RECENT RESULTS FROM HERA

Peter Bussey University of Glasgow

for the H1 and ZEUS Collaborations

A reminder of HERA (1992 – 2007)

For main running, $E_e = 27.6 \text{ GeV}, E_p = 920 \text{ GeV}$

This talk will mainly present diffractive results with one or two extras.

ZEUS:

- Diffractive prompt photons in photoproduction
- Prompt photons plus jets in DIS
- Diffractive $\psi(2S)$ and J/ ψ production

H1:

- Diffractive rho production
- Diffractive 4-pi production
- Diffractive PDF fit.

Hard diffractive processes at HERA

Examples of lowest-order resolved–Pomeron diagrams by which diffractive processes may generate a prompt photon

Direct incoming photon \sim gives all its energy to the hard scatter ($x_{\gamma} = 1$).

Resolved incoming photon \searrow gives fraction x_{γ} of its energy.

An outgoing photon must couple to a charged particle Line. So the exchanged colourless object ("Pomeron") must have a quark content in this type of diagram.

The proton can also fragment (not shown here).

More kinematics:

x_{IP} = fraction of proton energy taken by Pomeron, measured as

 $\Sigma_{\text{all EFOs}} (E + p_z) / 2 E_p$

ZIP = fraction of Pomeron E+p_z taken by photon + jet measured as

 $\sum_{\gamma + jet} (E + p_z)$ $\sum_{all EFOs} (E + p_z)$

 η_{max} = maximum pseudorapidity of observed outgoing particles (E > 0.4 GeV) (ignore forward proton).

Diffractive processes are characterised by a low value of η_{max} and/or low $x_{\rm IP}$.

Possible direct Pomeron interactions require a different type of diagram.

e.g.

Direct photon + direct Pomeron

Resolved photons also a possibility.

N.B. The proton may become dissociated in diffractive processes

High-p_T photons produced in ep scattering may be:

- Radiated from the incoming or outgoing lepton (LL photons)
- Produced in a hard partonic interaction (QQ photons)
- Radiated from a quark in a jet
- Decay product of a hadron in a jet
- LL and QQ photons are relatively isolated from other outgoing particles. **QQ usually referred to as "prompt" photons**.

Latest prompt photon results from ZEUS.

Prompt photons in diffractive photoproduction. Phys. Rev. D 96 (2017) 032006 Deep inelastic scattering, combined variables. JHEP 1801 (2018) 032

The ZEUS detector

HERA-I data: 1998-2000 HERA-II data: 2004-2007

ZEUS prompt photon analyses.

High-energy photon candidate:

- found with energy-clustering algorithm in BCAL: $E_{EMC}/(E_{EMC} + E_{HAD}) > 0.9$
- lower limit imposed on E_{T}^{γ}
- $-0.7 < \eta^{\gamma} < 0.9$ (i.e. in ZEUS barrel calorimeter)
- Isolated. In the "jet" containing the photon candidate, the photon must contain at least 0.9 of the "jet" E_{T}

Jets

- k_T-cluster algorithm
- \bullet -1.5 < η^{jet} < 1.8
- \bullet lower limit imposed on $~\mathsf{E}_{\mathsf{T}}^{~\mathsf{jet}}$

Why we isolate the measured photon:

Photons associated with jets require a quark fragmentation function which is not easy to determine – requires non-perturbative input.

Reduce large background from neutral mesons.

Here we measure prompt diffractive photons with and without a jet, using the ZEUS detector, in photoproduction. (i.e small Q²)

- Prompt photons emerge directly from the hard scattering process and give a particular view of this.
- Allows tests of Pomeron models and explores the non-gluonic aspects of the Pomeron and Pomeron-photon physics in general.
- ZEUS publications of prompt photons in photoproduction: Phys. Lett. 730 (2014) 293 JHEP 08 (2014) 03
- H1 on inclusive diffractive prompt photons in photoproduction: Phys. Lett. 672 (2009) 219

Diffractive photoproduced dijets:

(H1) Eur. Phys. J. 6 ((1999) Eur. Phys. J. 421, 70 (2008)15 (ZEUS) Eur. Phys. J 55 (2008) 171

ZEUS diffractive analysis.

