Determination of α_S at NNLO QCD Using H1 Jet Cross Section Measurements

- Motivation QCD, α_S and the RGE
- H1 jet cross section measurements in DIS
- Methodology
- Extraction of the strong coupling constant α_S Eur.Phys.J.C 77 (2017), 791

EPS 2019 Ghent, Belgium 12th July 2019

QCD, α_s and the RGE

Baikov Davier

Pich Boito

SM review

HPQCD (Wilson loops) HPQCD (c-c correlators)

PACS-CS (SF scheme)

ETM (ghost-gluon vertex)

Maltmann (Wilson loops)

t-decays

lattice

structure

е+е

jets

& shapes

0.13

- Renormalization group equation (RGE) encodes the dependence of the coupling parameter on the energy scale μ (=running)
- Values of $\alpha_{\mathbf{S}}(\mu)$ are not predicted

QCD Tests probe two aspects:

- determination of the value at some fixed scale $\alpha_S(\mu = M_Z)$
- scale dependence of $\alpha_{S}(\mu)$

H1 Inclusive Jet & Dijet Cross Sections

Inclusive jet cross sections HERA-I low-Q² HERA-II low-Q² 300 GeV high-Q² dσ/dQ²dP_{T,iet} • HERA-I & HERA-II • low-Q² (<100 GeV²) and high-Q² (>150 GeV²) regions Selections • kt-algorithm, R=1 • $-1.0 < \eta_{lab} < 2.5$ Eur.Phys.J.C19 (2001) 289 Eur.Phys.J.C67 (2010) 1 arXiv:1611.03421 P_T ranges from 4.5 to 50 GeV (Breit frame) HERA-I high-Q² HERA-I low-Q² HERA-II high-Q² **Dijet cross sections** • $d\sigma/dQ^2d < P_T >$ HERA-I & HERA-II low-Q² (<100 GeV²) and H1 data NLO ⊗ had 1 10 20 30 40 5 E_/(Ge) high-Q² (>150 GeV²) regions 30 40 50 F./GeV Eur.Phys.J.C75 (2015) 2 Eur.Phys.J.C67 (2010) 1 Phys.Lett.B653 (2007) 134 arXiv:1611 0342 SICHER20185 Secul Daniel Britzger - a (300 GeV high-Q² HERA-II high-Q² HERA-II low-Q² <P_T> greater than 5, 7, or 8.5 GeV (Breit frame) PT, Jet greater than 4, 5, 7 GeV asymmetric jet P_T cuts M₁₂ cut applied in two cases All data sets used in α_{S} extractions Well understood data & exptl. uncertainties Eur.Phys.J.C19 (2001) 289 Eur.Phys.J.C75 (2015) 2 Eur.Phys.J. C77 (2017) 215

ICHEP2018CBER20028, idebraitzger – $\alpha_s(m_z)$ idential to a state of the second state

 α_s determined in χ^2 minimisation method

Take experimental & theoretical uncertainties into account

$$\chi^2 = \sum_i \sum_j \left(\log \varsigma_i - \log \sigma_i \right) \left(V_{\exp} + V_{had} + V_{PDF} \right)_{ij}^{-1} \left(\log \varsigma_j - \log \sigma_j \right)$$

NNLO theory has α_s dependence in PDFs and hard M.E. PDF piece accounted for in DGLAP evolution using μ_F = 20 GeV μ_F = 20 GeV is typical μ_F of data

- σ = predictions ς = measurements
- \dot{V} = Covariance matrices \rightarrow rel unc.
- V_{had} = hadronisation corrections
- V_{PDF} = PDFs
- V_{exp} = Experimental uncertainties

Perform fit to all H1 data:

- All inclusive jet data sets (137 data points)
- All dijet data sets (103 data points)
- All H1 jet data taken together (denoted as 'H1 jets') (exclude HERA-I dijet data as correlations to inclusive jets are not known)

$\alpha_{\rm S}$ From DIS Jets at NNLO

$\alpha_{\rm s}$ from individual data sets

- · High experimental precision
- Scale uncertainty is largest error
- All fits have good $\chi^2 \rightarrow$ consistency of data

Combined $\alpha_{\rm s} {\rm from}$ all data sets

- Inclusive & dijet data
- $\tilde{\mu}$ > 28 GeV \rightarrow 91 data points
- All fits have good $\chi^2 \rightarrow$ consistency of data
- Moderate exptl. precision
- Dominated by scale uncertainty
- Small PDF uncertainties

oul $\alpha_{\rm s}(m_{\rm Z}) = 0.115$ Ta(n2e) Britz (Ge) had (B) p in N(2) PL sing (B) piets set (27) scale (27) sca

Running of $\alpha_{\rm S}$

Test running of strong coupling

- Perform fits to data at similar scale
- Assumes running valid in limited interval range
- All fits have good χ^2

Results

- Consistency with expectation at all scales
- Scale uncertainty dominates at lower $\boldsymbol{\mu}$
- Consistency of inclusive jets and dijets

