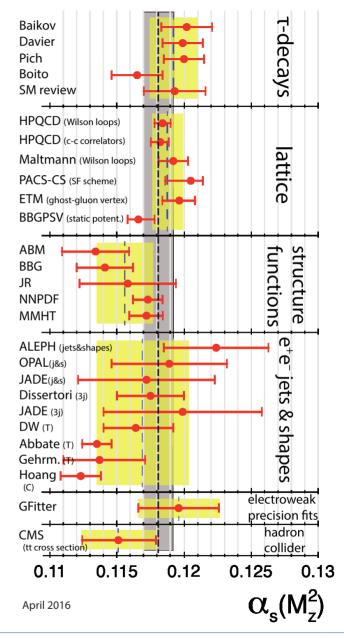
Determination of the strong coupling constant $\alpha_s(m_z)$ in next-to-next-to-leading order QCD using H1 jet cross section measurements

Daniel Britzger for the H1 Collaboration and NNLOJET Eur.Phys.J.C 77 (2017), 791 [arXiv:1709.07251]

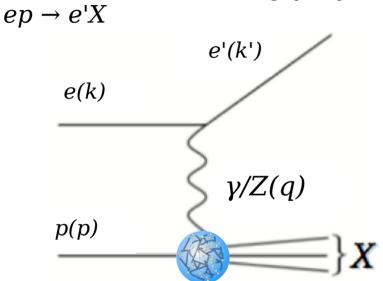
> ICHEP2018 Seoul Seoul, Korea 06.07.2018

Strong coupling α_s enters in the calculation of every process that involves the strong interaction


World average value $\alpha_s(m_z) = 0.1181 \pm 0.0011$ [PDG2016] ~0.9% relative uncertainty

Uncertainty on α_s

-> non-negligible uncertainties on many observables: e.g. Higgs production cross sections, branching ratios, ...


Jet measurements

- Direct constraint on α_s
- So far no NNLO results available

Deep-inelastic ep scattering

Neutral current scattering (NC)

Kinematic variables

Photon virtuality

$$Q^2 = -q^2 = -(k-k')^2$$

Inelasticity

$$y = \frac{p \cdot q}{p \cdot k}$$

HERA *ep* collider in Hamburg

Data taking periods

• HERA I: 1994 – 2000

• HERA II: 2003 – 2007

• $\sqrt{s} = 300 \text{ or } 319 \text{ GeV}$

H1 Experiment at HERA

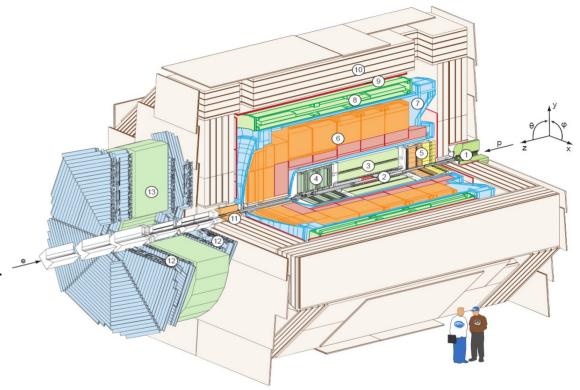
H1 multi-purpose detector

Asymmetric design

Trackers

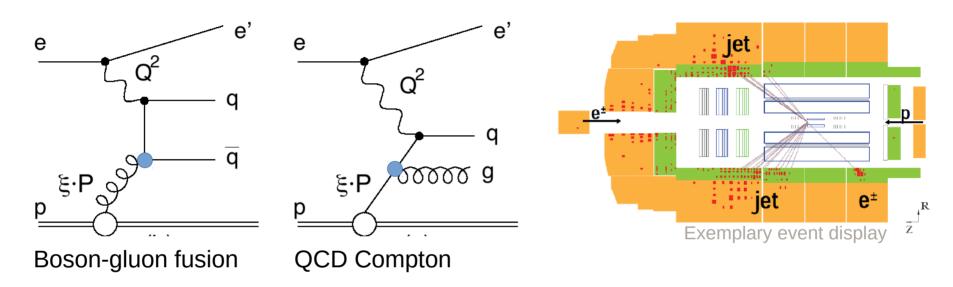
- Silicon tracker,
- Jet chambers
- Proportional chambers

Calorimeters

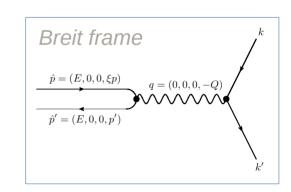

- Liquid Argon sampling calorimeter
- SpaCal: scintillating fiber calorimeter

Superconducting solenoid, 1.15T

Muon detectors


High experimental precision

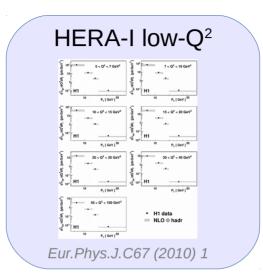
- Overconstrained system in NC DIS
- Electron measurement: 0.5 1% scale uncertainty
- Jet energy scale: 1%

