Determination of the strong coupling constant α_s(m_z) in NNLO using H1 jet cross section measurements

<u>Daniel Britzger</u> for the H1 Collaboration and NNLOJET Eur.Phys.J.C 77 (2017), 791 [arXiv:1709.07251]

> QCD@LHC 2018 Dresden, Germany 28.08.2018

Ap. Ag> th

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

MAX-PLANCK-GESELLSCHAFT

Why α?

Strong coupling α_s enters in the calculation of every process that involves the strong interaction

World average value $\alpha_s(m_z) = 0.1181 \pm 0.0011$ [PDG2016] ~0.9% relative uncertainty

Uncertainty on α_s

-> non-negligible uncertainties on many observables: e.g. Higgs production cross sections, branching ratios, ...

Jet measurements

- Direct constraint on α_s
- So far no NNLO results available

Deep-inelastic *ep* scattering

Neutral current scattering (NC)

Kinematic variables

Photon virtuality

$$Q^2 = -q^2 = -(k-k')^2$$
Inelasticity
 $y = \frac{p \cdot q}{p \cdot k}$

HERA ep collider in Hamburg

Data taking periods

- HERA I: 1994 2000
- HERA II: 2003 2007
- √s = 300 or 319 GeV

H1 Experiment at HERA

H1 multi-purpose detector

Asymmetric design Trackers

- Silicon tracker,
- Jet chambers
- Proportional chambers

Calorimeters

- Liquid Argon sampling calorimeter
- SpaCal: scintillating fiber calorimeter Superconducting solenoid, 1.15T Muon detectors

High experimental precision

- Overconstrained system in NC DIS
- Electron measurement: 0.5 1% scale uncertainty
- Jet energy scale: 1%

Jet production in DIS

Jets in DIS measured in Breit frame

- ep \rightarrow 2jets
- Virtual boson collides 'head-on' with parton from proton
 Boson-gluon fusion dominant process
- QCD compton important only for high- p_{τ} jets (high-x)

Inclusive jet cross sections

Inclusive jet cross sections

- $d\sigma/dQ^2dP_T^{jet}$
- 300 GeV, HERA-I & HERA-II
- low-Q² (<100 GeV²) and high-Q² (>150 GeV²) regions

Consistency

- kt-algorithm, R=1
- $-1.0 < \eta < 2.5$
- $P_{\scriptscriptstyle T}$ ranges from 4.5 to 50 GeV

Daniel Britzger – $\alpha_s(m_7)$ in NNLO using H1 jets

Dijet cross sections

Dijet definitions

- $< p_T >$ greater than 5,7 or 8.5 GeV
- $p_{T^{jet}}$ greater than 4, 5 or 7 GeV
- Asymmetric cuts on p_T^{jet1} and p_T^{jet2} (M₁₂ cut for two data sets)

Dijet cross sections

- $d\sigma/dQ^2d < p_T >$
- 300 GeV, HERA-I & HERA-II
- low-Q² and high-Q²

Earlier studies

All inclusive jet and dijet data have been employed for α_s extractions previously

 \rightarrow Data and uncertainties well-understood \rightarrow NNLO theory is new

DIS jet production in NNLO

A bit of history

- 1973 asymptotic freedom of QCD [PRL 30(1973) 1343 & 1346]
- 1993 NLO studies of DIS jet cross sections [Phys. Rev. D49 (1994) 3291]
- 2016 NNLO corrections for DIS jets [Phys. Rev. Lett. 117 (2016) 042001], [arXiv:1703.05977]

Antenna subtraction

- Cancellation of IR divergences
 with local subtraction terms
- Construction of (local) counter terms
- Move IR divergences across different phase space multiplicities

Scale dependence of NNLO cross sections

Simultaneous variation of μ_R and μ_F

At lower scales

- Significant NNLO k-factors
- NNLO with reduced scale dependence
- Inclusive jets with higher scale dependence than dijets

At higher scales

- NNLO with reduced scale dependence
- μ_F dependence very small

Two distinct fitting approaches

In this analysis: α_s is determined with two distinct approaches

$\alpha_{\rm s}$ fit

Determine $\alpha_s(m_z)$ 'directly' from inclusive jet and dijet cross sections

 \rightarrow Requires as additional input: PDFs

α_s +PDF fit

Determined $\alpha_s(m_z)$ together with PDFs from <u>normalised inclusive jet and dijet</u> cross sections and additionally all H1 inclusive NC & CC DIS data

