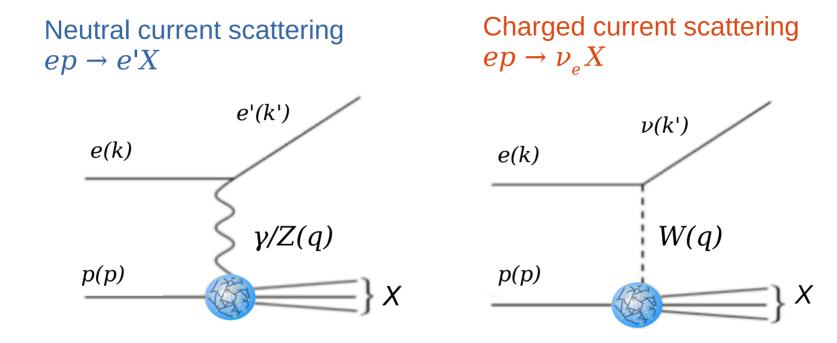
Determination of electroweak parameters in polarised deep-inelastic scattering at HERA


D. Britzger for the H1 collaboration EPS-HEP Conference 2019 July 2019

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Deep-inelastic scattering

- Study the structure of the proton -> bound together by QCD dynamics
- Probe electroweak structure of SM and unification of electromagnetic and weak force

-> Extract fundamental QCD and EW parameters

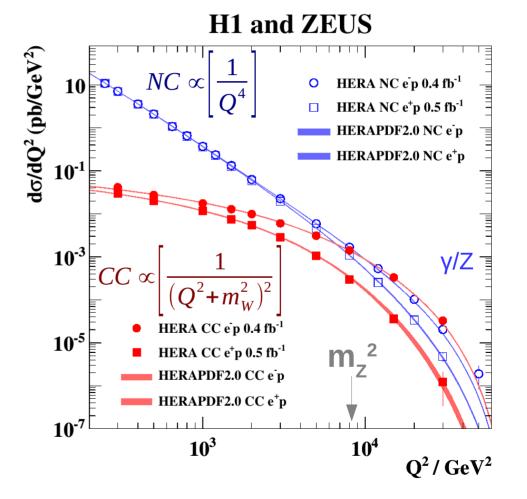
Electroweak effects in DIS at HERA

H1+ZEUS, Eur.Phys.J.C75 (2015) 12

Inclusive DIS as a function of Q²

Lower values of Q²

- NC mediated by $\boldsymbol{\gamma}$
- CC is mediated by massive W-boson


Around EW unification scale

- NC and CC of similar size
- Z exchange becomes important for NC

W and Z-exchange: e+p and e-p differ

- NC: γ /Z-interference differ for e⁺ and e⁻
- For CC e+:

Helicity factor (1-y)² applies to d-quarks

Electroweak effects in DIS

CC DIS: purely weak

NC DIS: yy, yZ, ZZ exchange axial-vector & vector couplings (a,v)

$$\frac{d\,\sigma_{CC}^{\pm}}{dQ^2 dx} = \frac{1\pm P}{2} \frac{G_F^2}{4\,\pi\,x} \left[\frac{m_W^2}{m_W^2 + Q^2}\right]^2 (Y_+ W_2^{\pm} \pm Y_- x W_3^{\pm} - y^2 W_L^{\pm})$$

$$\frac{d\sigma_{NC}^{\pm}}{dQ^2 dx} = \frac{2\pi\alpha^2}{x} \left[\frac{1}{Q^2}\right]^2 (Y_+ F_2 \pm Y_- x F_3 \mp y^2 F_L)$$