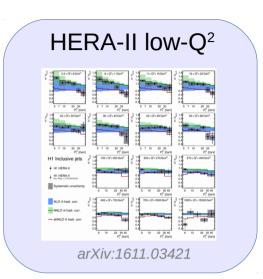

Jet production in DIS

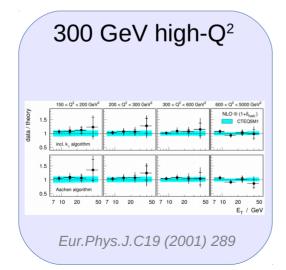
Jets in DIS measured in Breit frame

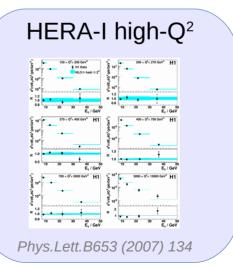
- ep -> 2jets
- Virtual boson collides 'head-on' with parton from proton
 Boson-gluon fusion dominant process QCD compton important only for high- p_{T} jets (high-x)

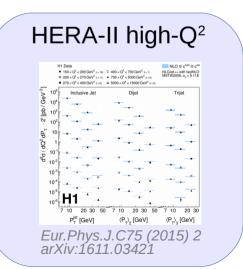
Jet measurement sensitive to α_s and gluon density


Inclusive jet cross sections by H1


Inclusive jet cross sections


- $d\sigma/dQ^2dP_T^{jet}$
- 300 GeV, HERA-I & HERA-II
- low-Q² (<100 GeV²) and high-Q² (>150 GeV²) regions

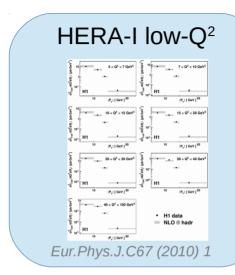

Consistency

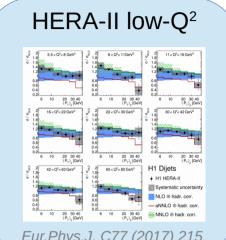

- kt-algorithm, R=1
- $-1.0 < \eta < 2.5$
- P_⊤ ranges from 4.5 to 50 GeV

Dijet cross section by H1

Dijet definitions

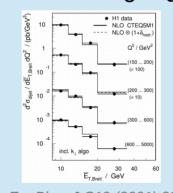
- $\langle p_T \rangle$ greater than 5,7 or 8.5 GeV
- P_⊤ jet greater 4, 5 or 7 GeV
- Asymmetric cuts on p_jet1 and p_jet2
- M₁₂ cut for two data sets


Dijet cross sections

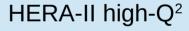

- $d\sigma/dQ^2d < p_T >$
- 300 GeV, HERA-I & HERA-II
- low-Q² and high-Q²

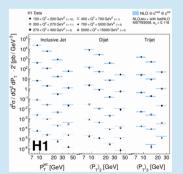
Earlier studies

All inclusive jet and dijet data have been employed for α_s extractions previously


-> Data and uncertainties well-understood -> NNLO theory is new

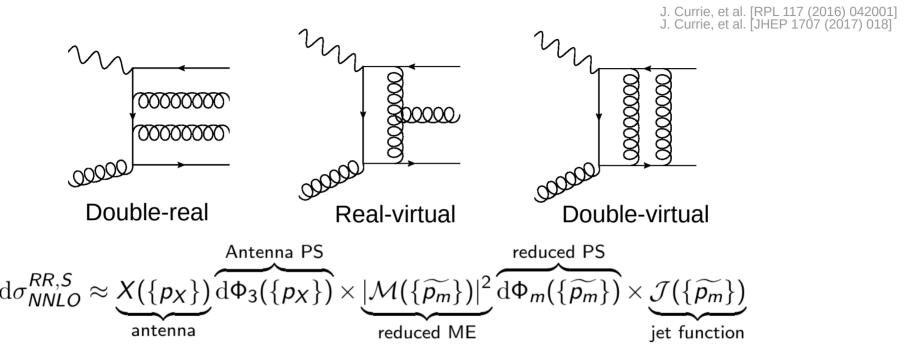
Eur. Phys. J. C77 (2017) 215


300 GeV high-Q²



Eur. Phys. J. C19 (2001) 289

HERA-I high-Q²


Dijet cross sections not statistically independent from HERA-II analysis Eur. Phys. J. C65 (2010) 363

Eur. Phys. J. C75 (2015) 2

DIS jet production in NNLO

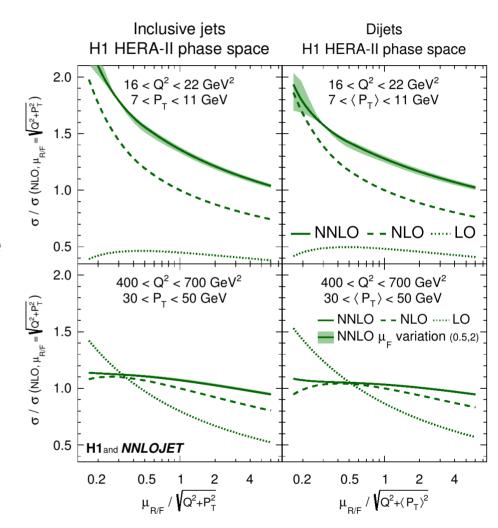
A bit of history

- 1973 asymptotic freedom of QCD
 [PRL 30(1973) 1343 & 1346]
- 1993 NLO studies of DIS jet cross sections [Phys. Rev. D49 (1994) 3291]
- 2016 NNLO corrections for DIS jets [Phys. Rev. Lett. 117 (2016) 042001], [arXiv:1703.05977]

Antenna subtraction

- Cancellation of IR divergences with local subtraction terms
- Construction of (local) counter terms
- Move IR divergences across different phase space multiplicities

Scale dependence of NNLO cross sections


Simultaneous variation of μ_R and μ_F

At lower scales

- Significant NNLO k-factors
- NNLO with reduced scale dependence
- Inclusive jets with higher scale dependence than dijets

