and	count	events	in	fine	 	bins	

•	For	x>xEdge,	count	events	and	assigned	to	a	bin	ranging	from	 	in	well-defined	 	range

(x, Q2)

(xedge,1) Q2
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eP → eX

in principle the kinematics can be reconstructed from two variables (e.g., energy and angle of scattered electron)

Kinematic	Fitting	for	variable	reconstruction



Initial State Radiation Final State Radiation

Reconstructing the kinematics in the presence of radiation leads to errors when only two 
measured quantities taken into account

Kinematic Fit: Use the information from the electron and hadronic system to reconstruct three 
pieces of information.   

Bayesian approach - build in knowledge of distributions

Eγ Energy of ISR photon

Q2

Ar = A − Eγ

E = x yP + Ar(1 − y)

F = x (1 − y)P + yAr

cos θ =
x yP − Ar(1 − y)
x yP + Ar(1 − y)

cos γ =
x (1 − y)P − yAr

x (1 − y)P + yAr

Phad
T = F sin γ

δhad = F(1 − cos γ) } from X

D = {E, θ, Phad
T , δhad}

P(x, y, Eγ |D) ∝ P(D |x, y, Eγ)P0(x, y, Eγ)

x =
Q2

2P ⋅ q
y =

Q2

s′�x
s′� = (k + P − Eγ)2

calculated from x,y



Initial State Radiation Final State Radiation

Reconstructing the kinematics in the presence of radiation leads to errors when only two 
measured quantities taken into account

Bayesian approach - build in knowledge of distributions

P(x, y, Eγ |D) ∝ P(D |x, y, Eγ)P0(x, y, Eγ) P(D |x, y, Eγ) = P(E, θ, Phad
T , δhad |x, y, Eγ)

= P(E, θ |x, y, Eγ)P(Phad
T , δhad |x, y, Eγ)

≈ P(E |x, y, Eγ)P(θ |x, y, Eγ)P(Phad
T |x, y, Eγ)P(δhad |x, y, Eγ)

Each term taken initially as Normal distribution with 
measured value distributed around predicted value 
with a known resolution.


Correlations between electron, hadron variables 
should eventually be taken into account.



From	simulation	study	of	high	 	events	(R.	Aggarwal,	Savitribai	Phule	Pune	University,	Pune)	Q2



Comparison of KF reconstruction to electron and double angle method

Used	in	the	ZEUS	high-x	analysis	so	far.		

The	Kinematic	Fitting	approach	should	be	
further	developed	and,	assuming	it	holds	
up,	applied	across	the	full	kinematic	
plane.		Could	be	tried	on	HERA	data	sets,	
and	later	at	the	EIC.	
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This	uncertainty	refers	
to	how	well	we	know	
the	underlying	cross	
section	assuming	that	
our	only	knowledge	is	
the	observed	number	of	
events.		Not	the	
uncertainty	that	
belongs	in	a	fit.

Not	many	events	at	
high	x

Inclusive	DIS	measurements
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Need	to	use	Poisson	statistics	in	analyzing	the	data	since	event	counts	are	small.

P(D |Mk) = ∏
j

e−νj,kνnj
j,k

nj!

νj,k = ℒ∫(Δx,ΔQ2)j
[∫ T(xrec, Q2

rec |x, Q2)
d2σ(x, Q2 |Mk)

dxdQ2
dxdQ2] dxrecdQ2

rec

Probability	of	the	data	(likelihood)

expectation

νj,k ≈ ∑
i

tijνi,k transfer	matrix	realization

tij = Kilalj separate	radiative	&	detectors/analysis	effects

Kii =
Mi

ℒMCσi,o
Radiative	matrix	from	HERACLES	-	M	generated	number	of	events

aij =
∑Mi

m=1 ωmI(m ∈ j)

∑Mi
m=1 ωMC

m
detector/analysis	matrix	from	ZEUS	simulation

Inclusive	DIS	measurements
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Described	how	to	use	a	forward	modeling	for	analysis	of	the	data:	

Define	pdfs	->	apply	radiative	effects		
				->	predict	cross	sections	
				->	apply	detector/analysis	effects	
				->	calculate	expected	number	of	events	
				->	calculate	a	Poisson	probability

We	are	now	developing	a	PDF	fitting	package	to	implement	this	scheme

Primary	author:	(R.	Aggarwal,	Savitribai	Phule	Pune	University,	Pune)
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Transfer	Matrices

15

Reconstructed	variables/bins

generated	variables/bins.	

Separate	transfer	matrices	
exist	for	producing	radiative	
cross	sections	and	detector/
analysis	effects.

transfer	matrix
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Procedure

-	PDFs	defined	at	a	high	scale:	 	in	the	Fixed	Flavor	number	scheme	(5	quarks)	

-	PDFs	are	evolved	at	NNLO	using	QCDNUM	to	cover	the	full	range	of	the	data	

-	Structure	functions	are	computed	with	QCDNUM	and	represented	by	cubic	splines.	These	are	
then	used		to	form	the	differential	cross	section,	which	is	also	splined.		This	allows	for	a	fast	
integration	of	the	cross	sections.	