NC generalised structure functions:

$$F_{2} = F_{2}^{\gamma} + \kappa_{Z} \left(-\nu_{e} \mp Pa_{e} \right) F_{2}^{\gamma Z} + \kappa_{Z}^{2} \left(\nu_{e}^{2} + a_{e}^{2} \pm P\nu_{e} a_{e} \right) F_{2}^{Z}$$

$$\kappa_{Z} = \frac{Q^{2}}{Q^{2} + m_{Z}^{2}} \frac{G_{F}m_{Z}^{2}}{\sqrt{2}\pi\alpha}$$

$$K_{3} = +\kappa_{Z} \left(\pm a_{e} + P\nu_{e} \right) F_{3}^{\gamma Z} + \kappa_{Z}^{2} \left(\mp 2\nu_{e} a_{e} - P\left(\nu_{e}^{2} + a_{e}^{2}\right) \right) x F_{3}^{Z}$$

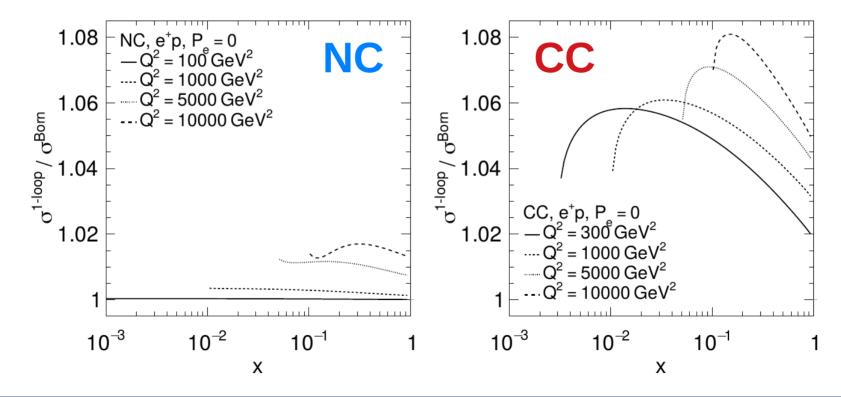
$$\kappa_{Z} = \frac{Q^{2}}{Q^{2} + m_{Z}^{2}} \frac{G_{F}m_{Z}^{2}}{\sqrt{2}\pi\alpha}$$

$$K_{3} = -\kappa_{Z} \left(\pm a_{e} + P\nu_{e} \right) F_{3}^{\gamma Z} + \kappa_{Z}^{2} \left(\mp 2\nu_{e} a_{e} - P\left(\nu_{e}^{2} + a_{e}^{2}\right) \right) x F_{3}^{Z}$$

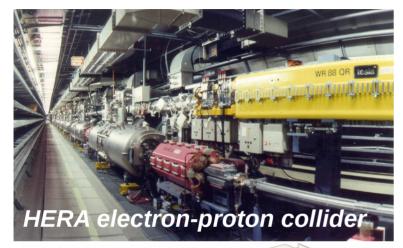
 $+\Delta r$)

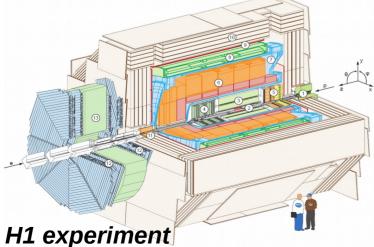
Quark-parton model

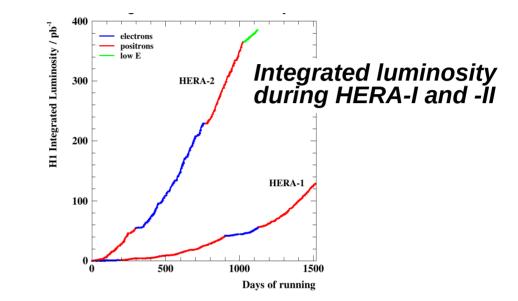
$$\begin{split} & \left[F_{2}, F_{2}^{\gamma Z}, F_{2}^{Z}\right] = x \sum_{q} \left[Q_{q}^{2}, 2Q_{q}g_{V}^{q}, g_{V}^{q}g_{V}^{q} + g_{A}^{q}g_{A}^{q}\right] \{q + \bar{q}\},\\ & x \left[F_{3}^{\gamma Z}, F_{3}^{Z}\right] = x \sum_{q} \left[2Q_{q}g_{A}^{q}, 2g_{V}^{q}g_{A}^{q}\right] \{q - \bar{q}\}. \end{split}$$