- \rightarrow Determine α_s , but also
- → PDF is determined: **H1PDF2017**

Two distinct fitting approaches

In this analysis: α_s is determined with two distinct approaches

$\alpha_{\rm s}$ fit

Determine $\alpha_s(m_z)$ 'directly' from <u>inclusive jet and dijet</u> cross sections \rightarrow Requires as additional input: PDFs

α_s +PDF fit

Determined $\alpha_s(m_z)$ together with PDFs from <u>normalised inclusive jet and dijet</u> cross sections and additionally all H1 <u>inclusive NC & CC DIS data</u>

- \rightarrow Determine α_s , but also
- → PDF is determined: **H1PDF2017**

α_s -fit methodology

α_s determined in χ_2 -minimisation

• $\alpha_s(m_z)$ is a free parameter to NNLO theory prediction σ_i

$$\chi^2 = \sum_{i,j} \log \frac{\varsigma_i}{\sigma_i} (V_{\text{exp}} + V_{\text{had}} + V_{\text{PDF}})_{ij}^{-1} \log \frac{\varsigma_j}{\sigma_j}$$

• NNLO theory is sensitive to $\alpha_s(m_z)$

$$\sigma_i = \sum_{n=1}^{\infty} \sum_{k=g,q,\overline{q}} \int dx f_k(x,\mu_F) \hat{\sigma}_{ik}^{(n)}(x,\mu_R,\mu_F) \cdot c_{\text{had}}$$

• α_s dependence of PDF is accounted for by using $\mu_{F,0}$ =20GeV and applying DGLAP

Perform fits to

- All inclusive jet data sets (137 data points)
- All dijet data sets (103 data points)
- All <u>H1 jet data taken together</u> (denoted as 'H1 jets') (exclude HERA-I dijet data as correlations to inclusive jets are not known)

Strong coupling in NNLO from jets

Scale dependence of $\alpha_{_{\rm S}}$ fit

α_s results as a function of scale factors

- Smooth results for studied scale variations
- μ_R variation with more impact than μ_F

Scale choice

 $\mu^2 = Q^2 + p_T^2$

• With p_T being p_T^{jet} or $< p_T >$

χ² values

- somewhat a 'technical parameter' -> not intended to be a parabolas
- χ^2 values increase for large scale factors -> large scale factors disvafored

Scale choice for $\alpha_{_{\! S}}$ fit

Study scales calculated from Q^2 and p_T

' p_{τ} ' refers to: p_{τ}^{jet} or $< p_{\tau} >$

α_s results and χ^2 values

- Spread of results covered by scale uncertainty
- χ^2 values are similar for different choices

NLO matrix elements

- Large scale uncertainty
- Relevant dependence of result on scale choice
- Mainly larger χ^2 values than NNLO
- Larger fluctuation of χ^2 values than NNLO

NNLO with reduced scale dependence

Dependence on the PDF

PDF is an external input to NNLO calculation

PDF fitting groups differ

- choice of input data sets, PDF parameterisations, model parameters, fit methodology, etc...
- Though different PDFs appear to be quite consistent

Choice of α_s for PDF determination

- $\alpha_{PDF}(m_z)$ important input parameter to PDF fit
- Small correlation with fitted results

Our (main) α_s result

almost independent on PDF assumptions

Comparison of NNLO predictions with data

All H1 jet cross section data compared to NNLO predictions

- Inclusive jets
- Dijets

Overall good agreement

- NNLO describes all data very well
- Also quantified of course by good χ^2 values of the fits

Great success of pQCD

Tests of running of strong coupling

Test running of strong coupling

- Perform fits to groups of data points at similar scale
- Assumes running to be valid within the limited range covered by interval
- All fits have good χ^2

Results

- · Consistency with expectation at all scales
- Scale uncertainty dominates at lower μ
- Consistency of inclusive jets and dijets (backup)

