Search for contact interactions in inclusive ep scattering at HERA: the effective quark «radius»

B.B. Levchenko, SINP MSU (for the ZEUS Collaboration)

Predictions of the SM are well confirmed. However at Q²> 10⁴ GeV² may exist BSM effects.: cross sections can be affected by new kinds of interactions (new particles, a finite quark radius ...)

B.B. Levchenko, Rq, ICPPA-2018

>100 years ago (Rutherford, 1911): α+ Au

Rutherford: Scattering charged point-like particles w/o spin. Mott: + account relativ., recoil effects + incident particle spin (1/2)

$$\star \quad \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_R = \left(\frac{Z_1 Z_2 e^2}{4T}\right)^2 \frac{1}{\sin^4 \theta/2} \to \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{Mott}$$
$$\tan\left(\frac{\theta}{2}\right) = \frac{r_{min}}{2b} = \frac{Z_1 Z_2 e^2}{2bT}$$

Rutherford formula describes well α + Au scattering. Therefore,

b ~ R_{Au} < 5•10⁻¹²cm=50 fm

Form factor

A form factor is a function describing the effect of the particle spatial extent on its interaction with other particles and fields.

B.B. Levchenko, Rq ,ICPPA-2018

$$\begin{split} F(\vec{q}) &= \frac{4\pi}{q} \int_0^\infty \rho(r) \sin(qr) r dr \\ &= 1 - \frac{\vec{q}^2}{6} \langle r^2 \rangle + \frac{\vec{q}^2}{120} \langle r^4 \rangle + \dots \quad \text{Taylor expans.} \end{split}$$

The dipole form

Au

6

8

r, Фм

The HERA collider

• During 1992–2007, mainly $E_e = 27.5 \text{ GeV}$, $E_p = 920 \text{ GeV}$ giving $\sqrt{s} \sim 320 \text{ GeV}$;

Data are collected with ZEUS and H1 detectors: ~ 1 fb⁻¹

$$Q^{2} = -q^{2} = -(k - k')^{2}$$

$$x_{Bj} = \frac{Q^{2}}{2 pq} \qquad y = \frac{pq}{pk}$$

$$s = (p + k)^{2} \qquad Q^{2} = xys$$

During 100 years the theory evolved significantly, QED, QCD, EW \rightarrow Standard Model (SM)

$$\sigma_{r,\text{NC}}^{\pm} = \frac{\mathrm{d}^2 \sigma_{\text{NC}}^{e^{\pm} p}}{\mathrm{d} x_{\text{Bj}} \mathrm{d} Q^2} \cdot \frac{Q^4 x_{\text{Bj}}}{2\pi \alpha^2 Y_+} = \tilde{F}_2 \mp \frac{Y_-}{Y_+} x \tilde{F}_3 - \frac{y^2}{Y_+} \tilde{F}_L$$

One hundred years later, when we again raise the question of the size of the smallest object under study (quark), we return to the original formula.

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}x_{Bj} \mathrm{d}Q^2} = \frac{\mathrm{d}^2 \sigma^{\mathrm{SM}}}{\mathrm{d}x_{Bj} \mathrm{d}Q^2} \cdot \left[1 - \frac{\langle R_q^2 \rangle}{6} Q^2\right]^2 \quad \leftarrow \quad \text{the dipole form of FF} \\ \mathbf{R}_q \text{ provides the effective scale}$$

Before to start: Estimations based on the uncertainty principle

$$q_0 = (k - x_{Bj} P) \frac{Q^2}{x_{Bj} s}, \quad |\vec{q}| = \sqrt{q_0^2 + Q^2}$$

The virtual photon momentum components

 $\Delta x = \frac{\hbar \cdot c}{|\vec{q}|} \qquad \text{In space units}$

At a point from the comb. data set

Q² =50000 GeV², x_{Bj}=0.65

$$\Delta x = 0.41 * 10^{-3} \, \text{fm}$$

Reduced cross sections

$$\sigma_{r,\text{NC}}^{\pm} = \frac{d^2 \sigma_{\text{NC}}^{e^{\pm}p}}{dx_{\text{Bj}} dQ^2} \cdot \frac{Q^4 x_{\text{Bj}}}{2\pi \alpha^2 Y_+} = \tilde{F}_2 \mp \frac{Y_-}{Y_+} x \tilde{F}_3 - \frac{y^2}{Y_+} \tilde{F}_L$$

H1 and ZEUS

{QCD, DGLAP}→HERAPDF2.0

14 fit parameters

In this analysis BSM contributions (R_q^2) and the QCD evolution are ^{*q*} fitted simultaneously.