- The	predictions	at	the	observed	level	are	then	calculated	using	the	transfer	matrices	

Q2
0 = 100 GeV2

β′�s

νj = (1 + 0.018 ⋅ β+−
0 )[∑

i

νi ⋅ (aij + ∑
k

βkδk
ij)]

normalization	uncertainty

expected	counts	at	generator	level

transfer	matrix systematic	variations

are	Unit	Normal	distributed	nuisance	parameters

The	probability	of	observing	the	data	is	then	calculated	using	the	Poisson	distribution
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A	first	try

Q2
0 = 100 GeV2 ∑

i
∫

1

0
xfi(x)dx = ∑

i

Δi = 1

∫
1

0
u(x) − ū(x)dx = 2 ∫

1

0
d(x) − d̄(x)dx = 1 ∫

1

0
f (x) − f̄ (x)dx = 0

xuV(x) = xu(x) − xū(x) = Auxλu(1 − x)Ku

xdV(x) = xd(x) − xd̄(x) = Adxλd(1 − x)Kd

xū(x) = Aūxλq(1 − x)Kq

xd̄(x) = Ad̄ xλq(1 − x)Kq

xs(x) = xs̄(x) = Asxλq(1 − x)Kq

xc(x) = xc̄(x) = Acxλq(1 − x)Kq

xb(x) = xb̄(x) = Abxλq(1 − x)Kq

xg(x) = Ag1xλg1(1 − x)Kg + Ag2xλg2(1 − x)Kq

Densities	&	evolution	in	FFN	(5)	
scheme	&	NNLO

Fit	parameters	are	
	+	 	

	are	nuisance	parameters	(systematics)	
	(pdf	zero	as	 )	

2	free	parameters	for	data	normalization

Δi′�s, Ku, Kd, λg1, λg2, Kg, λq β

β
Kq = 5 fixed x → 1

Parametrizations

f ≠ u, d, g
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A	first	try
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transfer	matrix	used	to	get	expected	
numbers	of	events	in	bins	of	observed	
quantities.	

Poisson	generated	number	of	events.

QCDNUM	evolves	PDFs	to	cover	grid:	

SPLINT	package	gives	integrated	cross	
sections	in	bins
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A	first	try

Priors

				 	=	Dirichlet([6.,	3.,	9.,	4.,	2.,1.,	0.2,	0.2,	0.1]),	
				 =	Uniform(3.,	9.),	
				 =	Uniform(3.,	9.),	
			 	=	Uniform(1.,	2.),	
			 =	Uniform(-0.5,	-0.1),	
				 =		Uniform(3.,	9.),	
				 	=	Uniform(-0.5,	-0.1),	
				 	=		Truncated(Normal(0,	1),	-5,	5),	
				 =		Truncated(Normal(0,	1),	-5,	5),

Δ
Ku
Kd
λg1
λg2
Kg
λq
β+

0
β−

0

up	valence

down	valence

gluon	valence

Markov	Chain	MC	used	to	fit	simulated	data	with	BAT.jl	

Some	results	…	
Fitting	code:	F.	Capel	implemented	fitting	model,	BAT.jl	O.	Schulz	et	al.)

P(Δ, Ku, Kd, λg1, λg2, Kg, λq |D) ∝ P(D |Δ, Ku, Kd, λg1, λg2, Kg, λq)P0(Δ, Ku, Kd, λg1, λg2, Kg, λq)

Δi

P0(Δi)

Some	of	the	Δ′�s
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MCMC	Output

Output	is .	
BAT.jl	outputs	all	1,2D	marginalized	distributions.			A	small	subset	of	possible	plots.

{Δ, Ku, Kd, λg1, λg2, Kg, λq, β} distributed ∝ P(Δ, Ku, Kd, λg1, λg2, Kg, λq, β |D)
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Momenta
Up-valence Down-valence

Glue-valence Glue-sea

truth

prior
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Shape	Parameters

gluon	valencedown	valence

up	valence

Shape	(and	momentum)	of	up-valence	well	constrained.		Others	weakly	constrained.
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Summary

• The	kinematic	range	 	has	not	been	fully	exploited	in	the	H1	data	(as	far	as	I	know).		
Contains	valuable	information	

• Kinematic	reconstruction	studies	indicate	that	we	could	get	better	performance	using	new	
techniques.		Could	be	applied	to	existing	HERA	data	for	updated	cross	section	measurements.	

• We	could/should	produce	results	that	allow	a	forward	analysis	of	the	data.		I.e.,	event	numbers	
in	bins	and	the	information	needed	to	get	predictions	from	Born	level	cross	sections.		My	dream:	
a	consistent	analysis	in	this	style	over	the	full	kinematic	plane	from	the	HERA	data.	

• Techniques	for	analyzing	this	data	being	developed.	

Lots	of	room	for	important	analyses!

x → 1