High precision in range: $7 < \mu < 90$ GeV

Two distinct fitting approaches

In this analysis: α_s is determined with two distinct approaches

$\alpha_{\rm s}$ fit

Determine $\alpha_s(m_z)$ 'directly' from inclusive jet and dijet cross sections

 \rightarrow Requires as additional input: PDFs

α_s +PDF fit

Determined $\alpha_s(m_z)$ together with PDFs from <u>normalised inclusive jet and dijet</u> cross sections and additionally all H1 <u>inclusive NC & CC DIS data</u>

- \rightarrow Determine α_s , but also
- \rightarrow PDF is determined: **H1PDF2017**

'PDF+ α_s -fit': H1PDF2017

Perform H1-alone PDF fit: H1PDF2017

- Use (all) H1 inclusive DIS data
- Use (all) H1 normalised jet cross section data
- -> 1529 data points

Normalised jet cross sections

- Jet cross sections normalised to inclusive DIS
- Correlations of jets and inclusive DIS cancel

PDFs are parameterised as

$$xf(x)|_{\mu_0} = f_A x^{f_B} (1-x)^{f_C} (1+f_D x + f_E x^2)$$

• Similar to HERAPDF/H1PDF

Mind: all PDFs are commonly determined predominantly from (H1) inclusive DIS data

Cross section: ~ PDF $\otimes \sigma$

$$\sigma_i = \sum_{k=g,q,\overline{q}} \int dx f_k(x,\mu_{\rm F}) \hat{\sigma}_{i,k}(x,\mu_{\rm R},\mu_{\rm F}) \cdot c_{{\rm had},i}$$

Normalised jets

Data set	Q^2 domain	Inclusive	Dijets	Normalised	Normalised	Stat. corr.
[ref.]		jets		inclusive jets	dijets	between samples
$300 {\rm GeV} [17]$	$high-Q^2$	\checkmark	\checkmark	_	_	_
HERA-I [23]	low- Q^2	\checkmark	\checkmark	_	_	_
HERA-I [21]	$high-Q^2$	\checkmark	_	\checkmark	_	_
HERA-II [15]	$low-Q^2$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
HERA-II $[15, 24]$	$high-Q^2$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Inclusive NC & CC DIS

Data set	Lepton	\sqrt{s}	Q^2 range	NC cross	CC cross	Lepton beam
[ref.]	type	[GeV]	$[{\rm GeV}^2]$	sections	sections	polarisation
Combined low- Q^2 [64]	e^+	301,319	$(0.5) \ 12 - 150$	\checkmark	_	_
Combined low- E_p [64]	e^+	$225,\!252$	(1.5) 12 - 90	\checkmark	—	-
94-97[61]	e^+	301	150 - 30000	\checkmark	\checkmark	_
98-99[62,63]	e^-	319	150 - 30000	\checkmark	\checkmark	_
99 - 00 [63]	e^+	319	150 - 30000	\checkmark	\checkmark	_
HERA-II [65]	e^+	319	120 - 30000	\checkmark	\checkmark	\checkmark
HERA-II [65]	e^-	319	120 - 50000	\checkmark	\checkmark	\checkmark

Result

α_s determined in PDF+ α_s -fit

 $\alpha_{\rm s}(m_{\rm Z}) = 0.1142 \,(11)_{\rm exp,had,PDF} \,(2)_{\rm mod} \,(2)_{\rm par} \,(26)_{\rm scale}$

- High experimental precision
- Moderate theory uncertainty from NNLO

Comparison

- Similar precision than most of other (comparable) determinations
- Theory/scale uncertainties:
 - \rightarrow Scale uncertainty: vary all scales by 0.5 and 2 \rightarrow other PDF fitting groups commonly determine only exp. uncertainties

 \rightarrow Comparison of 'full' uncertainties difficult

- All H1 results self-consistent
- Results competitive with world average
- All results from DIS data tend to be lower than world average value

$PDF+\alpha_{s}$ -fit – H1PDF2017 [NNLO]

Result for PDFs

- Set of PDFs determined with high precision
- $\chi^2/ndf \sim 1.01$ (n_{pts}=1529)
- Despite α_s is a free parameter to the fit: precision is competitive with global PDF fits, which use fixed α_s

Comparison of H1PDF2017 and NNPDF3.1

H1PDF2017

- Precise determination of the gluon PDF and α_s
- Gluon at lower x-values tends to be higher (than e.g. NNPDF3.1)
- Gluon very similar to NNPDF3.1sx, which includes low-x resummation (no low-Q² data included in our H1 fit)