 R_q^2

was treated as a test statistic

Eur. Phys. J. C 75 (2015) 580

Combined (H1+ZEUS) reduced NC cross sections (small fraction)

Q^2	x _{Bj}	$\sigma_{r,NC}^+$	δ_{stat}	δ_{uncor}	δ_{cor}	δ_{rel}	$\delta_{\gamma p}$	$\delta_{\rm had}$	δ_1	δ_2	δ_3	δ_4	δ_{tot}
GeV ²		,	%	%	%	%	%	%	%	%	%	%	%
3.5	0.406×10^{-4}	0.806	6.14	4.17	1.18	1.09	-0.25	-0.46	-0.04	-0.75	-0.01	-0.15	7.65
3.5	0.432×10^{-4}	0.881	3.08	2.83	3.31	0.70	-4.07	0.56	-2.62	-0.18	-0.01	-0.05	7.26
3.5	0.460×10^{-4}	0.965	3.05	2.99	1.10	0.35	-0.21	-0.41	-0.05	-0.15	-0.01	-0.22	4.45
3.5	0.512×10^{-4}	0.940	2.16	2.25	1.53	0.52	-1.61	0.05	-1.16	-0.07	0.01	0.01	4.04
3.5	0.531×10^{-4}	0.880	3.10	2.64	0.91	0.48	-0.20	-0.30	-0.03	-0.01	-0.01	-0.21	4.22
3.5	$0.800 imes 10^{-4}$	0.952	1.25	1.55	0.88	0.43	-0.26	-0.09	-0.08	-0.09	0.01	0.03	2.24
3.5	$0.130 imes 10^{-3}$	0.918	0.66	0.86	0.80	0.45	-0.13	-0.28	0.18	0.00	0.02	0.06	1.46
3.5	0.200×10^{-3}	0.854	0.68	0.83	0.81	0.44	0.09	-0.22	0.26	0.00	0.01	0.08	1.46
3.5	0.320×10^{-3}	0.791	0.72	0.88	0.86	0.50	-0.21	-0.01	0.11	0.00	0.01	0.07	1.53

 σ_r «surface» in (x,Q²)-space with > 10³ points

$$\chi^2\left(\boldsymbol{m},\boldsymbol{s}\right) = \sum_{i} \frac{\left[m^i + \sum_j \gamma_j^i m^i s_j - \mu_0^i\right]^2}{\left(\delta_{i,\text{stat}}^2 + \delta_{i,\text{uncor}}^2\right) (\mu_0^i)^2} + \sum_j s_j^2$$

 μ_0^i is the measured cross-section value at the point *i*

Limits setting with Monte Carlo replicas

$$\mu^{i} = \begin{bmatrix} m_{0}^{i} + \sqrt{\delta_{i,stat}^{2} + \delta_{i,uncor}^{2}} & \mu_{0}^{i} \cdot r_{i} \end{bmatrix} \cdot \begin{pmatrix} 1 + \sum_{j} \gamma_{j}^{i} \cdot r_{j} \end{pmatrix}$$
Relative statistical and uncorrelated systematic uncertainties

If $R_q^{2Fit} > R_q^{2Data}$ in 95% replicas, then excluded at the 95% C.L.

ZEUS

The solid circles correspond to the results obtained from the simultaneous fit of R_q^2 and PDF parameters (PDF+Rq).

The open circles represent the dependence obtained when fixing the PDF parameters to the ZRqPDF values (Rq-only).

The effective quark radius limits

Phys. Lett. B757 (2016) 468, arXiv:1604.01280

13

For comparison

PDG

 $r_p = 0.875$ (7) fm

Present analysis (ZEUS): effective quark «size»

$$\bar{r_q} = \sqrt{|\langle R_q^2 \rangle|} < 0.43 \cdot 10^{-3} \,\mathrm{fm}$$

Rutherford, (1911)

R_{Au} < 5•10⁻¹²cm=50 fm

 $2.9 \text{ GeV}^2 < Q^2 < 10^5 \text{ GeV}^2_{\text{DD}}$

B.B. Levchenko, Rq ,ICPPA-2018

Summary

- A new approach to the BSM analysis of the inclusive *ep* data is presented; simultaneous fits of parton distribution functions together with contributions of *"new physics"* processes were performed.

- Results are presented considering a finite radius of quarks within the quark form-factor model.

-The resulting 95% C.L. upper limit on the effective quark radius is $4.3 \cdot 10^{-17}$ cm ($4.3 \cdot 10^{-4}$ fm).

-The term "quark radius" is only one possible interpretation of BSM effects parameterised as form factors.