At higher scales

- NNLO with reduced scale dependence
- μ_F dependence very small

α_s -fit methodology

α_s determined in χ_2 -minimisation

• $\alpha_s(m_z)$ is a free parameter to NNLO theory prediction σ_i

$$\chi^2 = \sum_{i,j} \log \frac{\varsigma_i}{\sigma_i} (V_{\text{exp}} + V_{\text{had}} + V_{\text{PDF}})_{ij}^{-1} \log \frac{\varsigma_j}{\sigma_j}$$

NNLO theory is sensitive to α_s(m_z)

$$\sigma_i = \sum_{n=1}^{\infty} \sum_{k=q,q,\overline{q}} \int dx \underbrace{f_k(x,\mu_F)} \hat{\sigma}_{i,k}^{(n)}(x,\mu_R,\mu_F) \cdot c_{\text{had}}$$

• α_s dependence of PDF is accounted for by using $\mu_{E,0}$ =20GeV and applying DGLAP

Perform fits to

- All <u>inclusive jet data</u> sets (137 data points)
- All <u>dijet data</u> sets (103 data points)
- All <u>H1 jet data taken together</u> (denoted as 'H1 jets') (exclude HERA-I dijet data as correlations to inclusive jets are not known)

Hard ME's

$$\hat{\sigma}_{i,k}^{(n)} = \alpha_s^n(\mu_R) \tilde{\sigma}_{i,k}^{(n)}(x, \mu_R, \mu_F)$$

$$\mathsf{PDFs} \ \frac{\partial f}{\partial \alpha_{\mathrm{s}}} = \frac{\mathcal{P} \otimes f}{\beta}$$

Strong coupling in NNLO from jets

α_s from individual data sets

- High experimental precision
- Scale uncertainty is largest (theory) error
- All fits with good χ²
 - -> consistency of data

Main result

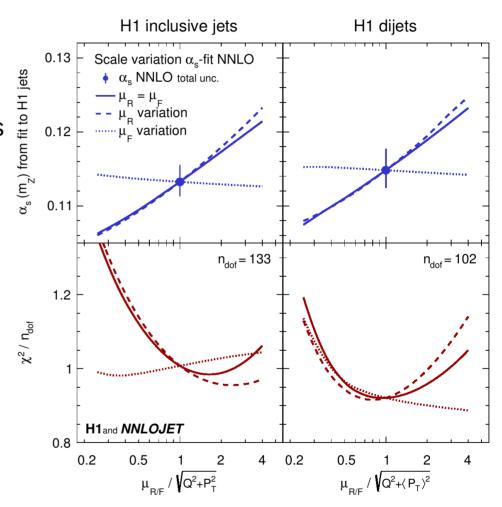

• Inclusive jets & dijets μ >28GeV, 91 data points

$$\alpha_{\rm s}(m_{\rm Z}) = 0.1157 (20)_{\rm exp} (6)_{\rm had} (3)_{\rm PDF} (2)_{\rm PDF} \alpha_{\rm s} (3)_{\rm PDFset} (27)_{\rm scale}$$

- Moderate exp. precision (due to μ>28GeV)
- Scale uncertainty dominates
- PDF uncertainties negligible

Smallest exp. uncertainty

• Fit to all data: $\Delta \alpha_s = (9)_{exp}$


Scale dependence of α_{ϵ} fit

α_s results as a function of scale factors

- Smooth results for studied scale variations
- μ_R variation with more impact than μ_R

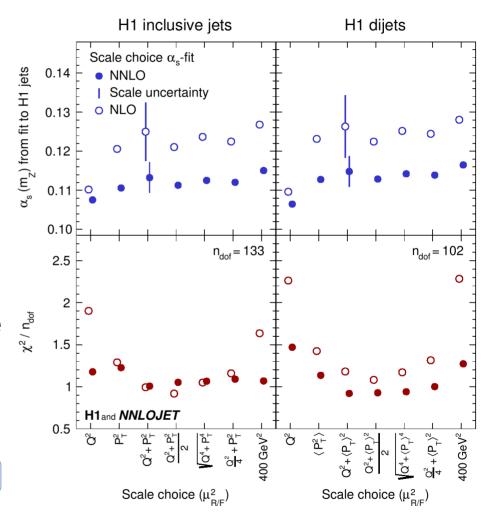
χ² values

- somewhat a 'technical parameter' -> not intended to be a parabolas
- χ² values increase for large scale factors
 -> large scale factors disvafored

Scale choice for α_s fit

Study scales calculated from Q^2 and p_T

' p_T ' refers to: p_T ^{jet} or $< p_T >$


α_s results and χ^2 values

- Spread of results covered by scale uncertainty
- χ² values are similar for different choices
 NNLO with small 'scale dependence'

NLO matrix elements

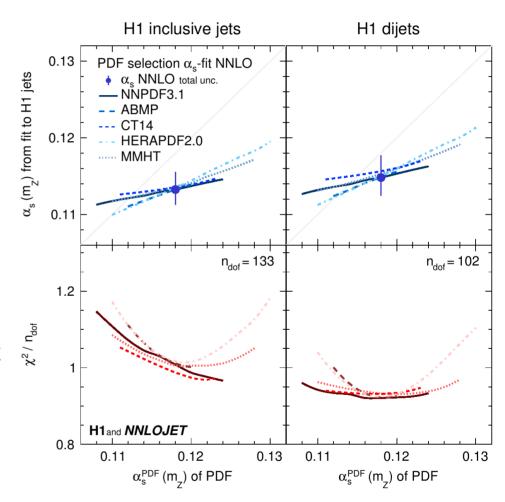
- Large scale uncertainty
- Relevant dependence of result on scale choice
- Mainly larger χ² values than NNLO
- Larger fluctuation of χ^2 values than NNLO