30 XQ NNPDF31 Gluon and singlet PDFs 1.1 11PDF2017 -H1PDF2017 [NNLO] 25 MPDF31sx Ratio to NNPDF3.1 1.0 Q = 2.00e+01 GeV - NNPDF3.1 ($\alpha_s = 0.118$) 20 1.05 NNPDF3.1 ($\alpha_{e} = 0.114$) 0.9 $\mu_{r} = 20 \text{ GeV}$ Ratio 15 хΣ 1.1 10 0.95 Gluon хg 1.0 $_{0.9}$ [_ NNPDF31sx with α_{c} =0.1180 5 H1PDF2017 with α =0.1142 0.9 0 H1 and NNLOJET H1 and NNLOJET $\mu_{r} = 20 \text{ GeV}$ 0.85 10^{-3} 10^{-2} 10^{-1} 10⁻³ 10^{-3} 10^{-2} 10^{-1} 10^{-2} 10^{-1} Mind: H1PDF2017 includes α_{a} -uncertainty, Х Х Apfelweb. Thanks to S. Carraza whereas NNPDF does not

QCD@LHC 2018, Dresden

¥

Daniel Britzger – $\alpha_s(m_z)$ in NNLO using H1 jets

Comparison with NNPDF3.1sx

Assess impact of H1 jet data

Correlation of α_s and gluon Correlation of α_s and g • gluon at (x=0.01, $\mu_{\rm E}$ =20GeV) Correlation of $\alpha_s(m_{-})$ and gluon density H1PDF2017 -- Fit without jet data Fit to inclusive DIS data alone = 20/GeV NNPDF3.1 Sizeable uncertainties 8 \rightarrow Inclusive DIS data alone does not allow for simultaneous determination of gluon and α_s **κg**(x=0.010 , μ_E H1 jet data Simultaneous determination of gluon and α_s becomes possible \rightarrow High precision ! 68 % C.L. of H1 and NNLOJET Mind here: NNPDF uncertainties do not Hessian errors include uncertainty on α_s 0.11 0.12 $\alpha_{s}(m_{z})$ H1 jet data allows for precise simultaneous determination of α_{s} and gluon density

Summary

All H1 jet data confronted with NNLO predictions

- NNLO provides improved description w.r.t. NLO
- Quantitative comparison of all data
- NNLO predictions studied in great detail

NNLO used for determination of $\alpha_s(m_z)$

- $\alpha_{\rm s}$ -fit $\alpha_{\rm s}(m_{\rm Z}) = 0.1157 \, (20)_{\rm exp} \, (6)_{\rm had} \, (3)_{\rm PDF} \, (2)_{\rm PDF\alpha_{\rm s}} \, (3)_{\rm PDFset} \, (27)_{\rm scale}$
- α_{s} +PDF-fit $\alpha_{s}(m_{Z}) = 0.1142 \,(11)_{exp,had,PDF} \,(2)_{mod} \,(2)_{par} \,(26)_{scale}$
- High experimental and theoretical precision

NNLO predictions for jets are used for PDF fits for the first time

- Successful determination of gluon-density and simultaneously also $\alpha_s(m_z)$
- Competitive precision of PDFs and $\alpha_s(m_z)$
- H1PDF2017 available at LHAPDF

Fruitful collaboration of theoreticians and experimentalists (H1 & NNLOJET)

Study of total uncertainty

Scale uncertainties at various scales µ

- At low-μ: large scale uncertainties...
- ... but also high sensitivity to $\alpha_s(m_z)$

Fits imposing a cut on scale μ

• Repeat α_s fits: successively cut away data below μ_{cut}

Results

- Scale uncertainty decreases with μ_{cut}
- Exp. uncetainty increases with $\mu_{
 m cut}$

Cut on μ can balance between exp. and theoretical uncertainties at constant total precision

$\alpha_s(m_z)$ dependence of cross sections

α_s dependencies separately fitted

Fits to

- Inclusive jet and dijet data fitted together
- Fits performed for different PDFs

Fits with two free α_s parameters

$$\sigma_i = f(\alpha_{\rm s}^f(m_Z)) \otimes \hat{\sigma}_k(\alpha_{\rm s}^{\hat{\sigma}}(m_Z)) \cdot c_{\rm had}$$