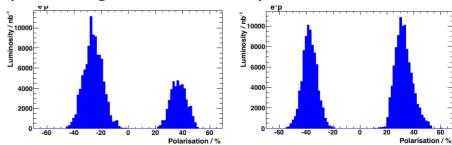

EW higher orders: р, к $g_A^q = \sqrt{\rho_{\mathrm{NC},q}} I_{\mathrm{L},q}^3$ $g_V^q = \sqrt{\rho_{\text{NC},q}} \left(I_{\text{L},q}^3 - 2Q_q \kappa_{\text{NC},q} \sin^2 \theta_W \right)$

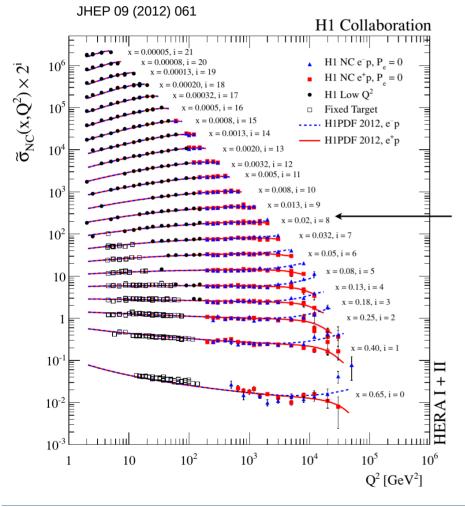
3 independent variables at born-level in DIS, e.g on-mass shell scheme: (α , m_{w} , m_{z} , Δr)


Higher order EW effects


Size of the purely weak 1-loop EW corrections for unpolarised NC and CC


- (excl. vacuum polarisation & virtual photon corrections)
- Corrections vary by < 0.1% for polarised case, or for e- scattering


HERA and H1 experiment



Lepton longitudinal beam polarisation in HERA-II

Input data

All H1 inclusive NC and CC DIS data

- HERA-I & HERA-II
- HERA-II high-Q² data
- Data well-described by (N)NLO QCD

	Data set	Q ² -range	\sqrt{s}	L	No. of	Polarisation	Ref.
		$[GeV^2]$	[GeV]	$[pb^{-1}]$	data points	[%]	
1	e^+ combined low- Q^2	(0.5) 8.5 – 150	301,319	20, 22, 97.6	94 (262)	_	[56]
2	e^+ combined low- E_p	(1.5) 8.5 – 90	225,252	12.2, 5.9	132 (136)	-	[56]
3	<i>e</i> ⁺ NC 94–97	150 - 30000	301	35.6	130	-	[32]
4	<i>e</i> ⁺ CC 94–97	300 - 15000	301	35.6	25	-	[32]
5	<i>e</i> ⁻ NC 98–99	150 - 30000	319	16.4	126	-	[33]
6	<i>e</i> ⁻ CC 98–99	300 - 15000	319	16.4	28	-	[33]
7	<i>e</i> ⁻ NC 98–99 high-y	100 - 800	319	16.4	13	-	[57]
8	<i>e</i> ⁺ NC 99–00	150 - 30000	319	65.2	147	_	[57]
9	<i>e</i> ⁺ CC 99–00	300 - 15000	319	65.2	28	-	[57]
10	e^+ NC L HERA-II	120 - 30000	319	80.7	136	-37.0 ± 1.0	[58, 59]
11	e^+ CC L HERA-II	300 - 15000	319	80.7	28	-37.0 ± 1.0	[58, 59]
12	e^+ NC R HERA-II	120 - 30000	319	101.3	138	$+32.5\pm0.7$	[58, 59]
13	e^+ CC R HERA-II	300 - 15000	319	101.3	29	$+32.5\pm0.7$	[58, 59]
14	e^- NC L HERA-II	120 - 50000	319	104.4	139	-25.8 ± 0.7	[58, 59]
15	e^- CC L HERA-II	300 - 30 000	319	104.4	29	-25.8 ± 0.7	[58, 59]
16	e^- NC R HERA-II	120 - 30000	319	47.3	138	$+36.0\pm0.7$	[58, 59]
17	e^- CC R HERA-II	300 - 15 000	319	47.3	28	$+36.0\pm0.7$	[58, 59]
18	e ⁺ NC HERA-II high-y	60 - 800	319	182.0	11	_	[58, 59]
19	e [−] NC HERA-II high-y	60 - 800	319	151.7	11	-	[58, 59]