NNLO with reduced scale dependence

Dependence on the PDF

PDF is an external input to NNLO calculation

PDF fitting groups differ


- choice of input data sets, PDF parameterisations, model parameters, fit methodology, etc...
- Though: different PDFs appear to be quite consistent

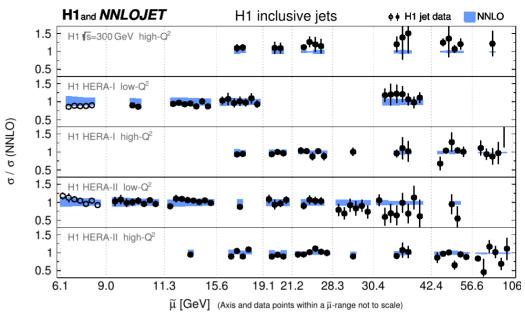
Choice of α_s for PDF determination

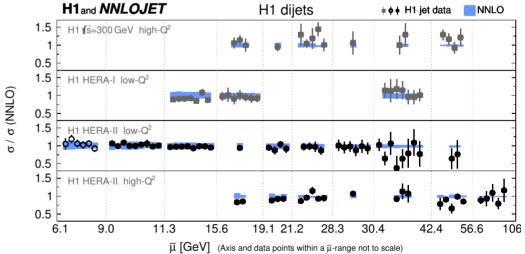
- $\alpha^{PDF}_{s}(m_{z})$ important input parameter to PDF fit
- Small correlation with fitted results

Our (main) α_s result

• almost independent on PDF assumptions

Comparison of NNLO predictions with data


All H1 jet cross section data compared to NNLO predictions

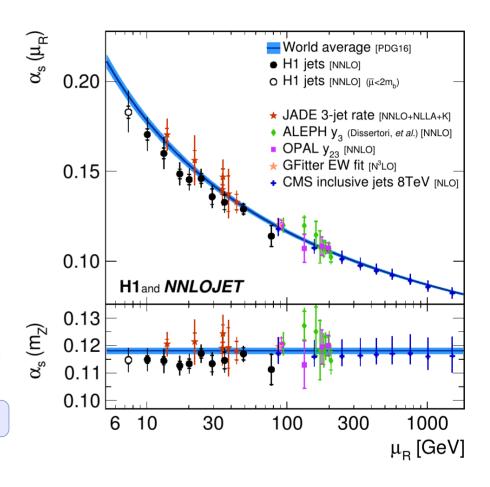

- Inclusive jets
- Dijets

Overall good agreement

- NNLO describes all data very well
- Also justified of course by good χ^2 values of the fits

Great success of pQCD

Tests of running of strong coupling


Test running of strong coupling

- Perform fits to groups of data points at similar scale
- Assumes running to be valid within the limited range covered by interval
- All fits have good χ²

Results

- Consistency with expectation at all scales
- Scale uncertainty dominates at lower μ
- Consistency of inclusive jets and dijets (backup)

Most precise test in range $7 < \mu < 90$ GeV

Alternative α_s fitting approach

'PDF+ α_s -fit' H1PDF2017

Alternative α_s fitting approach: 'PDF+ α_s -fit'

Simultaneous fit PDFs and α_s

PDFs are predominantly determined from H1 inclusive DIS data

Perform H1 alone PDF fit: H1PDF2017

- Use (all) H1 inclusive DIS data
- Use (all) H1 normalised jet cross section data
- -> 1529 data points

Normalised jet cross sections

- Jet cross sections normalised to inclusive DIS
- Correlations of jets and inclusive DIS cancel

PDFs are parameterised as

$$|xf(x)|_{\mu_0} = f_A x^{f_B} (1-x)^{f_C} (1+f_D x + f_E x^2)$$

Cross section: ~ PDF ⊗σ

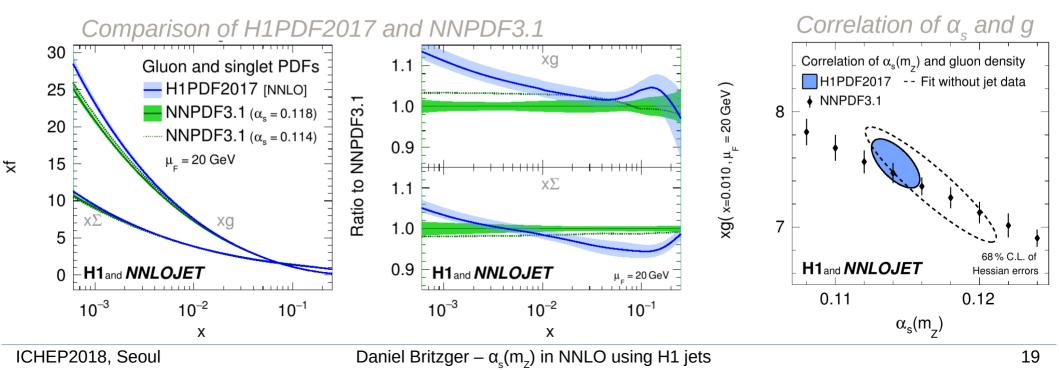
$$\sigma_i = \sum_{k=q,q,\overline{q}} \int dx f_k(x,\mu_F) \hat{\sigma}_{i,k}(x,\mu_R,\mu_F) \cdot c_{\text{had},i}$$