Results

- Most sensitivity arises from matrix elements
- Best-fit α_s -values in PDF's and ME's are consistent
- Anti-correlation between $\alpha_s^{PDF}(m_z)$ and $\alpha_s^{\Gamma}(m_z)$

Data	$ ilde{\mu}_{ ext{cut}}$	$lpha_{ m s}(m_{ m Z})$ with uncertainties	\mathbf{th}	tot	$\chi^2/n_{ m dof}$
Inclusive jets					
$300{ m GeV}$ high- Q^2	$2m_b$	$0.1221(31)_{exp}(22)_{had}(5)_{PDF}(3)_{PDF\alpha_s}(4)_{PDFset}(36)_{scale}$	$(43)_{\rm th}$	$(53)_{\rm tot}$	6.5/15
HERA-I low- Q^2	$2m_b$	$0.1093 (17)_{\exp} (8)_{had} (5)_{PDF} (5)_{PDF\alpha_s} (7)_{PDFset} (33)_{scale}$	$(35)_{\rm th}$	$(39)_{\rm tot}$	17.5/22
HERA-I high- Q^2	$2m_b$	$0.1136(24)_{\exp}(9)_{had}(6)_{PDF}(4)_{PDF\alpha_{s}}(4)_{PDFset}(31)_{scale}$	$(33)_{\rm th}$	$(41)_{tot}$	14.7/23
HERA-II low- Q^2	$2m_b$	$0.1187(18)_{\exp}(8)_{had}(4)_{PDF}(4)_{PDF\alpha_{s}}(3)_{PDFset}(45)_{scale}$	$(46)_{\rm th}$	$(50)_{\rm tot}$	29.6/40
HERA-II high- Q^2	$2m_b$	$0.1121(18)_{exp}(9)_{had}(5)_{PDF}(4)_{PDF\alpha_s}(2)_{PDFset}(35)_{scale}$	$(37)_{\rm th}$	$(41)_{\rm tot}$	42.5/29
\mathbf{Dijets}					
$300{ m GeV}$ high- Q^2	$2m_b$	$0.1213(39)_{exp}(17)_{had}(5)_{PDF}(2)_{PDF\alpha_s}(3)_{PDFset}(31)_{scale}$	$(35)_{\rm th}$	$(52)_{\rm tot}$	13.6/15
HERA-I low- Q^2	$2m_b$	$0.1101(23)_{\exp}(8)_{had}(5)_{PDF}(4)_{PDF\alpha_{s}}(5)_{PDFset}(36)_{scale}$	$(38)_{\rm th}$	$(45)_{\rm tot}$	10.4/20
HERA-II low- Q^2	$2m_b$	$0.1173 (14)_{\exp} (9)_{had} (5)_{PDF} (5)_{PDF\alpha_s} (3)_{PDFset} (44)_{scale}$	$(45)_{\rm th}$	$(47)_{\rm tot}$	17.4/41
HERA-II high- Q^2	$2m_b$	$0.1089(21)_{exp}(7)_{had}(5)_{PDF}(3)_{PDF\alpha_s}(3)_{PDFset}(25)_{scale}$	$(27)_{\rm th}$	$(34)_{\rm tot}$	28.0/23
H1 inclusive jets	$2m_b$	$0.1132(10)_{\exp}(5)_{had}(4)_{PDF}(4)_{PDF\alpha_{s}}(2)_{PDFset}(40)_{scale}$	$(40)_{\rm th}$	$(42)_{tot}$	134.0/133
H1 inclusive jets	$28{ m GeV}$	$0.1152(20)_{\exp}(6)_{had}(2)_{PDF}(2)_{PDF\alpha_{s}}(3)_{PDFset}(26)_{scale}$	$(27)_{\rm th}$	$(33)_{tot}$	44.1/60
H1 dijets	$2m_b$	$0.1148 (11)_{\rm exp} (6)_{\rm had} (5)_{\rm PDF} (4)_{\rm PDF\alpha_s} (4)_{\rm PDFset} (40)_{\rm scale}$	$(41)_{\rm th}$	$(42)_{tot}$	93.9/102
H1 dijets	$28{ m GeV}$	$0.1147(24)_{\exp}(5)_{had}(3)_{PDF}(2)_{PDF\alpha_s}(3)_{PDFset}(24)_{scale}$	$(25)_{\rm th}$	$(35)_{\rm tot}$	30.8/43
H1 jets	$2m_b$	$0.1143(9)_{exp}(6)_{had}(5)_{PDF}(5)_{PDF\alpha_{s}}(4)_{PDFset}(42)_{scale}$	$(43)_{\rm th}$	$(44)_{tot}$	195.0/199
H1 jets	$28{ m GeV}$	$0.1157(20)_{\exp}(6)_{had}(3)_{PDF}(2)_{PDF\alpha_{s}}(3)_{PDFset}(27)_{scale}$	$(28)_{\rm th}$	$(34)_{\rm tot}$	63.2/90
H1 jets	$42{ m GeV}$	$0.1168(22)_{\exp}(7)_{had}(2)_{PDF}(2)_{PDF\alpha_{s}}(5)_{PDFset}(17)_{scale}$	$(20)_{\rm th}$	$(30)_{\rm tot}$	37.6/40
$H1PDF2017[\rm NNLO]$	$2m_b$	$0.1142 (11)_{exp,NP,PDF} (2)_{mod} (2)_{par} (26)_{scale}$		$(28)_{\rm tot}$	1539.7/1516