- 1) The forward scattered proton is not measured in these analyses.
- 2) Non-diffractive events are characterised by a forward proton shower. To remove them, require $\eta_{max} < 2.5$ and $x_{IP} < 0.03$ η_{max} is evaluated from ZEUS energy flow objects (EFOs), which combine tracking and calorimeter cluster information.
- 3) A cut $0.2 < y_{JB} < 0.7$ removes most DIS events.
- 4) Remove remaining DIS events and Bethe-Heitler and DVCS events (γ e) by excluding events with identified electron or ≤ 5 EFOs
- 5) Remaining non-diffractive events neglected, could be 0-10% of our cross sections. Treated as a systematic.
- 6) **HERA I** data: use the FPC to remove more non-diffractive background. It also suppressed many proton dissociation events.

Use HERA-I data to measure total cross section.82 pb⁻¹Use HERA-II data to study shapes of distributions.374 pb⁻¹

Monte Carlo simulation

Uses the **RAPGAP** generator (H. Jung Comp Phys Commun 86 (1995) 147)

Based on leading order parton-level QCD matrix elements.

Some higher orders are modelled by initial and final state leading-logarithm parton showers.

Fragmentation uses the Lund string model as implemented in PYTHIA.

The H1 2006 DPDF fit B set is used to describe the density of partons in the diffractively scattered proton. For resolved photons, the SASGAM-2D pdf is used. Fit the x_{γ} distribution to direct-photon and resolved-photon RAPGAP components.

A 70:30 mixture is found and used throughout.

Results

Cross sections compared to RAPGAP normalised to total observed cross section. Inner error bar is statistical. Outer (total) includes correlated normalisation and non-diffractive subtraction uncertainty.

Shape of data well described by Rapgap. Most photons are accompanied by a jet.

Using HERA-I data, integrated cross section for $z_{IP}^{meas} < 0.9 = 0.68 \pm 0.14 +0.06_{-0.07}$ pb Rapgap gives 0.68 pb. No allowance for proton dissociation which is ~ 16 ± 4%.

Cross sections for region $z_{IP}^{meas} < 0.9$ Rapgap is normalised to data in this region.

Cross sections for region $z_{IP}^{meas} \ge 0.9$ Rapgap is normalised to data in this region.

Conclusions

Diffractive results were defined by cuts on η_{max} and x_{IP} . Most of the detected photons are accompanied by a jet.

The variable **z**_{IP}^{meas} shows a peak at high values that gives evidence for a direct-Pomeron process not modelled by RAPGAP

In both regions of z_{IP}^{meas} , cross sections of kinematic variables are well described in shape by Rapgap, confirming a common set of PDFs in diffractive DIS (where they were evaluated) and photoproduction at $z_{IP}^{meas} < 0.9$.

DIS analysis of event structures in prompt photons + jet.

Main further selections: $4 < E_{T}^{\gamma} < 15 \text{ GeV}$ E_T^{jet} > 2.5 GeV $10 < Q^2 < 350 \text{ GeV}^2$

Plotted "combined" parameters:

•
$$x_{\gamma}^{\text{meas}} = \frac{\sum_{jet,\gamma} (E - p_z)}{2y_{JB}E_e}$$

• $x_p^{\text{obs}} = \frac{\sum_{jet,\gamma} (E + p_z)}{2E_p}$

- $\Delta \eta = \eta_{jet} \eta_{\gamma}$
- $\Delta \varphi = \varphi_{jet} \varphi_{\gamma}$ $\Delta \varphi_{e,\gamma} = \varphi_e \varphi_{\gamma}$

•
$$\Delta \eta_{e,\gamma} = \eta_e - \eta_\gamma$$

Width of BEMC photon candidate

Fit for number of photons in each measured bin.