Normalised jets

Data set	Q^2 domain	Inclusive	Dijets	Normalised	Normalised	Stat. corr.
[ref.]		jets		inclusive jets	dijets	between samples
$300{ m GeV}[17]$	$\text{high-}Q^2$	✓	✓	_	_	_
HERA-I [23]	$low-Q^2$	\checkmark	\checkmark	_	_	_
HERA-I [21]	${ m high}$ - Q^2	\checkmark	_	\checkmark	_	_
HERA-II [15]	$low-Q^2$	\checkmark	\checkmark	\checkmark	\checkmark	✓
HERA-II [15, 24]	${\it high-}Q^2$	\checkmark	\checkmark	✓	\checkmark	✓

Inclusive NC & CC DIS

Data set	Lepton	\sqrt{s}	Q^2 range	NC cross	CC cross	Lepton beam
[ref.]	$_{\mathrm{type}}$	[GeV]	$[\mathrm{GeV}^2]$	sections	sections	polarisation
Combined low- Q^2 [64]	e^+	301,319	(0.5) 12 – 150	✓	_	_
Combined low- E_p [64]	e^+	$225,\!252$	(1.5) $12 - 90$	✓	-	_
$94-97\ [61]$	e^+	301	150-30000	✓	\checkmark	_
$98-99\ [62,63]$	e^{-}	319	150-30000	\checkmark	\checkmark	_
99 - 00 [63]	e^+	319	150-30000	\checkmark	\checkmark	_
HERA-II [65]	e^+	319	120-30000	\checkmark	\checkmark	✓
HERA-II [65]	e^{-}	319	120-50000	\checkmark	\checkmark	✓


$PDF+\alpha_s$ -fit - H1PDF2017 [NNLO]

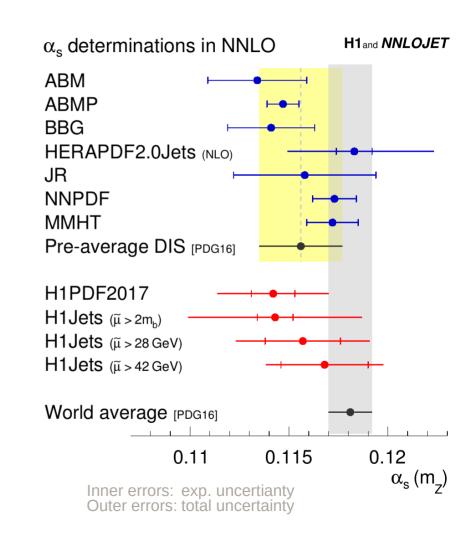
Result for PDFs

- Set of PDFs determined with high precision
- Despite α_s is a <u>free parameter</u> to the fit: precision is competitive with gloabl PDF fitters
- Gluon at lower x-values tends to be higher
 - -> nowadays: also favored by small-x resummed PDFs

PDF+ α_s -fit

- Using H1 jet data allows a precise determination of the gluon PDF and α_s
- $\chi^2/ndf \sim 1.01$

Results


α_s determined in PDF+ α_s -fit

$$\alpha_{\rm s}(m_{\rm Z}) = 0.1142\,(11)_{\rm exp,had,PDF}\,(2)_{\rm mod}\,(2)_{\rm par}\,(26)_{\rm scale}$$

- High experimental precision
- Moderate theory uncertainty from NNLO

Comparison

- Higher precision than most of other (comparable) determinations
 - -> PDF groups commonly determine exp. uncertainties (only)
 - -> We further estimate scale uncertainties
- All H1 results consistent
- Results competitive with world average
- All results from DIS data tend to be lower than world average value

Summary

All H1 jet data confronted with NNLO predictions

- NNLO provides improved description w.r.t. NLO
- Quantitative comparison of all data
- NNLO predictions studied in great detail

NNLO used for determination of $\alpha_s(m_z)$

•
$$\alpha_{\rm s}$$
-fit $\alpha_{\rm s}(m_{\rm Z}) = 0.1157 (20)_{\rm exp} (6)_{\rm had} (3)_{\rm PDF} (2)_{\rm PDF} \alpha_{\rm s} (3)_{\rm PDFset} (27)_{\rm scale}$

•
$$\alpha_s$$
+PDF-fit $\alpha_s(m_Z) = 0.1142 (11)_{\text{exp,had,PDF}} (2)_{\text{mod}} (2)_{\text{par}} (26)_{\text{scale}}$

High experimental and theoretical precision

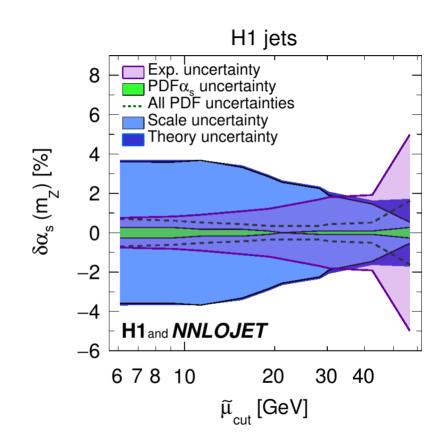
NNLO predictions for jets are used for PDF fits for the first time

- Successful determination of gluon-density and $\alpha_s(m_z)$ simultaneously
- Competitive precision of PDFs and $\alpha_s(m_z)$
- H1PDF2017 available at LHAPDF

Fruitful collaboration of theoreticians and experimentalists (H1 & NNLOJET)