$\alpha_{\rm s}(m_{\rm Z})$ values from H1 jet cross sections

Inclusive jet and dijet

Data set	\sqrt{s}	\mathcal{L}	DIS kinematic	Inclusive jets	Dijets
[ref.]	[GeV]	$[\mathrm{pb}^{-1}]$	range		$n_{ m jets} \ge 2$
$300{ m GeV}$	300	33	$150 < Q^2 < 5000 {\rm GeV}^2$	$7 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$	$P_{\mathrm{T}}^{\mathrm{jet}} > 7\mathrm{GeV}$
[17]			0.2 < y < 0.6		$8.5 < \langle P_{\rm T} \rangle < 35 {\rm GeV}$
HERA-I	319	43.5	$5 < Q^2 < 100 \mathrm{GeV^2}$	$5 < P_{\rm T}^{\rm jet} < 80{\rm GeV}$	$5 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$
[23]			0.2 < y < 0.7		$5 < \langle P_{\rm T} \rangle < 80 {\rm GeV}$
					$m_{12} > 18 \mathrm{GeV}$
					$(\langle P_{\mathrm{T}} \rangle > 7 \mathrm{GeV})^*$
HERA-I	319	65.4	$150 < Q^2 < 15000 \mathrm{GeV}^2$	$5 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$	_
[21]			0.2 < y < 0.7		
HERA-II	319	290	$5.5 < Q^2 < 80 {\rm GeV}^2$	$4.5 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$	$P_{\rm T}^{\rm jet} > 4 {\rm GeV}$
[15]			0.2 < y < 0.6		$5 < \langle P_{\rm T} \rangle < 50 {\rm GeV}$
HERA-II	319	351	$150 < Q^2 < 15000 \mathrm{GeV}^2$	$5 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$	$5 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$
[15, 24]			0.2 < y < 0.7		$7 < \langle P_{\rm T} \rangle < 50 {\rm GeV}$
					$m_{12}>16{\rm GeV}$

Inclusive jet cross sections

Inclusive jet cross sections • low Q²: 4.5 < P_T < 50 GeV

- high Q²: 5 < P_T < 50 GeV

Predictions

NLO, aNNLO & NNLO

NLO

 Data well described within uncertainties

aNNLO

- Somewhat improved shape description **NNLO**
 - Improved shape and normalisation
 - Reduced scale uncertainties for larger values of μ_r

Also measured

Normalised inclusive jet cross sections

Ratio of dijet cross sections to NLO

Scale uncertainty

• So-called '7-point scale variation': Vary μ_r and μ_f independently by factors of 2 and 0.5, but exclude variations in 'opposite' directions

- Ratio to NLO prediction
 NLO give reasonable descriptions within large scale uncertainties
 - aNNLO improves shape
 - aNNLO expected to improve description at high $< p_T >$
 - NNLO improves shape dependence
 NNLO predictions have smaller scale
 - uncertainties than NLO at high- $< p_T >$