Inclusive Neutral and Charged Current DIS data

Data set	Lepton	\sqrt{s}	Q^2 range NC cross		CC cross	Lepton beam
[ref.]	type	[GeV]	$[{ m GeV}^2]$	sections	sections	polarisation
Combined low- Q^2 [64]	e^+	301,319	(0.5) 12 - 150	\checkmark	_	—
Combined low- E_p [64]	e^+	$225,\!252$	(1.5) 12 - 90	\checkmark	_	—
94-97[61]	e^+	301	150 - 30000	\checkmark	\checkmark	—
98-99[62,63]	e^-	319	150 - 30000	\checkmark	\checkmark	—
99 - 00 [63]	e^+	319	150 - 30000	\checkmark	\checkmark	—
HERA-II [65]	e^+	319	120 - 30000	\checkmark	\checkmark	\checkmark
HERA-II [65]	e^-	319	120 - 50000	\checkmark	\checkmark	\checkmark

Simultaneous PDF and $\alpha_{\rm S}$ fit

Normalised jet cross sections

PDFs mostly determined from H1 inclusive DIS data

Perform H1 alone PDF fit: H1PDF2017

Use all H1 inclusive DIS data Use all H1 normalised jet cross section data \rightarrow 1529 data points

Jet cross sections normalised to inclusive DIS

Correlations of jets and inclusive DIS cancel

$$\sigma_{i} = \sum_{k=g,q,\overline{q}} \int dx f_{k}(x,\mu_{\rm F}) \hat{\sigma}_{i,k}(x,\mu_{\rm R},\mu_{\rm F}) \cdot c_{{\rm had},i}$$

$$\hat{\sigma}_{i,k} = \text{partonic crossing}$$

 $\hat{\sigma}_{i,j}$ = partonic cross section $c_{\text{had,i}}$ = hadronisation corrections

PDFs are parameterised as

$$xf(x)|_{\mu_0} = f_A x^{f_B} (1-x)^{f_C} (1+f_D x + f_E x^2)$$

Inclusive Jets and Dijets data

Data set	Q^2 domain	Inclusive	Dijets	Normalised	Normalised	Stat. corr.
[ref.]		jets		inclusive jets	dijets	between samples
$300 {\rm GeV} [17]$	$high-Q^2$	\checkmark	\checkmark	_	_	_
HERA-I [23]	$low-Q^2$	\checkmark	\checkmark	—	—	_
HERA-I [21]	$\operatorname{high}-Q^2$	\checkmark	_	\checkmark	—	_
HERA-II $[15]$	$low-Q^2$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
HERA-II [15,24]	$high-Q^2$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Alternative Approach: PDF + α_s fit

Result for PDFs

Set of PDFs determined with high precision (even with α_s a free fit parameter) \rightarrow precision is competitive with global PDF fitters

Gluon at lower x-values tends to be higher \rightarrow now typically favoured by small-x resummed PDFs

PDF + α_s fit $\chi^2/ndf = 1.01$ Simultaneous fit with H1 jet data \rightarrow precise determination of the gluon PDF and α_s

Results: PDF + α , fit

Simultaneous PDF and $\alpha_{\rm S}$ fit

 $\alpha_{\rm s}(m_{\rm Z}) = 0.1142 \,(11)_{\rm exp,had,PDF} \,(2)_{\rm mod} \,(2)_{\rm par} \,(26)_{\rm scale}$

- High experimental precision
- Moderate theory uncertainty from NNLO

Comparison

- Higher precision than most comparable determinations
 - \rightarrow PDF groups commonly determine exp. uncertainties only
 - \rightarrow We further estimate scale uncertainties
- All H1 results consistent
- Results competitive with world average
- All results from DIS data typically lower than world average

2018, Seoul

Daniel Britzger – $\alpha_s(m_7)$ in NNLO using H1 jets

Summary

- All H1 jet data compared with NNLO predictions
- NNLO theory provides improved description w.r.t. NLO
- Quantitative comparisons of all data
- NNLO predictions studied in great detail

NNLO used for determination of $\alpha_s(m_Z)$ in two methods:

 $\alpha_{\mathbf{S}}$ fit: $\alpha_{\mathbf{s}}(m_{\mathbf{Z}}) = 0.1157 \, (20)_{\mathrm{exp}} \, (6)_{\mathrm{had}} \, (3)_{\mathrm{PDF}} \, (2)_{\mathrm{PDF}\alpha_{\mathbf{s}}} \, (3)_{\mathrm{PDFset}} \, (27)_{\mathrm{scale}}$

PDF and $\alpha_{\rm S}$ fit: $\alpha_{\rm s}(m_{\rm Z}) = 0.1142 \, (11)_{\rm exp, had, PDF} \, (2)_{\rm mod} \, (2)_{\rm par} \, (26)_{\rm scale}$

High experimental and theoretical precision achieved

- NNLO predictions for jets are used for PDF fits for the first time
- Successful determination of gluon-density and $\alpha_s(m_Z)$ simultaneously
- Competitive precision of PDFs and $\alpha_s(m_Z)$
- H1PDF2017 available in LHAPDF

Special thanks to *NNLOJET* team for fruitful collaboration of theoreticians and experimentalists

Extracted α_{S} values

Scale Choice for α_s fit

Study scales calculated from Q^2 and P_{T}

'P_T' refers to: P_{Tjet} or $<P_{T}>$

$\alpha_{ m s}$ results and χ^2 values

- Spread of results covered by scale uncertainty
- χ^2 values are similar for different choices
 - \rightarrow NNLO with small 'scale dependence'

NLO matrix elements

Large scale uncertainty Relevant dependence of result on scale choice

- Mainly larger χ^2 values than NNLO
- Larger fluctuation of χ^2 values than NNLO

Danial Dritzgar