Fit strategy

Electroweak parameters are determined in a fit of predictions to data

- \rightarrow their correlations are properly taken into account
- \rightarrow the final uncertainties include those arising from the PDFs

PDFs are parameterised at low scale with 13 'free' fit parameters

• NNLO QCD and DLGAP evolution; similar to H1PDF2017 or HERAPDF2.0

Fits performed with normal-distributed realative uncertainties

$$\chi^{2} = \sum_{ij} \log \frac{\varsigma_{i}}{\tilde{\sigma}_{i}} V_{ij}^{-1} \log \frac{\varsigma_{j}}{\tilde{\sigma}_{j}}$$

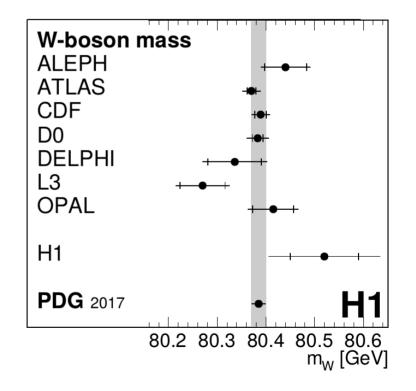
Very good data/theory agreement (PDF fit alone)

$$\chi^2/n_{dof} = 1435 / (1415-17) = 1.03$$

Determination of the W-boson mass

Determination performed in on-shell scheme

 $m_W = 80.520 \pm 0.070_{\text{stat}} \pm 0.055_{\text{syst}} \pm 0.074_{\text{PDF}} = 80.520 \pm 0.115_{\text{tot}} \text{ GeV}$


• to be compared with HERA-I result

 $M_W = 80.786 \pm 0.205 (\exp)^{+0.063}_{-0.098} (\text{th}) \text{ GeV}$

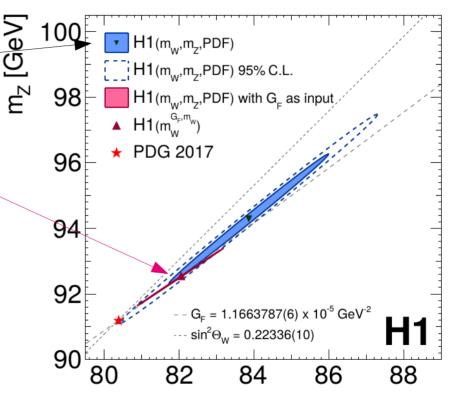
 \rightarrow factor of 2 improvement

Sensitivity 'breakedown'

- Dominant sensitivity (~120 MeV) from the normalisation of the CC cross sections
- The quark and electron couplings to the Z (in NC DIS) provides additional sensitivity of ~225 MeV
- The W propagator term in CC DIS provides a sensitivity of ~800MeV