Study of total uncertainty

Scale uncertainties at various scales μ


- At low-μ: large scale uncertainties...
- ... but also high sensitivity to $\alpha_s(m_z)$

Fits imposing a cut on scale μ

• Repeat α_s fits: successively cut away data below $\mu_{\rm cut}$

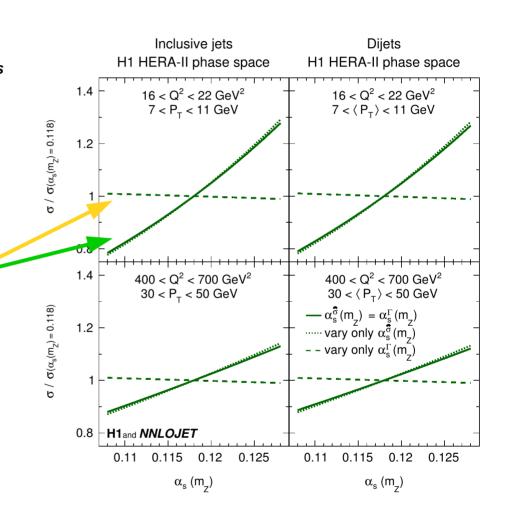
Results

- Scale uncertainty decreases with $\mu_{
 m cut}$
- Exp. uncetainty increases with $\mu_{\rm cut}$

Cut on μ can balance between exp. and theoretical uncertainties at constant total precision

α_s(m_z) dependence of cross sections

Jet cross sections directly sensitive to α_s


$$\sigma_i = \sum_{n=1}^{\infty} \sum_{k=g,q,\overline{q}} \int dx \underbrace{f_k(x,\mu_F)} \hat{\sigma}_{i,k}^{(n)}(x,\mu_R,\mu_F) \cdot c_{\text{had}}$$

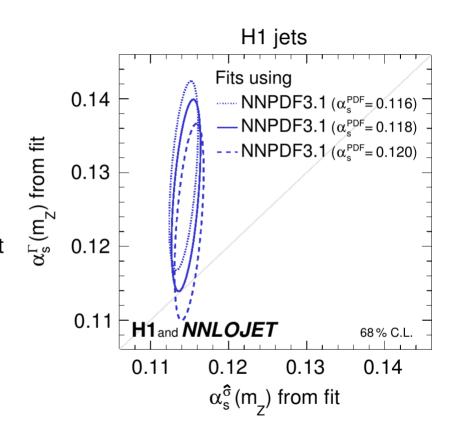
Two α_s-dependencies

$$\mathsf{PDFs}\,\frac{\partial f}{\partial \alpha_{\mathrm{s}}} = \frac{\mathcal{P}\otimes f}{\beta}$$

PDFs
$$\frac{\partial f}{\partial \alpha_s} = \frac{\mathcal{P} \otimes f}{\beta}$$
 Hard ME's $\hat{\sigma}_{i,k}^{(n)} = \alpha_s^n(\mu_R) \tilde{\sigma}_{i,k}^{(n)}(x,\mu_R,\mu_F)$

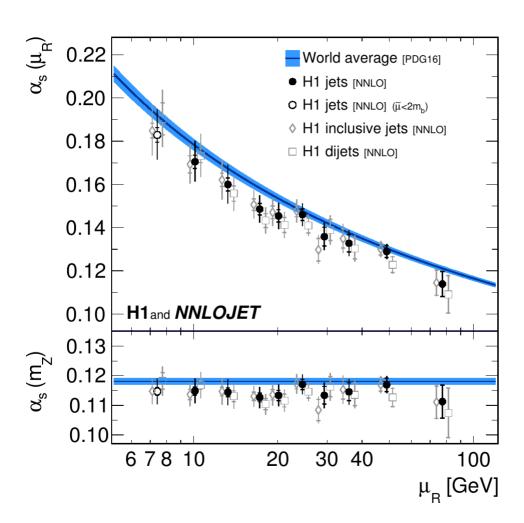
- T TEGOTIHIAM OS SCHSHIVRY HOMES
- PDF's with almost negligible sensitivity

α_s dependencies separately fitted


Fits to

- Inclusive jet and dijet data fitted together
- Fits performed for different PDFs

Fits with two free α_s parameters


$$\underset{\pmb{\mathsf{Results}}}{\sigma_i} = f(\underbrace{\alpha_{\mathrm{s}}^f(m_Z)}) \otimes \hat{\sigma}_k(\alpha_{\mathrm{s}}^{\hat{\sigma}}(m_Z)) \cdot c_{\mathrm{had}}$$

- Most sensitivity arises from matrix elements Best-fit α_s -values in PDF's and ME's are consistent
- Anti-correlation between $\alpha_s^{PDF}(m_7)$ and $\alpha_s^{F}(m_7)$