A reasonable description is obtained.

AFG: Aurenche, Fontannaz and Guillet : EPJ C44 (2005) 395NLOBLZ: Baranov, Lipatov and Zotov: PRD81 (2010) 094034kT-factorisation

AFG is better, especially for x_v , though not perfect here.

Conclusions

DIS: results are in better agreement with AFG model than with BLZ but agree well, after rescaling, with Pythia + Heracles/Ariadne

ZEUS: Measurement of the ψ (2S) to J/ ψ cross-section ratio in photoproduction

Detect $\psi(2S)$ and J/ψ using muonic decays

Motivation:

The two VM states have different radial wavefunctions, giving sensitivity to theoretical modelling.

C.f. ZEUS DIS study: Nucl. Phys. B909 (2016) 934

Detect J/ψ using $\mu^+\mu^-$ final state

```
Detect \psi(2S) using \mu^+\mu^- final state (2-prong) and
and \mu^+\mu^- \pi^+\pi^- final state (4-prong)
with \psi(2S) \rightarrow J/\psi^- \pi^+\pi^-) \rightarrow \mu^+\mu^- \pi^+\pi^-
```

2-prong final states: exclusive muon trigger 2 tracks, p_T > 100 MeV/c >1 muon identification, both min. ionising in calorimeter cosmic rejection

4-prong final states: 4 tracks, two with the muon conditions pion candidates have pT > 120 MeV/c no explicit cosmic rejection $2.8 < M(\mu^+\mu)^- < 3.4 \text{ GeV for J/}\psi^-\text{selection}$

Mont Carlos: DIFFVM for the signals, and GRAPE for backgrounds.

Dimuon masses in three W ranges show expected peaks.

$\mu^+\mu^- \pi^+\pi$ - mass shows good peak

Results for ratio of the $\psi(2S) / J/\psi$ Integrated cross sections

Little or no variation with W.

Branching ratios used:

$$egin{aligned} & {\it BR}(\psi(2{\it S}) o {\it J}/\psi\pi^+\pi^-) = (34.49 \pm 0.3)\%, \ & {\it BR}(\psi(2{\it S}) o \mu^+\mu^-) = (7.9 \pm 0.9) imes 10^{-3}, \ & {\it BR}({\it J}/\psi o \mu^+\mu^-) = (5.961 \pm 0.033)\% \end{aligned}$$

Comparison with other results for different photon virtualities.

HIKT: J. Hüfner et al... PR. D 62, 094022 (2000). KNNPZZ: B.Z. Kopeliovich et PR D 44, 3466 (1991), al., Phys. Lett. B 324, 469 (1994), Phys. Lett. B 341, 228 (1994), JETP 86, 1054 (1998). AR: N. Armesto and A.H. Reazeian, PR D 90, 054003 (2014). LM: T. Lappi and H.Mäntysaari, PR. C 83, 065202 (2011). FFJS: S. Fazio et al., PR D 90, 016007 (2014). KMW: H. Kowalski et.al., PR. D 74, 074016 (2006).

The general picture is consistent.

Conclusions

The photoproduction result fits in with others, and the broad range of models are still relevant, although higher Q^2 results at high precision would be good.

H1: Diffractive production of ρ^0

```
Data set used (2006-2007)
```

Effective integrated luminosity - 1.3 pb⁻¹ , Ep = 920 GeV, \sqrt{s} = 319 GeV

Events with exclusive final state of one +ve and one –ve charged track only. No further calorimeter signals unassociated with the tracks.