W and Z mass – with G_F as additional input

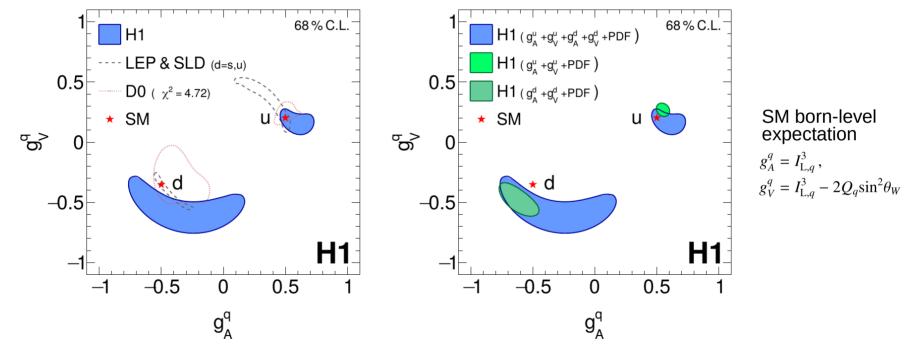
$m_w + m_z + PDF$ fit


- Moderate precision
- Large correlation between masses

with G_F as additional external input

- Only low-scale parameters used as input (α , G_F)
- H1 data simultaneously constrain and test EW theory
- Result: shallow ellipse in m_w - m_z space, due to high precision of G_F
- Unique test with a single data set

Consistency with precise Z-pole measurements found


• albeit with moderate precision only

m_w [GeV]

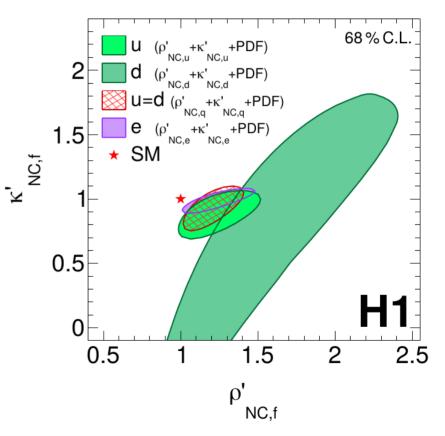
Light quark weak neutral current couplings to Z

• Results are competitive and consistent with other determinations Also, reasonable consistency with expectation

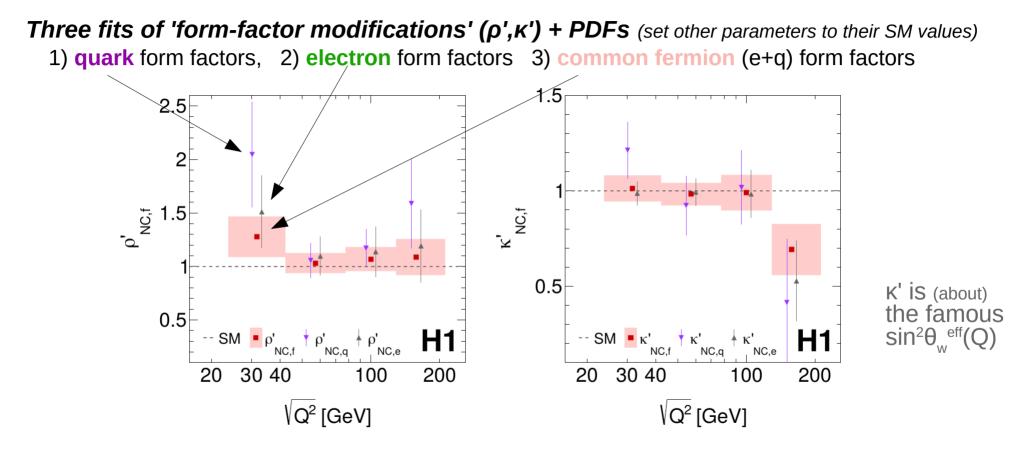
- Significant improvement over HERA-I determination
- 2-coupling fit is more precise due to the reduced correlation