 $\alpha_{\rm s}(m_{\rm Z})$ values from H1 jet cross sections

Data	$ ilde{\mu}_{ ext{cut}}$	$lpha_{ m s}(m_{ m Z})$ with uncertainties	th	tot	$\chi^2/n_{ m dof}$
Inclusive jets					
$300{ m GeV}$ high- Q^2	$2m_b$	$0.1221 (31)_{\text{exp}} (22)_{\text{had}} (5)_{\text{PDF}} (3)_{\text{PDF}\alpha_s} (4)_{\text{PDFset}} (36)_{\text{scale}}$	$(43)_{\mathrm{th}}$	$(53)_{\rm tot}$	6.5/15
HERA-I low- Q^2	$2m_b$	$0.1093 (17)_{\text{exp}} (8)_{\text{had}} (5)_{\text{PDF}} (5)_{\text{PDF}\alpha_s} (7)_{\text{PDFset}} (33)_{\text{scale}}$	$(35)_{\mathrm{th}}$	$(39)_{\rm tot}$	17.5/22
${ m HERA} ext{-I high-}Q^2$	$2m_b$	$0.1136(24)_{\text{exp}}(9)_{\text{had}}(6)_{\text{PDF}}(4)_{\text{PDF}\alpha_s}(4)_{\text{PDFset}}(31)_{\text{scale}}$	$(33)_{\mathrm{th}}$	$(41)_{\rm tot}$	14.7/23
HERA-II low- Q^2	$2m_b$	$0.1187 (18)_{\text{exp}} (8)_{\text{had}} (4)_{\text{PDF}} (4)_{\text{PDF}\alpha_s} (3)_{\text{PDFset}} (45)_{\text{scale}}$	$(46)_{\rm th}$	$(50)_{\rm tot}$	29.6/40
${ m HERA} ext{-II high-}Q^2$	$2m_b$	$0.1121 (18)_{\text{exp}} (9)_{\text{had}} (5)_{\text{PDF}} (4)_{\text{PDF}\alpha_s} (2)_{\text{PDFset}} (35)_{\text{scale}}$	$(37)_{\mathrm{th}}$	$(41)_{\rm tot}$	42.5/29
Dijets					
$300{ m GeV}$ high- Q^2	$2m_b$	$0.1213(39)_{\text{exp}}(17)_{\text{had}}(5)_{\text{PDF}}(2)_{\text{PDF}\alpha_s}(3)_{\text{PDFset}}(31)_{\text{scale}}$	$(35)_{\mathrm{th}}$	$(52)_{\rm tot}$	13.6/15
${ m HERA} ext{-I low-}Q^2$	$2m_b$	$0.1101(23)_{\text{exp}}(8)_{\text{had}}(5)_{\text{PDF}}(4)_{\text{PDF}\alpha_s}(5)_{\text{PDFset}}(36)_{\text{scale}}$	$(38)_{\mathrm{th}}$	$(45)_{\rm tot}$	10.4/20
${ m HERA} ext{-II low-}Q^2$	$2m_b$	$0.1173(14)_{\text{exp}}(9)_{\text{had}}(5)_{\text{PDF}}(5)_{\text{PDF}}\alpha_{s}(3)_{\text{PDFset}}(44)_{\text{scale}}$	$(45)_{\mathrm{th}}$	$(47)_{\rm tot}$	17.4/41
${ m HERA} ext{-II high-}Q^2$	$2m_b$	$0.1089(21)_{\text{exp}}(7)_{\text{had}}(5)_{\text{PDF}}(3)_{\text{PDF}\alpha_s}(3)_{\text{PDFset}}(25)_{\text{scale}}$	$(27)_{\rm th}$	$(34)_{\rm tot}$	28.0/23
H1 inclusive jets	$2m_b$	$0.1132 (10)_{\text{exp}} (5)_{\text{had}} (4)_{\text{PDF}} (4)_{\text{PDF}\alpha_s} (2)_{\text{PDFset}} (40)_{\text{scale}}$	$(40)_{\rm th}$	$(42)_{\text{tot}}$	134.0/133
H1 inclusive jets	$28\mathrm{GeV}$	$0.1152(20)_{\text{exp}}(6)_{\text{had}}(2)_{\text{PDF}}(2)_{\text{PDF}\alpha_{s}}(3)_{\text{PDFset}}(26)_{\text{scale}}$	$(27)_{\mathrm{th}}$	$(33)_{\rm tot}$	44.1/60
H1 dijets	$2m_b$	$0.1148(11)_{\text{exp}}(6)_{\text{had}}(5)_{\text{PDF}}(4)_{\text{PDF}\alpha_{s}}(4)_{\text{PDFset}}(40)_{\text{scale}}$	$(41)_{\mathrm{th}}$	$(42)_{\rm tot}$	93.9/102
H1 dijets	$28\mathrm{GeV}$	$0.1147(24)_{\text{exp}}(5)_{\text{had}}(3)_{\text{PDF}}(2)_{\text{PDF}\alpha_{s}}(3)_{\text{PDFset}}(24)_{\text{scale}}$	$(25)_{\rm th}$	$(35)_{\rm tot}$	30.8/43
H1 jets	$2m_b$	$0.1143 (9)_{\text{exp}} (6)_{\text{had}} (5)_{\text{PDF}} (5)_{\text{PDF}\alpha_s} (4)_{\text{PDFset}} (42)_{\text{scale}}$	$(43)_{\rm th}$	$(44)_{\rm tot}$	195.0/199
H1 jets	$28\mathrm{GeV}$	$0.1157(20)_{\text{exp}}(6)_{\text{had}}(3)_{\text{PDF}}(2)_{\text{PDF}\alpha_{s}}(3)_{\text{PDFset}}(27)_{\text{scale}}$	$(28)_{\mathrm{th}}$	$(34)_{\rm tot}$	63.2/90
H1 jets	$42\mathrm{GeV}$	$0.1168(22)_{\text{exp}}(7)_{\text{had}}(2)_{\text{PDF}}(2)_{\text{PDF}\alpha_{s}}(5)_{\text{PDFset}}(17)_{\text{scale}}$	$(20)_{\mathrm{th}}$	$(30)_{\rm tot}$	37.6/40
H1PDF2017 [NNLO]	$2m_b$	0.1142 (11) _{exp,NP,PDF} (2) _{mod} (2) _{par} (26) _{scale}		$(28)_{\text{tot}}$	1539.7/151