 $p_T > 160 \text{ MeV/c}$ $20^\circ < \theta < 160^\circ$ $Q^2 < 2.5 \text{ GeV}^2$

Cuts on the kinematics calculated from the $\pi^+\pi^-$ final state.

```
15 < W_{\gamma p} < 100 \text{ GeV}
0 < p_T^2 < 2 \text{ GeV}^2
0.3 < M_{\pi + \pi} < 1.5 \text{ GeV}
```

Model using DIFFVM MC, which includes production of $\rho^{0, \omega}$, ϕ , $\rho(1450)$ and $\rho(1700)$ in Regge-based VMD production. Photon dissociation is modelled as well as the elastic process (36%)

Unfold distributions using TUnfold.

Measured $\pi^+\pi^-$ numbers of events

MC modelled background contributions are shown and are small.

Cross section is fitted using extended Söding model incorporating relativistic Breit-Wigner shape.

Elastic and proton-dissociative cross sections extracted using fit from model.

Cross section as a function of $\mathrm{W}_{\gamma p}.$ Good consistency with other measurements.

Elastic, proton dissociative.

Conclusions

H1 have measured diffractive rho photoproduction and separated out the fully elastic component.

Results are consistent with other experiments over a wide range of energies.

H1: Diffractive production of $\pi^+\pi^-\pi^-$

Two data sets were used (2006-2007) High Energy: - 7.6 pb⁻¹ ,Ep = 920 GeV, \sqrt{s} = 319 GeV Low Energy - 1.7 pb⁻¹, Ep = 460 GeV, \sqrt{s} = 225 GeV

Events with exclusive final state of two +ve and two –ve charged tracks only.

 $p_T > 100 \text{ MeV/c}$ $20^\circ < \theta < 160^\circ$

 $|t| < 1 \text{ GeV}^2$ $Q^2 < 2 \text{ GeV}^2$ and mass of any excited proton state < 1.6 GeV

Model the process using DIFFVM MC, which includes production of double-dissociation states of the photon and proton, $\rho(1450)$ and $\rho(1700)$ in Regge-based production model.

Detection + selection efficiency $\sim 11\%$.

H1 total cross sections compared to previous experiments.

Very good general consistency, apart perhaps from Atiya et al.

Differential cross section in p_T^2 is typical for elastic photoproduction processes.

Differential cross section in M_{4 π} can be fitted with a $\rho(1600)$ model. Cannot yet distinguish from a model with several ρ ' resonances.

H1: A determination of Diffractive Parton Distribution Functions from inclusive diffractive deep-inelastic scattering data and diffractive dijet cross section data in next-to-next-to-leading order QCD

Previous H1 fit for diffractive PDFs was based on 1996-1997 data. New fit uses HERA-2 inclusive data with much higher statistics. There have also been significant theory improvements.

The approach used here assumes partonic cross sections folded with process-independent DPDFs for the diffractive production of the partons.

$$d\sigma(ep \to epX) = \sum_{i} f_{i}^{D}(x, Q^{2}, x_{IP}, t) \otimes d\sigma^{ie}(x, Q^{2})$$

There is a Pomeron term and a much smaller Reggeon term.

$$f_i^D(z,\mu^2,x_{I\!\!P},t) = f_{I\!\!P/p}(x_{I\!\!P},t) f_{i/I\!\!P}(z,\mu^2) + n_{I\!\!R} f_{I\!\!R/p}(x_{I\!\!P},t) f_{i/I\!\!R}(z,\mu^2)$$

For further details see talk by Radek Žlebčík at the 2019 DIS workshop.

Previous H1 fit for diffractive PDFs was based on 1996-1997 data. New fit uses HERA-2 inclusive data with much higher statistics.

Data set	\sqrt{s}	int. \mathcal{L}	DIS kinematic
[ref.]	[GeV]	$[\mathrm{pb}^{-1}]$	range
H1comb-LRG	319	336.6	$8.5 < Q^2 < 1600 \mathrm{GeV}^2$
H1-LowE-252	252	5.2	$8.5 < Q^2 < 44 {\rm GeV}^2$
H1-LowE-225	225	8.5	$8.5 < Q^2 < 44 {\rm GeV}^2$

The combined "large rapidity gap" data set includes HERA-1 and HERA-2 data taken from 1997 to 2007.