Study BSM NC form factors

Probe (BSM) higher-order corrections to weak NC couplings

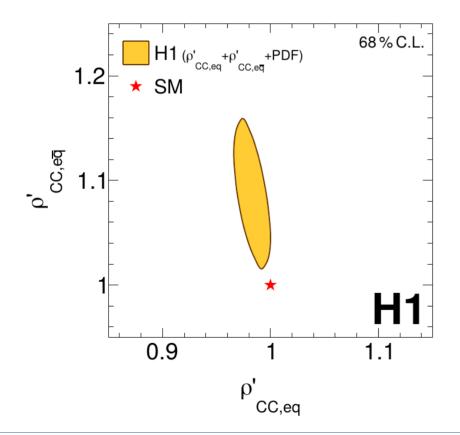

Introduce modification (ρ' , κ') to form factors (ρ , κ)

$$g_A^q = \sqrt{\rho_{\text{NC},q}} I_{\text{L},q}^3, \qquad \rho_{\text{NC}} \to \rho'_{\text{NC}} \rho_{\text{NC}}$$
$$g_V^q = \sqrt{\rho_{\text{NC},q}} \left(I_{\text{L},q}^3 - 2Q_q \kappa_{\text{NC},q} \sin^2 \theta_W \right) \qquad \kappa_{\text{NC}} \to \kappa'_{\text{NC}} \kappa_{\text{NC}}$$


Perform 4 fits for NC form factors

• u-type, d-type, (light) quarks, electrons (the latter for comparison with precise LEP results)

Results consistent with SM expectation (unity)



Scale dependence

→ No significant scale dependence and deviation from SM

Form factors in charged currents

CC cross section

$$\frac{d^2 \sigma_{\rm CC}^{\pm}}{dx dQ^2} \simeq (1 \pm P_e) \frac{G_{\rm F}^2}{4\pi x} \left[\frac{m_W^2}{m_W^2 + Q^2} \right]^2 \left(Y_+ W_2^{\pm} \mp Y_- x W_3^{\pm} \right)$$

CC form factors

• SM: CC form factors incorporate higherorder EW corrections

$$W_2^- = x \left(\rho_{\text{CC},eq}^2 U + \rho_{\text{CC},e\bar{q}}^2 \overline{D} \right)$$
$$W_2^+ = x \left(\rho_{\text{CC},eq}^2 \overline{U} + \rho_{\text{CC},e\bar{q}}^2 D \right)$$

- Introduce (non-SM) modifications $\rho_{\rm CC} \rightarrow \rho_{\rm CC}' \rho_{\rm CC}$
- \rightarrow No significant devitions from SM
- → Unique test of CC sector (actually better than NC form factor of d-type quarks)

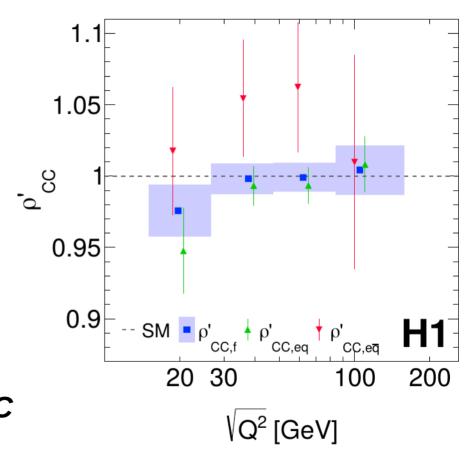
W

X

p

Scale dependence of CC form factors

• Three fits:


 ν_{e}

W

- eqbar + PDF
- eq + PDF
- f (eq=eqbar) + PDF

No significant scale dependence and deviation from SM

First scale dependence study for CC

All HERA-I and HERA-II data taken by H1 used to determine EW parameters together with PDFs

• Precision w.r.t. HERA-I results improved by a factor of ~2 Thanks to increased statistics and longitudinal polarised lepton beams

W-boson mass determined with reasonable precision

Complementary test between space-like and time-like regimes

The light quark couplings to the Z boson are competitive to other determinations

BSM-like modification of the SM form factors and their scale dependence studied

- First such study for CC
- Unique test of scale dependence of EW theory
- Within the uncertainties, no significant deviations from SM