Data set	\sqrt{s}	\mathcal{L}	DIS kinematic	Inclusive jets	Dijets
[ref.]	[GeV]	$[\mathrm{pb}^{-1}]$	range		$n_{\rm jets} \ge 2$
$300\mathrm{GeV}$	300	33	$150 < Q^2 < 5000 \mathrm{GeV}^2$	$7 < P_{\mathrm{T}}^{\mathrm{jet}} < 50 \mathrm{GeV}$	$P_{\mathrm{T}}^{\mathrm{jet}} > 7 \mathrm{GeV}$
[17]			0.2 < y < 0.6		$8.5 < \langle P_{\rm T} \rangle < 35 {\rm GeV}$
HERA-I	319	43.5	$5 < Q^2 < 100 \mathrm{GeV}^2$	$5 < P_{\mathrm{T}}^{\mathrm{jet}} < 80 \mathrm{GeV}$	$5 < P_{\mathrm{T}}^{\mathrm{jet}} < 50 \mathrm{GeV}$
[23]			0.2 < y < 0.7		$5 < \langle P_{\mathrm{T}} \rangle < 80 \mathrm{GeV}$
					$m_{12} > 18 \mathrm{GeV}$
					$(\langle P_{\rm T} \rangle > 7 {\rm GeV})^*$
HERA-I	319	65.4	$150 < Q^2 < 15000 \mathrm{GeV}^2$	$5 < P_{\mathrm{T}}^{\mathrm{jet}} < 50 \mathrm{GeV}$	_
[21]			0.2 < y < 0.7		
HERA-II	319	290	$5.5 < Q^2 < 80 \mathrm{GeV}^2$	$4.5 < P_{ m T}^{ m jet} < 50{ m GeV}$	$P_{\mathrm{T}}^{\mathrm{jet}} > 4 \mathrm{GeV}$
[15]			0.2 < y < 0.6		$5 < \langle P_{\rm T} \rangle < 50 {\rm GeV}$
HERA-II	319	351	$150 < Q^2 < 15000 \mathrm{GeV}^2$	$5 < P_{\mathrm{T}}^{\mathrm{jet}} < 50 \mathrm{GeV}$	$5 < P_{\mathrm{T}}^{\mathrm{jet}} < 50 \mathrm{GeV}$
[15, 24]			0.2 < y < 0.7		$7 < \langle P_{\mathrm{T}} \rangle < 50 \mathrm{GeV}$
					$m_{12} > 16 \mathrm{GeV}$

Inclusive jet cross sections

Inclusive jet cross sectionslow Q²: 4.5 < P_T < 50 GeV

- high Q²: 5 < P_⊤ < 50 GeV

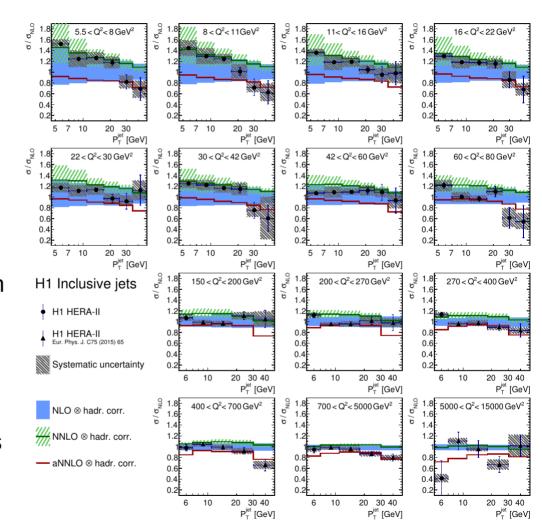
Predictions

NLO, aNNLO & NNLO

NLO

 Data well described within uncertainties

aNNLO

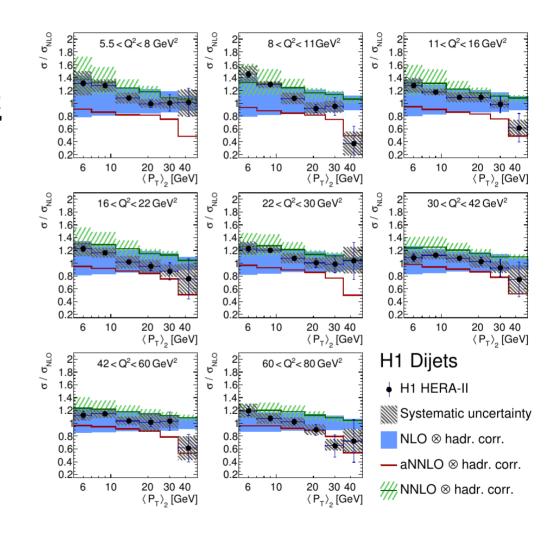

Somewhat improved shape description

NNLO

- Improved shape and normalisation
- Reduced scale uncertainties for larger values of μ_r

Also measured

Normalised inclusive jet cross sections


Ratio of dijet cross sections to NLO

Scale uncertainty

• So-called '7-point scale variation': Vary μ_r and μ_t independently by factors of 2 and 0.5, but exclude variations in 'opposite' directions

Ratio to NLO prediction

- NLO give reasonable descriptions within large scale uncertainties
 aNNLO improves shape
- - aNNLO expected to improve description at high <p_T>
- NNLO improves shape dependence
 NNLO predictions have smaller scale
 - uncertainties than NLO at high- $\langle p_{\tau} \rangle$