In addition, several sets of diffractive dijet data were used:

Data Set	L	DIS	Dijet	Diffractive
	$[\mathrm{pb}^{-1}]$	\mathbf{range}	\mathbf{range}	\mathbf{range}
H1 LRG (HERA 2) [5]	290	$4 < Q^2 < 100 { m GeV^2}$	$p_{\rm T}^{ m *, jet 1} > 5.5 { m GeV}$	$x_{I\!\!P} < 0.03$
	$(\sim 15000 ev)$	0.1 < y < 0.7	$p_{\rm T}^{\rm *, jet2} > 4.0{\rm GeV}$	$ t < 1 { m GeV^2}$
			$-1 < \eta_{ m lab}^{ m jet} < 2$	$M_{\rm Y} < 1.6{\rm GeV}$

These represent a subset of the LRG inclusive data and were analysed in a way that presents more detailed kinematic information than the inclusive selection.

Results from the fits are shown in following slides.

Data set	process	$\chi^2/n_{\rm data}$
H1comb-LRG	inclusive NC DDIS	192/191
H1-LowE-225	inclusive NC DDIS	19/12
H1-LowE-252	inclusive NC DDIS	10/13
$H1 \ LRG \ ({\rm HERA} \ 2)$	dijet production	12/15
all		235/231
		$[n_{\rm dof} = 223]$

Comments

The fit is good over the fitted region, and agrees well with a number of parameters. It extrapolates well in some regions but not in others..

It is found that

- The NNLO DPDF has a lower gluon contribution than the earlier NLO version
- The dijet data are well fitted by both versions and are compatible with the inclusive data
- This supports the assumption of factorisation.

Summary

Still a modest but steady flow of results from HERA.

ZEUS have measured isolated ("prompt") photons in

- diffractive photoproduction, for the first time with an accompanying jet.
- Deep Inelastic Scattering, measuring new combinations of variables

Also, the $\psi(2S)$ to J/ψ cross-section ratio in photoproduction

H1 have measured

- The elastic rho cross section in photoproduction
- The diffractive production of $\pi^+\pi^-\pi^-$

Also, a new PDF fit to diffractive DIS production has been performed.

There are other results, but not for this conference!

Backups

Some comparisons with earlier results. Always a need to scale up the LO theory

Plot $\mathbf{z_{IP}^{meas}}$ and compare with Rapgap

Shape does not agree.

An excess is seen in the top bin. Can reweight Rapgap to describe the shape.

Unreweighted Rapgap here normalised to z_{IP}^{meas} < 0.9 data. Otherwise, unless stated, Rapgap is normalised to the full plotted range of data.

The η_{max} distribution is described better by the reweighted Rapgap.

Red histogram shows what 10% of non-diffractive Pythia photoproduction (subject to present cuts) would look like. (Not added into the Rapgap.)

Photon candidates: groups of signals in cells in the BEMC. Each has a Z-position, Z_{CELL} . E-weighted mean of Z_{CELL} is Z_{Mean} .

Task: to separate photons from background

of candidates from photon decays of neutral mesons.

 $\langle dZ \rangle = E$ -weighted mean of $|Z_{CELL} - Z_{Mean}|$.

Peaks correspond to photon and π^0 signals, other background is η + multi- π^0 .

In each bin of each measured physical quantity, fit for photon signal + hadronic bgd.

etamax distribution for HERA-2.

Compare diffractive photon distribution with those from nondiffractive process.

Diffractive more resembles direct but seems slightly more forward.

Compare diffractive distribution with that for nondiffractive photoproduction:

The diffractive process (left) is more strongly direct-dominated than the photoproduction (right). Rapgap gives a good description.